

Universidad de San Carlos de Guatemala Facultad de Ingeniería Escuela de Ciencias

MEDICIONES DE INTENSIDADES SÍSMICAS DENTRO DEL ÁREA URBANA EXTENDIDA, DE LA CIUDAD DE GUATEMALA

Robin Onelio Yani Quiyuch

Asesorado por: Ph. D. Juan Pablo Ligorría

Ing. Omar Flores Beltetón

Guatemala, agosto de 2006

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA

FACULTAD DE INGENIERÍA

MEDICIONES DE INTENSIDADES SÍSMICAS DENTRO DEL ÁREA URBANA EXTENDIDA, DE LA CIUDAD DE GUATEMALA

TRABAJO DE GRADUACIÓN

PRESENTADO A LA JUNTA DIRECTIVA DE LA FACULTAD DE INGENIERÍA POR

ROBIN ONELIO YANI QUIYUCH

ASESORADO POR: Ph.D. JUAN PABLO LIGORRÍA Ing. OMAR FLORES BELTETÓN

> AL CONFERÍRSELE EL TÍTULO DE LICENCIADO EN FÍSICA APLICADA

GUATEMALA, AGOSTO DE 2006

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA

NÓMINA DE JUNTA DIRECTIVA

DECANO	Ing. Murphy Olympo Paiz Recinos
VOCAL I	Inga. Glenda Patricia García Soria
VOCAL II	Lic. Amahán Sánchez Álvarez
VOCAL III	Ing. Julio David Galicia Celada
VOCAL IV	Br. Kenneth Issur Estrada Ruiz
VOCAL V	Br. Elisa Yazminda Vides Leiva
SECRETARIA	Inga. Marcia Ivonne Véliz Vargas

TRIBUNAL QUE PRACTICÓ EL EXAMEN GENERAL PRIVADO

DECANO	Ing. Sydney Alexander Samuels Milson
EXAMINADOR	M.Sc. Ricardo Enrique Contreras Folgar
EXAMINADOR	Ph.D. Juan Pablo Ligorría Arroyo
EXAMINADOR	Lic. Carlos Antonio Castellanos Santos
SECRETARIO	Ing. Carlos Humberto Pérez Rodríguez

HONORABLE TRIBUNAL EXAMINADOR

Cumpliendo con los preceptos que establece la ley de la Universidad de San Carlos de Guatemala, presento a su consideración mi trabajo de graduación titulado:

MEDICIONES DE INTENSIDADES SÍSMICAS DENTRO DEL ÁREA URBANA EXTENDIDA, DE LA CIUDAD DE GUATEMALA,

tema que me fuera asignado por la Coordinación de la Carrera de Licenciatura en Física Aplicada, y aprobado por la Escuela de Ciencias de la Facultad de Ingeniería, el 7 de Octubre de 2005.

ant Quiyuch Robin

Guatemala, 19 de Julio de 2006

Ing. José Alberto Boy Piedrasanta Director Escuela de Ciencias Facultad de Ingeniería USAC

Señor Director:

Por este medio me permito informarle que el estudiante de la licenciatura en Física Aplicada, Robin Onelio Yani Quiyuch, fue asesorado por mi persona en su trabajo de graduación "MEDICIONES DE INTENSIDADES SÍSMICAS EN EL ÁREA URBANA EXTENDIDA DE LA CIUDAD DE GUATEMALA".

Habiendo cumplido con los objetivos y metas propuestos para este trabajo, he procedido a la aprobación del mismo. Por lo que el contenido, conclusiones y recomendaciones de este trabajo es responsabilidad, tanto del autor como de su asesor.

Atentamente,

aul

Juan Pablo Ligorría, *Ph.D.* Ing. Geofísico. Col. 3548

FACULTAD DE INGENIERÍA CENTRO DE ESTUDIOS SUPERIORES DE ENERGÍA Y MINAS - CESEM -Tel./fax: 24 76 04 23 Mode por ti Garcingia Mia Dr. Carlos Martínez Durán 2006: Centenario de su Nacimiento

Guatemala, 20 de julio del 2006

Ing. José Alberto Boy Piedrasanta Director Escuela de Ciencias Facultad de Ingeniería USAC

Señor Director:

Por este medio me permito informarle que el estudiante de la licenciatura en Física Aplicada, Robin Onelio Yani Quiyuch, fue asesorado por mi persona en su trabajo de graduación "MEDICIONES DE INTENSIDADES SÍSMICAS EN EL ÁREA URBANA EXTENDIDA DE LA CIUDAD DE GUATEMALA".

Habiendo cumplido con los objetivos y metas propuestos para este trabajo, he procedido a la aprobación del mismo. Por lo que el contenido, conclusiones y recomendaciones de este trabajo es responsabilidad, tanto del autor como de su asesor.

Atentamente,

"ID Y ENSEÑAD A TODOS" \mathbb{C} DE INCE Ing. Omar Ho Beltetón USAC 6 C. S. S. S. S. Centro de Estudios Superiores de Energía y Minas -CESEM-

Escuelas: Ingeniería Civil, Ingeniería Mecánica Industrial, Ingeniería Química, Ingeniería Mecánica Eléctrica, Escuela de Ciencias, Regional de Ingeniería Sanitaria y Recursos Hidráulicos (ERIS). Postgrado Maestría en Sistemas Mención Construcción y Mención Ingeniería Vial. Carreras: Ingeniería Mecánica, Ingeniería Electrónica, Ingeniería en Ciencias y Sistemas, Licenciatura en Matemática, Licenciatura en Física. Centro de Estudios Superiores de Energía y Minas (CESEM). Guatemala, Ciudad Universitaria zona 12. Guatemala, Centroamérica. PBX.: 24 43 95 00. UNIVERSIDAD DE SAN CARLOS DE GUATEMALA

Guatemala, 20 de julio del 2006

FACULTAD DE INGENIERIA

Ing. José Alberto Boy Piedrasanta DIRECTOR, ESCUELA DE CIENCIAS FACULTAD DE INGENIERÍA USAC, Ciudad

Estimado Ingeniero Boy:

Me dirijo a usted para informarle que he realizado la revisión al trabajo de graduación "MEDICIONES DE INTENSIDADES SÍSMICAS EN EL ÁREA URBANA EXTENDIDA DE LA CIUDAD DE GUATEMALA", presentada por el estudiante **Robin Onelio Yani Quiyuch** y considerando que cumple con los objetivos de la carrera de Licenciatura en Física Aplicada, le doy mi aprobación.

Muy Atentamente,

"ID Y ENSEÑAD A TODOS"

Lic. Edgar Ánibal Cifuentes Anléu Coordinador, Licenciatura en Física Aplicada Departamento de Física

c.c. archivo.

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA

FACULTAD DE INGENIERÍA ESCUELA DE CIENCIAS

El Director de la Escuela de Ciencias de la Facultad de Ingeniería de la Universidad de San Carlos de Guatemala, después de conocer el dictamen de los asesores, con el visto bueno del Coordinador de la Licenciatura en Física Aplicada al trabajo de graduación del estudiante **ROBIN ONELIO YANI QUIYUCH**, titulado "MEDICIONES DE INTENSIDADES SÍSMICAS DENTRO DEL ÁREA URBANA EXTENDIDA DE LA CIUDAD DE GUATEMALA", procede a la autorización del mismo.

I/Celest Ba

Ing. José Alberto Boy Piedrasanta Director Escuela de Ciencias

Guatemala, 25 de julio de 2006

JABP/scvs

Escuelas: Ingeniería Civil, Ingeniería Mecánica Industrial, Ingeniería Química, Ingeniería Mecánica Eléctrica, Escuela de Ciencias, Regional de Ingeniería Sanitaria y Recursos Hidráulicos (ERIS), Postgrado Maestría en Sistemas Mención Construcción y Mención Ingeniería Vial. Carreras: Ingeniería Mecánica, Ingeniería Electrónica, Ingeniería en Ciencias y Sistemas Licenciatura en Matemática, Licenciatura en Física. Centros: de Estudios Superiores de Energía y Minas (CESEM). Guatemala, Ciudad Universitaria, Zona 12, Guatemala, Centroamérica Universidad de San Carlos de Guatemala

Facultad de Ingeniería Decanato

Ref. DTG. 269-2006.

El Decano de la Facultad de Ingeniería de la Universidad de San Carlos de Guatemala, luego de conocer la aprobación por parte del Director de la Escuela de Ciencias, al trabajo de graduación titulado: **MEDICIONES DE INTENSIDADES SÍSMICAS DENTRO DEL ÁREA URBANA EXTENDIDA, DE LA CIUDAD DE GUATEMALA** presentado por el estudiante universitario **Robin Onelio Yani Quiyuch,** procede a la autorización para la impresión del mismo.

IMPRÍMASE.		
Ing. Mu	rphy OKimpe Paiz Recinos DECANO	
Guatemala, agosto 4 de 2,006	DECANO	Todo por Tí, Carolíngía Mia Dr- Carlos Martínez Durán
/gdech	ACOLIAD DE INOLINEANA	2006: Centenario de su Nacimiento

"Cabracán movía los montes, y por él temblaban las montañas grandes y pequeñas."

Popol Vuh

AGRADECIMIENTOS A:

Kinemetrics Inc.,	el proceso básico de datos se realizó a través del software Kinemetrics'Strong- Motion Analyst.
CONRED,	que ha apoyado el mantenimiento de los acelerógrafos del CRS/SCEP; especialmente para la adquisición rutinaria y traducción de datos, realizado por el personal técnico de la Gerencia de Gestión de Riesgo. Los datos de movimiento fuerte utilizados en este trabajo pueden adquirirse libremente en <u>www.conred.org</u>
Centro Gerencial Las Margaritas	por proporcionar los datos de su acelerógrafo de campo libre.
Ph. D. Juan Pablo Ligorría e Ing. Omar Gilberto Flores	mis asesores, por su amplia y desinte- resada colaboración.
Ing. Héctor Monzón-Despang e Ing. Rüdiguer Escobar Wolf	quienes facilitaron materiales que hicie- ron posible este trabajo de graduación

Mis Padres	Vidalia Quiyuch Hernández y José Luis
	Yani Mixtún, por el cariño y apoyo que
	me han brindado durante toda mi vida.
Mario Yani Mixtún	mi tío y gran amigo, quien siempre me ha
	brindado su mano en los momentos
	difíciles y en los momentos gratos.
Mis hermanos	Luis Orlando, Eddy Oswaldo, José Luis y
	Julia Marleny, por su ayuda y por creer
	en mí.
María Antonieta Monroy	mi cuñada y amiga, por darnos siempre
	esa pizca de motivación y esperanza.
Mis grandes amigos	que son también mis hermanos, algunos
	son de lo peor, y siempre están ahí.

