

EFICIENCIA ENERGÉTICA EN LA PRODUCCIÓN DE AIRE COMPRIMIDO PARA LA OPERACIÓN DE PLANTA TERMOELÉCTRICA ARIZONA

Carlos Ivan García de la Cruz

Asesorado por el Ing. Edwin Estuardo Zarceño Zepeda

Guatemala, febrero de 2014

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA

EFICIENCIA ENERGÉTICA EN LA PRODUCCIÓN DE AIRE COMPRIMIDO PARA LA OPERACIÓN DE PLANTA TERMOELÉCTRICA ARIZONA

TRABAJO DE GRADUACIÓN

PRESENTADO A LA JUNTA DIRECTIVA DE LA FACULTAD DE INGENIERÍA POR

CARLOS IVAN GARCÍA DE LA CRUZ

ASESORADO POR EL ING. EDWIN ESTUARDO SARCEÑO ZEPEDA

AL CONFERÍRSELE EL TÍTULO DE

INGENIERO MECÁNICO

GUATEMALA, FEBRERO DE 2014

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA

NÓMINA DE JUNTA DIRECTIVA

DECANO	Ing. Murphy Olympo Paiz Recinos
VOCAL I	Ing. Alfredo Enrique Beber Aceituno
VOCAL II	Ing. Pedro Antonio Aguilar Polanco
VOCAL III	Inga. Elvia Miriam Ruballos Samayoa
VOCAL IV	Br. Walter Rafael Véliz Muñoz
VOCAL V	Br. Sergio Alejandro Donis Soto
SECRETARIO	Ing. Hugo Humberto Rivera Pérez

TRIBUNAL QUE PRACTICÓ EL EXAMEN GENERAL PRIVADO

DECANO	Ing. Murphy Olympo Paiz Recinos
EXAMINADOR	Ing. Carlos Aníbal Chicojay Coloma
EXAMINADOR	Ing. Julio César Campos Paiz
EXAMINADOR	Ing. Edwin Estuardo Sarceño Zepeda
SECRETARIO	Ing. Hugo Humberto Rivera Pérez

HONORABLE TRIBUNAL EXAMINADOR

En cumplimiento con los preceptos que establece la ley de la Universidad de San Carlos de Guatemala, presento a su consideración mi trabajo de graduación titulado:

EFICIENCIA ENERGÉTICA EN LA PRODUCCIÓN DE AIRE COMPRIMIDO PARA LA OPERACIÓN DE PLANTA TERMOELÉCTRICA ARIZONA

Tema que me fuera asignado por la Dirección de la Escuela de Ingeniería Mecánica, con fecha 26 de mayo de 2012.

Carlos Ivan García de la Cruz

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA

Guatemala, 11 de noviembre de 2013 REF.EPS.DOC.1232.11.13.

Ing. Juan Merck Cos Director Unidad de EPS Facultad de Ingeniería Presente

Estimado Ingeniero Merck Cos.

Por este medio atentamente le informo que como Asesor-Supervisor de la Práctica del Ejercicio Profesional Supervisado (E.P.S.), del estudiante universitario Carlos Ivan García de la Cruz de la Carrera de Ingeniería Mecánica, con carné No. 200714363, procedí a revisar el informe final, cuyo título es EFICIENCIA ENERGÉTICA EN LA PRODUCCIÓN DE AIRE COMPRIMIDO PARA LA OPERACIÓN DE PLANTA TERMOELÉCTRICA ARIZONA.

En tal virtud, LO DOY POR APROBADO, solicitándole darle el trámite respectivo.

Sin otro particular, me es grato suscribirme.

Atentamente,

"Id y Enseñad a Todos"

Ing. Edwin Estuardo Sarceño Zepeda

Asesor-Supervisor de EPS Area de Ingeniería Mecanica

> ASESOR(A)-SUPERVISOR(A) DE EPS Unidad de Prácticas de Ingeniería y EPS

> > Facultad de ingenieris

c.c. Archivo EESZ/ra UNIVERSIDAD DE SAN CARLOS DE GUATEMALA

El Director de la Escuela de Ingeniería Mecánica de la Facultad de Ingeniería de la Universidad de San Carlos de Guatemala, después de conocer el dictamen del asesor, con la aprobación del Director del Ejercicio Profesional Supervisado, E.P.S., al Trabajo de Graduación, EFICIENCIA ENERGÉTICA EN LA PRODUCCIÓN DE AIRE COMPRIMIDO PARA LA OPERACIÓN DE PLANTA TERMOELÉCTRICA ARIZONA., del estudiante Carlos Ivan García de la Cruz, procede a la autorización del mismo.

ID Y ENSEÑAD A TODOS

Ing. Julio Cesar Campos Paiz

DIRECCION DE INGENIERIA MECHINA

Guatemala, enero de 2014.

JCCP/behdei

Universidad de San Carlos de Guatemala

DTG.061.2014

El Decano de la Facultad de Ingeniería de la Universidad de San Carlos de Guatemala, luego de conocer la aprobación por parte del Director de la Escuela de Ingeniería Mecánica, al Trabajo de Graduación titulado: EFICIENCIA ENERGÉTICA EN LA PRODUCCIÓN DE AIRE COMPRIMIDO PARA LA OPERACIÓN DE PLANTA TERMOELÉCTRICA ARIZONA, presentado por el estudiante universitario: Carlos Ivan García de la Cruz, autoriza la impresión del mismo.

IMPRÍMASE:

Ing. Alfredo Enrique Beber Aceituno
Decano en Funciones

Guatemala, 13 de febrero de 2014

/gdech

ACTO QUE DEDICO A:

Mis padres Ing. Job Ramiro García y García y Ángela

Janete de la Cruz, por todo el amor, apoyo y

esfuerzo que hicieron durante el trayecto de mi

carrera, los amo con todo mi ser.

Mis hermanos Fritz, Mauro, Jorge García de la Cruz y Cristian

García Ramírez, espero les sirva de inspiración

para su futuro.

Mis familiares Ing. Ítalo Villalobos, esposa e hijos, por el gran

apoyo que me dieron para culminar esta fase de

mi carrera, los quiero mucho. Rodrigo Aparicio,

que sea un ejemplo para él.

Georgina, Roxana (q. e. p. d.), Flor (q. e. p. d.)

de la Cruz Wasem, primos y primas.

