LAS MARIPPOSAS HESPERIIDAE (INSECTA: LEPIDOPTERA) DE BETHEL, LA LIBERTAD, PETEN: TAXONOMIA, DIVERSIDAD, HISTORIA NATURAL Y BIOGEOGRAFIA

Informe de Tesis

Presentado por

Mercedes Violeta Barrios Ruiz

Para optar al título

BIOLOGA

Guatemala, noviembre de 1999
JUNTA DIRECTIVA

FACULTAD DE CIENCIAS QUÍMICAS Y FARMACIA

DECANA: Licda. Hada Marieta Alvarado Beteta

SECRETARIO: Lic. Oscar Federico Nave Herrera

VOCAL I: Dr. Oscar Manuel Cobar Pinto

VOCAL II: Dr. Rubén Dariel Velásquez Miranda

VOCAL III: Lic. Rodrigo Herrera San José

VOCAL IV: Br. David Estuardo Delgado González

VOCAL V: Br. Estuardo solórzano Lemus
AGRADECIMIENTOS

Expreso mi más profundo agradecimiento a todas las personas que han hecho posible la culminación de este estudio.

Al Proyecto CCB/CECON: a George Austin por asesoría en la determinación del material, por toda la literatura enviada, su hospitalidad y su gran sencillez; a Claudio Méndez: por compartir su amplia experiencia en la orientación de cada fase de la investigación.

A los compañeros y amigos del Centro de Estudios Conservacionistas y Centro de Datos para la Conservación por su apoyo constante en especial a: Olga Váldez, Herman Kihn, Luis Villar.

A Enio Caro por su asesoría, por facilitar la sede de trabajo y uso de equipo en el Laboratorio de Entomología Sistemática de la Universidad del Valle de Guatemala, hago extensiva mi gratitud a Jack Schuster, Charles MacVeen, Katherine Cardona y Estela de Flores. A Carlota Monroy del Laboratorio de Entomología Médica de la Escuela de Biología de la Universidad de San Carlos de Guatemala, por facilitar el uso del equipo fotográfico, y a Sergio Melgar por su asesoría en el análisis de datos.

Los fondos para visitar la colección de mariposas del Museo de Nevada fueron otorgados por WWF. En la gestión de fondos y permisos para transporte de material se contó con el apoyo de Juan Carlos Villagran, Oscar Lara y Migdaalia García, fue también decisivo el apoyo de Carlos Galindo Leal del Programa Tropical del Centro para la Biología de la Conservación de la Universidad de Stanford.

Para la edición del documento se contó con el apoyo del Proyecto de Flora del Centro de Datos para la Conservación, el Instituto de Investigaciones Químicas y Biológicas, Rebeca Orellana, Marco Aurelio Colindres, Ana María Ortiz y José David Barrios. Los créditos fotográficos son de Fernando Díaz y Claudio Méndez quienes aportaron su valioso tiempo a las sesiones de fotográficas.

A Sheny, Sergio y Claudia por su apoyo constante.
A MI FAMILIA
por compartir conmigo ideales, el amor y el trabajo.
En especial a mis padres Héctor y Martasusana, mis
hermanos, cuñadas y sobrinos, al tío Eliseo y por
supuesto a mi bella Dione y a Claudio.
INDICE

<table>
<thead>
<tr>
<th>Sección</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESUMEN</td>
<td>1</td>
</tr>
<tr>
<td>1. INTRODUCCION</td>
<td>2</td>
</tr>
<tr>
<td>2. ANTECEDENTES</td>
<td>4</td>
</tr>
<tr>
<td>2.1. Investigaciones realizadas sobre el tema</td>
<td>4</td>
</tr>
<tr>
<td>2.2. Familia Hesperiidae</td>
<td>5</td>
</tr>
<tr>
<td>2.3. Adultos</td>
<td>5</td>
</tr>
<tr>
<td>2.4. Estados inmaduros</td>
<td>7</td>
</tr>
<tr>
<td>2.5. Biología</td>
<td>7</td>
</tr>
<tr>
<td>2.6. Clasificación</td>
<td>8</td>
</tr>
<tr>
<td>2.7. Nociones sobre morfología de genitalia</td>
<td>9</td>
</tr>
<tr>
<td>2.7.1. Genitalia del macho</td>
<td>9</td>
</tr>
<tr>
<td>2.7.2. Genitalia de la hembra</td>
<td>11</td>
</tr>
<tr>
<td>3. JUSTIFICACION</td>
<td>14</td>
</tr>
<tr>
<td>4. OBJETIVOS</td>
<td>15</td>
</tr>
<tr>
<td>5. HIPOTESIS</td>
<td>16</td>
</tr>
<tr>
<td>6. MATERIALES Y METODOS</td>
<td>17</td>
</tr>
<tr>
<td>6.1. Universo de Trabajo</td>
<td>17</td>
</tr>
<tr>
<td>6.2. Del área de procedencia del material</td>
<td>17</td>
</tr>
<tr>
<td>6.2.1. Consideraciones generales</td>
<td>17</td>
</tr>
<tr>
<td>6.2.2. Límites y colindancias</td>
<td>18</td>
</tr>
<tr>
<td>6.2.3. Aspectos socioeconómicos</td>
<td>19</td>
</tr>
<tr>
<td>6.2.3.1. Red vial e infraestructura</td>
<td>20</td>
</tr>
<tr>
<td>6.2.4. Fisiografía, geología y suelos</td>
<td>20</td>
</tr>
<tr>
<td>6.2.5. Hidrología</td>
<td>21</td>
</tr>
<tr>
<td>6.2.6. Clima</td>
<td>22</td>
</tr>
<tr>
<td>7. MEDIOS</td>
<td>23</td>
</tr>
<tr>
<td>7.1 Recursos Humanos</td>
<td>23</td>
</tr>
<tr>
<td>7.2 Materiales y equipo</td>
<td>24</td>
</tr>
<tr>
<td>7.3 Procedencia de los especímenes</td>
<td>25</td>
</tr>
<tr>
<td>7.4 Metodología de la colecta</td>
<td>26</td>
</tr>
<tr>
<td>7.4.1. Diseño</td>
<td>26</td>
</tr>
<tr>
<td>7.4.2. Colecta</td>
<td>26</td>
</tr>
<tr>
<td>7.4.3. Preparación de especímenes</td>
<td>27</td>
</tr>
<tr>
<td>7.5. Determinación</td>
<td>28</td>
</tr>
<tr>
<td>7.6. Disección y montaje de genitalia</td>
<td>29</td>
</tr>
<tr>
<td>Capítulo</td>
<td>Título</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>8. RESULTADOS</td>
<td>8.1 Diversidad e historia natural: Lista anotada de especies</td>
</tr>
<tr>
<td></td>
<td>8.2 Distribución local</td>
</tr>
<tr>
<td></td>
<td>8.3 Ampliación de rangos de distribución</td>
</tr>
<tr>
<td></td>
<td>8.4 Nuevas especies</td>
</tr>
<tr>
<td></td>
<td>8.5 Biogeografía</td>
</tr>
<tr>
<td></td>
<td>8.6 Curva de acumulación de especies</td>
</tr>
<tr>
<td></td>
<td>8.7 Taxonomía</td>
</tr>
<tr>
<td>9. DISCUSION DE RESULTADOS</td>
<td></td>
</tr>
<tr>
<td>10. CONCLUSIONES</td>
<td></td>
</tr>
<tr>
<td>11. RECOMENDACIONES</td>
<td></td>
</tr>
<tr>
<td>12. BIBLIOGRAFIA</td>
<td></td>
</tr>
<tr>
<td>13. ANEXOS</td>
<td></td>
</tr>
<tr>
<td>1. MAPAS</td>
<td>1.1. Mapa No. 1 Ubicación geográfica de la Cooperativa Bethel</td>
</tr>
<tr>
<td></td>
<td>1.2. Mapa No. 2 Uso actual de la tierra</td>
</tr>
<tr>
<td></td>
<td>1.3. Mapa No. 3 Ubicación de áreas de muestreo del proyecto piloto de mariposas en la Cooperativa Bethel</td>
</tr>
<tr>
<td>2. CUADROS</td>
<td>1 Coordenadas UTM de la Cooperativa Bethel</td>
</tr>
<tr>
<td></td>
<td>2 Uso de la Tierra en la Cooperativa Bethel</td>
</tr>
<tr>
<td></td>
<td>3 Especies acumuladas de mariposas Hesperiidae, Bethel</td>
</tr>
<tr>
<td>3. FIGURAS</td>
<td>3.1. Genitalia generalizada de macho de Lepidóptera</td>
</tr>
<tr>
<td></td>
<td>3.2. Estructuras de la genitalia del macho empleadas para la identificación de especies</td>
</tr>
<tr>
<td></td>
<td>3.3. Genitalia generalizada de hembra de Lepidóptera</td>
</tr>
<tr>
<td>4. CLAVE</td>
<td></td>
</tr>
<tr>
<td>4.1 Láminas</td>
<td></td>
</tr>
<tr>
<td>4.2 Genitalia</td>
<td></td>
</tr>
</tbody>
</table>
RESUMEN

Las mariposas Hesperiidae son una parte importante de la composición de mariposas diurnas en el trópico, sin embargo existe poca información sobre ellas.

En esta Tesis se presentan los resultados del estudio sobre los Hesperiídos de la cooperativa Bethel, en la parte baja de la Sierra de Lacandón, La Libertad, Petén, en la Península de Yucatán. En la Península de Yucatán, se presentan variaciones importantes en los patrones de vegetación y climáticas. Estas variaciones tienen efecto en los ensambles de especies de lepidópteros y en su distribución.

Se elaboró un listado anotado de las 94 especies determinadas para Bethel, que incluye información fenológica y de hábitat; una de clave ilustrada de los géneros y especies. Los datos fenológicos sugieren que los hesperiídos son estacionales, presentando el mayor pico de actividad de agosto a noviembre. También se comparó la composición Hesperiídos presentes en Bethel, con las de otras localidades de la Península de Yucatán, entre estas: Tikal, Quintana Roo y Chajul, las dos últimas localizadas en México. Según los índices de comunidad de Sorensen y Jaccard, la mayor semejanza encuentra entre Tikal y Bethel, siendo esta de (0.5 y 0.33), respectivamente.
1. INTRODUCCION

Las mariposas de la superfamilia Papilionoidea (Insecta: Lepidoptera), constituyen un grupo de insectos actualmente considerados como taxón modelo para estudios de biodiversidad y conservación, principalmente porque la taxonomía, biogeografía, ecología e historia natural son relativamente bien conocidas (Luis-Martínez & Vargas-Fernandez, 1990; Llorente-B et al., 1990; Olano et al., 1989; Alayo & Hernández, 1987). Los ensambles de especies de mariposas han sido evaluados como indicadores de la riqueza y estado de los hábitats debido a su sensibilidad a los cambios en microclimas y niveles de luz (Kremen, 1992; Sparrow, 1994).

Los inventarios de lepidópteros diurnos en el trópico, pueden ser utilizados como base para hacer comparaciones entre localidades, áreas biogeográficas o países. Sin embargo, la información puede resultar en algunos casos insuficiente cuando no se incluyen los hesperiídos; debido a que muchos de los otros grupos de mariposas diurnas son de amplia distribución regional y no muestran en algunos casos marcada diferenciación (C. Méndez, com.pers. 1996).

La familia Hesperiidae (Papilionoidea) sensu Heppner (1991), es la tercera de las cinco familias de mariposas diurnas en número de especies conocidas y estimadas en el mundo. En el trópico comprende entre 40 y 50% de la riqueza de especies (Heppner, 1991).
Los estudios sobre las mariposas de Guatemala son muy escasos; entre los más relevantes se pueden citar algunos viejos informes de coleccionistas (Boisduval, 1870), la Biología Centrali-americana (Godman & Salvin 1879-1901) y Gibbs, (1912). De los estudios recientes se puede citar únicamente la Lista anotada del Parque Nacional Tikal y sus alrededores (Austin et al., 1996).

Esta tesis plantea que existen diferencias en la composición de mariposas diurnas relacionadas a las diferencias conocidas en vegetación y humedad para la Península de Yucatán. Se comparan las localidades del Parque Nacional Tikal en el área central de Petén, la cooperativa Bethel en Sierra del Lacandón en suroeste de Petén, Chajul en la parte sureste, y Quintana Roo en la parte norte de la Península de Yucatán en México.

Los resultados de esta investigación son un aporte al conocimiento de diversidad, fenología, asociación de hábitat y distribución de las mariposas diurnas de la familia Hesperiidae de Guatemala y específicamente de la Reserva de la Biosfera Maya.