ÍNDICE GENERAL

ÍN	DIC	E DE	ILUSTRACIONES	III
LI	STA	DE SI	ÍMBOLOS	V
G]	LOSA	ARIO		IX
RI	ESUI	MEN	2	XIII
01	BJEI	ΓIVOS		XV
IN	TRO	DUC	CIÓN x	VII
1.	Μ	OVIM	IIENTO FUERTE	1
	1.1.	Intro	ducción	1
	1.2.	Onda	s generadas en un terremoto	1
		1.2.1.	Ondas de cuerpo	2
	1.3.	Inten	sidad de un terremoto	3
	1.4.	Regis	tro del movimiento fuerte. Intensidades sísmicas estimadas	4
		1.4.1.	Valores pico de aceleración, velocidad y desplazamiento	4
		1.4.2.	Duración del movimiento fuerte	5
		1.4.3.	Características espectrales	6
		1.4.4.	Intensidades sísmicas estimadas	8
	1.5.	Resp	uesta de sitio	10
		1.5.1.	Amplificación en superficies de discontinuidad	11
		1.5.2.	Resonancia	12
	1.6.	Atem	lación	13
	1.7.	Amer	naza, vulnerabilidad y riesgo sísmico	13

. MEDICIONES DE INTENSIDADES SÍSMICAS DENTRO		
DEL ÁREA URBANA EXTENDIDA, DE LA CIUDAD		
DE GUATEMALA	15	
2.1. Planteamiento del problema	15	
2.2. Antecedentes	17	
2.3. Marco geotectónico	19	
2.4. Instrumentación	23	
2.4.1. Descripción del equipo	24	
2.4.2. Despliegue instrumental	24	
2.5. Procesamiento y análisis de datos	28	
2.6. Discusión de resultados	35	
CONCLUSIONES	37	
RECOMENDACIONES	39	
BIBLIOGRAFÍA	41	

ÍNDICE DE ILUSTRACIONES

FIGURAS

1.	Sismogramas de aceleración, velocidad y despla-	
	$\mathbf{zamiento}$	5
2.	Amplitud de aceleración contra período (para 2	
	valores de amortiguamiento)	8
3.	Valores pico $HVSR$ estimados dentro del período	
	0.1-5s para el sitio MVCG	10
4.	IMM para el terremoto de 1976	19
5.	Marco tectónico de Guatemala	20
6.	Distribución de unidades geotécnicas en la Ciu-	
	dad de Guatemala	22
7.	Localización de fuentes sísmicas	26
8.	Intensidades sísmicas estimadas para el evento	
	de Enero 20/2003 (M_w 6.3) \ldots \ldots \ldots	32
9.	Intensidades sísmicas estimadas para el enjambre	
	sísmico, Junio 15-18/2003	33
10.	Intensidades sísmicas estimadas para el evento	
	de Agosto 25/2003 (M_w 5.9) \ldots \ldots \ldots	34
11.	Comparación de los espectros de acelaración de	
	dos eventos distintos para los sitios ERPG (tipo	
	D) y LMMG (tipo C) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	36

TABLAS

I.	Estimaciones anteriores de intensidades sísmicas	
	para el área urbana extendida, de la Ciudad de	
	Guatemala	18

II.	Unidades geotécnicas para el área urbana exten-	
	dida, de la Ciudad de Guatemala	21
III.	Localización de sitios del despliegue de aceleró-	
	grafos dentro del área urbana extendida, de la	
	Ciudad de Guatemala ¹	25
IV.	Parámetros de las fuentes sísmicas	27
V.	Valores estimados de PHA, A_{rms}, I_a para el área	
	urbana extendida de la Ciudad de Guatemala	29
VI.	Valores estimados de EPA y picos $HVSR$ para el	
	área urbana extendida de la Ciudad de Guate-	
	mala	30
VII.	Mediana de los valores más altos estimados para	
	la Ciudad de Guatemala	31

LISTA DE SÍMBOLOS

ρ	Densidad del medio
μ	Módulo de rigidez
k	Módulo de compresibilidad
v_p	Velocidad de onda ${\cal P}$
V_{S}	Velocidad de onda ${\cal S}$
$\mathbf{a}(\mathbf{t})$	Aceleración en función del tiempo
$\mathbf{u}(\mathbf{t})$	Desplazamiento real del suelo
N-S	Norte-Sur
E-W	Este-Oeste
FFT	Transformada Rápida de Fourier
T_d	Duración del movimiento fuerte
g	Constante de aceleración debida a la gravedad

С	Parámetro de amortiguamiento
W	Frecuencia de oscilador armónico
λ	Grado de amortiguamiento
%	Por ciento
0	Grados
/	Minutos
M_s	Magnitud de onda superficial
M_w	Magnitud de momento
M_{c}	Magnitud Coda
IMM	Intensidad Modificada de Mercalli
m/s^2	Metros por segundo al cuadrado
PGA	Aceleración Pico del Terreno
\mathbf{PSV}	Pseudo Velocidad Espectral
msnm	Metros sobre el nivel del mar
PHA	Aceleración pico horizontal

$\mathbf{A_{rms}}$ Aceleración raíz media cuadrada

- I_a Intensidad Arias
- **EPA** Aceleración Pico Efectiva
- HVSR Relación Espectral Horizontal-a-Vertical

VIII

GLOSARIO

Amortiguamiento	Proceso por el cual parte de la energía elástica de las ondas sísmicas, es convertida en calor dentro de la estructura del suelo. Esta conversión de energía conlleva también a una disminución en la amplitud de las ondas sísmicas.
Atenuación	Disminución de la amplitud de las ondas sísmicas durante su transmisión, a través del interior y por la superficie de la Tierra. Tiene lugar por expansión geométrica y por amortiguamiento.
Enjambre sìsmico	Secuencia o serie de sismos pequeños que ocurren en la misma región durante un tiempo corto, no siendo ninguno de ellos de magnitud significativa o sobresaliente, respecto a los demás. Tampoco obedecen al patrón de un sismo de mayor magnitud y sus respectivas réplicas y/o premonitores de menor magnitud.
Espectro de respuesta	Diagrama que representa la respuesta máxima, en función de su frecuencia propia, de osciladores simples de un grado de libertad y amortiguamiento conocido, sometidos a una carga sísmica.

FFT	La transformada rápida de Fourier, es un método numérico para series de datos, que transforma la serie del dominio del tiempo al dominio de la frecuencia.
Impedancia	Resitencia al movimiento de las partículas en el suelo o roca.
Magnitud (de un terremoto)	Es una medida del tamaño de un terremoto, relacionada con la energía liberada y calculada a partir de registros instrumen- tales, es independiente del sitio donde se mida.
Movimiento fuerte	Movimiento sísmico apreciable que puede tener efectos sobre el entorno y lo que se encuentre en él, incluyendo personas y construcciones.
Resonancia	Condición en la cual la amplitud de oscilación es máxima, y se debe a cierta frecuencia de resonancia característica. Puede ocurrir cuando existe un contraste abrupto de impedancias en las capas del suelo que atraviesan las ondas sísmicas
Respuesta de sitio	Respuesta del terreno ante el movimiento sísmico, que depende- rá de las características de impedancia y efectos de resonancia del suelo mísmo, de la geología local, la topografía y otros factores.
Sismograma	Representación gráfica de la serie de tiempo registrada por un sismógrafo, puede tenerse sismogramas de aceleración (acele- rograma), de velocidad y de desplazamiento.
Unidad geotécnica	Clasificación geológica y caracterización de parámetros físicos relacionados con el suelo y/o capas más superficiales de un área determinada.

XII

RESUMEN

El área urbana extendida de la Ciudad de Guatemala, alberga la mayor concentración de población de América Central; con una vulnerabilidad sísmica en notable crecimiento, a pesar de la evidente exposición a riesgos. En este trabajo se reportan cinco medidas de intensidades sísmicas: *PHA*, A_{rms} , I_a , *EPA* y picos *HVSR*; estimadas a partir de los registros de movimiento fuerte de dos sísmos moderados (M_w 6.3 y 5.9) y un enjambre de sismos.

El comportamiento de las unidades geotécnicas sobre la Ciudad de Guatemala, parecen ser fuertemente gobernadas por condiciones particulares de sitio, con una influencia menor de las características de la fuente sísmica. Sin embargo, un estímulo indirecto de fuente sísmica, a la respuesta de sitio parece ser evidente en sedimentos de transición ubicados en pendientes del terreno dentro del área en estudio. Son observadas claramente, notables amplificaciones en sedimentos de edad reciente y menor consolidación.

OBJETIVOS

Generales

- 1. Estimar intensidades sísmicas dentro del área urbana extendida, de la Ciudad de Guatemala a partir de los registros acelerográficos de dos movimientos sísmicos moderados (M_w 6.3 y 5.9) y un enjambre de sismos.
- 2. Analizar el comportamiento por respuesta de sitio, de las distintas unidades geotécnicas en el área de estudio, ante eventos sísmicos.
- Específicos
 - Estimar las medidas de intensidad sísmica: PHA, A_{rms}, I_a, EPA y máximos HVSR.
 - 2. Mejorar la comprensión de las intensidades locales observadas en el área.

INTRODUCCIÓN

La república de Guatemala se encuentra ubicada en una región donde coinciden tres placas tectónicas, estas son: la de Cocos, la del Caribe y la de Norteamérica. La interacción entre estas placas libera energía periódicamente en forma de sismos, constituyendo de esa manera una constante amenaza sísmica. Este trabajo se enfoca en el área urbana extendida de la Ciudad de Guatemala, la cual se encuentra ubicada en un graben estructural, producto de la interacción del sistema de fallas Motagua-Polochic. Asimismo, el crecimiento urbano continuo, en su mayoría construído sin normas adecuadas de diseño sismorresistente, aumentan la vulnerabilidad a desastres de manera alarmante.

En este trabajo se han estimado diferentes intensidades de movimiento sísmico dentro de la Ciudad de Guatemala, utilizando para el efecto los registros sísmicos de tres eventos ocurridos en el año 2003. La clasificación geotécnica aplicada, se basó en dos trabajos anteriores realizados por Ligorría y Atakan (1997) y Flores *et al.* (2001). Las ubicaciones de los equipos de registro coinciden con distintos sitios de esta clasificación geotécnica. La respuesta del terreno ante sismos fue analizada a partir de dichos registros. Además, también fue investigada la dependencia de las intensidades observadas de la fuente sísmica y/o de las condiciones particulares de los sitios. Resultó evidente que, las unidades sedimentarias recientes, poco consolidadas, muestran valores más altos de intensidades sísmicas.