Mis amigos Y compañeros por ser una importante influencia

en mi carrera, entre otras cosas.

AGRADECIMIENTOS A:

Universidad de San Por dar

Carlos de Guatemala

Por darme la oportunidad de cumplir un sueño.

Facultad de Ingeniería Por ser la facultad que me vio crecer como

persona, estudiante y profesional.

Duke Energy Guatemala Por darme la oportunidad de desenvolverme

como profesional.

ÍNDICE GENERAL

ÍNDIC	CE DE ILL	JSTRACIO	NES	. V
LIST	A DE SÍM	BOLOS		VII
GLO	SARIO			ΙX
RESI	JMEN			ΧI
OBJE	TIVOS		>	(III
INTR	ODUCCIO	ÓΝΝĊ		ΧV
1.	GENERALIDADES			1
	1.1.	Descripcio	ón de la empresa	1
	1.2.	Duke Ene	ergy	2
		1.2.1.	Duke Energy Guatemala	2
		1.2.2.	Duke Energy Centroamérica	3
		1.2.3.	Cuida el medio ambiente	3
		1.2.4.	Actividad principal	4
		1.2.5.	Importancia del aire comprimido para la empresa	4
		1.2.6.	Necesidad de mejora en el sistema de aire	
			comprimido	4
	1.3.	Aire comp	orimido	5
		1.3.1.	Criterios de selección de un compresor	7
		1.3.2.	Almacenamiento de aire comprimido	7
2.	FASE DE INVESTIGACIÓN			9
	2.1.	Ahorro de	energía en sistemas de aire comprimido	9
		2.1.1.	Ahorro de energía eléctrica	10
		2.1.2.	Tiempos de operación	11

		2.1.3.	Perfil de demanda de aire comprimido	11
		2.1.4.	Caídas de presión	12
		2.1.5.	Costo de fugas	13
	2.2.	Reducci	ón de consumo de agua	14
	2.3.	Compon	entes de un sistema de aire comprimido industrial	14
		2.3.1.	Compresores	15
		2.3.2.	Clasificación de los compresores	15
		2.3.3.	Tipos de compresores	15
		2.3.4.	Motores primarios	17
		2.3.5.	Controles	17
		2.3.6.	Accesorios	17
	2.4.	Situació	n actual de la producción de aire comprimido para	l
		instrume	entación	19
		2.4.1.	Compresores en planta	20
		2.4.2.	Unidad compresora	20
	2.5.	Equipos	que demandan aire comprimido	25
^		·ÉCNICO I	DDOFFCIONAL	24
3.			PROFESIONAL	
	3.1.		de datos obtenidos	
	3.2.	· ·	eléctrica	
		3.2.1.	Consecuencia de gastos de energía	
		3.2.2.	Cómo ahorrar energía eléctrica	
	3.3.		o de agua	
	3.4.	•	de aire comprimido	
	3.5.		es de trabajo	
	3.6.		a de aire comprimido	
	3.7.	Propues	ta de mejora	
		3.7.1.	Ventajas	
		3.7.2.	Desventajas	52

3.8.	Consumo de energía	52
3.9.	Análisis financiero	54
CONCLUSION	ONES	59
RECOMENI	DACIONES	61
BIBLIOGRA	NFÍA	63
APÉNDICE:	S	65

ÍNDICE DE ILUSTRACIONES

FIGURAS

1.	Unidad compresora de tornillo	21
2.	Proceso de compresión en compresor de tornillo	25
3.	Válvula de tres vías	26
4.	Diagrama de actuadores	28
5.	Consumo de energía semanal	32
6.	Medidor-registrador de flujo	34
7.	Flujo de agua de enfriamiento	35
8.	Desfogue de agua de enfriamiento de compresores	36
9.	Anemómetro	37
10.	Entrega de aire comprimido, compresor 1	37
11.	Entrega semanal de aire comprimido, compresor 2	38
12.	Presión del sistema durante un día de trabajo	40
13.	Flujo de caja acumulado	56
	TABLAS	
I.	Gardner Denver Tamrotor ESS 18	23
II.	Datos Gardner Denver ES 75-4 EWNA	24
III.	Datos válvula de tres vías	27
IV.	Datos de actuadores de separadoras de combustible	29
V.	Datos de entrega compresor 1	38
VI.	Datos de entrega del compresor 2	39
VII.	Datos de presión del sistema	39

VIII.	Consumo de cilindros por centímetro de carrera	42
IX.	Longitudes de carrera normalizada para cilindros neumáticos	44
X.	Consumo de aire comprimido por tipo de equipo utilizado	45
XI.	Consumo de aire comprimido para herramientas varias	46
XII.	Flujo de pérdidas en orificios	46
XIII.	Cálculos de consumos de actuadores en planta	48
XIV.	Demanda de aire comprimido por equipos	49
XV.	Cuadro comparativo de compresores	53
XVI.	Análisis financiero	54
XVII.	Flujo de caja	55
XVIII.	Reducción de gases de efecto invernadero	57

LISTA DE SÍMBOLOS

Símbolo Significado

HT Agua a alta temperaturaLT Agua a baja temperatura

A Amperios
Atm Atmosferas

Bar Bares

cm Centímetro (100 cm = 1 metro).

dB Decibel

Diámetro de una circunferencia

USD Dólar estadounidense

kw/_{cfm} Energía específica

Q Flujo Gal Galón

Gal/díaGalones por díaGrados CelsiusGrados Kelvin

h Hora

Kg Kilogramo

KPa Kilo páscales

L Litro

 m^3/min Metros cúbicos por minuto mg/m^3 Miligramos por metro cúbico

mm MilímetroN Newton

Presión, KPa, Bar, Atm, etc.

" Pulgada

% Porcentaje

Q. Quetzal, moneda guatemalteca.

Rpm Revoluciones por minuto

t Tiempo

GLOSARIO

Aire comprimido Aire atmosférico a una presión deseada.

Ciclos de carga Cuando un compresor está trabajando y entregando

aire a presión deseada.

Ciclos de descarga Cuando un compresor está trabajando pero no

entrega aire, se dice que está en vacío.

Compresor Máquina utilizada para generar aire comprimido.

Energía Capacidad de un sistema para realizar un trabajo.

Energía específica Energía necesaria para entregar cierta cantidad de

volumen de aire comprimido en un tiempo dado.