Presento una lista comentada de las especies determinadas en el área de la Comunidad Bethel (localidad de colecta de en la parte baja de Sierra de Lancadón), La Libertad, Petén; así como una clave de identificación para los géneros y especies registradas. Se estimó la riqueza de especies y se hizo una comparación de las mismas con áreas próximas a esta como: Tikal, Quintana Roo y Chajul.
2. ANTECEDENTES

2.1. Investigaciones realizadas sobre el tema

Se conoce muy poco de la riqueza de especies, biogeografía, e historia natural de las mariposas del trópico y específicamente de los hesperiídos. De los trabajos más relevantes para el conocimiento de los Hesperiidae, pueden citarse: los hesperiídos de América de W.H. Evans, (1951-1955) monografía sobre las especies de la familia Hesperiidae y la *Biología Centrali-Americana* (Salvin y Godman 1902) (Austin, 1998 com.pers).

En la región mesoamericana los países con más información sobre hesperiídos son: México, El Salvador y Cuba (De la Maza, 1987 y Llorente-B.; Luis-Martínez & Vargas-Fernández, 1990; Steinhauser, 1975; Alayo & Hernández, 1987).

En Guatemala la información sobre los Hesperiidae se inició con la *Biología Centrali-Americana* que incluye la descripción de varios taxa y registros de distribución (Godman & Salvin 1879-1901). Actualmente se conocen 386 especies de hesperiídos para el país, con la posibilidad de encontrar otras 180 especies que están presentes en zonas adyacentes a las fronteras: los estados del sur de México, Belice, El Salvador y Honduras (Austin, 1999).
En el censo realizado en el Parque Nacional Tikal de las 535 especies de mariposas diurnas listadas, se registran 207 que pertenecen a la familia Hesperiidae, de las que 50 fueron nuevos registros (Austin, et al., 1996).

2.2. Familia Hesperiidae, Latreille, 1809

Los hesperiídos constituyen una de las familias más primitivas y numerosas de mariposas diurnas (Heppner, 1997; Malcom, 1995; Olano et al., 1989 y De la Maza 1987). Son cosmopolitas aunque están ausentes de Nueva Zelanda, y presentan la mayor diversidad en el Neotrópico con 2,016 especies de las 3,658 conocidas (Scoble, 1995 y Heppner, 1991).

2.3 Adultos

El tamaño es muy variable: de 5 a 55 mm de envergadura, con una coloración poco llamativa. Su cuerpo es fuerte y robusto, cubierto de abundante vellosidad, lo que les permite volar con rapidez extraordinaria (Alayo & Hernández 1987; Olano et al., 1989; De la Maza 1987).

El nombre común de saltadoras “Skippers” en inglés, viene de su rápido e irregular vuelo, normalmente bajo, cerca del piso; trazan círculos amplios a partir del lugar donde se posan y regresan al mismo sitio. Por su aspecto se parecen más a las
polillas que a las mariposas (Scable, 1995; De la Maza R. 1987 y Olano et al., 1989).

La cabeza es generalmente tan ancha como el tórax, con las antenas muy separadas en la base y presentan la parte terminal curvada y delgada después del mazo, que generalmente presenta forma de porra terminada en punta y curvada hacia afuera. En la base de las antenas existen setas cortas, exclusivas de la familia Hesperiidae. La proboscis está bien desarrollada y no escamada en la base, los palpos maxilares están ausentes y los palpos labiales son ascendentes (De la Maza 1987; Alayo & Hernández 1987; Olano et al., 1989 y Scable, 1995).

De la base de sus alas nacen las cuatro venas anteriores, partiendo todas las ramas de la celada discal, extendiéndose sin ramificaciones hasta la costa y los bordes externos; la celada discal en ambas alas es cerrada (De la Maza, 1987; Alayo & Hernández, 1987) (Ver anexo 4.1).

Las patas están plenamente formadas, son cortas y fuertes, teniendo sus tibias posteriores generalmente dos pares de espolones (Alayo & Hernández, 1987). Las espinas tibiales están generalmente ausentes de las patas medias, pero uno o dos pares se encuentran en las patas posteriores, y la fórmula de las espinas tibiales es variable (024, 004 o 002) (Scable, 1995). El dimorfismo sexual es muy escaso o nulo. Para la determinación de muchos géneros y especies es necesario recurrir al estudio de la estructura genital de ambos sexos (De la Maza, 1987).
2.4. Estados inmaduros

Los huevos son puestos uno a uno rectos, son de forma esférica, manchados o ribeteados. En la larva se observan numerosas setas secundarias que cubren la cabeza y el cuerpo, tienen una cápsula cefalica grande y, generalmente son de color verde o café. Un peine anal esta típicamente presente en todos los "Skippers" excepto en Megathyminae. La pupa o crisálida es alargada, de color café, generalmente se encuentra dentro de un "guacal", formado con seda y la hoja de la planta enrollada o directamente sobre el sustrato (semienterrada). La pupa puede tener un cuerno en la cabeza y la proboscis es generalmente larga, extendiéndose hasta el cremaster (Scoble, 1995; y De la Maza, 1987).

2.5. Biología

Habitan frecuentemente los terrenos abiertos donde abundan las flores y áreas húmedas, otras prefieren los lugares con vegetación densa y sombría donde se posan bajo las hojas. Las larvas son comedoras de hojas o tallos, viven en galerías en diversos tipos de plantas como: leguminosas, mirtaeas, ramnáceas, euforbiáceas, rutáceas, bambusáceas y solanáceas (De la Maza, 1987). Las larvas de Megathyminae taladran las hojas, tallos y raíces de Agavaceae. Las larvas construyen sus refugio empolvando con el sustrato una secreción cerosa de las glándulas abdominales (Scoble, 1995).
2.6 Clasificación

Los hesperiídos son a veces tratados como una superfamilia (Malcom, 1995). En esta investigación se sigue el criterio de considerarlas como una familia de la superfamilia Papilionoidea (Heppner, 1997). La familia Hesperiidae incluye siete subfamilias (Heppner, 1997) siendo las dos subfamilias más importantes en cuanto a su abundancia en Mesoamérica: Pyrginae y Hesperiinae (Heppner, 1991). La subfamilia Pyrrhophyginæ está restringida al Neotrópico; los Pyrginae están distribuidos en todas las regiones zoogeográficas; los Hesperiinae están ampliamente distribuidos, los Megathyminae están restringidos a América Central; los Coliadinae están distribuidos en Africa tropical, Asia y Australia (Scable, 1995).

En la subfamilia Pyrginae algunas especies son de tamaño bastante grande; alas negras pero a veces conspicuamente vestidas con pilosidad abundante, de color azul o verde metálicos, o en otras especies amarillo ocre. La excepción a este patrón lo constituye el género Pyrgus, con especies pequeñas, blancas y negras, muy características (Lámina 9, No.151 y 152). Las alas anteriores presentan la celda discal más de 2/3 partes del largo de la costa. Los machos usualmente presentan un pliegue costal en las alas anteriores que contiene androconias, escamas especializadas en la producción de feromonas (Alayo & Hernández, 1987).

En la subfamilia Hesperiinae se observa que, salvo algunas pocas excepciones, el tamaño de las especies incluidas es más pequeño que las de la subfamilia Pyrginae.
En muchas especies existe una coloración amarillo anaranjada muy característica; los machos exhiben, muy frecuentemente un estigma en las alas anteriores, de aspecto más o menos falciforme, formado por escamas diferenciadas que actúan como canales de las glándulas odoríferas que segregan las feromonas. Las alas anteriores presentan la celda discal de menos de 2/3 partes del largo de la costa (Alayo & Hernández, 1987) (Ver anexo 4).

2.7. Nociones sobre morfología de genitalia

Los órganos específicos para el apareamiento sexual y oviposición son conocidos colectivamente como genitalia. Los genitales masculinos, al igual que los femeninos, se encuentran situados en el extremo del abdomen, aunque en las hembras se prolonga hasta el tercer segmento abdominal. (Snodgrass, 1935; Alayo & Hernández, 1987; Olano et al., 1989). En la taxonomía de los Hesperiidae, se usa la genitalia para la separación de especies y también para aclarar relaciones filogenéticas entre familias y géneros (Scoble, 1995; Olano et al., 1989).

2.7.1 Genitalia del macho

El aparato copulador del macho incluye un órgano para el transporte de espermatozoos hacia la hembra y usualmente un grupo de estructuras asociadas adaptadas para sujetar a la hembra. El complejo genital de los machos de los lepidópteros va del octavo, al décimo segmento abdominal (Snodgrass, 1935).
En la genitalia del macho se pueden definir claramente 3 regiones distintas (aquí denominadas A, B y C), compuestas a su vez por diferentes estructuras pequeñas (ver anexo 3, fig. 3.1). Región A: El octavo segmento forma una pequeña base protráctil para el aparato copulatorio y, en algunos casos, ésta lleva un lóbulo genital accesorio. Región B: el noveno segmento puede ser un simple anillo esclerotizado, pero usualmente es de forma irregular, con distintas áreas tergales y coxoesternales esclerotizadas. Contiene un conjunto de estructuras esclerotizadas denominadas anillo transverso, el cual consta de: el tegumen que es la placa dorsal y el vinculum que es la placa ventral (Snodgrass, 1935). De los bordes del tegumen surgen varios procesos pareados que se articulan con las valvas y el vinculum. La región esternal del vinculum frecuentemente se extiende hacia adelante en una profunda inflexión conocida como el saccus. El diafragma es una lámina ventral, transversal y membranosa que cierra el extremo posterior del abdomen. Se extiende a través del cuerpo desde el tegumen y el tubo anal por el dorso, hasta la base de las valvas y el vinculum por el lado ventral; en el centro esta membrana está perforada por el penis emergente (Scable, 1995; Alayo & Hernández, 1987; y Snodgrass, 1935).

Región C: El décimo segmento puede ser un simple tubo membranoso, pero usualmente presenta varias modificaciones de la estructura tergal llamada uncus y un lóbulo ventral semejante a una mandíbula, el gnatos. El uncus típicamente es un proceso medio dorsal, que se extiende caudalmente desde el tegumen; puede variar ampliamente en forma y constitución (Scable, 1995; Snodgrass, 1935).
En cada cara de la base del *uncus* y, en apariencia originándose del margen caudal del *tegumen*, pueden haber varios procesos: Los *socii* frecuentemente están pareados, romos, blandos y por lo general densamente cubiertos de pelos. (Snodgrass, 1935; Alayo & Hernández, 1987).

Los claspers o valvas (los *harpes* de los lepidópteroólogos) son órganos de sujeción articulados con el anillo transverso; son móviles, característicos de la genitalia de los Lepidóptera y presentan una gran variedad de formas. Tipicamente nacen sobre las áreas del coxopodito del *vinculum*, en las que tienen su origen los músculos. (Snodgrass, 1935; Alayo & Hernández, 1987). Los órganos fálicos de los lepidópteros incluyen un *edeago*, generalmente en un tubo endofálico, reversible mucho más largo que el *edeago* y varias estructuras de soporte denominadas *phalOBase* (Snodgrass, 1935). Durante el desarrollo el extremo caudal del *edeago* se invagina y crece hacia el extremo anterior del cuerpo formando el *endophallus* o *vesica*, este se encuentra con el extremo caudal del *ductus ejaculatorius*. La *vesica* o *endophallus* es reversible y, generalmente presenta espinas esclerosadas y brochas de pelos denominados *cornuti* (Scoble, 1995; Alayo & Hernández, 1987).

2.7.2. Genitalia de la hembra

La genitalia de la hembra consta de dos ovarios, de los que nacen dos *oviductos lateralis*: éstos se fusionan y forman el *oviductus communis*, el cual termina en la
vagina; la abertura externa de ésta es conocida como ostium oviductus (Ver anexo 3 fig. 3.2). A la parte anterior de la vagina que es dilatada se le denomina vestibulum. El órgano receptor de la hembra es una bolsa, cámara genital o espermateca (Snodgrass, 1935; Alayo & Hernández, 1987).

Ventral y caudal al séptimo esternito existe una cámara, en cuyas paredes se abre el ostium bursae, de la abertura copulatrix receptiva que lleva a la bursa copulatrix; del ostium bursae sale un ducto estrecho, el ductus bursae. Estructuras esclerotizadas se encuentran en la pared del corpus bursae, como dientes proyectados hacia el interior, bandas o brochas que reciben el nombre de signus (Snodgrass, 1935; Alayo & Hernández, 1987).

El ductus seminalis es un conducto que desemboca a lo largo del ductus bursae o el corpus bursae; el ductus seminalis se expande formando uno o dos sacos: la espermateca y la builla seminalis. A la vagina pueden llegar los espermatozoos provenientes de la espermateca y de la bursa copulatrix. Rodeando al ostium bursae hay numerosas estructuras denominadas en su conjunto placa genital (Scable, 1995; Alayo & Hernández, 1987).

De los bordes laterales o anterodorsales del octavo, noveno y décimo segmento se extienden interna y anteriormente, apodemas pareados y esclerotizados que se originan en el octavo segmento abdominal. Son llamados apophyses anteriores y los
del noveno y décimo segmento *apophyses posteriores*. Estos apodemas pueden estar degenerados o ausentes. Las *papillae* anales son estructuras externas del noveno y décimo segmentos, cuya presencia es como un par de lóbulos pilosos, entre los cuales el ano y el *ostium* abren al exterior (Alayo & Hernández, 1987).
3. JUSTIFICACION

Aunque las mariposas diurnas de la familia Hesperiidae, constituyen aproximadamente 40-50% de la riqueza de especies de lepidópteros diurnos en el trópico (De la maza, 1989 y Heppner, 1991), han sido escasamente estudiadas.