Este trabajo se divide en dos partes. En la primera parte se tratan de manera general, los conceptos más importantes relacionados al estudio del movimiento sísmico fuerte del suelo. Se describen brevemente las ondas de cuerpo, las más influyentes en los efectos durante un terremoto. Luego se discute lo concerniente al registro y herramientas para el análisis y procesos de los registros adquiridos por los acelerógrafos. Seguidamente se habla de las intensidades sísmicas, los métodos para estimarlas y la descripción de las que en este trabajo se estiman, es decir: PHA, A_{rms} , I_a , EPA y picos HVSR. Además, se describe el fenómeno de respuesta del suelo ante el movimiento sísmico y la atenuación de las ondas sísmicas en éste. Para finalizar la primera parte se discuten los conceptos de amenaza, vulnerabilidad y riesgo sísmico; como la aplicación directa de este marco teórico.

La segunda parte inicia con el planteamiento y los antecedentes del problema abordado en este estudio. Se describe también el marco geotectónico del país y la clasificación geotécnica del área en estudio. A continuación se presentan las principales características y la ubicación de los acelerógrafos en la Ciudad de Guatemala. Luego, se describe el proceso y análisis de los datos. Los resultados se muestran en tablas y gráficos, los cuales se han agrupado en base a los eventos sísmicos que los produjeron: Enero 20/2003 $(M_w \ 6.3)$, enjambre sísmico de Junio 15-18/2003 y Agosto 25/2003 $(M_w \ 5.9)$. Para concluir se discuten las observaciones más evidentes en términos del comportamiento de las unidades geotécnicas y se comparan o complementan los resultados con otros estudios.

1. MOVIMIENTO FUERTE

1.1. Introducción

La sismología del movimiento fuerte se ocupa de aquellos terremotos que pueden afectar a las personas, animales y construcciones, así como de los efectos en la geología de un área determinada.

En el caso de la ingeniería sísmica (o ingeniería sismorresistente), se investigan los efectos causados a las construcciones, tales como, edificios, puentes, vías de comunicación y demás estructuras de obra civil (Bullen, 1985). Estos efectos se analizan mediante registros instrumentales del movimiento fuerte y el respectivo comportamiento del suelo.

Los efectos causados por un terremoto en determinada localidad pueden ser variados y usualmente dependen de las condiciones físicas del terreno y la naturaleza de los materiales presentes. En ocasiones estos efectos son más severos en suelos blandos y ambientes sedimentarios poco consolidados, que en superficies de roca sólida. Lo anterior es relevante, pues los daños sufridos en algunas regiones no dependen precisamente de la cercanía o lejanía a la fuente del sismo, sino de las condiciones particulares del sitio.

El conocimiento del comportamiento del suelo durante terremotos, brinda información importante para la prevención de impactos sociales desfavorables y para tomar decisiones de diseño certeras para construcciones futuras. De esto se hablará con más detalle posteriormente.

1.2. Ondas generadas en un terremoto

Como resultado de los procesos dinámicos que ocurren en determinadas áreas de la corteza terrestre, se acumula energía potencial elástica. Cuando el material cortical cede a los esfuerzos, la energía se convierte en energía cinética, dando origen a las ondas sísmicas que transportan ésta energía.

Las ondas que se generan en un terremoto se transmiten desde el foco del mismo a través del interior de la Tierra. Las velocidades de propagación y el tiempo de viaje de las ondas sísmicas dependerán de la naturaleza de los materiales y del contraste entre los distintos estratos que atraviesan, de acuerdo con el principio de Fermat: "La trayectoria de propagación de determinada onda sísmica, seguirá aquel camino que produce el tiempo mínimo en su recorrido" (Cantos, 1987).

Las ondas sísmicas se clasifican en dos grupos: las *ondas de cuerpo*, que viajan por el interior de la Tierra y las *ondas superficiales*, que se forman en las superficies de discontinuidad.

1.2.1. Ondas de cuerpo

Existen dos tipos de ondas de cuerpo, las ondas P o *longitudinales*, que corresponden a la transmisión de compresiones y dilataciones y en las que el movimiento de las partículas del medio se propaga en la misma dirección que la de la onda de propagación, y ondas S o *transversales*, que corresponden a desplazamientos en cizalla y en las que las partículas del medio se mueven perpendicularmente a la dirección de propagación de las ondas.

Las velocidades de las ondas P y S estan dadas, respectivamente por

$$v_p = \left(\frac{k + \frac{4}{3}\mu}{\rho}\right)^{1/2} \tag{1.1}$$

у

$$v_s = \left(\frac{\mu}{\rho}\right)^{1/2},\tag{1.2}$$

donde ρ es la densidad, μ el módulo de rigidez y k el módulo de compresibilidad del medio.

Puede observarse que , dado que k es positivo, la velocidad de las ondas P es mayor que la de las ondas S. Además, si $\mu = 0$, v_s es cero. Así, las ondas S no son transmitidas a través de un medio con módulo de rigidez cero, en otras palabras, las ondas S no pueden propagarse a través de un fluido.

1.3. Intensidad de un terremoto

Tradicionalmente la intensidad de un terremoto se ha estimado por los efectos cualitativos del mismo, es decir, por los daños o alteraciones que éstos causan a las estructuras, personas, animales y al paisaje inmediato. Para ello se crearon diferentes escalas de intensidad, como la de Rossi-Forel en 1878, que después fue modificada por Mercalli y ésta a su vez, modificada por Wood y Neuman en 1931 (Bullen,1985; Smith,1975). En Japón y Europa se desarrollaron otras escalas para condiciones geológicas locales. La intensidad local de un terremoto se estimaba mediante encuestas y observación directa.

Gracias a la disponibilidad de los sensores adecuados de movimientos fuertes, ha sido posible relacionar las divisiones de estas escalas de intensidad sísmica con las aceleraciones locales debidas a las sacudidas del suelo. Sin embargo, la intensidad sísmica depende también, de una forma compleja, del período y otras características de las ondas sísmicas (Bullen, 1985).

Muchos factores determinan la intensidad de un terremoto en un particular punto de la superficie de la Tierra. Estos incluyen el área y el Momento de la fuente sísmica, el mecanismo del terremoto, la cantidad y frecuencia espectral de la energía liberada, la estructura cortical en la región del disturbio, la distancia del punto a la fuente, las propiedades elásticas de las rocas superficiales y suelos adyacentes al punto, y la estructura geológica local (Bullen,1985). En la actualidad los sismólogos tienden a favorecer las estimaciones de intensidades sísmicas basadas en estas condiciones locales y su respectiva correlación con registros instrumentales. Conociendo las intensidades sísmicas en puntos distintos de una región, pueden hacerse mapas de *"isointensidades"*¹ a partir de los cuales puede analizarse el grado de *amenaza* (ver sección 1.8) que existe para distintos sitios. Esto puede ser de mucha utilidad para la prevención de futuros desastres.

1.4. Registro del movimiento fuerte. Intensidades sísmicas estimadas

1.4.1. Valores pico de aceleración, velocidad y desplazamiento

Generalmente se obtendrán, para el análisis del movimiento fuerte, tres tipos de señales o sismogramas. El registro principal es el acelerograma, y de éste puede obtenerse, por integración simple, los registros de la velocidad y el desplazamiento del suelo. El acelerograma puede ser representado por

$$a(t) = \ddot{u} + \varepsilon, \tag{1.3}$$

donde u(t) es el desplazamiento real del suelo y ε es una constante. A través de dos integraciones (como se mencionó) puede obtenerse, respectivamente,

$$v(t) = \dot{u} + \varepsilon t + \eta \tag{1.4}$$

у

$$d(t) = u + \varepsilon t^2 / 2 + \eta t + \zeta, \qquad (1.5)$$

donde η y ζ son también constantes. Para llegar a éstos ajustes se utilizan diferentes procesados de datos, entre ellos el ajuste por mínimos cuadrados de una curva polinomial, seguido de una sustracción punto por punto (Bullen, 1985).

Usualmente, los registros sísmicos de movimiento fuerte son obtenidos para las direcciones ortogonales norte-sur (N-S), este-oeste(E-W) y vertical(Vert).

¹líneas que unen puntos de igual intensidad sísmica

Figura 1: Sismogramas de aceleración, velocidad y desplazamiento

Fuente: Sismograma tomado de www.vettones.com

Los valores pico de aceleración, velocidad y desplazamiento, son unicamente los valores mayores registrados en los sismogramas. Ejemplos de estos sismogramas pueden verse en la figura 1.

Un procedimiento alternativo, es obtener estos valores pico a través de los mismos registros, pero en el dominio de la frecuencia. Esto puede hacerse mediante la Transformada Rápida de Fourier (FFT por sus siglas en inglés).

1.4.2. Duración del movimiento fuerte

La duración de un sismo depende de la magnitud del evento y de la distancia epicentral. A mayor magnitud, mayor duración de la fase intensa del movimiento sísmico; igualmente la duración incrementa con la distancia epicentral a medida que las ondas sísmicas se dispersan cuando se alejan del foco. Cerca del epicentro el movimiento del terreno puede durar pocos segundos y en sismos de baja magnitud estar representado en el registro por una o pocas oscilaciones. A distancias epicentrales grandes el movimiento sísmico puede durar varios minutos si es causado por un sismo de gran magnitud.

La duración del sismo influye en el comportamiento de las estructuras, por ello la importancia de tomar en cuenta la duración del movimiento. Mientras mayor sea la duración de la sacudida del suelo, mayor será la cuantía de los daños ocasionados (Sauter, 1989).

1.4.3. Características espectrales

En el estudio del movimiento fuerte es común realizar análisis en el dominio de la frecuencia. Para el efecto usualmente se utiliza la FFT para obtener los *espectros de respuesta* correspondientes.