Golpe de ariete Fenómeno dado en algunos fluidos al retornar o

chocar en una superficie que restringe o redirige el

caudal.

Instrumentación Equipo, utilizado para medir, contralar y monitorear

maquinaria, este puede utilizar aire comprimido,

vapor u agua para el funcionamiento.

Termoeléctrica Planta de generación de energía, que utiliza el poder

calorífico de un combustible.

TIR Tasa Interna de Retorno, índice utilizado para

evaluar la viabilidad de un proyecto.

Unidad compresora Parte esencial de un compresor, la que realiza el

trabajo de compresión de aire.

RESUMEN

El presente informe de Ejercicio Profesional Supervisado (EPS) se realizó en la empresa Duke Energy Guatemala, específicamente en la planta Arizona, la cual se dedica a la generación de energía eléctrica, con liderazgo en la región centroamericana y el mundo.

En este se describen diferentes conceptos básicos para el análisis y evaluación de una instalación de aire comprimido tipo industrial, así como los componentes de este tipo de instalación.

Se realiza una breve descripción de los aspectos que se toman en cuenta de los cuales se recopilan mediciones posteriormente y el proceso de la creación de perfiles de demanda de aire comprimido.

Se encuentran datos importantes sobre el funcionamiento del equipo, su análisis y una comparación entre rendimientos del caso base y los casos propuestos.

Es de mucha importancia conocer el costo de la generación de aire comprimido para una empresa ya que este representa una inversión fuerte y es de vital importancia hacer conciencia en el uso correcto de este medio

Las conclusiones y recomendaciones a las cuales se llegaron luego del término del proyecto se exponen al final de este reporte.

Por último se presentan tablas de los datos que se manejaron durante el proceso del proyecto.

OBJETIVOS

General

Evaluar el estado actual del sistema de aire comprimido para instrumentación, con el objetivo de determinar la eficiencia del mismo y analizar las posibles mejoras al mismo.

Específicos

- Adquirir conocimiento general sobre la empresa Duke Energy, asimismo, conceptos claves para la comprensión de un sistema de aire comprimido industrial y la importancia de la eficiencia de este para una empresa.
- 2. Realizar inspecciones diarias para la toma de datos, registrar y tabular los mismos.
- 3. Analizar datos y registros para obtener resultados.
- 4. Definir la demanda de aire comprimido, utilizando equipo de medición, para proponer un caso.
- 5. Definir el consumo de energía eléctrica, utilizando medidores de energía.
- 6. Realizar una comparación entre el caso base y el caso propuesto.
- 7. Establecer los costos de implementación del caso propuesto.

8. Realizar y presentar un análisis financiero buscando una ventaja económica.

INTRODUCCIÓN

El aire comprimido es la segunda forma de energía utilizada en el mundo, después de la energía eléctrica, debido a esto, en Duke Energy Planta Arizona, se vio en la necesidad de realizar un estudio con el cual se determinara lo que significa para ellos esta forma de energía.

El presente estudio tiene como propósito dar a conocer el proceso que se lleva a cabo para la evaluación de la eficiencia energética de un sistema de compresión de aire, tomando en cuenta la utilización de equipos que requieren aire comprimido así como los compresores y accesorios

.

Se presentan tres capítulos, en el primero se dan a conocer generalidades sobre la empresa Duke Energy Guatemala, su importancia a nivel de la región centroamericana y mundial, no solo en generación de energía y calidad, también en preservación del medio ambiente.

Conceptos sobre el aire comprimido que se deben conocer antes de poder realizar este estudio, así como los requerimientos para poder hacer una selección correcta de un compresor y así cumplir con la demanda de una planta industrial.

En el capítulo dos se profundiza en el tema del ahorro de energía en los sistemas de aire comprimido, se destaca la importancia de las pérdidas que suponen las fugas y el mal uso de esta forma de energía para las empresas.

Se detallan los componentes de una instalación del tipo industrial, que características tiene, los tipos de compresores que existen y su clasificación; en este capítulo se comienza a analizar la situación de la generación de aire comprimido en planta, detallando los compresores que se utilizan y la forma en que estos funcionan.

Los equipos que más demanda de aire comprimido tienen en planta así como un detalle de los mismos, comenzando a crear un perfil de demanda de aire comprimido de la planta.

El análisis de los datos obtenidos durante la investigación de campo se describe en el capítulo tres, se detalla el consumo de energía, la presión del sistema y la entrega de aire comprimido para cada compresor también un aspecto importante que es el consumo de agua que generan estos.

Se plantean las propuestas para mejorar el sistema de aire comprimido, haciendo énfasis en las ventajas y desventajas de la aplicación de este, así como un análisis económico de las propuestas.

En la parte final de este informe se encuentran, los datos obtenidos mientras se llevó a cabo el estudio, estos datos están tabulados en Microsoft Office Excel para un mejor manejo de los mismos e incluyen: lecturas de presiones, de entrega de aire comprimido, consumos de agua y energía eléctrica

.

Durante el proceso del estudio, se encontró la necesidad de hacer un perfil de demanda de aire comprimido de la planta, realizando una investigación de los equipos que utilizan este medio energético, para luego cotejarlo con las lecturas obtenidas de los compresores. Con estos perfiles de demanda

establecidos se hicieron los estudios y análisis necesarios para establecer un caso, y hacer las comparaciones entre el caso base y el caso propuesto.

1. GENERALIDADES

Para poder mantener la eficiencia en la producción de aire comprimido se

deben tomar en cuenta todos los aspectos involucrados, monitorearlos,

evaluarlos y plantear mejoras y/o sustituciones de sistemas y equipos.

Por políticas de la empresa y debido a que se trabaja bajo un sistema de

gestión de calidad, el mantener altos índices de eficiencia en la operación de

una planta termoeléctrica es de vital importancia el aire comprimido, para su

funcionamiento.

Tomando en cuenta lo anterior, y debido a las condiciones actuales de

operación del sistema de aire comprimido para instrumentación, es necesario

realizar este estudio para obtener información y registros sobre qué puntos se

deben mejorar y de ser necesario sustituir parcial o totalmente equipos; y así

alcanzar las metas propuestas.