A pesar de existir información reciente, la taxonomía de los Hesperiidae es aún oscura y la elaboración de listados de especies, incluyendo sus claves taxonómicas y comparaciones biogeográficas son imperativas.

Cuando los inventarios de lepidópteros diurnos en el trópico, se utilizan como métodos para hacer comparaciones entre lugares, como: localidades, áreas biogeográficas o entre países, la información puede resultar incompleta cuando no se incluyen los Hesperiídos, debido a que muchos de los otros grupos de mariposas diurnas son de amplia distribución regional y no muestran en algunos casos marcada diferenciación.
4. OBJETIVOS

General:

a) Contribuir al conocimiento de los lepidópteros diurnos de la familia Hesperiidae de la Reserva de la Biosfera Maya.

Específicos:

a) Elaborar un estudio taxonómico de los Hesperiidae de Bethel (localidad de Sierra de Lacandón, La Libertad, Petén), incluyendo diagnosis, claves dicotómicas y comentarios de historia natural, ecología y biología.

b) Realizar una análisis de la distribución de las mariposas Hesperiidae de Bethel, comparándolas con otras áreas situadas en la Península de Yucatán y Chiapas.
5. HIPOTESIS

Existe diferencia en la composición de las mariposas diurnas entre los sitios: El Parque Nacional Tikal, área central de Petén; la cooperativa Bethel en Sierra del Lacandón en suroeste de Petén, Chajul, y Quintana Roo en México.
6. MATERIALES Y METODOS

6.1. Universo de trabajo

Mariposas Hesperiidae de la Cooperativa Bethel (localidad de Sierra de Lacandón, La Libertad, Petén), en el municipio de la Libertad, departamento de Petén.

6.2 Del área de procedencia del material

6.2.1. Consideraciones Generales:

La localidad de estudio se ubica dentro de las denominadas Tierras Altas del Este, de la Región Noroeste de América Central Nuclear, situada al este de la Plataforma Central y al sur de las tierras altas del Norte. La región se caracteriza por una cadena montañosa en Chiapas con declive hacia el oriente del Río Usumacinta en Guatemala. Las mayores elevaciones (1500 m.s.n.m) están al oeste y gradualmente bajan al este (a 200 m.s.n.m.), sin embargo hay sitios sobre el Río Usumacinta que pueden llegar a 100 m.s.n.m. (Johnson, 1989)

La cubierta boscosa de la región corresponde al Bosque Lluvioso Montano Bajo Tropical, conocido en México como Selva Lacandona (Bosque Tropical Perennifolio, Selva Siempre Verde). Esta asociación vegetal es muy diversa, donde rara vez existe
alguna especie dominante. Los árboles de amate, caoba, cedro y guanacaste, por lo general rebasan los 40m de altura y sus copas cerradas provocan un ambiente de penumbra a nivel del suelo (De la Maza, 1987).

Su fauna es muy diversa y predominan las especies neotropicales; la tasa de endemismo es baja. La región es cubierta mayormente por elevaciones marinas de piedra caliza del Cretácico y algunas extrusiones volcánicas (Johnson, 1969).

La cooperativa Bethel se localiza en la parte baja de la Sierra de Lacandón, dentro de la Zona de Amortiguamiento de la Reserva de la Biosfera Maya, en la jurisdicción del municipio de La Libertad, departamento de Petén, en la parte Oeste de dicho departamento (Ver mapa No.1). En 1975 se declaró como Cooperativa Agropecuaria de Servicios Varios R.L. con 50 socios (Gretzinger & Salazar, 1993) (Ver anexo No.2 cuadro No.1).

6.2.2 Límites y colindancias:

La cooperativa Bethel colinda al norte con el Parcelamiento el Retalteco, al este con la cooperativa Sinaí y el Parcelamiento Bethania, al sur con el río Usumacinta y al oeste con la cooperativa la Felicidad y el Parcelamiento Nuevo Yanai (Ver mapa No.1). Todas las comunidades están ubicadas en el municipio de la Libertad, Petén (Gretzinger y Salazar, 1993).
Un alto porcentaje del área de la cooperativa aún se encuentra cubierto con bosque (69.32%), por lo que se considera que posee un potencial alto de recursos que pueden ser sujetos a un plan ordenado de manejo a largo plazo. Aunque parte del bosque fue selectivamente intervenido durante el período de 1991 a 1992, mediante la extracción de maderas preciosas (principalmente de cedro y caoba), aún hay una porción considerable con especies preciosas. El bosque también posee especies secundarias, que ofrecen según los forestales, buenas alternativas de aprovechamiento (Gretzinger y Salazar, 1993). (Ver Anexo 2 cuadro No.2)

6.2.3. Aspectos socioeconómicos

Petén se encuentra, según la priorización de zonas críticas del territorio nacional, en "la zona 2" junto con San Marcos, Sololá, Quetzaltenango, Chiquimula y Chimaltenango. Esta zonificación evalúa la condición social, económica y natural de los departamentos. Con relación a la inversión del gobierno, Petén recibe un 3.2%

Sin embargo, refleja las mismas condiciones críticas de los departamentos que conforman la "zona 2": altos índices de analfabetismo, población sin acceso a agua, drenaje y energía eléctrica (SEGEPLAN, 1995).

La mayoría de familias que habitan en Bethel están asociadas a la cooperativa. El ingreso mensual promedio por familia para 1993 fué Q 754.29 pero la varianza osciló entre Q 150.00 y Q 3,000.00. La vivienda es propia y generalmente está construida de madera con techo de guano y/o corozo. El 50% de socios son casados o unidos,
con un promedio de 5 hijos. El 95% de socios se dedican a actividades agrícolas
(maíz, hortalizas), un 76% a la ganadería (porcina y equina); todos en pequeña o gran
escala hacen extracción de los recursos maderables y no maderables de los bosques
de la cooperativa (Gretzinger & Salazar, 1993).

6.2.3.1 Red Vial e Infraestructura

Las vías de acceso existentes son dos: un camino balastrado que parte desde Flores
y tiene antes de entrar al poblado de Bethel, un ramal hacia el norte dirigido al
parcelamiento el Retalteco aproximadamente 130 Km que pasa por las comunidades
de La Libertad, Las Cruces, Palestina y el Parcelamiento Bethania. Este ramal tiene
pistas de arrastre de madera (el nombre técnico es "güines") y bacacillas construidas
durante una reciente extracción forestal que permite internarse en el bosque aledaño.
También hay un camino que conduce de Bethel a la Cooperativa Técnica
Agropecuaria. Hay una pista de aterrizaje dentro de la cooperativa, construida en
1984 por el Fydep, la cual está habilitada, para pequeñas avionetas y helicópteros.
Por vía acuática se puede llegar a través de los ríos La Pasión y Usumacinta
(Gretzinger y Salazar, 1993).

6.2.4. Fisiografía, geología y suelos:

La cooperativa se encuentra en la provincia fisiográfica Planicie Baja interior de Petén
(Dengo, 1972). Su geología corresponde a la era Secundaria del período Cretácico
formada principalmente de calizas, dolomitas y brechas calcáreas. Los suelos pertenecen al orden cambisoles, cuya principal característica es la ausencia de propiedades hidromórficas en los primeros 50 cm; la mayoría de suelos pertenecen a la serie Quinil, aunque en el área puede encontrarse asociada con la Serie Chacalté, en menor grado (Simmons, et al., 1959).

Los suelos del área están comprendidos dentro de las series agrológicas IV a VIII lo que significa que en su mayoría son suelos con potencial eminentemente forestal (Simmons, et al., 1959). Las elevaciones del terreno de la cooperativa oscilan de los 100 a los 200 msnm, el relieve es plano a ligeramente ondulado, con pequeños parches quebrados. Al suroeste y sureste predominan las colinas altas con cierta pedregosidad, al noroeste predominan las colinas bajas (Gretzinger & Salazar, 1993).

6.2.5 Hidrología:

El área de la cooperativa se encuentra dentro de la vertiente del golfo de México (Ver mapa No.3). Son frecuentes los pantanos, bajos, arroyos y fuentes agua que desembocan en el río Usumacinta. El arroyo El Jute es una de las corrientes más importantes, con caudal todo el año, desemboca en el pantano La Vaca (extensión 333.76 hectáreas). Dentro del área de la cooperativa se encuentra también parte de la laguneta Bolanchac o "Peje Lagarto" con una extensión de 16.24 hectáreas. Existe además un cenote donde el agua se encuentra aproximadamente a 35m bajo la superficie de la tierra y cuyo radio aproximado es de 30m. El Cenote y el río
Usumacinta constituyen actualmente los principales y potenciales atractivos turísticos de la cooperativa (Gretzinger et al., 1993).

6.2.6. Clima:

El Clima de las Tierras Altas del Este es similar al de las Tierras Altas del Norte y según el sistema Thornthwaite es húmedo-calido, sin estación seca bien definida y con invierno benigno. La temperatura anual es de hasta 25°C con bajas elevaciones y al menos 20°C en el corte en las áreas altas. La lluvia es estacional y oscila entre 2000 - 3000 mm anualmente a través de la región (Johnson, 1989).

Los datos climáticos del área provienen de la estación meteorológica tipo A, "El Porvenir". Los factores climáticos varían de acuerdo a los siguientes valores: la precipitación pluvial anual es de 1865.15 mm, distribuida en aproximadamente 173 días, concentrándose en los meses de junio a octubre y los meses más secos son enero y febrero. La humedad relativa media anual es de 85 % con un máximo de 90 % durante los meses de noviembre y diciembre y con un mínimo 74 % en el mes de mayo. La temperatura media anual es de 25.4°C, que alcanza un máximo de 28.7°C en el mes de mayo y un mínimo de 22.2°C en el mes de enero. La evaporación media anual es de 103.4 mm, alcanzando una máxima de 153.5 mm en el mes de mayo y mínima de 59.5 mm en el mes de diciembre (INSIVUMEH, 1992).
7. MEDIOS

7.1 Recursos Humanos

-Investigador: Mercedes V. Barrios Ruiz
-Asesor: Lic. Enio Cano MSc.

Laboratorio de Entomología Sistemática, Universidad del Valle de Guatemala

-Revisor: Licda. Carlota Monroy MSc.

Laboratorio de Entomología Médica, Escuela Biología, Universidad de San Carlos de Guatemala

-Asesoría: Centro para la Biología de la Conservación (CCB) de la Universidad de Stanford, Lic. Claudio Méndez y Dr. George Austin Ph.D, del Museo de Nevada.
7.2 Materiales y equipo

- Estereomicroscopio Wild Leitz, con cámara lucida, cámara fotográfica y ocular micrométrico
- plano de montaje de mariposas
- glicerina
- hidróxido de potasio el 10%
- alfileres entomológicos #3
- incubadora
- termómetro
- pinzas entomológicas para mariposas y de disección
- porta y cubreobjetos
- etiquetas
- microviales de polietileno con tapón de hule
- platina excavada
- recipientes de plástico (herméticos)
- jeringa de insulina
- servilletas de papel
- sobres entomológicos para mariposas
- Cámara digital
- microdiscos
7.3. Procedencia de los especímenes

El Centro de Biología para la Conservación (CCB) de la Universidad de Standford y la Facultad de Ciencias Químicas y Farmacia de la Universidad de San Carlos de Guatemala, a través del Centro de Estudios Conservacionistas (CECON), suscribieron en 1992 un convenio para el desarrollo de investigación y sobre técnicas de inventario y monitoreo con indicadores ecológicos, principalmente en la Reserva de la Biosfera Maya.

Como producto de este convenio, se inició el estudio de mariposas diurnas (Lepidoptera: Rophalocera) en el Parque Nacional Tikal y sus alrededores, con las siguientes metas: a) búsqueda de herramientas de evaluación de los cambios (naturales o antropogénicos) sobre la diversidad biológica y b) plantear con esta información un modelo de tendencias, que relacione el uso del suelo y su efecto en los ecosistemas. (Méndez, 1997). Los primeros resultados de este trabajo se encuentran en Austin et al., (1996).

En 1994 se inició otro estudio en la Cooperativa Bethel, municipio de la Libertad, Petén, con el propósito de medir el efecto del corte selectivo del bosque sobre la diversidad biológica. Ambos estudios sustentarán la formulación de programas de monitoreo de la diversidad a largo plazo (Méndez, 1997). Las mariposas diurnas (Papilionidae y Hesperiidae) fueron consideradas como buenos indicadores en este proyecto. El material de Hesperiidae es el que se consideró para este trabajo.
7.4. Metodología de colecta

7.4.1. Diseño:

A través de un estudio piloto se seleccionaron cuatro sitios, dos de los cuales eran sujetos a extracción forestal selectiva y los otros dos no. Las áreas de extracción fueron denominadas EX, identificándose como: EX1 a la de extracción de 1994 y EX2 a la de 1995. Las áreas sin extracción forestal selectiva se denominaron CL1 y CL2 (Control 1 y Control 2). Además se muestreó en ambientes de borde que corresponden a caminos principales y a guamiles como: el camino que conduce a la cooperativa La Técnica y el camino a la comunidad Retalteco (Ver mapa No.2 de sitios de muestreo).