1.4.3.1. Espectros de respuesta

El registro de una señal sísmica es el resultado de la superposición de varias ondas de diferentes frecuencias y amplitudes (Sarria y Bernal, s.f.). Para reconocer las características de un sismo en el dominio de las frecuencias, ha sido concebido un tipo especial de gráfica llamado espectro de respuesta. En un espectro de respuesta son diagramadas las distintas frecuencias y amortiguamientos, y los valores máximos de respuesta que se presentan ante la acción de determinado sismo. Estos espectros representan en un solo gráfico las influencias combinadas de las amplitudes de las aceleraciones del terreno, las componentes frecuenciales del movimiento y, en cierta medida, la duración del sismo (Seed, 1974). Se logra así una representación de las características más importantes de la respuesta (Barbat y Canet, 1994). El espectro de respuesta resulta un medio conveniente para evaluar la fuerza lateral máxima desarrollada en estructuras civiles sujetas a un movimiento dado en la base de las mismas (Seed, 1974).
Físicamente un espectro de respuesta puede representarse por medio de un oscilador armónico amortiguado de un solo grado de libertad debido a aceleraciones forzadas. Entonces, para una masa m, parámetro de amortiguamiento c y frecuencia ω , el desplazamiento relativo de m esta dado por

$$m\ddot{u} + c\dot{u} + \omega^2 u = -m\ddot{u}_q(t),\tag{1.6}$$

donde \ddot{u}_g es la aceleración del terreno. Una solución conveniente para la ecuación (1.6) es la llamada integral de *Duhamel*

$$u(t) = -\frac{1}{\omega_D} \int_o^t \ddot{u}_g e^{-\lambda\omega(t-\tau)} \sin \omega_D(t-\tau) d\tau, \qquad (1.7)$$

donde $\omega_D = \omega (1 - \lambda^2)^{1/2}$ es la frecuencia propia del sistema amortiguado y λ es el grado de amortiguamiento. Para propósitos prácticos, cuando $\lambda < 0.2$, $\omega = \omega_D$ (Bullen, 1985).

Para los fines de la ingeniería sísmica, es suficiente conocer los valores máximos de respuesta de las estructuras debidas al movimiento sísmico. En términos del modelo del oscilador armónico, se puede definir el espectro de respuesta como la curva de respuesta máxima de osciladores con diferente ω que se dan en el movimiento sísmico (Bullen,1985).

Así, puede graficarse |u(t)| como una función de ω (o del período), donde se obtendrá un *espectro de respuesta* de desplazamiento, o de velocidad si graficamos $|\dot{u}(t)|$ o de aceleración si la gráfica es de $|\ddot{u}(t)|$. En la figura 2 se da un ejmplo de espectro de respuesta de aceleración para dos diferentes porcentajes de amortiguamiento. Figura 2: Amplitud de aceleración contra período (para 2 valores de amortiguamiento)

Fuente: Registro E-W del sitio HSMG (Tabla III) para el evento del 20/01/03.

1.4.4. Intensidades sísmicas estimadas

Las intensidades sísmicas que se estimaron a partir del procesamiento de los acelerogramas y espectros de respuesta adquiridos durante los movimientos sísmicos, tratados en este trabajo, fueron las siguientes:

1.4.4.1. Aceleración Pico Horizontal

La *PHA* (siglas en inglés de: Peak Horizontal Acceleration) se estimó acá como la suma vectorial de los dos valores (absolutos) más grandes de las aceleraciones horizontales registradas durante cada uno de los eventos sísmicos. Para la secuencia de ES0603, se informa el valor más grande de todas las series registradas.

1.4.4.2. Aceleración Raíz Media Cuadrada

El parámetro A_{rms} (del inglés: Root Mean Square Acceleration) incluye la amplitud y el contenido espectral del movimiento fuerte. Este fue estimado como (Kramer,1996):

$$A_{rms} = \sqrt{\frac{1}{T_d} \int_{o}^{T_d} [a(t)]^2 dt} = \sqrt{\lambda_0},$$
 (1.8)

donde T_d es la duración del movimiento fuerte y λ_0 es la intensidad media, es decir, la raíz cuadrática media. Se estimó este parámetro, porque depende de la duración del movimiento y no de los valores de aceleración pico, como ocurre a altas frecuencias (períodos cortos). El valor de A_{rms} es reportado en porcentajes de g.

1.4.4.3. Intensidad Arias

La I_a , similar a A_{rms} , se estimó considerando el registro completo, haciendo una medida independiente del método que se usa para estimar la duración del movimiento fuerte. El valor de I_a fue estimado como (Kramer, 1996):

$$I_a = \frac{\pi}{2g} \int_0^\infty [a(t)]^2 dt.$$
 (1.9)

Los valores de I_a estimados son reportados en unidades de velocidad (cm/s).

1.4.4.4. Aceleración Pico Efectiva

La EPA (siglas de: Effective Peak Acceleration) fue estimada como la aceleración espectral media en el rango de período 0.1 a 0.5 segundos (es decir de 2 a 10 Hz de frecuencia), dividido por 2.5 (el factor de amplificación estándar para un 5% de amortiguamiento espectral). De acuerdo con esto, los valores de EPA fueron estimados para los datos de la curva de aceleración espectral con 5% de amortiguamiento.

1.4.4.5. Relación Espectral Horizontal-a-Vertical

El valor de HVSR (siglas de: Horizontal-to-Vertical Spectral Ratio) se estimó como un medida de la respuesta de sitio esperada; es decir, aislamiento de efectos locales de la fuente y la trayectoria de los estímulos en el registro sísmico (e.g. Lermo y Chávez-García, 1993; Field y Jacob, 1995; Theodulidis et al., 1996; Atakan et al., 2004). El HVSR es calculado (en el dominio de la frecuencia) como una división espectral (*i.e.* deconvolución, en el dominio de tiempo) de la señal horizontal por el registro vertical correspondiente. En este trabajo se reporta el valor pico observado sobre el rango de período 0.1 a 5.0 s (Figura 3). La ventana espectral coincide con el rango sugerido por las normas recomendadas de construcción sismorresistente para Guatemala (AGIES, 2002) para el nivel más alto de las curvas de amplificación dinámica, para las diferentes unidades geotécnicas.

Figura 3: Valores pico HVSR estimados dentro del período 0.1-5s para el sitio MVCG

1.5. Respuesta de sitio

Los movimientos de terreno que se registran en determinada unidad geotécnica pueden atribuirse, en muchos casos, a la propagación de ondas sísmicas desde la formación rocosa subyacente. En su paso a través de las discontinuidades entre capas del subsuelo las ondas sísmicas, emitidas en un terremoto, cambiarán sus características físicas; *i.e.* amplitud, duración, contenido de frecuencia, etc. (Hedberg, 2005).

El efecto del suelo en la onda incidente es operar como filtro, de modo que incorpora a la señal las características propias de resonancia del suelo mismo (Sarria y Bernal, s.f.). Los sedimentos superficiales del sitio son los elementos geológicos que pueden afectar el contenido de frecuencia y amplitud y determinar las características de la vibración que se comunicará al sitio. Los efectos de sitio incluyen la amplificación de las amplitudes de onda debido al cambio de *impedancia* y a efectos de *resonancia*. Un efecto de sitio positivo podría ser la *atenuación* (Hedberg, 2005).

1.5.1. Amplificación en superficies de discontinuidad

La amplificación de un tren de ondas pasando a través de superficies de discontinuidad depende de varios factores como el espesor de la discontinuidad, el contraste de impedancias y el *amortiguamiento* de los materiales que intervienen en la discontinuidad misma.

Los materiales superficiales tienden a amplificar algunos componentes del movimiento del terreno y a atenuar otros. Las mayores amplificaciones de los componentes del movimiento se dan cuando las características de frecuencia del sitio coinciden con las características espectrales del movimiento. Estas características de frecuencia están en función de la rigidez y espesor del depósito de suelo (Hedberg, 2005)

El contraste de impedancias entre materiales geológicos es el causante del crecimiento de la amplitud de la onda sísmica. El paso de un tren de onda de un medio rígido como la roca con un módulo de corte alto, a un medio suave como el suelo con un bajo módulo de corte, amplifica especialmente las ondas S. Pero también un suelo rígido puede conllevar a una amplificación de las ondas sísmicas en un sitio. Si la fuente del terremoto se encuentra cerca del sitio, un suelo suave puede tener el efecto de amortiguar la aceleración sentida en la superficie. En cambio, un suelo rígido puede permitir que la energía del terremoto llegue al sitio con una aceleracíon más fuerte como resultado (Hedberg, 2005).

1.5.2. Resonancia

Los efectos de resonancia pueden darse donde existe un contraste muy marcado de impedancias. Cada perfil de suelo tiene ciertas frecuencias de resonancia particulares con diferentes modos de desplazamiento.

La frecuencia fundamental de resonancia ocurre cuando la longitud de onda es igual a cuatro veces el espesor de la capa del suelo. Puede calcularse por medio de:

$$f_r = \frac{\nu(2n-1)}{4h},$$
 (1.10)

donde ν es la velocidad de la onda, h es el espesor del depósito de suelo y n es el número de modo (Edberg, 2005). Esta es valida para un depósito homogeneo con velocidad de onda constante.

La mayoría de veces, el sedimento de la superficie consiste en varias capas de diferentes características geológicas y el espesor de éstas varía de sitio en sitio, complicando más la situación (Hedberg, 2005).

Los mayores daños en un terremoto se dan cuando el período predominante del sismo corresponde al período fundamental de las estructuras. Puede estimarse la frecuencia fundamental de resonancia de edificios por medio de la función (Stål y Westberg, 1996)

$$f_r = \frac{10}{N},\tag{1.11}$$

donde N es el número de pisos del edificio en cuestión. Evidentemente, es prudente evitar que la frecuencia fundamental de determinada estructura civil no coincida con el rango de frecuencia dominante, durante cualquier terremoto, de las intensidades máximas características de un sitio.

1.6. Atenuación

La amplitud de onda decrece cuando el tren de onda pasa a través de un medio elástico. La atenuación tiene lugar en forma de expansión geométrica y por amortiguamiento del material.

Dado que el frente de onda se propaga desde la fuente, la energía en el mismo se esparce en un área cada vez más extensa a medida que se aleja de la fuente. Así, la amplitud decrece cuando aumenta la distancia desde la fuente. Este es conocido como amortiguamiento o expansión geométrica (Hedberg, 2005).

El amortiguamiento debido al material es causado por la disipación de la energía que se convierte en calor dentro de la estructura del suelo. Para suelos no consolidados el mecanismo dominante de disipación de energía es la fricción entre partículas y la perdida debida al movimiento relativo en materiales sólidos y fluidos (Rix et.al., 2000).

1.7. Amenaza, vulnerabilidad y riesgo sísmico

El *riesgo*, o probabilidad de pérdida, se construye de la combinación dinámica entre una amenaza y la vulnerabilidad conexa. La identificación y descripción precisa de ambas partes integrales es fundamental para cualesquiera procesos tendientes a la reducción del riesgo.