1.1. Descripción de la empresa

Nombre de la empresa:

Duke Energy Planta Arizona

Tipo de empresa:

Sector Energía

Cantidad de personal en planta:

Personal administrativo 13

1

Personal operativo 79

Ubicación de la empresa:

Kilómetro 98 ruta a Puerto Quetzal, Escuintla

Datos del encargado del proyecto:

Nombre: Ingeniero Elder Morales

Puesto: gerente de mantenimiento

Teléfono: 5523-9443

Correo: Elder.Morales@duke-energy.com

1.2. **Duke Energy**

Duke Energy es una compañía líder en operaciones de energía eléctrica y

distribución de gas en el continente americano, con sede en Charlotte, Carolina

del Norte, Estados Unidos.

El propósito de Duke Energy es crear un valor mayor y sostenible para los

clientes, empleados, comunidades e inversionistas, a través de la producción,

entrega y venta de productos y servicios de energía. Los proyectos que cubren

el desarrollo social y la preservación ambiental, también son parte de las

operaciones de la empresa.

1.2.1. **Duke Energy Guatemala**

Duke Energy Guatemala es subsidiaria de la corporación Duke Energy.

Con sede en Houston-Texas, Estados Unidos, Duke Energy International

cuenta con operaciones en Perú, Argentina, Brasil, Ecuador, Chile, El Salvador

2

y Guatemala, en donde tiene una capacidad de generación de aproximadamente 4 000 mega watts.

1.2.2. Duke Energy Centroamérica

Duke Energy Centroamérica inició operaciones en la región desde el año 1998 aunque a nivel internacional es una empresa que tiene 104 años de estar funcionando exitosamente.

Invierte porque cree en Centroamérica y en la gente. Duke Energy genera importantes inversiones a la región como la recientemente anunciada de US\$150 millones por la nueva planta de carbón Las Palmas II en Guatemala.

Duke Energy Centroamérica genera cientos de empleos que benefician directamente a las familias guatemaltecas y salvadoreñas.

También genera recursos energéticos que son muy valiosos para estos países.

1.2.3. Cuida el medio ambiente

Duke Energy Centroamérica es una empresa que valora ampliamente los recursos naturales y es por eso que sus proyectos se desarrollan siguiendo altos estándares, los cuales no solo cumplen sino que superan las regulaciones dictadas por las autoridades ambientales.

Trabaja en conjunto con las comunidades en un plan integral de reforestación. Han sembrado más de 5 800 árboles en la región entre el 2008 y 2009.

Son proveedores de importantes recursos en la región

Actualmente en Guatemala genera el 17 % de la producción energética del país. A partir del 2011 ampliaron a un total de 370 megavatios con la nueva planta Las Palmas II.

En El Salvador generan hoy en día el 14 % del consumo energético de ese país.

1.2.4. Actividad principal

Duke Energy Guatemala en específico planta Arizona, es una planta en la cual se genera energía eléctrica con motores navales, que funcionan con bunker. Cuenta con 10 motores navales y una turbina de vapor, los cuales requieren de equipo auxiliar para su funcionamiento.

1.2.5. Importancia del aire comprimido para la empresa

El aire comprimido es una parte esencial para el funcionamiento de una planta termoeléctrica, ya que los motores navales requieren de equipo auxiliar como antes se mencionó, de este equipo auxiliar la mayoría requiere de aire comprimido para funcionar, válvulas de combustible, filtros automáticos, actuadores para control de los motores, separadoras de aceite y combustible, etc.

1.2.6. Necesidad de mejora en el sistema de aire comprimido

Debido a que estos compresores no fueron diseñados para la aplicación en que están siendo utilizados, y además son enfriados por agua, aunado a

esto, por políticas de la empresa a estar en constante mejora se ve en la necesidad de realizar este proyecto, sin aire comprimido para una planta termoeléctrica es casi imposible poder operar, se requiere aire comprimido, producido con la mejor eficiencia posible y de manera en que se puedan reducir el gasto de recursos naturales tales como el agua.

1.3. Aire comprimido

El aire comprimido es aire atmosférico a presión, que está conformado por una mezcla de gases que es compresible de manera que puede almacenar energía para luego ser utilizada para realizar un trabajo determinado.

- Algunas aplicaciones del aire comprimido.
 - Construcción
 - Minería
 - Industria química
 - o Instalaciones médicas (hospitales)
 - Trabajos de taller
 - Industria de madera
 - Forjas y fundiciones
 - Soplado de vidrio y plástico para envasado PET
 - Agricultura y silvicultura
 - Procesos alimenticios
 - Industria automotriz
 - Generación de energía

El aire comprimido es la segunda forma de energía más utilizada, después de la energía eléctrica.

Ventajas principales del aire comprimido:

- El aire es de fácil captación y abunda en el planeta.
- Es un tipo de energía limpia.
- No posee propiedades explosivas.
- El trabajo con aire comprimido no produce efectos de golpes de ariete.
- Los cambios de temperatura no afectan de manera significativa.
- Permite cambios instantáneos de sentido en los componentes que lo utilizan.

Algunas desventajas del aire comprimido:

- La instalación de circuitos extensos producen pérdidas de cargas considerables.
- Las presiones de trabajo normalmente utilizadas, no permiten la aplicación de grandes fuerzas.
- Genera altos niveles de ruido al ser descargado a la atmosfera.

El aire atmosférico es una mezcla indispensable para la vida, su composición, obviando la contaminación actual, es nitrógeno un 78 % aproximado del volumen, oxígeno aproximadamente 21 % y el porcentaje remanente es de otros gases tales como, dióxido de carbono, argón, hidrogeno, neón, helio, criptón y xenón. El aire pesa 1,2928 gramos por cada litro a 273 K y a presión atmosférica, tanto la velocidad como la densidad, varían con la temperatura y la presión.

Es compresible y cumple con aproximación aceptable, las leyes de los gases ideales.

1.3.1. Criterios de selección de un compresor

Los criterios más importantes que se deben tomar en cuenta para seleccionar el compresor adecuado para una instalación dada, los cuales son: presión máxima y mínima pretendidas y/o requeridas, caudal necesario, crecimiento previsto de la demanda, condiciones geográficas (altitud, temperatura, etc.), tipo de regulación, espacio necesario para la instalación, tipo de refrigeración, accionamiento, etc.