7.4.2. Colecta:

El método empleado en el estudio consiste en: dos transectos por sitio, separados entre sí por un mínimo de 200 m. Cada transecto es de 500 m en el que se colocaron 10 trampas separadas 50 m entre sí. Esta es una modificación de la metodología de Sparrow et al., (1994) (Méndez, com. pers.). Dentro de cada transecto, se realiza un censo diurno, en el que se hace un conteo del número de especies observadas durante siete minutos, en un radio de 20 metros desde cada punto de trampa. Se determinan las especies por observación sin captura, y captura con red de mano y con trampas cebadas con banano fermentado. Las trampas se retiran por la tarde al
condujese el censo. Las muestras representan un día de esfuerzo por mes y por área de estudio. Los censos fueron realizados a partir de enero de 1994 a diciembre de 1996 (Méndez ,1997) (Ver anexo 1.3 mapa No.3).

7.4.3 Preparación de especímenes

Para el montaje y disección de ejemplares secos, es necesario reblandecerlos dentro de una cámara húmeda en un recipiente con tapa hermética. Esta cámara se forma depositando en el fondo del recipiente un lienzo humedecido con agua sobre el que se depositan posteriormente los especímenes dentro de sus sobres respectivos para que se rehidratén. El tiempo requerido es de 24 a 36 horas de acuerdo al tamaño del ejemplar, y el proceso se considera terminado cuando adquiere la soltura de los que se acaban de colectar y es posible manejar sus alas con facilidad. Los especímenes reblandecidos se toman con las manos estrictamente el tiempo necesario para atravesarlos con un alfiler por el centro del tórax, de arriba abajo, y colocarlos en el plano de montaje (De la Maza, 1987).

Para el montaje de las alas éstas deben colocarse de manera que los bordes interiores de las alas anteriores queden perpendiculares al cuerpo, formando una cruz. Las alas posteriores se llevan hacia delante, de modo que queden semicubiertas por las anteriores, en su margen costal. Las alas se mantienen en el sitio adecuado con tiras de papel sujetas por alfileres entomológicos. Posteriormente
se colocan los especímenes en el plano de montaje, dentro de una incubadora a 40°C por 48-72 horas, tiempo después del cual se sacan de la misma, se espera de 2 a 3 horas luego se etiquetan y se introducen a la colección (De la Maza, 1987).

7.5. Determinación

La morfología externa es un buen criterio para determinar algunas especies. Sin embargo para un grupo tan complicado como Hesperiidae, el estudio de la genitalia es el más práctico por realizarse en ejemplares muertos. Su técnica es sencilla, pues la complejidad y diversidad de forma de las piezas de genitalia, hacen difícil la existencia de dos especies con idéntica estructura. Además presenta entre sus ventajas que la genitalia es igual en todos los individuos de una misma especie. Esta técnica permite separar con certeza las especies de morfología externa idéntica (por proximidad taxonómica o evolución convergente) (Olano et al., 1992; De la Maza, 1987).

La determinación de los géneros de Hesperiidae, se llevó a cabo por comparación directa del material con los especímenes de la colección de referencia del proyecto CCB/CECON. Dicha colección se encuentra depositada en el laboratorio de Entomología Sistemática de la Universidad del Valle de Guatemala. También se compararon los especímenes con fotografías del libro “Las Mariposas de México” De la Maza (1987).
Para la determinación de especies se usaron los esquemas de genitalia de Evans (1951-1955). En la validación de los géneros y especies determinados, así como en la determinación de géneros y especies problema, se contó con la colaboración del Dr. George Austin Ph.D., especialista en este grupo y con la colección mariposas del Museo de Nevada, USA.

7.6. Disección y montaje de genitalia

A continuación se describe el procedimiento empleado:

1) Se separa el abdomen del espécimen y se introduce en un tubo de ensayo etiquetado con 1 cc. de hidróxido de potasio al 10% y se deja reposar por 3 horas.

2) El abdomen ya blando se coloca en una platina socavada, se le agregan unas gotas de agua para proceder a las disecciones.

3) Se observa el abdomen al estereomicroscopio y si el espécimen es macho se corta en el último segmento; si el espécimen es hembra se hace una corte a lo largo del abdomen por abajo y se extrae con cuidado la genitalia.

5) Seguidamente se guarda en un microvial el abdomen y en otro la genitalia respectiva con etiqueta cada uno que incluye el número de colecta (equivalentes al del espécimen de la colección) y el nombre de la persona que realizó la determinación.

6) Los microviales con el material ya determinado se montan atravesando con el mismo alfiler en sus respectivas tapaderas de polietileno.
8. RESULTADOS

8.1 Diversidad e Historia Natural: Lista anotada de especies

Se registraron 94 especies de tres subfamilias, distribuidas así: Hesperiinae 25 géneros y 33 especies; Pyrginae 37 géneros y 60 especies, y la familia Pyrrhopyginae por un género y una especie.

Se presenta para cada especie el siguiente formato: el mes de captura de enero a diciembre está representado por los números del 1-12 respectivamente para Bethel y se contrasta con los registros de Tikal. Las especies presentes en Bethel y no en Tikal están señaladas por (*). El tipo de hábitat donde la especie está presente se indica con: (b) exclusiva de bosque, (ex) especies exclusivas de área de extracción forestal selectiva, (bex) especies distribuidas en el bosque y área de extracción, (c) áreas abiertas y/o carreteras, y (s) sin datos de sitio de colecta.

Hesperiinae

1) Aides brilla (freeman, 1970) 6, en Tikal se reporta 9,12; s
2) Anthoptus epictetus (Fabricius, 1793) 11, en Tikal 1, 2, 9, 10, 12 s
3) Callimormus radiola (Mabille, [1879]) 11, en Tikal 2 y 12 s
4) C. satsumus (Herrick-Schaefer, 1869) 8, 9 en Tikal 1, 2, 3, 4, 5, 7, 9, 10, 11c
5) Carystoides lila Evans, 1955 sf.en Tikal 2, 5, 6, 8, 9 c
6) Cobalopsis autumna (Plötz, 1883) 10 en Tikal 11 s
7) *Cobalus virbius (Cramer) 10 s
8) *Corticea corticea* (Plötz, 1883) 8 en Tikal 1, 2, 3, 4, 8, 9, 10, 11, 12 c
9) *Cymaenes alumna* (Butler, 1877) 9 en Tikal 1, 9, 10, 11 c
10) *C. fura* (Godman, [1900]) 8, en Tikal 11 c
11) *C. tripunctatus* (Butler) 7, c
12) *Cynea corisana* (Möschler) 2,6,7,8,11 bex
13) *Damas clavus* (Herrich-Schaeffer, 1859) 10 en Tikal 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 s
14) *Eprius veleda* (Godman, [1901]) 4 en Tikal 2, 9, 11 c
15) *Lerema accius* (Smith, 1797) 8 en Tikal 2, 3, 4, 6, 7, 9, 10, 11 c
16) *L. lochius* (Plötz, 1883) 8 en Tikal 2, 3, 9, 10 c
17) *Methionopsis ina* (Plötz, 1882) 10 en Tikal 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12 c
18) *Mnasicles geta* Godman, [1901] 8, 9, 10, 11 en Tikal 2, 3, 8, 9, 10, 11 c
19) *Monca tyrtaeus* (Plötz, 1883) 7 en Tikal 2, 4, 6, 7, 8, 9, 10, 11 c
20) M. sp. 8 c
21) *Morys compta* (Godman, [1900]) 7 en Tikal 1, 2, 7, 8, 9, 10 c
22) M. geis (Godman, [1900]) 10 en Tikal 2, 3, 11 s
23) *Polites sp.* 8 c
24) *Pompeius pompeius* (Latreille, [1824]) 8, 9, 10 en Tikal todos los meses, 12 c
25) *Quasimellana eulogius* (Plötz, 1883) 8 en Tikal 8, 10, 11 c
26) *Remella remus* (Fabricius, 1798) 8, 10 en Tikal 2, 4, 5, 6, 9, 10, 11, 12 c
27) *Saliana antoninus* (Latreille, [1824]) 8, 10 en Tikal 2, 6, 11 ex
28) S. hesperi Evans, 1955 11 en Tikal 2, 9, 11, 12 s
29) *Synapte silius* (Latreille, [1824]) 10, 11 en tikal 2, 6, 7, 9, 10 s
30) *Thargella caura* (Plötz, 1882) 10 en Tikal 3, 6, 7, 9, 10, 12 s
31) *Vehilius inca* (Scudder, 1872) 4 en Tikal 2, 3, 4, 5, 7, 8, 9, 10, 11 c
32) *V. stictomenes* (Mabille, 1891) 4, 7, 8, 10, 11 en Tikal 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 c
33) *Vettius onaca* Evans, 1955 10 en Tikal 2, 9, 10 s

Pyrginae

1) *Achlyodes busiris* (Stoll) 7, 9 en Tikal 2, 3, 4, 6, 8, 9 bex y c
2) *A. thraso* (Jung) 8, 10 no se reporta en Tikal c
3) *Aethilla echina* Hewitson, 1870 - 9 no se reporta en Tikal c
4) *Aguna claxon* Evans, 1952 8 en Tikal 2, 4 b
5) *Anastrus obscurus* (Möschler, 1878), 7 en Tikal 5, 6, 9, 10, 11 b
6) *A. tolimus* (Plötz, 1884) 8, 10 en Tikal 1, 2, 6, 7, 8, 9, 10, 12 s
7) *Antigonus erosus* (Hübner, [1812]) 9, 10 en Tikal 5, 7, 9, 10, 11 s
8) *A. nearchus* (Latreille, [1813]) 8 en Tikal 2, 5, 8, 9, 10 c
9) *A. neuralius* 10 no se reporta en Tikal s
10) *Arteurotia tricipennis* (Butler & Druce, 1872) 8 en Tikal 6 b
11) *Astraptes enotrus* (Stoll, 1781) 7 en Tikal 2, 4, 7, 8, 10, 11 ex
12) *A. fulgerator azul* (Reakirt, [1867]) 6, 10 en Tikal todos los meses, ex, b y c
13) *A. phaleucus* (Godman & Salvin, [1893]) 10 en Tikal 2 s
14) *Atames salei* (C & R. Felder, [1867]) 9 en Tikal 1, 2, 3, 4, 6, 9, 10, 11 s
15) *Autochton longipennis* (Plötz, 1882) 8, 10 en Tikal 1, 2, 3, 4, 5, 7, 9, 10, 11, 12 c
16) *A. zarex* (Hübner, [1818]) 8, 10, 12 en Tikal 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 c
17) *Bolla sp. af. phylo* 8 c
18) *Cabrares protrillo* (Lucas, 1857) 2, 7, 8, 9, 10 en Tikal todos los meses, c
19) *Carphhenes calidius* (Godman & Salvin, [1895]) 8 no se reporta en Tikal ex
20) *Celaenorrhinlus stola* Evans, 1952 - 8 en tikal 9 b
21) *Chioides zilpa* (Butler, 1872) 8, 9 en Tikal 2 c
22) *Cogia calchas* (Herrich-Schäffer, 1869) 4, 8, 9, 10, 12, Tikal todos los meses, c
23) *Cycloglypha thrisibulus* (Fabricius, 1793) 11 en Tikal 2, 4, 9 s
24) *Ebrizas anacreon* (Staudinger, 1875) 8, 9, 10 en Tikal 2, 4, 5, 6, 7, 8, 9, 10 ex y c
25) *Erecon paulinus* (Stoll, 1782) 5, ex
26) *Gesta gesta* ((Butler & Druce, 1872) 8, s
27) *Gorgythion begga* (Möschler, 1875) 5, 6, 7, 10, 11 en Tikal 2, 3, 4, 6, 7, 8, 9, 10 bex
28) *Helias phalaenoides* Evans, 19534, 8, 9, 10 en Tikal 3, 6, 9, 10 c
29) *Heliopetes alana* (Reakirt. 1868) 8, 10 en Tikal 2, 3, 5, 6, 7, 8, 9, 10, 11, 12 c
30) *H. arsalie* (Linnaeus, 1758) 4 en Tikal 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 c
31) *Mylon sp.1* 10 c
32) *M. sp.2* 9 c
33) *Nisoniades godma* Evans, 1953 - 7, 8, 9 en Tikal 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 c
34) *Noctuana stator* (Godman & Salvin, [1899]) 7, 9 en Tikal 10 c
35) *Ouleus calavius* (Godman & Salvin, [1895]) 11, b
36) *O. Friedericus* (Geyer) 8, 11 b y c
37) *O. negrus* 8, 11 bex y c
38) *Paches loxus* (Mabille, 1889) 7 en Tikal 2, 5, 6, 7, 8, 9, 10, 11 c
39) *Pachyneuria licissa* (Plötz, 1882) 8, 10 en Tikal 5, 6, 7, 9, 10 s
40) *Phytonides jovianus* (Stoll, 1782) 8 No se reporta para Tikal c
41) *Polythrix asine* (Hewwitson, 1867) 8 en Tikal 6 c
42) *P. nsp.* s
43) *Pyrgus communis* (Plötz) 7, 8, 9 en Tikal 4, 6, 7, 9, 10, 11 c
44) *P. oleus* (Linnaeus, 1767) 4, 8 en Tikal 2, 3, 4, 5, 6, 9, 10, 11, 12 c
45) *Quadrus cerealis* (Stoll, 1782) 11 en Tikal 2, 4, 5, 6, 9, 11, 12 c
46) *Q. lugubris* (R. Felder, 1869) 8, 10 en Tikal 2, 6, 9 b y c
47) *Spathileia clonius* (Cramer, 1775) 4, 8, 10 en Tikal 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12 c
48) *Staphyllus lenis* Steinhauser, 1989 - 8 en Tikal 2, 5, 6, 7, 8, 9, 10 c
49) *S. vulgata* (Möscler, 1878) 8 en Tikal 2, 7, 9, 10 s
50) *Tessia sp.*
51) *Timochaeres trifasciata* (Hewitson, [1868]) 10 en Tikal 2, 4, 6, 7, 9, 10, 11, 12 s
52) *Urbanus dorantes* (Stoll, 1790) 7, 8, 9, 10 en Tikal 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 c
53) *U. doryssus* (Swainson, 1831) 10 en Tikal 2, 3, 5, 6, 7, 8, 9, 10, 12 s
54) *U. Procne* (Plötz, 1881) 8, 9 en Tikal 2, 3, 4, 5, 6, 7, 8, 9, 12 c
55) *U. Procneus* Evans, 1952 9, 10 s
56) *U. pronta* Evans, 1952 - 7, 10 en Tikal 8, 9 c
57) *U. simplicius* (Stoll, 1790) 8, 9 en Tikal 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 c
58) *U. teleus* (Hübner, 1821) 8, 10 en Tikal 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 c
59) *U. viterboana* (Ehmann, 1907) 9 en Tikal 2, 3, 5, 7, 9, 10 c
60) *Xenophanes tryxus* (Stoll, 1780) 8, 9, 10, 11 en Tikal 1, 3, 7, 9, 10 c