La *amenaza*, es esa parte del riesgo compuesta por aquellos eventos que potencialmente inducen efectos negativos y se caracteriza por poseer una determinada magnitud y recurrencia. La amenaza puede expresarse de manera determinística y/o probabilística. La primera, atribuye a determinada fuente de peligro la ocurrencia periódica de un evento destructor de determinada magnitud. La amenaza probabilística describe la posibilidad de ocurrencia de una intensidad particular en determinada localidad o ubicación, en función de su recurrencia. Por otro lado la *vulnerabilidad*, es la propensión a las perdidas inducidas por la amenaza. Como tal, suele ser de origen social, y esta compuesta por aquellos aspectos que construyen dicha propensión (Escobar, 2003). Por ejemplo, para determinado sitio, cualquier edificación que se construya en el lugar tendrá cierta vulnerabilidad de mayor o menor magnitud y, dependiente, del nivel de amenaza inherente al mismo.

Entonces, el riesgo sísmico es el grado de pérdidas esperadas debido a la ocurrencia de un evento sísmico particular y es función de la amenaza y la vulnerabilidad sísmica correspondientes (Cardona, 1993). La vulnerabilidad sísmica depende principalmente de las estructuras construidas (diseño sismorresistente), sus sistemas de servicios básicos y la exposición y/o propensión de ser afectadas por un sismo. La amenaza sísmica depende principalmente de las fuentes sísmicas presentes, así como de las condiciones locales del sitio considerado (Escobar, 2003).

2. MEDICIONES DE INTENSIDADES SÍSMICAS DENTRO DEL ÁREA URBANA EXTENDIDA, DE LA CIUDAD DE GUATEMALA

2.1. Planteamiento del problema

La estimación de la amenaza o peligro sísmico ha sido, en los últimos años, objeto de una gran cantidad de investigaciones en la comunidad científica (*e.g.* Giardini y Basham, 1993, Tucker *et al.*, 1994; Shedlock, 1999; Lindholm *et al.*,2004). Además, los problemas de efectos locales por respuesta sísmica de sitio también se han sumado como aspectos relevantes a considerar en el diseño de ingeniería sismorresistente.

Posteriormente a las lamentables y traumáticas experiencias sufridas en diferentes ciudades alrededor del mudo (*e.g.* México, D.F., Singh *et al.*, 1988; Campillo *et al.*, 1989; Kobe, Japón, Kanamori, 1995; El Salvador, 2001, Bommer, *et al.*, 2002), los esfuerzos en la investigación han aumentado para mejorar la comprensión de las intensidades sísmicas locales observadas (*e.g.* Borcherdt *et al.*, 1989; Aki, 1993; Atakan, 1995; Kudo, 1995; Stewart *et al.*, 2003).

El Area Urbana Extendida de la Ciudad de Guatemala (de ahora en adelante referida como La Ciudad de Guatemala), es el área metropolitana más grande en Centroamérica, la cual reúne espacios compartidos con siete municipalidades (*i.e.* Guatemala, Mixco, Villa Nueva, Villa Canales, Santa Catarina Pinula, San José Pinula, y Chinautla). La Ciudad reune entre el 20 a 25 % de la población de Guatemala, en aproximadamente 2,300 kilómetros cuadrados (2 % del área de total del país). La vulnerabilidad estructural y social de la Ciudad ha aumentado notablemente debido a la dificultad enfrentada por los gobiernos locales, para fortalecer las regulaciones de expansión territorial y aplicar las lecciones de las experiencias catastróficas anteriores (*e.g.* el terremoto de 1976, Espinosa, 1976).

A mediados del año 2000, la Secretaría de Coordinación Ejecutiva de la Presidencia (SCEP) creó una Comisión de Riesgo Sísmico (CRS). Entre las actividades programadas de la CRS/SCEP fueron adquiridos doce acelerómetros de tres componentes de registro. El propósito de este trabajo es documentar las intensidades sísmicas registradas, después de tres eventos sísmicos notorios, por los instrumentos instalados dentro de la Ciudad de Guatemala.

2.2. Antecedentes

Entre las anteriores estimaciones de intensidades sísmicas en la Ciudad de Guatemala están (Tabla I):

- La documentación de intensidades observadas en el terremoto de 1976 $(M_s7,5;$ Espinosa, *et al.*, 1976).
- Curvas de amenaza sísmica estimadas por Villagran et al. (1997) y Molina et al. (1999) a través de la integración de una zonificación de fuentes sismogénicas regionales, relaciones de atenuación sísmica (Climent et al., 1994; Schmidt et al., 1997), e información de catálogos sísmicos, siguiendo una combinación de estimación probabilística de amenaza y la técnica de árbol lógico (Cornell, 1968,; Dahle, 1994).
- Estimaciones analíticas de respuesta de sitio realizadas por Matus (1994) y Flores *et al.* (2001). Ambos estudios aplicaron la técnica de propagación de matrices a través del software SHAKEN (Selnes, 1987); versión modificada del conocido programa SHAKE de Schnabel *et al* (1972).
- Estimaciones experimentales de respuesta de sitio incluyendo aquéllos presentados por Ligorría y Atakan (1997), y después las mediciones del ruido de fondo (Ligorría y Molina, aún sin publicar). Ambas investigaciones aplicaron el método introducido por Nakamura (1989), que estima la Relación Espectral Horizontal-a-Vertical (HVSR, por sus siglas en inglés) de señales acelerográficas

Tabla	I:	\mathbf{Est}	imacio	nes	anter	iores	$\mathbf{d}\mathbf{e}$	inte	ensid	ades	sísmica	\mathbf{as}	para	\mathbf{el}
área 1	urba	na	extend	lida,	de la	Ciu	dad	$\mathbf{d}\mathbf{e}$	Guat	ema	la		-	

No.	Autor (año)	Tipo de estudio	Producto	Principales resul- tados obtenidos
1	Espinosa et al. (1976)	Distribución de intensidades (IMM) en la Ciudad de Guate. terremoto de $1976(M_s7,5)$	Mapa de intensidades	Ver Figura 4
2	Villagrán et al. (1997)	Evaluación de amenaza sísmica probabilística	Curva de amenaza sísmica probabilística	PGA entre 2-6 m/s^2 ,para 0.1 a 0.001 de probabilidad de excedencia anual.
3	Molina <i>et al.</i> (1999)	Evaluacion de amenaza sísmica probabilística	Curvas de amenaza aísmica probabilística y PSV	PGA entre 2-4 m/s^2 ,para 0.1 a 0.001 de probabilidad de excedencia anual.
4	Matus (1994)	Estimación analí- tica de respuesta de sitio.	Relación de espectros de respuesta superficie/le- cho rocoso.	Relación superficie/ lecho rocoso en el rango 1.5-5.5 para T debajo de 1.0s. deformación cortan- te menor que 0.1 %.
5	Flores et al. (2001)	Estimación analí- tica de respuesta de sitio	Relación de espectros de respuesta superficie/le- cho rocoso	Amplificaciones esperadas entre 3.5-4 para sitios de tipo C y D
6	Ligorría y Atakán (1997)	Estimación empírica de respuesta de sitio	HVSR para movimientos sísmicos débiles	HVSR arriba de 6 en sitio de tipo D. Un pico característico en 4 Hz para el graben.
7	Ligorría y Molina (no publicado)	Estimación empírica de respuesta de sitio	HVSR para se- ries de tiem- po de ruido ambiental	HVSR promedio entre 1.3-2.9. No correlación tipo de sitio-HVSR

Figura 4: IMM para el terremoto de 1976

Fuente: Espinosa et. al. (1976)

2.3. Marco geotectónico

Geológicamente la Ciudad de Guatemala se localiza en la parte sur de Guatemala donde la interacción entre las placas del Caribe, de Norte América y de Cocos resultan en una amenaza sísmica constante (Ligorría *et al.*, 1995; Pindell y Barrett, 1990). El valle donde la Ciudad de Guatemala se sitúa actualmente (desde 1776) es un graben estructural controlado por la interacción del sistema transcurrente de las fallas Motagua-Polochic, que representa la transición actual de la región entre las placas del Caribe y de Norte América (Figura 5).

Figura 5: Marco tectónico de Guatemala

El graben de la Ciudad de Guatemala está cubierto con una sucesión de depósitos volcánicos del período geológico Terciario al Cuaternario. Ligorría y Atakán (1997), presentan una descripción simplificada de la geología superficial de la Ciudad de Guatemala, basándose para dicha descripción en el mapa de Bonis (1993). Esta descripción representa el fundamento de la distribución de unidades geotécnicas propuesta por Ligorría y Atakán (1997), la cual asume la clasificación de unidades originalmente propuesta por Monzón y Molina (1989). Básicamente, la metodología consistió en una asociación de las distintas formaciones geológicas expuestas en el valle, con sus respectivos espesores y grados de consolidación. Estos últimos (i.e. grados de consolidación), están expresados en términos de la velocidad de propagación de onda sísmica de corte (v_s) para cada unidad geotécnica; siguiendo los lineamientos estándar de aceptación internacional (e.g. Building Safety Council, 1991). La distribución de unidades geotécnicas propuesta en este trabajo para la Ciudad de Guatemala, consiste en una revisión de la distribución de unidades propuesta por Ligorría y Atakán (1997), la cual ahora incorpora los criterios de indentificación de unidades geotécnicas planteado en el Internacional Code Council (2003), combinado con el trabajo de Flores et al. (2001), quien usó la información de imágenes de satélites en falso color y tradujo su clasificación geotécnica bajo el criterio UBC-97.

La Figura 6 y la Tabla II resumen la distribución geotécnica propuesta dentro de la Ciudad de Guatemala.

Tabla	II: Unidades	geotécnicas	para	el área	urbana	extendida	$\mathbf{d}\mathbf{e}$
la Ciu	dad de Guate	mala					

Tipo de perfil	${f Descripción^1}$					
(Estación)						
	Depósitos volcánicos terciarios, compuestos mayormente					
В	de rocas de orígen volcánico, cristalinas o ligeramente					
	fracturadas. V_s entre 760 y 1500 m/s.					
	Depósito profundo y rígido de piroclastos, compuestos					
	mayormente de ceniza de pómez, que suele exceder					
C 60 metros de espesor; mostrando V_s entre 360 y						
	N encima de 50 o S_u encima de 100 kPa.					
	Sedimentos de transición hacia el este y oeste del					
	graben, con un perfil entre 5 a 50 metros de profundidad					
C^*	conteniendo capas de arenas suaves a medio-rígidos					
	mayormente pómez o depósitos de ceniza y gravas gruesas					
	(ignimbritas), con o sin intervenciones de estratos de					
	arcilla poco cohesionada.					
	Flujo de aluviones del cuaternario, saturado de agua y					
	granos de tamaño no clasificados, con más de 15 metros de					
D	espesor, con un perfil caracterizado por V_s entre 360					
	y 180 m/s, con N entre 15 y 50, o S_u entre 50					
	y 100 kPa.					