1.3.2. Almacenamiento de aire comprimido

El aire comprimido es la forma de energía que más fácilmente puede ser almacenada. Para hacerlo se utilizan depósitos de tamaños variados. Las dimensiones de estos depósitos están establecidas por ciertos parámetros, los cuales son: capacidad del compresor, sistema de regulación, presión de trabajo, variaciones en el consumo de aire.

Las ventajas de tener uno o más depósitos para almacenar aire comprimido son:

- Almacenar el aire comprimido necesario para atender demandas pico que excedan la capacidad del compresor.
- Incrementar la capacidad de refrigeración del sistema, debido a la superficie del mismo, para captar residuos de condensado y aceite.
- Regular variaciones de presión de la red de aire comprimido.
- Evitar ciclos de carga y descarga demasiado cortos para el compresor.

2. FASE DE INVESTIGACIÓN

Para una instalación neumática, es necesario tratar el aire comprimido por varias razones, principalmente porque el aire atmosférico lleva consigo partículas que pueden dañar los dispositivos que hacen uso de este, también porque el aire atmosférico tiene cierta cantidad de vapor de agua que al comprimir el aire se condensa, si esta condensación no es removida puede dañar el sistema de transmisión provocando oxidación y desgaste por partículas.

Por otra parte, los equipos de automatización llamados actuadores ensucian el circuito de aire, ya que estos conectan con el exterior el circuito, el desplazamiento de los vástagos en la carrera de retorno puede acarrear partículas del exterior e introducirlas al cilindro, esto sucede cuando las juntas pierden la eficacia por el desgaste, debido a esto es importante realizar un buen mantenimiento a los actuadores.

2.1. Ahorro de energía en sistemas de aire comprimido

En muchas plantas industriales los compresores de aire son los mayores consumidores de electricidad y por lo tanto las ineficiencias en el sistema de aire comprimido resultan muy costosas. Sin embargo, el personal que utiliza el aire comprimido tiende a pensar que el mismo tiene poco valor; y así, por pensar que se trata de simple aire, como una fuga de aire no significa un peligro, tienden a no prestarle atención, evitan así un ahorro y uso adecuado del mismo.

El mejoramiento de la eficiencia de un sistema de aire comprimido puede ayudar en la reducción de mantenimiento de los equipos y ahorrar miles de dólares anuales. Las optimizaciones de los sistemas de aire comprimido suponen entre un 20 % y un 50 % de reducción en consumo de energía eléctrica.

Para establecer cómo se puede ahorrar energía en un sistema de aire comprimido se deben obtener y/o calcular datos para luego hacer una toma de decisiones, en necesario conocer la situación en los puntos de consumo así como los requisitos de presión de los diversos dispositivos neumáticos y el dato más importante es el caudal necesario para que los dispositivos operen de manera correcta y eficiente.

2.1.1. Ahorro de energía eléctrica

El consumo de energía eléctrica de los compresores se midió con el fin de estimar un promedio de gasto anual de cada compresor. El método utilizado para realizar dicha medición es por medido de los contadores de consumo que existen en la barra de energía donde se encuentran conectados los compresores, ya que exclusivamente son ellos los que hacen utilización de la misma.

El consumo de energía va directamente proporcional con la entrega que da un compresor siendo esta la energía específica requerida por un compresor.

Siendo esta:

Energía específica =
$$\frac{\text{pontecia}(KW)}{\text{Entrega efectiva en cfm}}$$

Esta depende del punto que se tome como referencia: potencia en la flecha del compresor, potencia en la flecha del motor, potencia eléctrica.

2.1.2. Tiempos de operación

Por la matriz de operación que tienen estos compresores, se hizo una estimación de las horas que está en servicio el compresor, revisando periódicamente el horómetro de estos; los compresores funcionan por medio de un control de carga/descarga.

El compresor que funcionara o no es controlado por el personal de operaciones, ellos son los encargados de intercalar los compresores de forma manual.

2.1.3. Perfil de demanda de aire comprimido

Un elemento clave para el diseño y la operación de un sistema de aire comprimido es el análisis de los requerimientos de aire a lo largo del tiempo. Cuando una planta tiene variaciones amplias en la demanda; esta necesita que el sistema opere eficientemente a cargas parciales.

El perfil de demanda de aire comprimido es calculado por el método de equipos, el cual consiste en la utilización de la información de cada aparato que requiere de aire comprimido para el funcionamiento, esto se hace sumando el consumo individual de todos los equipos y máquinas neumáticas, más un 5 % de perdidas, fugas o escapes; este método fue utilizado para hacer una comparación con los datos obtenidos en campo directamente de los compresores que estaban en funcionamiento.

2.1.4. Caídas de presión

La presión de la instalación se determina con la presión máxima requerida para el accionamiento del equipo neumático.

Al establecer la presión de operación de un sistema se debe tomar en cuenta la caída de presión que se produce desde la presión de aire de descarga hasta los puntos de uso. Un sistema eficiente y bien diseñado debe tener una caída de presión no mayor al 10 % de la presión de descarga de los compresores. Esta se debe medir entre el recibidor de aire comprimido y los puntos de utilización.

En la mayoría de los casos, las caídas de presión se debe a fricción con el medio de conducción del aire comprimido, y por resistencia al paso del aire en accesorios, válvulas reguladoras y conexiones; estos deben de ser seleccionados correctamente para evitar una caída de presión excesiva en el sistema, en las tuberías debe de evitarse recorrer largas distancias entre recibidores y puntos de uso, así como dimensionar correctamente los diámetros.

En muchos sistemas de distribución las mayores caídas de presión se encuentran normalmente en los accesorios situados en los puntos de uso del aire que incluyen manguera, filtros, reguladores y lubricadores, del lado de la generación de aire comprimido, los puntos que elevan sensiblemente la caída de presión, debido al ensuciamiento son los separadores de aceite y de humedad, posenfriadores, filtros y secadores.

La caída de presión depende de

- Área de la sección transversal
- Velocidad de flujo
- Longitud de tubería
- La rugosidad en la superficie interior del tubo

Cada bar adicional en incremento de presión en una red de distribución a 8 bar, representa un incremento en el gasto de energía del 6 % a 10 %.