Pyrrhopyginae

1) *Myceius amistis* hages Godman & Salvin, [1893] en Tikal 2, 3, 8, 10, 11
8.2 Distribución local

Las especies fueron agrupadas en cuanto al tipo de hábitat cuando la información estuvo disponible. El siguiente listado muestra las especies que fueron encontradas únicamente en ese hábitat:

a) Bosque: Se registran 5 especies Aguna claxon, Anastrus obscurus, Arteurotia tractipennis, Celaenorrhinus stola y Ouleus calavius.

b) Area de Extracción forestal: se registran 4 especies: Saliana antoninus, Astraptes enotrus, Carrhenes calidius y Eracon paulinus.

c) Distribuidas en bosque y extracción: se registran dos especies que se distribuyen tanto en bosque como en sitio de extracción: Cynea corisana y Gorgythion begga.

d) Sitios abiertos (carreteras): se registran 51 especies exclusivas de sitios abiertos, los nombres pueden observarse en la lista anotada.

e) Amplia distribución: se registran tres especies, Achlyodes busirus, Astraptes fulgerator azul, O.negrus. Hay 25 especies de las que no se tiene el detalle del tipo de hábitat donde fueron colectadas.

8.3 Ampliación de rangos de distribución

Las especies: Eracon paulinus y Cobalus virbius habían sido registradas desde el Amazonas hasta Colombia la primera, y de Brasil a Panamá la segunda; por lo que encontrarlas en Guatemala amplía considerablemente su rango de distribución.
8.4. Nuevas especies

Se registran 3 nuevas especies *Mylon* Sp.1, *Mylon* Sp2 y *Polythrix* n.sp. Los especímenes serán descritos por el especialista Ph.D George Austin del Museo de Nevada.

8.5. Biogeografía

Para comparar la distribución entre las comunidades de mariposas de la familia Hesperiidae se usaron los coeficientes binarios de similitud de Sorensen y Jaccard; por no contarse con las medidas de abundancia relativa de las especies para cada sitio. Ambos índices se basan en la presencia/ausencia de las especies en la comunidad y proporcionan una escala de medida nominal. Los índices de similitud muestran numéricamente las relaciones de factores afines o no entre localidades del área a considerar.

El coeficiente de Sorensen da mayor peso a las especies compartidas que a las no compartidas; ambos coeficientes se influencian grandemente por el número de especies y las especies compartidas entre sitios (Krebs, 1998). El Coeficiente de Sorensen está dado por:
\[S = \frac{2a}{(2a+b+c)} \]

y el Jaccard dado por:
\[J = \frac{a}{a+b+c} \]

donde a es el número de especies compartidas en A y B; b es el número de especies que están en B y no en A y c es número de especies presentes en A y no en B (Krebs, 1998). Al comparar los datos obtenidos en este estudio con los de otros sitios de la Península de Yucatán, se pueden notar las relaciones entre
localidades en la composición de las mariposas Hesperiidae (Ver tabla No. 1 y 2). El lugar con mayor número de especies es el Parque Nacional Tikal, seguido de Chajul, Quintana Roo y finalmente Bethel.

<table>
<thead>
<tr>
<th>Localidad</th>
<th>Chajul</th>
<th>Bethel</th>
<th>Tikal</th>
<th>Qroo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chajul</td>
<td>148</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bethel</td>
<td>35</td>
<td>94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tikal</td>
<td>66</td>
<td>75</td>
<td>207</td>
<td></td>
</tr>
<tr>
<td>Qroo</td>
<td>51</td>
<td>31</td>
<td>60</td>
<td>118</td>
</tr>
</tbody>
</table>

El índice de similitud de Sorensen en orden decreciente: entre Tikal/Bethel (0.33), seguidos de Tikal/Quintana Roo (0.25), Chajul/Quintana Roo (0.24), Tikal/Chajul con 0.22 y finalmente Bethel/Chajul y Bethel/Quintana Roo con (0.17). El índice de Jaccard es para Tikal/Bethel de (0.50), Chajul/Quintana Roo (0.38), Tikal/Chajul (0.37), Bethel/Quintana Roo (0.29). Tikal/Quintana Roo (0.25). (Ver tabla No.2)

<table>
<thead>
<tr>
<th>Localidad</th>
<th>Chajul</th>
<th>Bethel</th>
<th>Tikal</th>
<th>Qroo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chajul</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bethel</td>
<td>0.17*</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.28†</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tikal</td>
<td>0.22*</td>
<td>0.33*</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.37‡</td>
<td>0.50‡</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qroo</td>
<td>0.24*</td>
<td>0.17*</td>
<td>0.26*</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0.38‡</td>
<td>0.29‡</td>
<td>0.25‡</td>
<td></td>
</tr>
</tbody>
</table>
8.6. Curva de Acumulación de especies

Los datos de acumulación de especies corresponden a tres años de colecta, de 1994 a 1996. El gráfico No.1 muestra la acumulación de especies durante los tres años de colecta (Ver tabla No.3, y Anexo 2 cuadro No.3). Para explicar el comportamiento de la curva de acumulación de especies se usaron los modelos generales definidos por las siguientes ecuaciones: a) lineal \[Y = b_0 + b_1x \]; b) logarítmico \[Y = b_0 + b_1 \ln x \]; y c) exponencial \[Y = b_0(e^{b_2x}) \], donde \(Y \) es el número de especies acumuladas y \(X \) el tiempo de colecta en meses.

<table>
<thead>
<tr>
<th>No.</th>
<th>Semestre</th>
<th>Especies acumuladas</th>
<th>Tasa acumulada de especies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 er. 1994</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>2do. 1994</td>
<td>33</td>
<td>28</td>
</tr>
<tr>
<td>3</td>
<td>1 er. 1995</td>
<td>35</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2do. 1995</td>
<td>69</td>
<td>34</td>
</tr>
<tr>
<td>5</td>
<td>1 er. 1996</td>
<td>73</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>2do. 1996</td>
<td>91</td>
<td>18</td>
</tr>
</tbody>
</table>

Los modelos específicos para los datos de acumulación de especies son: a) lineal: \[Y = -7.0825 + 2.8588X \]; b) logarítmico \[Y = -37.577 + 31.3599 \ln X \]; y c) exponencial: \[Y = 4.5199(e^{0.1013X}) \]. Al proyectar con estos modelos el número de especies acumuladas para 36 meses de esfuerzo de colecta se obtiene 96 con el lineal, 75 con el logarítmico, y 173 con el exponencial; y al considerar 60 meses de colecta se obtiene 164, 91 y 1971 especies respectivamente. (Ver tabla No.5 y gráfico No.2). Puede notarse que el modelo lineal y el logarítmico son los que se
acercan más al dato de campo de 91 especies para los tres años de muestreo; pero al comparar los datos proyectados para 60 meses se observa que el modelo lineal y el exponencial no presentan tendencia a estabilizarse y sus proyecciones no se ajustan los datos reales registrados para el área. Esto es notorio al considerar el número de especies de Tikal (207 especies), que es el mayor de los sitios comparados de la Península de Yucatán, con un muestreo intensivo.

<p>| TABLA No. 5 |
| Modelos que explican la acumulación de especies en hesperídidos |</p>
<table>
<thead>
<tr>
<th>Modelo</th>
<th>Coef. de Correlación</th>
<th>Coef. Pearson</th>
<th>Significancia</th>
<th>bo=intercepto</th>
<th>b1=pendiente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lineal</td>
<td>.962</td>
<td>84.09</td>
<td>0.001</td>
<td>-7.400</td>
<td>16.6857</td>
</tr>
<tr>
<td>Logarítmico</td>
<td>.781</td>
<td>51.58</td>
<td>0.002</td>
<td>0.673</td>
<td>46.4485</td>
</tr>
<tr>
<td>Exponencial</td>
<td>.808</td>
<td>13.85</td>
<td>0.020</td>
<td>6.4195</td>
<td>0.5019</td>
</tr>
</tbody>
</table>

8.7 Taxonomía

Se elaboró una clave para géneros y especies, ésta contiene un descriptor general de los especímenes e incluye 10 de láminas con fotografías que ilustran cada uno de los especímenes registrados. La clave también hace referencia a los dibujos de genitalia, que con las láminas facilitan la observación de las marcas, sus patrones y/o colores a los que hace referencia el descriptor.
Gráfico No.1
Acumulación de mariposas de Hesperiidae de Bethel, La Libertad, Petén

Gráfico No.2
Curva de acumulación de especies y los modelos que la explican, para las especies de Hesperiidae de la Comunidad Bethel, La Libertad, Petén.

9. DISCUSION DE RESULTADOS

Se seleccionó la comunidad de Bethel como sitio de estudio de las mariposas diurnas principalmente porque en ella se ejecuta un proyecto de corte selectivo del bosque. También es importante como localidad de la parte baja de Sierra de Lacandón.

Los experimentos sobre el efecto del corte selectivo u otras transformaciones del bosque sobre la diversidad de mariposas diurnas, ha sido enfocado en otras familias diferentes de los hesperíidos. Esto es debido en parte a la rápida respuesta al esfuerzo de colecta: redes y trampas. De manera que el encontrar algunas especies en alguna condición del sitio, como borde o bosque puede ser parte de un artefacto de muestreo. De cualquier forma la mayoría de skippers prefieren los sitios abiertos como se observó en los estudios de Tikal (Austin et al., 1,996).

La ampliación considerable de rangos de distribución de dos especies Eracon paulinus y Cobalus virbius refleja el poco estudio que se ha hecho de éstas especies. Eracon es un género neotropical con ocho especies conocidas para América del Sur hasta Colombia. Cobalus virbius esta registrado en las Guyanas, Chiapas, y Honduras (Austin, 1997; Evans, 1953).

Es de especial importancia la futura descripción de 3 nuevas especies de la familia Pyrginae, dos del género Mylon y una de Polythrix.
Falta documentar la especiación y endemismo de los bosques mésicos de la Península de Yucatán, en especial estas especies heliófitas, a veces asociadas a savanas como la descrita nueva especie para Guatemala *Calepheles tikal* (Austin, 1993).

Las diferencias en la riqueza de especies entre los sitios comparados podrían estar relacionadas a los patrones de humedad, los que a su vez se ven influenciados por los patrones orográficos. Tikal y Chajul se ubican en los extremos del arco montañoso conformado por la Sierra de Lacandón en Guatemala, la parte baja de los Cuchumatanes, Sierra de Chamá y Montañas Mayas (Méndez, Com.pers). Ambos sitios presentan las mayores riquezas de especies y Bethel la menor. Sin embargo el traslape de especies entre estas cuatro localidades registra la mayor similitud entre Tikal y Bethel. La similitud entre localidades puede deberse a que la mayoría de hesperiídos son de amplia distribución y de tierras bajas.