 1 Tomando como referencia la Edad Geológica (i.e. Terciario y/o Cuaternario)

 V_s : Velocidad de onda de corte u onda S

N:Número de golpes según la prueba de penetración estándar (SPT)

 S_u : Esfuerzo cortante

Figura 6: Distribución de unidades geotécnicas en la Ciudad de Guatemala

2.4. Instrumentación

El despliegue de acelerógrafos del CRS/SCEP se instaló desde juniojulio/2001. El soporte para operación y mantenimiento se ha proporcionado por el personal de la Coordinadora Nacional para la Reducción de Desastres (CONRED).

2.4.1. Descripción del equipo

Los doce instrumentos de registro son acelerógrafos modelo QDR, versión IND, de la marca comercial Kinemetrics. Poseen tres canales de registro (que se han orientado en las direcciones norte-sur, este-oeste y vertical). Los registros acelerográficos suelen contener, en su señal, la respuesta del instrumento de registro, la cual es necesario remover previo a cualquier procesamiento de datos. Para dicha corrección de los registros se utilizó el método sugerido por el fabricante y el programa de computo SMA también de Kinemetrics. Las características de la respuesta instrumental son (SCEP/CONRED, 2003):

Frecuencia natural del instrumento: 25 Hz.

Amortiguamiento: 0.7 del crítico.

Sensitividad: 1.25 V/g

Intervalo de muestreo: 0.01 segundos.

Método de remoción del corrimiento (*offset*): Promedio para todo el registro (Kinemetrics Inc, 2000).

Corrección por instrumento y línea base (baseline): Método Trifunac ((Kinemetrics Inc, 2000))

2.4.2. Despliegue instrumental

Nueve de los instrumentos de la CRS/SCEP se instalaron en sitios diferentes, dentro de la Ciudad de Guatemala, los cuales coinciden con las diferentes unidades geotécnicas dentro de edificios públicos. También se incluyen en este trabajo los datos de otro acelerógrafo instalado en el Centro Gerencial Las Margaritas, en la zona 10 de la Ciudad. De ahora en adelante se referirá a todos los acelerógrafos como "los instrumentos". La Tabla III lista estos sitios, sus coordenadas, y la clasificación geotécnica de cada localidad. La Figura 6 muestra también la localización de los sitios de registro.

No.	Nombre de la	Código	Tipo ²	Latitud	Longitud	Elevación
	localización			(°N)	$(^{\circ}W)$	(msnm)
1	Centro Gerencial	LMMG	С	$14^{\circ}37,4'$	$90^{\circ}30,4'$	1560
	Las Margaritas					
2	Hospital de Salud	HSMG	С	14°39,8′	90°28,7′	1415
	Mental, Z.18					
3	Centro Asistencial	IGSS	C	$14^{\circ}36,4'$	$90^{\circ}31,9'$	1520
	IGSS, Pamplona					
4	Centro Médico-Nuevo	HMG	C*	$14^{\circ}37,7'$	$90^{\circ}28,4'$	1515
	Hospital Militar					
5	Planta de Agua	PLCG	C*	$14^{\circ}37,3'$	$90^{\circ}36,0'$	1675
	Lo de Coy					
6	Planta de Agua	PECG	C*	$14^{\circ}33,4'$	$90^{\circ}29,3'$	1600
	El Cambray					
7	Municipalidad de	MVCG	D	$14^{\circ}28,9'$	$90^{\circ}31,9'$	1225
	Villa Canales					
8	Escuela Rosa Prado	ERPG	D	14°37,9′	90°29,1′	1410
	de Lanuza					
-	Teatro Nacional	TNG	В	14°37,7′	90°31,0′	1515
	de Guatemala					
-	Hospital Nacional	HSJG	C	$14^{\circ}38,4'$	$90^{\circ}31,3'$	1505
	San Juan de Dios					

Tabla III: Localización de sitios del despliegue de acelerógrafos dentro del área urbana extendida, de la Ciudad de Guatemala¹

 1 En éste estudio no se reporta registro alguno de los sitios TNG y HSJG.

 2 Ver Tabla II para descripción de los tipos de unidades geotécnicas.

Durante el año 2003, dos sismos moderados (M_w 6.3 y 5.9) y un enjambre de sismos ocurridos al sur de la Ciudad de Guatemala (Figura 7, Tabla IV), activaron los instrumentos, de ahora en adelante esta sismicidad será referida como "los eventos sísmicos". El acelerógrafo del sitio TNG fue bandalizado antes del sismo del 20 de enero, y el del sitio HSJG no fue activado por evento alguno. De aquí, la muestra suma 43 series de tiempo de movimiento fuerte (acelerogramas), registrados por los instrumentos.

No.	Fecha y Hora	Localizació	on Epicentral	Profundidad	Magnitud
		Latitud (°N)	Longitud (°W)	(km)	
1	20/01/03 20:46	$13^{\circ}37,56'$	90°46,44′	25	$6.3 M_w$
2	15/06/03 09:54	$14^{\circ}34,08'$	90°32,22′	5.4	$3.6 M_c$
3	15/06/03 12:30	$14^{\circ}32,70'$	90°31,80′	5.6	$3.3 M_c$
4	15/06/03 17:05	$14^{\circ}30,78'$	90°33,84′	7.1	$3.1 M_c$
5	15/06/03 23:15	$14^{\circ}32,58'$	90°33,66′	6.8	$3.3 \ M_c$
6	17/06/03 21:49	14°33,66′	90°33,30′	5.4	$3.6 \ M_c$
7	17/06/03 23:27	$14^{\circ}33,36'$	90°32,16′	3.7	$3.7 \ M_c$
8	18/06/03 02:39	$14^{\circ}36,24'$	90°33,54′	9.9	$3.7 \ M_c$
	·	·	·		·
9	25/08/03 00:28	$13^{\circ}54,00'$	90°03,30′	54.4	$5.9 M_w$

Tabla IV: Parámetros de las fuentes sísmicas

Fuente: Eventos 1 y 9 (producidos en la zona de subducción a lo largo de la fosa mesoamericana) reportados por USGS-NEIC. Eventos 2-8 (Enjambre sísmico originado al sur de la Ciudad de Guatemala) reportados por el INSIVUMEH.

2.5. Procesamiento y análisis de datos

Todos los acelerogramas recolectados fueron corregidos, llevando a cabo la eliminación de la respuesta del instrumento aplicando el método de Trifunac (1970). Después de esta corrección, los acelerogramas se tradujeron al dominio de la frecuencia a través de la Transformada Rápida de Fourier (FFT). Finalmente, los acelerogramas y sus correspondientes espectros se procesaron para estimar las medidas de las diferentes intensidades sísmicas. Durante el enjambre de sismos de junio/2003 (ES0603), algunos instrumentos registraron más de un evento sísmico. En tales casos, son reportadas las medianas de los valores individuales calculados (*i.e.* medida estadística apropiada para datos variantes).

La Tabla V presenta los valores estimados de las series de tiempo de aceleración: *PHA*, A_{rms} e I_a . El sumario correspondiente para *EPA* y *HVSR*, estimados de los espectros de aceleración, se presenta en la Tabla VI. Las Figuras 8, 9 y 10 muestran las componentes horizontales que se estimaron, presentadas en las Tablas V y VI. Estas, Tablas V y VI y Figuras 8, 9 y 10, se han agrupado de acuerdo a los tres eventos sísmicos. Finalmente, La Tabla VII integra la mediana de los mayores valores estimados, agrupados por unidad geotécnica. A continuación se discuten las observaciones más evidentes, analizando los valores estimados y las principales tendencias.

a) Enero 20/2003 (M_w 6.3)										
Sitio	Tipo	PHA	A_{rms} (%g)			$I_a \ ({ m cm/s})$				
		(%g)	E-W	N-S	Z	E-W	N-S	Z		
LMMG	С	14.45	3.22	3.61	2.45	0.23	0.29	0.13		
HSMG	С	17.02	3.20	3.35	2.32	0.37	0.41	0.20		
PECG	C*	15.49	2.70	3.20	1.50	0.23	0.33	0.07		
MVCG	D	16.40	2.82	3.01	1.71	0.26	0.29	0.09		
ERPG	D	17.57	3.67	3.55	2.13	0.52	0.49	0.17		

Tabla V: Valores estimados de PHA, A_{rms}, I_a para el área urbana extendida de la Ciudad de Guatemala

b) Enjambre Sísmico, Junio 15-18/2003

Sitio	Tipo	PHA	A_{rms} (%g)			$I_a~({ m cm/s})$			
		(%g)	E-W	N-S	Z	E-W	N-S	Z	
LMMG	С	32.57	1.72	1.95	1.37	0.16	0.19	0.10	
HSMG	C	36.61	1.69	1.58	1.49	0.08	0.08	0.08	
IGGS	С	24.03	3.19	3.95	2.44	0.23	0.27	0.14	
HMG	C*	14.83	2.54	2.18	2.16	0.15	0.11	0.11	
PLCG	C*	26.76	2.02	2.08	1.74	0.10	0.10	0.07	
PECG	C*	47.01	1.99	1.96	1.30	0.09	0.09	0.04	
MVCG	D	52.55	2.09	1.67	1.31	0.11	0.08	0.05	
ERPG	D	37.58	2.78	2.11	1.52	0.20	0.11	0.06	

c) Agosto 25/2003 $(M_w \ 5.9)$

Sitio	Tipo	PHA	A_{rms} (%g)			$I_a \ (cm/s)$			
		(%g)	E-W	N-S	Z	E-W	N-S	Z	
LMMG	С	14.34	2.78	2.70	1.90	0.40	0.37	0.18	
HSMG	С	26.27	3.19	3.14	1.96	0.38	0.36	0.14	
IGSS	С	19.89	3.48	4.97	2.80	0.31	0.63	0.20	
HMG	C*	10.32	4.23	2.78	2.08	0.49	0.21	0.12	
PLCG	C*	25.07	2.99	3.24	1.96	0.28	0.31	0.11	
MVCG	D	17.34	2.16	2.17	2.21	0.10	0.11	0.11	
ERPG	D	30.74	4.33	3.96	2.51	1.17	0.98	0.39	

a) Enero 20/2003 (M_w 6.3)										
Sitio	Tipo	EPA (%g)			Pico <i>HVSR</i> T(0.1-5.0s)					
		E-W	N-S	Z	(E-W) / Z	(N-S) / Z				
LMMG	С	8.37	9.55	6.06	6.52	7.54				
HSMG	С	11.04	11.96	5.30	6.05	7.45				
PECG	C*	9.90	12.36	6.04	8.10	6.49				
MVCG	D	11.05	12.81	8.75	7.32	10.50				
ERPG	D	14.05	13.58	9.17	5.61	4.55				