2.1.5. Costo de fugas

Como un ejemplo un barreno de 3 mm de diámetro permitirá que se fuguen 17,65 cfm de aire a 87 psi por lo tanto

• 17,65 cfm * 60
$$^{\text{min}}/_{\text{h}} = 1059 \text{ cf}/_{\text{h}}$$

• 1 059
$$^{cf}/_h$$
 * 8 760 $^{h}/_a$ = 9 276 840 $^{cf}/_a$

• 9 276 840
$$\frac{\text{cf}}{\text{a}} * 0.0005664 \frac{\text{USD}}{\text{cf}} = 5 256 \frac{\text{USD}}{\text{a}}$$

Como se puede constatar, el simple uso de una herramienta que funciona con aire comprimido supone un gasto de 5 256 USD al año para una empresa, ahora bien, este mismo cálculo se puede utilizar para una fuga, solo se necesita conocer el diámetro del agujero y con ayuda de tablas se busca la cantidad de aire que se pierde.

2.2. Reducción de consumo de agua

Debido a que los compresores actuales son enfriados por agua, es imperativo hacer un registro de la cantidad de agua utilizada por el mismo, para hacer la medición y registro de este consumo de agua se utilizó un medidorregistrador de flujo de fluidos conectado a la descarga de agua luego del proceso de enfriamiento de los mismos. Hacer una cuantificación del gasto de agua de estos compresores ayudará a tener una idea más clara de lo importante que se realicen auditorías energéticas a los mismos.

Una característica importante de los compresores que utilizan un circuito de enfriamiento por agua es que estos tienen un alto consumo de agua, debido a esto en la actualidad son menos las empresas que adquieren un compresor de este tipo.

El tener un circuito de agua para el sistema de enfriamiento supone gastos de mantenimiento, gastos de extracción de agua, impuestos y tratamiento de la misma.

2.3. Componentes de un sistema de aire comprimido industrial

Un sistema de aire comprimido del tipo industrial se compone de los siguientes componentes:

- Compresor
- Motor primario
- Controles
- Equipos de tratamiento
- Sistema de almacenamiento

- Sistema de distribución
- Accesorios

2.3.1. Compresores

Un compresor es una máquina de fluido que está construida para aumentar la presión y desplazar cierto tipo de fluidos, tal como los gases y vapores.

Esto se realiza a través del intercambio de energía entre la máquina y el fluido en el cual el trabajo ejercido por el compresor es transferido a la sustancia que se convierte en energía de fluido, aumentando la presión y la energía cinética que lo impulsa a fluir.

En la actualidad los fabricantes de compresores los venden en una sola unidad que incluye motor, compresor, controles y accesorios; integrados de tal manera que les dan un recubrimiento para evitar ruidos molestos.

2.3.2. Clasificación de los compresores

Los compresores se clasifican por la forma de obtener el aumento de energía interna en el gas.

Hay dos grandes grupos: los de desplazamiento positivo y los dinámicos.

2.3.3. Tipos de compresores

Compresores dinámicos: la energía cinética es convertida en energía de presión.

Compresores de desplazamiento: un volumen de aire atrapado es comprimido.

- Compresores dinámicos
 - Eyector
 - Axial
 - o Radial
- Compresores de desplazamiento positivo
 - Compresores rotativos
 - ✓ 1 rotor

Paletas

Anillo liquido

Espiral

✓ 2 rotores

Tornillo

Lóbulos rotativos

Diente

- o Compresores reciprocantes
 - ✓ Diafragma
 - ✓ Cruceta
 - ✓ Pistón libre
 - ✓ Laberinto
 - √ Émbolo

2.3.4. Motores primarios

El motor primario es el encargado de transmitir potencia a la unidad compresora, este debe arrancar el compresor, acelerarlo y mantenerlo en condiciones de operación.

Los motores primarios pueden ser motores de combustión interna, motores eléctricos, turbinas de vapor, turbinas de gas. Pero los que más se utilizan son los motores eléctricos de inducción, ya que por lo general los que se instalan son motores de alta eficiencia.

2.3.5. Controles

Los controles en los sistemas de aire comprimido permiten lograr la correspondencia entre suministro del compresor y la demanda del sistema, teniendo una gran influencia en la eficiencia del mismo. Si se utilizan varios compresores se necesita un sistema de control secuencial, para tener en línea solo los compresores necesarios, el tipo de control depende del tipo de compresor y el perfil de la demanda de aire comprimido.

2.3.6. Accesorios

En un sistema de aire comprimido se emplean diferentes tipos de accesorios para eliminar contaminantes, tales como, aceite lubricante, agua, polvo, también se debe mantener y garantizar, la presión y calidad adecuada de aire requerida.

En planta se encuentran los componentes típicos para una instalación industrial entre estos hay filtros, lubricadores y reguladores de presión, ya que

el aire para los dispositivos que se utilizan no requieren de mayor tratamiento más que la remoción de la humedad y cierta cantidad de partículas.

El punto de rocío es un estado saturado en el cual el aire está cargado con la humedad máxima a cierta temperatura.

Por lo tanto si se enfría, la humedad comienza a condensarse y se precipita.

El condensado y la contaminación en el aire influyen de manera adversa en la operación óptima de la red de distribución de aire comprimido y también los puntos de uso.

- Problemas en una red
 - Corrosión
 - Caídas de presión
 - Contaminación
 - Formación de hielo
- Problemas en los puntos de uso
 - Taponamientos
 - Desgaste excesivo
 - o Fallas
 - o Paros de producción

2.4. Situación actual de la producción de aire comprimido para instrumentación

Actualmente en planta el equipo utilizado para la producción de aire comprimido que es destinado para instrumentación, consta de 4 compresores los cuales son:

- Gardner Denver, Tamrotor ESS 18
- Gardner Denver, Tamrotor ESS 18
- Gardner Denver, Tamrotor ES 75-4 EWNA
- Gardner Denver, Tamrotor ES 75-4 EWNA

Estos compresores tienen una capacidad producción nominal de 74,16 cfm para los compresores ESS 18 y para los compresores ES 75-4 EWNA de 423 cfm.