Los datos analizados presentan dos deficiencias: (1) las intensidades de los estudios (Chajul y Quintana Roo) y la diferencia en las áreas cubiertas; (2) la baja riqueza de hesperiídos de Bethel podría estar relacionada a un muestreo incompleto. Esto se relaciona a la rapidez de vuelo de ésta familia y su coloración, que las hace más difícil de colectar.

La curva de acumulación de especies se ajusta mejor al modelo logarítmico que al lineal o exponencial, pues se obtienen proyecciones más ajustadas a la realidad.
observada con éste modelo que con el lineal o exponencial. Además al observar los datos de anuales de acumulación de especies de hesperídos, puede notarse que la tasa de incremento de especies nuevas decrece, lo que sugiere su tendencia a estabilizarse y ha seguir el modelo logarítmico.

La marcada estacionalidad que presentan los hesperídos puede ser el factor que influya en alto índice de correlación calculado para el modelo lineal, aunque este no sea el que mejor se ajusta.

La proyección de el número de especies Y esperadas para un tiempo de colecta X_t, permite detectar cual debe ser el esfuerzo de colecta para obtener el mayor número de especies de un sitio. Si el incremento de especies nuevas se minimiza, puede tomarse la decisión de no seguir colectando. Si se continúa el esfuerzo de colecta debe considerarse que este mínimo de especies nuevas que se espera colectar, o bien son raras (en relación a su demografía), tienen hábitos raros, las técnicas de colecta no son las adecuadas ó tienen ciclos estacionales muy largos. Estas consideraciones permiten optimizar los recursos dispuestos para la colecta y las comparaciones entre sitios.
10. CONCLUSIONES

Los hesperídos de la Selva Maya son un componente muy importante de la riqueza de las mariposas diurnas, pero los datos que se poseen de la región son deficientes para hacer comparaciones entre localidades.

Los datos de riqueza de especies y traslape sugieren una mayor similitud entre Tikal y Bethel que entre Bethel y Chajul, aun que estas localidades estén más cercanas y dentro de Sierra de Lacandón.

Los hesperídos presentan una marcada estacionalidad, siendo la época de mayor actividad de agosto a octubre.

La curva de acumulación de especies de hesperídos se ajusta mejor al modelo logarítmico, ya que presenta tendencia a estabilizarse y este modelo es un buen predictor en relación a los datos del área y a la experiencia de colecta.
11. RECOMENDACIONES

En futuros estudios los esfuerzos de colecta para hesperiídos, deben incrementarse y/o mejorarse dado que el éxito de captura de este grupo es menor que el obtenido en otros papilionocidea.

En estudios encaminados a comparar las faunas entre localidades dentro del país es conveniente revisar los protocolos, especialmente en lo relacionado al análisis de poder y a la efectividad de las actuales unidades de esfuerzo dedicadas a los hesperiídos.

En estudios específicos de Hesperiidae debe considerarse la estacionalidad de este grupo para optimizar el esfuerzo de colecta.
12. BIBLIOGRAFIA

Austin G. en preparación 2/II/97. Notes on Hesperiidae (Lepidoptera) in northern Guatemala, with descriptions of new taxa.

Heppner, J. 1997. Family classification of lepidoptera. last updated 15 may. Association for Tropical Lepidoptera. 8 Pg.

13. ANEXOS
MAPA No. 1
Ubicación geográfica de la Cooperativa Bethel

Leyenda
- AREA DE AMORTIGUAMIENTO
- AREA DE USOS MULTIPLES
- BIOTPOS (AREA NUCLEO)
- PARQUE NAC. (AREA NUCLEO)

Fuente: ProPetén - 1992
ANEXO 1.2

MAPA No. 2

ESTRATIFICACION MOSTRANDO EL AREA DE BETHEL DENTRO DEL PARQUE NAC. SIERRA DEL LACANDON

ESCALA: 1: 70,000

<table>
<thead>
<tr>
<th>No.</th>
<th>DESCRIPCION</th>
<th>AREA (Has)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sierra de Lacandon</td>
<td>389</td>
<td>9.4</td>
</tr>
<tr>
<td>2</td>
<td>Planicie Aprovechada</td>
<td>856</td>
<td>20.6</td>
</tr>
<tr>
<td>3</td>
<td>Planicie No Aprovechada</td>
<td>627</td>
<td>15.1</td>
</tr>
<tr>
<td>4</td>
<td>Area de Bajo</td>
<td>448</td>
<td>10.8</td>
</tr>
<tr>
<td>5</td>
<td>Cerrania Baja</td>
<td>98</td>
<td>2.4</td>
</tr>
<tr>
<td>6</td>
<td>Cerrania Alta</td>
<td>476</td>
<td>11.5</td>
</tr>
<tr>
<td>7</td>
<td>Area Habitada</td>
<td>842</td>
<td>20.3</td>
</tr>
<tr>
<td>8</td>
<td>Guamil Viejo</td>
<td>81</td>
<td>1.9</td>
</tr>
<tr>
<td>9</td>
<td>Pantano</td>
<td>332</td>
<td>8.0</td>
</tr>
</tbody>
</table>

Fuente: ProPetén - 1992
MAPA No. 3

UBICACION DE AREAS DE MUESTREO EXTRACCION (EX) Y CONTROL (CL)

LIMITE DE BETHEL

RIO USUMACINTA

MEXICO

ESCALA: 1: 70,000

<table>
<thead>
<tr>
<th>No.</th>
<th>DESCRIPCION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Camino a Retalteco</td>
</tr>
<tr>
<td>2</td>
<td>Camino a la Tecnica</td>
</tr>
<tr>
<td>3</td>
<td>Camino a Ciudad Flores</td>
</tr>
<tr>
<td>4</td>
<td>Camino Viejo (Trocopas)</td>
</tr>
<tr>
<td>5</td>
<td>Pista de Aterrizaje</td>
</tr>
<tr>
<td>6</td>
<td>Arroyo La Miseria</td>
</tr>
<tr>
<td>7</td>
<td>Arroyo Intermitente</td>
</tr>
</tbody>
</table>

Fuente: ProPetén - 1992
Cuadro No.1

Coordenadas UTM de la Cooperativa Bethel

<table>
<thead>
<tr>
<th>Punto</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>737711</td>
<td>735973</td>
<td>735061</td>
<td>735061</td>
<td>734187</td>
<td>733678</td>
<td>729567</td>
<td>728596</td>
<td>728632</td>
<td>732257</td>
<td>733622</td>
</tr>
<tr>
<td>Y</td>
<td>1865525</td>
<td>1873736</td>
<td>1852087</td>
<td>1856917</td>
<td>1858655</td>
<td>1858518</td>
<td>1858095</td>
<td>1863110</td>
<td>1863992</td>
<td>1863775</td>
<td>1865990</td>
</tr>
</tbody>
</table>

CUADRO No.2

Uso de la tierra en la Cooperativa Bethel

(Gretzinger Salazar 1993)

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Hectáreas</th>
<th>% Del Area Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bosque</td>
<td>2.876</td>
<td>69.32</td>
</tr>
<tr>
<td>Poblado/pasto/cultivo</td>
<td>842</td>
<td>20.29</td>
</tr>
<tr>
<td>Pantano</td>
<td>350</td>
<td>8.44</td>
</tr>
<tr>
<td>Guanil</td>
<td>81</td>
<td>1.00</td>
</tr>
<tr>
<td>Total</td>
<td>4.119</td>
<td>100.00</td>
</tr>
</tbody>
</table>
Cuadro No.3

Especies acumuladas de maiposas Hesperiidae, Bethel, La Libertad, Petén (1994-1996)

<table>
<thead>
<tr>
<th>Año</th>
<th>Mes</th>
<th>Especies Acumuladas</th>
<th>Tasa de incremento</th>
</tr>
</thead>
<tbody>
<tr>
<td>1994</td>
<td>ENE</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>FEB</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MAR</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>ABR</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>MAY</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>JUN</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>JUL</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>AGO</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>SEP</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>OCT</td>
<td>32</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>NOV</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>DIC</td>
<td>33</td>
<td>1</td>
</tr>
<tr>
<td>1995</td>
<td>ENE</td>
<td>33</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>FEB</td>
<td>33</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>MAR</td>
<td>33</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>ABR</td>
<td>34</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>MAY</td>
<td>34</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>JUN</td>
<td>35</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>JUL</td>
<td>38</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>AGO</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>SEP</td>
<td>58</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>OCT</td>
<td>64</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>NOV</td>
<td>69</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>DIC</td>
<td>69</td>
<td>0</td>
</tr>
<tr>
<td>1996</td>
<td>ENE</td>
<td>69</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>FEB</td>
<td>69</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>MAR</td>
<td>69</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>ABR</td>
<td>72</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MAY</td>
<td>73</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>JUN</td>
<td>73</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>JUL</td>
<td>78</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>AGO</td>
<td>90</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>SEP</td>
<td>91</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>OCT</td>
<td>91</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>NOV</td>
<td>91</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>DIC</td>
<td>91</td>
<td>0</td>
</tr>
</tbody>
</table>
fig. 3.1. Genitalia de macho de Lepidóptera (tomado de Alayo y Hernández 1987)
fig. 3.2. Detalle de estructuras de la genitalia del macho empleadas para la identificación de especies (Austin G, 1995)
fig. 3.3. Detalles de la genitalia de Lepidóptera hembra. (tomado de Alayo y Hernández 1987)
Anexo No.4

CLAVE

Esta clave utiliza localizadores, que son las características más relevantes para la separación de familias y géneros. Los localizadores están identificados por un numeral romano. Las características usadas en los descriptores se refieren a las alas: venación, forma, tamaño, coloración, marcas hialinas o marcas coloreadas y su posición en las regiones del ala anterior o posterior, en vista dorsal (V) ó ventral (Δ). (Ver esquema No.1).

Los rangos de tamaño considerados son: a) pequeñas (2.0 cm- 2.5 cm); b) medianas (2.5 a 3.8 cm) y c) grandes mayores de 3.8 cm. La talla se refiere a la envergadura. En la columna derecha se cita el número de lámina seguido de los números de fotografías y finalmente aparece el número de figura de genitalia correspondiente.

FAMILIA HESPERIIDAE

Antenas en forma de mazo pero recurvadas; cada ala de menos de 30 mm.; cabeza tan ancha como el tórax, tibia media con espinas preapicales y apicales. Las cinco venas R ninguna se bifurca y todas parten de la celda discal.

SUBFAMILIAS

I. VENACION ALAR LARGO DE CELDA DISCAL

Celda discal en alas anteriores menor de 2/3 del largo del ala; vena M2 del ala anterior generalmente curvada en la base y más próxima a m3 que a M1. Machos con marcas o estigmas consistentes de escamas especializadas .. HESPERINAE Fig.g

Semejante a Pyrginae en venación pero el mazo de la antena es completamente curvado.................................. PYRRHOPYGINAE Ver Esquema 1

Alas anteriores con a celda discal de 2/3 del largo del ala, y la vena M2 al centro de M1 y M3 no es curvada en la base, sin espinas en las tibias PYRGINAE Fig.f
Esquema No.1. Venación y nomenclatura de las alas de Lepidóptera. a) venación generalizada; b) Detalle de las áreas del ala; c, d y e) regiones generales de las alas anteriores y posteriores; f) Venación de Pyrginae y g) Venación de Hesperiinae: obsérvese en ambas el tamaño de la celda discal D, y las venas M1, M2 y M3 (Según De la Meza, 1987 y Boror, et al., 1976).
HESPERIINAE

II MARIPOSAS PEQUEÑAS A MEDIANAS COLOR CAFÉ, CON POCAS O NINGUNA MARCA O MANCHAS EN LAS ALAS ANTERIORES Y SIN NINGUNA MARCA EN LAS ALAS POSTERIORES.