Tabla VI: Valores estimados de EPA y picos HVSR para el área urbana extendida de la Ciudad de Guatemala

b) Enjambre sísmico, Junio 15-18/2003

Sitio	Tipo	EPA (%g)		Pico <i>HVSR</i> T(0.1-5.0s)		
		E-W	N-S	Ζ	(E-W) / Z	(N-S) / Z
LMMG	С	8.58	8.89	5.63	4.04	3.35
HSMG	C	9.96	8.69	4.79	3.10	4.27
IGSS	С	7.60	5.27	5.59	2.41	3.09
HMG	C*	10.98	7.75	8.62	4.40	3.53
PLCG	C*	12.92	12.29	7.72	3.39	4.31
PECG	C*	11.38	8.26	5.76	5.02	3.00
MVCG	D	7.57	8.25	4.91	4.37	4.08
ERPG	D	13.40	8.53	5.76	6.61	3.16

c) Agosto 25/2003 (M_w 5.9)

Sitio	Tipo	EPA (%g)			Pico <i>HVSR</i> T(0.1-5.0s)		
		E-W	N-S	Z	(E-W) / Z	(N-S) / Z	
LMMG	С	11.40	12.35	7.36	5.07	4.52	
HSMG	С	11.18	12.05	8.19	4.06	5.36	
IGSS	С	16.45	10.19	7.94	8.01	3.81	
HMG	C*	8.31	7.66	9.02	1.84	2.36	
PLCG	C*	17.11	16.61	9.84	5.85	5.31	
MVCG	D	12.40	13.13	7.23	8.36	6.03	
ERPG	D	20.17	18.82	12.34	5.73	5.34	

Tabla – VII: Mediana de los valores más altos estimados para la Ciudad de Guatemala

Tipo	Mediana de valores pico						
	PHA (%g)	A_{rms} (%g)	$I_a~({ m cm/s})$	EPA (%g)	pico HVSR		
С	15.74	3.48	0.31	10.76	7.50		
C*	15.49	3.07	0.29	12.36	8.10		
D	16.99	3.59	0.47	13.43	8.06		

a) Enero $20/2003 \ (M_w \ 6.3)$

b) Enjambre Sísmico, Junio 15-18/2003

Tipo	Mediana de valores pico						
	PHA (%g)	A_{rms} (%g)	$I_a~({ m cm/s})$	EPA (%g)	pico HVSR		
С	36.61	1.99	0.09	8.89	4.04		
C*	26.58	2.59	0.11	11.38	4.40		
D	45.06	2.48	0.11	10.49	5.49		

c) Agosto $25/2003 \ (M_w \ 5.9)$

Tipo	Mediana de valores pico						
	PHA (%g)	A_{rms} (%g)	$I_a~({ m cm/s})$	EPA (%g)	pico HVSR		
С	19.89	3.31	0.40	12.35	5.36		
C*	17.70	3.64	0.37	12.71	4.11		
D	24.04	3.84	0.78	16.65	7.05		

HVSR

Figura 9: Intensidades sísmicas estimadas para el enjambre sísmico, Junio 15-18/2003

EPA

E

HSMG LMMG IG88 HMG PLCG FECG MVCG ERPG

HVSR

Figura 10: Intensidades sísmicas estimadas para el evento de Agosto 25/2003 (M_w 5.9)

HVSR

2.6. Discusión de resultados

Los valores estimados de intensidades sísmicas, indican que los valores más altos son observados para los sitios de tipo D; es decir, MVCG y ERPG. Sin embargo, una excepción de esto se observa para el evento ES0603, donde el sitio PLCG(C^{*}) muestra los valores más altos de A_{rms} e I_a . Por otro lado, los sitios tipo C^{*} tienden a presentar los valores más bajos de intensidad; aunque esto es válido unicamente para casos particulares: HMG, para la secuencia ES0603 y para el evento del 25/08/2003, y el sitio PECG para el evento del 20/01/2003. Esto, sin embargo, no es una correlación para todas las mediciones de intensidad (debe notarse, por ejemplo, que ERPG muestra el valor pico HVSR más bajo para el evento del 20/01/2003).

Cuando se agrupan en clases de sitios geotécnicos, los sitios C^{*} muestran los valores más altos para la secuencia ES0603. Esto puede estar de acuerdo con las relaciones entre los estímulos de las fuentes locales y las condiciones físicas del sitio sugerido para la Ciudad de Guatemala por Ligorría y Atakan (1997).

La influencia de la fuente sísmica en la respuesta de sitio, no es fácil de determinar. Anteriormente, Ligorría y Atakan (1997) señalaron el dominio de las condiciones locales de sitio, remarcando los efectos de fuentes sísmicas. Sin embargo, en este trabajo se ha notado una cierta dependencia de la fuente sísmica en la respuesta de sitio. La Figura 11 muestra una comparación de los espectros de aceleración (5% de amortiguamiento) para dos sitios diferentes (LMMG y ERPG), obtenidos de los eventos del 20/01/2003 y 25/08/2003. Aunque generado del mismo contexto geotectónico (la zona de subducción sur), éstos dos sismos tienen diferentes magnitudes, mecanismos de fuente, profundidad y localidad con respecto a la Ciudad de Guatemala (Figura 8). En general, la comparación muestra evidentes similitudes en la forma espectral. Sin embargo, diferencias de amplitud espectral aparecen aproximadamente dentro del período de 0.6 a 3 s, sugiriendo influencia de la fuente en la respuesta de sitio.

CONCLUSIONES

- En este trabajo, se reportan los resultados de las observaciones de los datos registrados por un despliegue de ocho acelerógrafos dentro del área urbana extendida, de la Ciudad de Guatemala. Los registros sísmicos dados incluyen dos sismos generados dentro de la zona de subducción a lo largo de la costa sur del país, y un enjambre de sismos de las estructuras locales al sur de la Ciudad de Guatemala. Los análisis de datos incluyen la estimación de cinco medidas de intensidad: *PHA*,*A_{rms}*,*I_a*, *EPA* y máximos *HVSR*.
- 2. Los resultados presentados acá incluyen la identificación de valores mayores de intensidad, asociados a las unidades geotécnicas más jóvenes y menos consolidadas. Los sitios localizados en los sedimentos de transición hacia los flancos del Este y Oeste del Valle parecen ser más sensibles a la sismicidad de las fuentes locales (como el enjambre de sismos de Junio/2003).
- 3. Para el análisis dinámico en ingeniería sismorresistente es importante contar con una amplia muestra de registros de movimiento fuerte. Requiriendo que éstos sean representativos de los movimientos fuertes que se esperan en el sitio. A pesar de la evidente necesidad, en Guatemala ésta es la primera vez que se tiene la información disponible para este tipo de trabajo.
- 4. Entre los usos potenciales de datos de movimientos fuertes dentro de la Ciudad de Guatemala, podemos señalar: a) La dependencia de las intensidades sísmicas a distintas ventanas de frecuencias, y su subsecuente aplicación al diseño estructural; b) La identificación objetiva de condiciones locales como un aporte a la continua expansión urbana; y c) Confrontación de las presentes normas recomendadas de diseño y las amplificaciones observadas de los valores picos estimados.

RECOMENDACIONES

- 1. La relativa pasividad en lo referente a sísmos fuertes durante los últimos 30 años, desde el duro golpe de 1976, ha producido una pasividad en la planificación respecto al riesgo sísmico. Sin embargo, la tarea de abarcar ambos problemas sísmicos, amenaza y vulnerabilidad, debe ser tomada en cuenta por tantos tomadores de decisión como sea factible, dentro del presente escenario de continuo crecimiento urbano.
- 2. Dada la constante e inevitable amenza sísmica a la que está sujeta la Ciudad de Guatemala, y a la configuración y características geológicas de la región, deben tomarse en cuenta los estudios dirigidos a la estimación de la respuesta de sitio en cualquier proyecto futuro de ingeniería, para reducir el riesgo sísmico correspondiente.
- 3. Los resultados numéricos planteados en este trabajo pueden ser tomados en cuenta para trabajos posteriores. Existen dos formas de aplicarlos:
 - Como un aporte directo a las curvas de amplificación dinámica presentadas en AGIES (2002). Esto, para la estimación de espectros de respuesta sísmica y su subsiguiente incorporación al diseño sismorresistente de estructuras civiles. Esta aplicación está asociada a la reducción de vulnerabilidad de dichas estructuras.
 - Como lo que se hace en este trabajo: identificar potenciales amplificaciones de ondas sísmicas asociadas a distintas unidades geotécnicas. Toda vez se cuente con una estimación de amenaza sísmica general (o regional), las desviaciones o valores anómalos esperados por una u otra condición geológica particular pueden ser entonces estimados objetivamente e incorporados a las tomas de decisiones en planificación de obras.
- 4. A largo plazo, es necesario reestimar las intensidades sísmicas estudiadas en este trabajo, tomando en cuenta nuevos registros de movimiento

fuerte, debido a que una mayor cantidad de registros hace que los resultados sean más representativos y confiables.

5. Conocida la importancia que tienen los estudios de esta naturaleza, debe continuarse con los esfuerzos de desarrollar los mismos en la Licenciatura en Física Aplicada de la Facultad de Ingeniería, llevando a cabo otros proyectos, implementando equipo básico de campo y material bibliográfico.

BIBLIOGRAFÍA

- Asociación Guatemalteca de Ingeniería Estructural y Sísmica -AGIES-. Normas Estructurales de Diseño y Construcción Recomendadas para la República de Guatemala. NR1. Bases Generales de Diseño y Construcción. Guatemala: s.e. 2002.
- [2] Aki, K. "Local site effects on weak and strong motion".**Tectonophysics** (218): 93-111. 1993.
- [3] Atakan, K. et. al. On the reliability of the H/V spectral ratio technique. Proceedings of the 11th International Conference on Soil Dynamics and Earthquake Engineering and the 3rd. International Conference on Earthquake Geotechnical Engineering, 7-9 January 2004. Berkeley, California, USA: 2004.
- [4] Atakan, K. "A review of the type of data and techniques used in empirical estimation of local site response". In: Proceedings of the Fifth International Conference on Seismic Zonation, October 17-19, 1995. Ouest Éditions, Presses Académiques (France)(2): 1451-1460. 1995.
- [5] Barbat, A.H. y J.M. Canet. Estructuras sometidas a acciones sísmicas. Cálculo por ordenador. 2^a. ed. Barcelona: Centro Internacional de Métodos Numéricos en Ingeniería, 1994.
- [6] Bommer, J.J. et. al. "The El Salvador earthquakes of January and February 2001: Context, Characteristics and Implications for seismic risk". Soil Dynamics and Earthquake Engineering (22): 389-418. 2002.
- Bonis, S. Editor. Mapa Geológico General de Guatemala. Hoja Guatemala. Escala 1:250,000. Instituto Geográfico Militar. Guatemala: 1993.