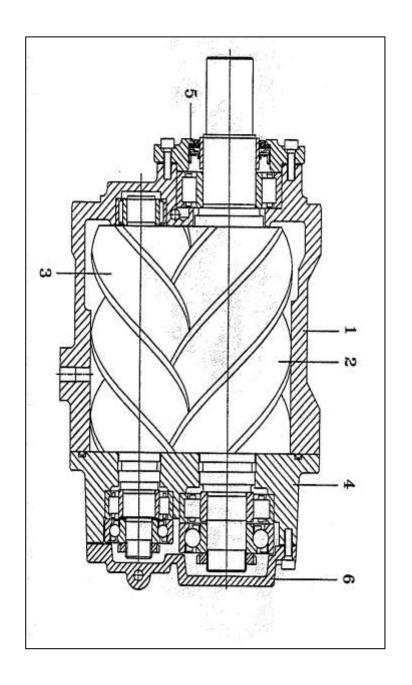
La potencia del motor de cada uno de los compresores es de 18,5 kW para los ESS 18 y 75 kW para los ES 75-4 EWNA, el consumo cuando están en *stand by* es de 4,5 kW y 10 Kw respectivamente.

El sistema de enfriamiento de los compresores antes mencionados, es llevado a cabo por medio de agua, este gasto de agua, se ha medido y registrado para tener un control y una idea de que cantidad agua es consumida por estos. El circuito de enfriamiento es abierto, la salida de agua de enfriamiento da al canal de desfogue de agua, esta agua se pierde, cabe destacar que el agua utilizada para este fin no es agua tratada, sino que es agua cruda, pero aun siendo cruda, esta tiene un costo debido a los gastos en extracción de la misma de los pozos de la planta. El costo ya está definido, calculado y se redondea a un monto para la empresa de Q. 0,22.

Otro punto importante es que los compresores ES 75-4 EWNA estaban destinados a una planta que como función principal era extraer el azufre de los gases de escape de los motores, esto se hacía mediante una lechada de cal, al realizar todo este proceso el producto final era yeso el cual era soplado con los compresores antes mencionados. Estos fueron diseñados para trabajar con alto flujo de 423 cfm y una presión de trabajo de 4 bar, luego fueron modificados para trabajar a una presión de 7 bar por lo que la capacidad de entrega se ve afectada, reduciendo la misma.

2.4.1. Compresores en planta

Los cuatro compresores antes mencionados son de tornillo, son compresores monofásicos refrigerados por agua.


El aire comprimido, está producido por la ayuda de una unidad compresora accionada por un motor eléctrico, y transmisión por faja, la separación del aceite contenido en el aire comprimido se hacen el depósito separador.

Estos compresores tienen un tiempo de servicio de más de 10 años por lo cual se requiere una evaluación del funcionamiento y desempeño de los mismos con el fin de mejorar el proceso que afecta a la eficiencia de la planta.

2.4.2. Unidad compresora

La unidad compresora está compuesta por, carcasa (1), dos rotores ascendentes (2, 3) montados sobre rodamientos en la carcasa (1) y el alojamiento (4) y tapa de rodamientos (6), el eje de giro es cerrado por un retén de labio (5), ver figura 1.

Figura 1. Unidad compresora de tornillo

Fuente: Manual del fabricante Gardner Denver. p. 10.

La unidad compresora cuenta con engranes de sincronización, los cuales evitan que los tornillos, que realizan el trabajo de compresión choquen entre si haciendo que estos trabajen de manera óptima.

Una característica de estos compresores es que la temperatura de descarga puede llegar hasta los 180 grados Celsius, sabiendo esto es necesario que se realice el tratamiento correcto a este aire, ya que el aire a alta temperatura no es un buen medio para realizar un trabajo.

El rango de velocidad de este tipo de compresores varía según sea la configuración, si es de doble etapa, la segunda etapa gira entre 7 000 rpm y 25 000 rpm mientras que la primera etapa y si es de una sola etapa este gira entre los valores de 4 000 rpm y 13 000 rpm.

El sistema de lubricación, en este caso por aceite, se dice que es tornillo mojado, cumple con varias funciones, las cuales son:

- Lubricar los rodamientos
- Limpieza del aire
- Disipar calor
- Sellado entre rotores

Tabla I. Gardner Denver Tamrotor ESS 18

Capacidad y consumo de energía		
Presión normal de trabajo	Bar	7
Capacidad con presión normal de trabajo	m3/min	2,9
Potencia en el eje con presión normal	KW	18,5
Presión máxima de trabajo	Bar	7
Presión mínima de trabajo	Bar	3
Consumo de potencia en el eje en marcha en vacío	KW	4,5
Velocidad del rotor macho	Rpm	5 270
Transmisión de correa		224/150
Refrigeración		
Temperatura ambiente permitida	С	0-40
Temperatura del aire comprimido por encima de la	С	10
temperatura del agente refrigerador		10
Valores del motor, valores eléctricos		
Motor principal clase F, ip55	Kw	18,5
Velocidad de rotación	Rpm	3 516
Motor del ventilador	Kw	
Velocidad de rotación	Rpm	
Fusible (máximo) 400/440 -480v	Α	50
Corriente del compresor 480V	Α	32
Tensión de control	V	230/24
Datos técnicos generales		
Cantidad de aceite	L	7
Contenido de aceite	mg/m3	3
Conexión de aire comprimido		R 1 1/4
Nivel de ruido	dB(A)	72
Peso del compresor	Kg	450

Fuente: Manual del fabricante Gardner Denver. p. 8.

Tabla II. Datos Gardner Denver ES 75-4 EWNA

Capacidad y consumo de energía		
Presión normal de trabajo	Bar	4
Capacidad con presión normal de trabajo	m3/min	12
Potencia en el eje con presión normal	KW	75
Presión máxima de trabajo	Bar	6
Presión mínima de trabajo	Bar	3
Consumo de potencia en el eje en marcha en vacío	KW	15
Transmisión de correa		224/150
Refrigeración		
Temperatura ambiente permitida	С	0-40
Temperatura del aire comprimido por encima de la	С	10
temperatura del agente refrigerador		10
Valores del motor, valores eléctricos		
Motor principal clase F, ip55	kW	75
Velocidad de rotación	rpm	3 516
Motor del ventilador	kW	
Velocidad de rotación	rpm	
Fusible (máximo) 400/440 -480v	А	50
Corriente del compresor 480V	А	32
Tensión de control	V	230/24
Datos técnicos generales		
Cantidad de aceite	L	7
Contenido de aceite	mg/m3	3
Conexión de aire comprimido		R 1 1/4
Nivel de ruido	dB(A)	72
Peso del compresor	kg	450

Fuente: Manual del fabricante Gardner Denver. p. 8.