1) Sin marcas .. 3

2) Con marcas o manchas 8

3) Pequeña (2.1 cm); venas amarillentas en las alas posteriores en cara ventral sobre un fondo café claro Vehilius inca Lám. 4 No.63/ 64 fig. 3

4) Pequeña (2.1cm); lado ventral alas anteriores y posteriores con venación y margen amarillento sobre un fondo café oscuro. .. Calлимormus radiola 1 No.5/ 6 fig.3

5) Medianas (3.2.-3.8 cm.) coloración uniforme en las alas anteriores y posteriores en el lado dorsal y ventral Calлимormus saturnus
 Corticea corticea 1 No.7/8 fig.4
 Ephius veleda, 2 No.15/16 fig.8
 Methionopsis ina 3 No.33/34 fig.17
 Mnasicles getta 2 No.35/36 fig.18
 Morys compta, 2 No.39/40 fig.21
 Morys geisa, 3 No.41/42 fig.22
 Thargella caura, 4 No.61/82 fig.30
 Synapie silius 3 No.57/58 fig.29

6) Como descritas en numeral (5), de (2.8 - 3.3 cm); alas posteriores con banda clara en el área discal en el lado ventral Remella remus 3 No.51/52 fig.26

7) Como numeral (5) con cabeza muy ancha y torax muy robusto ... Cynea corisana 2 No.23/24 fig.12

8) Medianas (2.8 cm.); alas anteriores: con 3 puntos hialinos alineados formando una banda en el área apical Lerema accius 2 No.29/30 fig.15

 8.1) Como numeral (3.1 cm) 8 y además un punto blanco en la parte media del área discal .. L. lochius 2 No.31/32 fig.16

9) Medianas; alas anteriores con 3 marcas hialinas pequeñas y cuadradas alineadas en región apical y 2 marcas cuadradas en la región discal ... Polites sp. 3 No.47/48 fig.23

10) Medianas (3.5 cm); alas anteriores con 3 marcas apicales alineadas en media luna y 2 marcas en el área discal: la mayor de forma triangular y la otra de rectangular .. Cosalopsis autumna 1 No.11/12 fig.6
11) Pequeña (2.1 cm); alas anteriores con 4 marcas: 2 en el área apical y 2 en el área discal ambos pares alineados

... Vehilius stictomenes 4 No.65-68 fig.32

12) Pequeña (2.0-2.3 cm), alas anteriores con manchas amarillentas redondeadas y difusas, la mayor en la región discal o sin ellas

... Callimormus saturnus 1 No.7/8 fig.4

13) Pequeña (2.7 cm) con dos marcas apicales: la mayor cercana al margen costal; alas posteriores lado ventral con manchas claras blanquecinas irregulares

... Monca tyrtaeus 2 No.37/38 fig.19

14) Mediana 2.9 cm. alas anteriores con tres marcas amarillentas pequeñas, rectangulares en área apical, alineadas y dos en región discal difusas

... Pompeius pompeius (o) 3 No.43-44 fig.24a

14.a) Mediana (2.9 cm) alas anteriores con estigma grande, de color café oscuro, en la parte media del área discal.

... Pompeius pompeius (o) fig.24b

III MEDIANAS MARCAS AMARILLAS

15) Mediana; alas anteriores con lado dorsal color café con marcas de color amarillo fuerte, con patrón bien definido (2.5 cm).

... Anthopus epictetus 1 No.3/4 fig.2

16) Medianas (2.4 cm.); alas anteriores semejantes al numeral (14), pero con venas café oscuro que atraviesan las marcas amarillas y hacen difuso el patrón

... Quasimellana eulogius 3 No.49/50 fig.25

17) Mediana (2.8 a 3.0 cm); alas anteriores lado dorsal con patrón amarillo ocre difuso, alas posteriores con borde externo color café oscuro, lado ventral alas anteriores con marca amarilla en el lado discal

... Synapte silius (o) 3 No.59-60

IV MEDIANAS A GRANDES CON MARCAS EN ALAS ANTERIORES Y POSTERIORES

18) Mediana (3.0 cm) alas anteriores: con 1 punto hialino muy pequeño en área apical y 3 marcas hialinas alineadas en la región discal, la central mayor que las otras dos. Vista ventral alas posteriores de fondo blanquecino con marcas color café claro

... Vettius onaca 4 No.69/70 fig.33

19) Mediana (3.7 cm); alas anteriores: con un punto apical blanco y dos marcas en área discal, la más cercana a la base es la mayor; alas posteriores con banda grande cerca y paralela al borde del ala

... Cobalus virbiius 1 No.13/14 fig.7
20) Grande (4.3 cm); color café con tonalidad violácea iridiscente en alas anteriores, estas con 1 marca en el área apical y 2 marcas alineadas oblicuas en banda en el área discal, borde apical del ala anterior blancuzco, machos con alas anteriores oscuras, hembras café más claro; borde del área limbal blancuzco. Caryaoides lilac 1 No.9/10 fig.5

21) Grande (4.2 cm); alas anteriores: con marcas apicales muy pequeñas, 3 marcas conspicuas en la región discal y en el centro de esta región una marca con forma de bumerán; alas posteriores sin marcas. Damus clavus 2 No.25/26 fig.13

22) Grande (4.6 cm); alas anteriores con 4 marcas semejantes en el área discal, alas posteriores sin marcas en la parte superior y en el lado inferior con dibujo plateado en el área discal. Aides brilla 1 No.1/2 fig.1

23) Mediana o grande; en vista ventral alas posteriores de la base a la región discal amarilla y la región limbal o terminal café. Saliana

23.1) (4.4-5.0 cm); fondo café oscuro especialmente cerca de las marcas; alas anteriores con 2 marcas apicales ovaladas y alineadas, y a veces un punto; área discal con 4 marcas, 3 de ellas alineadas y la cuarta pequeña y cercana al área basal o subcosta, unidas; alas posteriores con 2 marcas en el área limbal más o menos del mismo tamaño. S. antoninus 3 No.53/54 fig.27

23.2) Mediana (3.4 cm) alas anteriores con 2 marcas en el área apical; alas posteriores con 1 marca principal en el área limbal y una muy pequeña debajo de esta. S. hesperi 3 No.54/55 fig.28

PYRGINAE

Y MEDIANAS A GRANDES SIN MARCAS HIALINAS SIN COLAS

24) Grande; café oscuro, con diseños casi negros, alas de contorno irregular; alas anteriores no planas, con un ligero diezgo subapical similar al de Helias, Ebritas, Cyclogynes y Gorgitón. Achlyodes

24.1) Grande (4.0 a 5.7 cm); alas posteriores en vista ventral con manchas grandes amarillo intenso, del borde de la región limbal a la parte media del área discal. A. busiris 5 No.71/72 fig.34

24.2) Grande (4.4 cm); café oscuro con manchas en ambas alas de color pardo oscuro; coloración uniforme en el lado dorsal y ventral; sin manchas amarillas en alas posteriores. A. thrasso 5 No.73/74 fig.35

25) Grande (5.1 cm); café oscuro uniforme en alas vista dorsal; vista ventral alas posteriores con mancha blanquecina grande en la región apical. Aethilla echina 5 No.75/76 fig.36
26) Grande; alas posteriores en vista ventral con mancha plateada de la base del margen interno cubriendo parte de áreas limbal, discal y basal..*Anastrus*

26.1) Grande de (4.0 cm.) en vista dorsal alas de color café oscuro, en vista ventral; de color café claro y las alas posteriores con mancha blanca plateada que cubre la mitad del ala desde la base hasta el margen externo..............................*A. oscurus* 5 No.79/80 fig.38

26.1) Grande de (4.2 cm.); alas anteriores café oscuro en vista dorsal y ventral; alas posteriores café avellana, con mancha gris plateada que cubre menos de la mitad del ala desde el margen interno hacia el externo...*A.tolimus* 5 No.81/82 fig.39

27) Grande (4.3 cm.); café avellana, patrón rallado con bandas más oscuras semejante en vista dorsal y ventral*Timochaeres trifasciata* fig.82

28) Mediana (3.5 cm.); alas de contorno irregular; alas anteriores no planas, con un ligero doble similar al de Achlyodes, café oscuro con dibujos negros, formando bandas concéntricas; alas vista ventral café oscuro uniforme………………………………………..*Ebrietes anachre* 5 fig.56

29) Mediana (3.6 cm.); alas similares en forma a las descritas en el inciso anterior con marcas oscuras numerosas y patrón irregular no definido………………………………………..*Cycloglypha trasibulus* fig.55

30) Mediana (3.1 a 3.3 cm.); similar a la descrita en inciso anterior; café con bandas más oscuras en patrón concéntrico en ambas alas………………………………………..*Gorgyton begga* fig.59

31) Medianas (3.0 cm); alas anteriores y posteriores de color café grisáceo oscuro con marcas negruzcas con patrón concéntrico. ..*Helias phalaneoides* fig.60

32) Medianas a grandes (3.8 – 4.2 cm.) borde de ambas alas irregulares, café y con dobleces en la punta del ala anterior………………………………………..*Antigonus*

32.1) (3.6cm) de color café variable………………………………………..*A. erosus* 5 No.83/84 fig.40

32.2) (4.3 cm) manchas muy uniformes a veces cenicientas. ……………………..*A.nearchus* 5 No.85/86 fig.41

33.3) (4.1 cm.) con patrón de manchas complejo…………………..*A.neuralius* 5 No.87/88 fig.42

34) Mediana (3.2 cm.); café quemado un poco iridiscente, con vena costa inflamada en los machos, semejante a Nisoniades, pero sin marcas hialinas………………………………………..*Pachyneuria licisca* fig.71
VI PEQUEÑAS A GRANDES CON MARCAS HIALINAS SIN COLAS

35) Grande (4.3 cm.); café claro, con tres pequeñas marcas hialinas en la región apical del ala anterior; en las alas posteriores en el área terminal con un pequeño pico de color amarillo claro que es más visible en el lado ventral ... *Tessia sp.* fig. 81

36) Mediana (3.5 - 3.8 cm.); café oscuro; alas anteriores con marcas hialinas en la región media, formando una banda casi completa. ... *Gabare potrillo* fig. 50

37) Mediana (3.7 cm.); alas de coloración café indiscente uniforme, con tres marcas hialinas subepicales pequeñas………………….. *Cogia calchas* fig. 54

38) Mediana (3.1 cm.); alas con muecas en el borde de la región apical con dos marcas como puntos en la región apical, en el ventral con marcas de color naranja... *Noctuana stator* fig. 66

39) Mediana (3.4 cm.); alas con marcas hialinas en la región apical de las alas anteriores; bordes regulares con escamas que dan la apariencia de flequillo en ambas alas. ... *Nisoniades godma* fig.

40) Mediana (3.6 cm.); marcas apicales muy difusas en media luna; café uniforme; el borde de ambas alas es muy redondeado. ... *Bolla sp. afin a phyllo* fig. 49

41) Grande (4.0 cm.); alas anteriores con 3 marcas apicales que forman un triángulo sobre una mancha café oscura. ... *Arteurota tractipenis* 5 No. 89/90 fig. 43

42) Grande (4.2 cm.); alas anteriores con cinco marcas hialinas apicales (3 alineadas en forma de óvalos y 2 como puntos); en la región media tres marcas hialinas grandes y alineadas y 3 pequeñas bordeando la última marca grande; antena con banda clara en la base del mazo... *Celaenorrhinus stola* fig. 52

43) Mediana (de 3.6 a 3.8 cm.); de uno a dos puntos en la región apical del ala anterior, y en la región media marcas hialinas formando una banda continua que casi atraviesa el ala... *Autochton*

43.1) Como anterior (no tan consistente no se ve siempre) un puntito negro sobre la banda blanca. Al observar la genitalia al estereó se observan las puntas de las valvas curvas. ... *A. longipennis* fig. 47

43.2) Como anterior, ligeramente más pequeña, genitalia de macho vista al esteró con un se observan las puntas de las valvas rectas ... *A. zarex* fig. 48

68
44) Mediana (3.4 a 3.6); región apical con 3 marcas, y 6 marcas en la región media formando banda irregular; con una marca hialina entre la región apical y la media... Cabares potrillo 6 No. 103/104 fig.50

45) Grande (4.3 cm.); alas anteriores con tres a cinco marcas hialinas en la región apical y con cuatro marcas hialinas formando una banda en la región media; con una marca hialina entre la región media y apical de poco conspicua a muy conspicua.. Spathilepia clonius 9 No. 159/160 fig.78

46) Mediana (3.2 cm.); café uniforme hasta llegar a la parte discal de las alas posteriores donde presenta una banda un poco más clara; alas anteriores con un punto blanco subapical que se observa dorsal y ventralmente... Paches loxus 8 No. 143/144 fig.70

VII PEQUEÑAS A MEDIANAS DE COLOR CLARO CON DISEÑOS COMPLEJOS

47) Mediana (3.1-3.7 cm.); blancas con región apical de las alas anteriores de color oscuro con una banda clara dentro de la misma... Heliopetes

47.1) Como anterior (de 3.7 cm.); con borde apical muy oscuro 8 No. 125/126 H. alana fig.61

47.2) Como anterior (3.1 cm.) borde apical menos contrastante y de... H. arsalte fig.62

48) De mediana a grande (3.8 a 4.0 cm.) blancas con diseños café claro más complejo en alas anteriores, y con base de las alas oscuras....Mylon 7 No. 129/130 8 No. 131/132 fig.63 y 64

49) Mediana (2.6 a 3.3 cm.); grisácea con marcas traslúcidas en las 4 alas en patrón bien definido; semejante a Mylon en forma. ... Xenophanes trixus 10 No. 183/184 fig.90

50) Pequeña (2.7 cm.); blancuzcas con diseños tenues y difusos; semejantes a Mylon... Carrhenes calidius 6 No. 105/106 fig.51

51) Mediana (3.1 cm.); alas anteriores y posteriores con bandas blancas que presentan un patrón bien definido; marca de color amarillo naranja en la región media de las alas anteriores.. Atames sallei fig.46