- [8] Building Safety Council. NERPH Recommended Provisions for the Development of Seismic Regulations for New Buildings. 1991 Edition. By: Building Safety Council for the FEMA. Based on the Applied Technology Council's 1978 Provisions. 1991.
- [9] Building Safety Council. NERPH Recommended Provisions for the Development of Seismic Regulations for New Buildings. 1997 Edition. By: Building Safety Council for the FEMA. Based on the Applied Technology Council's 1991 Provisions. 1997.
- [10] Bullen, K.E. An introduction to the theory of seismology. Great Britain: Cambridge University Press, 1985.
- [11] Campillo, M. et. al. "Destructive strong ground motion in Mexico City: Source, Path, and Site Effects during great 1985 Michoacan earthquake". Bull. Seism. Soc. Am. (79): 1718-1735. 1989.
- [12] Cantos Figuerola, J. Tratado de geofísica aplicada. 3^a. ed. España: s.e., 1987.
- [13] Cardona A., O.D. Evaluación de la amenaza, la vulnerabilidad y el riesgo, elementos para el ordenamiento y la planeación del desarrollo, Panamá, 1993. www.desenredando.org/public/libros/1993/ldnsn/html/cap3.htm
- [14] Climent, A. et. al. Spectral Strong Motion Attenuation in Central America. Technical Report No. 2- 17. NORSAR. 1994.
- [15] Cornell, C. A. "Engineering Seismic Risk Analysis". Bull. Seism. Soc.
 Am. (58): 1583-1606. 1968.
- [16] Dahle, A. NPRISK (NORSAR-PRISK), User's Guide, Version 1.0. NORSAR/ NFR, Box 51, 2007 Kjeller, Norway. 1994
- [17] Escobar, R. P. et. al. Presentación y aplicación de un método analítico para estimar la respuesta del suelo ante el movimiento sísmico,
en el área del valle de Quetzaltenango. Tésis ing. civil. Guatemala, Universidad de San Carlos de Guatemala, Facultad de Ingeniería, 2003.

- [18] Espinosa, A.F., Editor. "The Guatemalan earthquake of February 4, 1976, a preliminary report". U.S. Geol. Surv. Profes. (U.S.)(Paper 1002): 1976.
- [19] Espinosa, A.F. et. al. Applying the lessons learned in the 1976 Guatemalan earthquake to earthquake-hazard-zoning problems in Guatemala. In: Proceedings of the International symposium on the February 4th, 1976 Guatemalan earthquake and the Reconstruction process. Vol. I. 1976.
- [20] Field , E. H. y K. H. Jacob. "A comparison and test of various siteresponse estimation techniques, including three that are not referencesite dependent". Bull. Seism. Soc. Am., (85): 1127-1143. 1995.
- [21] Flores, O. et. al. Zonificación Sísmica Urbana en Guatemala. Fase I: Identificación de Unidades Geológicas y su Respuesta Sísmica Analítica. Informe Final presentado a la Secretaría Nacional de Ciencia y Tecnología, Guatemala. 2001.
- [22] Giardini, D. y P. Basham, Eds. "Global Seismic Hazard Program. Special issue". Annali di Geofisica. (36): 1993.
- [23] Hedberg, Jonas. Spectrogram evaluation of seismic risk in Managua, Nicaragua. M.Sc. Thesis. Sweden, Lund University, Department of Engineering Geology, 2005.
- [24] Herráiz S., M. Conceptos Básicos de Sismología Para Ingenieros. 1^a. ed. Lima, Perú: CISMID, 1997.
- [25] Hudson, D. E. Reading and Interpreting Strong Motion Accelerograms. 1^a. ed. (Engineering Monographs on Earthquake Criteria, Structural Design, and Strong Motion Records)California, EE UU: Earthquake Engineering Research Institute, 1979.

- [26] International Code Council ICC . Internacional Building Code, 2003. ICC, Inc. 2003.
- [27] Kanamori, H. "The Kobe (Hyogo-Ken Nanbu), Japan, earthquake of January 16, 1995". Seism. Res. Lett (66, No. 2): 6-10. 1995.
- [28] Kinemetrics Inc. Users guide. Strong Motion Analyst, for Altus Recorder Systems. Document 302415 Revisión E. California, EE UU. 2000.
- [29] Kramer, S. L. Geotechnical Earthquake Engineering. 1^a. ed. EE UU: Prentice Hall, 1996.
- [30] Kudo, K. Practical estimates of site response, State-of-the-Art report, In: Proceedings of the Fifth International Conference on Seismic Zonation, Nice, October 1995.
- [31] Lee, W. H.K. et. al. Editors. International Handbook of Earthquake and Engineering Seismology. (International geophysics series, Part B, Vol 81B) Academic Press, 2003.
- [32] Lermo, J.F. y F.J. Chávez-García. "Site effect evaluation using spectral ratios with only one station". Bull. Seism. Soc. Am. (83): 1574-1594. 1993.
- [33] Ligorría, J.P. y K. Atakan. Empirical Site Response Estimation in Guatemala City. En: Memorias de la Conferencia de Riesgo Sísmico en Centro América. Sept. 22-26, 1997. San Salvador, El Salvador. 1997.
- [34] Ligorría, J.P. et. al. Seismic Hazard for Guatemala. Reporte Técnico No. 2-21. NORSAR. 1995.
- [35] Lindholm, C. D. et. al. Seismic Hazard and Microzonation in Central America; An Overview. (in prep.) 2004.

- [36] Matus, M. Analytical evaluation of soil response during earthquakes at typical sites in Guatemala City. Technical Report No. 913009-1. Norwegian Geotechnical Institute. 1994
- [37] Monzón-Despang, H. y J. L. Gándara G. Earthquake Hazards in the Guatemala City Metropolitan Area. In: B. E. Tucker et al. Eds. Issues in Urban Earthquake Risk, Kluwer Academia Publisher, 237-246. 1994.
- [38] Monzón-Despang, H. y E. Molina. Zonificacion Preliminar de perfiles de suelo en el Valle de Guatemala. Instituto de Investigaciones. Universidad del Valle de Guatemala. 1989.
- [39] Nakamura, Y. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Quaterly Report of Railway Technical Res. Inst. of Japan, 30, 1, 25-33. 1989.
- [40] Picado, M. J. y R. M. Parrales. Resumen de la monografía: Análisis de espectros de respuesta en el área de la Ciudad de Managua. Managua, Universidad Nacional de Ingeniería, 2001. http://eureka.ya.com/rman monografía completa en http://lthtg.tg.lth.se/ rpa/docums/Monog.pdf
- [41] Pindell, J. L. y S. F. Barrett. "Geological evolution of the Caribbean region: A Plate-tectonic perspective". In: Dengo, G. and J. Case, Eds., The Caribbean Region: The Geology of North America, Geological Society of America. 405-432. 1990.
- [42] Rix, G.J. et. al. "In situ measurement of damping ratio using surface waves" Journal of geotechnical and geoenvironmental engineering. 472-480. 2000.
- [43] Sarria, A. y C.E. Bernal Latorre. Planteamiento de estructuras sismorresistentes. Semin. s/Planteam. de Estructs. Sismorresist. Universidad de Colombia. Bogotá. s.f.

- [44] Sauter F., F. Fundamentos de Ingeniería Sísmica I. Introducción a la Sismología. 1^a. ed. Costa Rica: Editorial Tecnológica de Costa Rica, 1989.
- [45] SCEP/CONRED. Proyecto de instrumentación acelerográfica. Información de los instrumentos. Guatemala. 2003. www.conred.org
- [46] Schmidt, V. et. al. Costa Rican Spectral Strong Motion Attenuation. Technical Report, NORSAR. 46 pp. 1997.
- [47] Schnabel, B. et. al. SHAKE. A computer program for analysis of earthquake response in horizontally layered sites. Earthquake Engineering Research Center, College of Engineering. University of California. 1972.
- [48] Seed, H.B. The influence of local soil conditions on earthquake damage. Ingeniería sísmica - Primeras Jornadas de la Ing. Civil. Vol. II. México, UNAM. 1974.
- [49] Selnes, P.B. SHAKE(N), A computer program for analysis of earthquake response in horizontally layered sites. Report No. 51508-23. Norwegian Geotechnical Institute. 1987.
- [50] Shedlock K. "Seismic hazard map of North and Central America and the Caribbean". Annali di Geofisica. (42, No. 6): 1999.
- [51] Singh, S.K. et. al. "The Mexico earthquake of September 19, 1985: A Study of amplification of seismic waves in the Valley of Mexico with respect to a hill zone site". Earthquake Spectra. (4): 653-673. 1988.
- [52] Smith, P.J. Temas de geofísica. Barcelona: Editorial Reverté, S.A., 1975.
- [53] Stål, F. y Westberg, G. Microzonation Study in Managua, Nicaragua. M.Sc. thesis. Stockholm, Royal Institute of Technology. 1996.

- [54] Stewart, J. P. et. al. "Amplification Factors for spectral acceleration in tectonically active regions". Bull. Seism. Soc. Am. (93): 332-352. 2003.
- [55] Theodulidis, N. er. al. "Horizontal-to-Vertical Spectral Ratio and Geological conditions: The Case of garner Valley Downhole Array in Southern California" Bull. Seism. Soc. Am. (86): 306-319. 1996.
- [56] Trifunac, M.D. Low Frequency Digitization Errors and a New Method for Zero Baseline Correction of Strong Motion Accelerograms. Earthquake Engineering Research Laboratory Report No. 70-07. California Institute of Technology. 1970.
- [57] Tucker, B. E. et. al. "Somer remarks concerning worldwide urban earthquake hazard and earthquake hazard mitigation". In: B. E. Tucker et al. (eds.), Issues in Urban Earthquake Risk. Kluwer Academic Publishers: 1-10. 1994.
- [58] Villagrán, M. et. al. "Seismic Hazard Assessment for Guatemala City". Natural Hazards (14): 189-205. 1997.
- [59] www.vettones.com Información sobre el Programa de Cálculo de Estructuras: Cálculo dinámico de estructuras.