52) Pequeñas a medianas (2.3 a 3.0 cm.) con patrón de marcas blancas y verdosas en fondo gris... Pyrgus

52.1) Mediana (3.0 cm.); como anterior con patrón bien definidos... P. communis 9 No. 151/152 fig.74

52.2) Pequeña (2.3 cm.); como anterior; con marcas más pequeñas en su patrón que luce más desordenado. 9 No. 152/153 P. poileus fig.75
53) Pequeña (3.1 cm.): café con diseños translúcidos como encaje en alas anteriores, contorno de alas angulosas.......................... *Quadrus*

53.1) Diseño más sencillo, que el descrito en inciso anterior: contorno de las alas es menos angulosos, con marcas azules en la parte ventral de las alas posteriores.......................... *Q. cerealis* fig.76

53.2) Como en (53) y con bandas ortogonales oscuras en alas anteriores.......................... *Q. lugubris* fig.77

VIII GRANDES, ALAS POSTERIORES CON COLAS

54) Grande (3.9 cm.): alas anteriores con 3 marcas alineadas y similares en tamaño en el área apical, en el área discal marcas que forman banda oblicua irregular; borde de pequeñas colas blanco........ *Urbanus doryssus* 9 No.169/170

55) Grande (4.1 cm.): verde iridiscente en la base de las alas anteriores y casi completamente en los bordes de las alas posteriores; colas muy largas y curvas... *U. Viterboana* fig.89

56) Grande (4.1 cm.): colas más bien rectas y no tan largas como U. Viterboana. Vista ventral de alas posteriores con marcas café formando bandas.......................... *U. pronta* 10 No.181/182

57) Grande (3.9 a 4.3 cm.); café dorado, semejante en patrón a U. Viterboana... *U. dorantes* fig.83

58) Grande (4.0 cm.); café uniforme; alas anteriores con marcas hialinas en el área discal, muy tenues o sin ellas.......................... *U. procone* fig.84

59) Grande (5.5 cm.): café claro iridiscente algo verdosa; escamas en forma de pelos en la base de las alas; alas anteriores con borde del ápice cuadrado y angulosos, con 3 marcas hialinas alineadas en la región apical, marcas hialinas del área discal separadas formando una banda oblicua; alas posteriores con grandes marcas blanquecinas en la superficie anterior.......................... *Chicoides zilia* 7 No.113/114

60) Semejante a Urbanus, contorno de alas posteriores muy definido y recto a diferencia de Urbanus, que es muy zigzagueante..... *Poliytrix asine* fig.73

IX MARIPOSAS GRANDES AZULES O VERDES

61) Con cuatro marcas hialinas en la región apical (5.5 cm.), en la parte media translúcida y en la base azul verdosa iridiscente con marca blanca en el lado posterior del ala anterior, fondo azul profundo iridiscente muy definido en la base del ala superior.......................... *A. fulgerator azul* 6 No.93/94

62) Semejante a *A. fulgerator*, pero con tres marcas hialinas en la región apical de alas anteriores (5.0 cm)........................... *A. enotrus* fig.44
63) Alas posteriores y área basal de las anteriores de color verde iridiscente (5.3 cm.), con dos marcas hialinas en la región apical, cuatro marcas hialinas en la región media alineadas formando una banda, constreñidas en el centro, con forma de reloj de arena) con cabeza y torax muy robustos, marcas hialinas de la región media, alineadas, con una marca libre muy delgada, semejante a *Chiodes zilpa*....*Anna ciaxon* fig.37

X PEQUEÑAS A MEDIANAS DE COLOR AZUL

64) Mediana (3.4 cm.) de color oscuro; alas anteriores con dos puntos blancos en la región apical y manchas blancas en la región media; alas posteriores azul iridiscente excepto en los bordes.......*Pytonides jovianus* fig.72

XI PEQUEÑA SIN MARCAS

65) Pequeña (2.5 cm); casi negra; en los machos alas anteriores con pliegue semejante a canoa de color pajizo en el área discal, cerca del margen costal..*Staphylus vulgata* fig.80

66) Pequeñas a medianas (2.4 a 3.2 cm); café oscuro a casi negro.

.. *S. lenis* 9 No.161/162 fig.79
O. calavius 8 No.137/138 fig.67
O. fredericus 8 No.139/140 fig.68
O. negrus 8 No.141/142 fig.69

C. Pyrrhopyrinae:

XII MARIPOSAS MEDIANAS A GRANDES, MAZO DE LAS ANTENAS

GRANDE Y CURVADO

67) Alas anteriores con dos marcas hialinas apicales, dos subapicales y tres amplias en la región media; con dos marcas hialinas entre las subapicales y las de la región media. Todas las marcas hialinas tienen un borde café oscuro. El borde de las alas anteriores es regular, e irregular en las posteriores. El cuerpo es de color amarillo.*Mycella amistis* 10 No.185/186
Lámina No.1
Lámina No.2
Lámina No. 3

Lamina No. 4

61) Thargeila caura V 62) T. caura Δ 63) Vehillus inca V 64) V. inca Δ 65) V. stictomenes V 66) V. stictomenes Δ 67) V. stictomenes V 68) V. stictomenes Δ 69) Vettius onaca V 70) V. onaca Δ
Lámina No.5
71) Achlyodes busiris \(\checkmark \) 72) A. busiris \(\bigtriangleup \) 73) A. thraso \(\checkmark \) 74) A. thraso \(\bigtriangleup \) 75) Aethilla echina \(\checkmark \) 76) A. echina \(\bigtriangleup \) 77) Aguna claxon \(\checkmark \) 78) A. claxon \(\bigtriangleup \) 79) Anastrus obscurus \(\checkmark \) 80) A. Obscurus \(\bigtriangleup \) 81) A. tolimus \(\checkmark \) 82) A. tolimus \(\bigtriangleup \) 83) Antigonus erosus \(\checkmark \) 84) A. erosus \(\bigtriangleup \) 85) A. nearchus \(\checkmark \) 86) A. nearchus \(\bigtriangleup \) 87) A. neuralius \(\checkmark \) 88) A. neuralius \(\bigtriangleup \) 89) Arteuria tractipennis \(\checkmark \) y 90) A. tractipennis \(\bigtriangleup \).
Lámina 6

91) Astreptes enotrus \(\vee \), 92) A. enotrus \(\Delta \), 93) A. fulgerator azul \(\vee \), 94) A. fulgerator azul \(\Delta \), 95) A. paleucus \(\vee \), 96) A. phaleucus \(\Delta \), 97) Atarnes sallei \(\vee \), 98) A. sallei \(\Delta \), 99) Autochton longipennis \(\vee \), 100) A. longipennis \(\Delta \), 101) Bolla sp. af. Phylo \(\vee \), 102) Bolla sp. af. Phylo \(\Delta \), 103) Cabares potrillo \(\vee \), 104) C. potrillo\(\Delta \), 105) Carrhemes calidius \(\vee \), 106) C. calidius \(\Delta \), 107) Celaenorrhinus stola \(\vee \), 108) C. stola \(\Delta \), 109) Cogia calchas \(\vee \), 110) C. calchas \(\Delta \).
Lámina 7
Lámína 8
Lámina 9

151) Pyrgus communis \(\vee \), 152) P. communis \(\Delta \), 153) P. oileus \(\vee \), 154) P. oileus \(\Delta \), 155) Quadrus cerealis \(\vee \), 156) Q. cerealis \(\Delta \), 157) Q. lugubris \(\vee \), 158) Q. lugubris \(\Delta \), 159) Spathilepia clonius \(\vee \), 160) S. clonius \(\Delta \), 161) Staphylus lenis \(\vee \), 162) S. lenis \(\Delta \), 163) Thesia sp. \(\vee \), 164) T. sp. \(\Delta \), 165) Timocharis trifasciata \(\vee \), 166) T. trifasciata \(\Delta \), 167) Urbanus dorantes \(\vee \), 168) U. dorantes \(\Delta \), 169) U. Doryssus \(\vee \), 170) U. doryssus \(\Delta \)
Lámina No. 10

171) Urbanus procne \(\n \), 172) U. procne \(\Delta \), 173) U. procneus \(\n \), 174) U. procneus \(\Delta \), 175) U. Pronta \(\n \), 176) U. Pronta \(\Delta \), 177) U. Simplicius \(\n \), 178) U. simplicius \(\Delta \), 179) U. teleus \(\n \), 180) U. teleus \(\Delta \), 181) U. vitarboana \(\n \), 182) U. vitarboana \(\Delta \), 183) Xenophanes trixus \(\n \), 184) Xenophanes trixus \(\Delta \), 185) Myscelus amistis \(\n \), 186) M. amistis \(\Delta \),
Fig. 1-6 Genitalia de Hesperinae 1) Aides brilla 2) Anthoptus epictetus 3) Callimormus radiola 4) C. saturnus 5) Carystoides lila 6) Cobalopsis autumna
Fig. 7-13 Genitalia de Hesperinae. 7) Cobalus virbius (tomado de Roswell, Williams & y Bell, 1931); 8) Corticea corticea; 9) Cymaenes alumna; 10) C. fraus; 11) C. tripunctatus; 12) Cynea consana; 13) Damas clavus.
Fig. 14-20 Genitalia de Hesperinae. 14) Eprius veleda; 15) Lerema accius; 16) L. lochius; 17) Methionopsis ina; 18) Mnasicles geta; 19) Monca tyrtaeus; 20) M. sp.
Fig. 21-24 Genitalia de Hesperiinae.

21) Morys compta; 22) M. Geisa; 23) Polites sp.;
24a) Pompeius pomeius ♀; 24b) Pompeius pomeius ♂.
Fig. 25-28 Genitalia de Hesperiinae. 25) Quasimellana eulogius; 26) Remilia remus; 27) Saliana antoninus; 28) S. hesperi.
Fig. 29 – 33 Genitalia de Hesperiinae. 29) Synapte silius; 30) Thargella caura; 31) Vehilius inca; 32 a) V. Stictomenes c; 32 b) V. Stictomenes; 33) Vettius onaca.
Fig. 34–36 Genitalia de Pyrginae: 34) *Achlyodes busirus*, 35)*A. thrasc*; 36) *Aethilla echina.*
Fig. 37 - 42 Genitalia de Pyrginae. 37) Aguna claxon; 38) Anastrus obscurus; 39) A. tolimus; 40) Antigonus erosus; 41) A. nearchus; 42) A. nuralius.
Fig. 43 - 45 Genitalia de Pyrginae. 43) *Arteurotia tractipennis*; 44) *Astraptes enotus*; 45) *A. fuigerator*.
Fig. 46 - 48 Genitalia de Pyrginae. 46) *Atarne sále*; 47) *Autochton longipennis*; 48) A. *zarex*.
Fig. 49 - 53 Genitalia de Pyrginae. 49) Bolla sp. af. phylo; 50) Cabares potrillo; 51) Carrhenes calidius; 52) Gelaenorrhinus stole; 53) Chicoides zilpa
Fig. 54 - 56 Genitalia de Pyrginae. 54a) Cogia calchas o; 54b) Cogia calchas o; 55) Cycloglypha thrasibulus; 56a) Ebritas anacreon o; 56b) Ebritas anacreon o.
Fig. 57-60 Genitalia de Pyrginae. 57) Eracon paulinus; 58) Gesta gesta; 59) Gorgythion begga; 60a) Helias phalaenoides o; 60b) Helias phalaenoides o.
Fig. 61-66 Genitalia de Pyrginae. 61) Heliopetes alana; 62) H. Arsalte; 63) Mylon sp.1; 64) M. sp.2; 65) Nisoniades godma; 66) Noctuana stator
Fig. 67 - 69 Genitalia de Pyrginae. 67) *Ouleus calavius*; 68a) *Friedericus c*; 68b) *O. Friedericus c*; 69) *O. negrus*;
Fig. 70 - 75 Genitalia de Pyrginae. 70) Paches loxus; 71) Pachynuria licisca; 72) Phytonides jovianus; 73) Polythrix asine; 74a) Pyrgus communis o; 74b) Pyrgus communis o; 75a) P. olleus o; 75b) P. olleus o
Fig. 76–80 Genitalia de Pyrginae. 76) *Quadrus cerealis*; 77) *Q. lugubris*; 78) *Spathilepia clonius*; 79) *Staphylius lenis*; 80) *S. vulgata*;
Fig. 81-84 Genitalia de Pyrginae. 81) *Tessaia sp* (Tomado de Steinhauser, Bulletin of The Allyn Museum No. 127, 1989); 82 a y b) *Timocharis infasciata* (Tomado de Olaf Mielke Rvta.bras. Ent. 37(3), 1993); 83a) *Urbanus dorantes o*; 83) *Urbanus dorantes o*; 84) *U. Procne*.
Fig. 85 - 90: Genitalia de Pyrginae. 85) U. Procneus; 86) U. pronta; 87) U. Simplicius; 88) U. Teleus; 89) U. Viterboana; 90a) Xenophanes tryxus o; 90b) Xenophanes tryxus o.