Los dos rotores engranados aspiran el aire entre dientes a través de la ventana de aspiración en la carcasa. Cuando los rotores giran, en el punto de engranaje de los dientes se traslada y la conexión con la ventana de aspiración se cierra dejando el espacio entre dientes que se va haciendo menor. En la fase final de compresión, se alcanza la compresión deseada y la conexión con la ventana de aspiración se abre.

En la unidad de compresión, el aceite enfría el aire comprimido y la unidad misma. Además, el aceite lubrica los rodamientos y tapa las holguras entre rotores y cámara.

Figura 2. Proceso de compresión en compresor de tornillo

Fuente: Manual del fabricante Gardner Denver. p. 9.

2.5. Equipos que demandan aire comprimido

Separadoras de aceite: equipo cuya función principal es la limpieza del aceite que está circulando en los motores para mantener una calidad óptima, parte del proceso es el cambio de dirección del flujo de aceite, hacia el motor o bien en recirculación.

Este equipo utiliza una válvula neumática de 3 vías para hacer los cambios de flujo de aceite dependiendo si esta está en funcionamiento o no, la válvula con número de serie 748393-82 al 85.

R 114

Figura 3. Válvula de tres vías

Fuente: Manual del fabricante Alfa Laval. p. 10.

Según especificaciones en manual del fabricante de la válvula, esta tiene los siguientes consumos:

Tabla III. Datos válvula de tres vías

Diámetro del orificio mm	Recorrido cerrado	Recorrido abierto
20	0,3	1
25-32	0,4	1,5
40-50	0,6	2,5
65-80	0,8	4
100	1,3	7
125-150	2	10

Fuente: Manual del fabricante Alfa Laval. p. 11.

Separadoras de combustible: las separadoras de combustible, a diferencia de las separadoras de aceite, tiene como función remover impurezas y humedad al combustible que ingresa a los motores, parte del proceso es realizar un retro lavado para evitar la obstrucción las vías de combustible por suciedad removida.

Al igual que las separadoras de aceite, estas funcionan con el mismo tipo de válvula neumática.

Actuadores: las separadoras de aceite y de combustible utilizan un actuador neumático serie 1763428-80 al 82; así como la utilización de actuadores en las líneas de agua de alta temperatura, baja temperatura, aceite y combustible de cada motor.

La inspección en los puntos de consumo, nos da como resultado la cuantificación de los actuadores de cada motor, los cuales son 30 actuadores en total, este dato servirá para la realización del perfil de demanda de la planta.

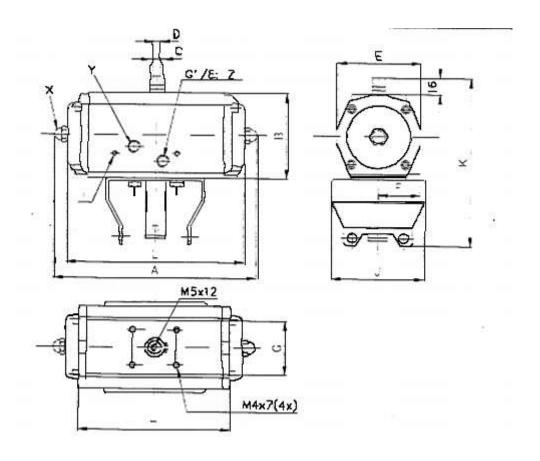


Figura 4. **Diagrama de actuadores**

Fuente: Manual del fabricante Alfa Laval. p. 8.

En el manual del fabricante del actuador, se encuentran los datos de operación de este actuador los cuales fueron de mucha utilidad para el cálculo del consumo de las separadoras de combustible, estos datos son:

Tabla IV. Datos de actuadores de separadoras de combustible

Modelo de actuador	Recorrido abierto	Recorrido cerrado			
1763428-80, -81 1763884-80, -81	0,06	0,05			
1763428-82 1763884-82	0,16	0,22			

Fuente: Manual del fabricante Alfa Laval. p. 7.

Herramientas: en taller se utilizan varios tipos de herramientas como rach neumáticos, turbinas neumáticas, bombas de presión, joneadoras, desbastadoras, pistolas de soplado, pistolas pulverizadoras de pintura, pistola de apriete.

3. FASE TÉCNICO PROFESIONAL

Con el fin de facilitar la toma de decisiones respecto al sistema de aire comprimido, el análisis de los datos que se obtuvieron anteriormente, dará una perspectiva más amplia del problema que se posee.

Dependiendo de los resultados que arrojen estos análisis se tomará una decisión para la posible mejora del sistema y así dar solución a la problemática antes mencionada.

3.1. Análisis de datos obtenidos

Habiendo recopilado los datos necesarios como, demanda de aire comprimido, presión de trabajo para el sistema, entrega de aire comprimido, consumo de energía eléctrica y consumo de agua de enfriamiento; se calculan indicadores que posteriormente serán utilizados para la comparación con otro sistema de aire comprimido y así evaluar una mejora de este sistema.

3.2. Energía eléctrica

La energía utilizada por los compresores varía según la utilización, por diseño los compresores de tornillo, el punto de utilización óptimo es al 100 % de carga, un compresor que esté funcionando por debajo de un 80 % a 85 % de carga se considera como un compresor ineficiente.

Figura 5. Consumo de energía semanal

Fuente: elaboración propia, con base en datos obtenidos en Duke Energy.

3.2.1. Consecuencia de gastos de energía

Un compresor que está siendo utilizado por debajo de 80 % de carga se considera ineficiente, como se ha mencionado, ya que este está generando un caudal de aire comprimido con la misma energía, con la que generaría un caudal más alto (para el que fue diseñado), por lo tanto, el caso ideal es que este compresor este siendo utilizado por encima del 85 %.

Otra razón por la cual un compresor consume más energía es, cuando los ciclos de carga y descarga son muy cortos, esto no solo repercute en el consumo energético sino también genera un mayor desgaste en el equipo, ciclos de carga y descarga es resultado de un sobredimensionado del compresor.

3.2.2. Cómo ahorrar energía eléctrica

Para ahorrar energía eléctrica es necesario establecer los consumos de aire de la planta, pueden utilizarse dos compresores para distribuir la carga, un compresor puede funcionar para carga base y el segundo compresor para cargas pico, así un compresor estará siendo utilizado a un 100 %, mientras otro entrará en funcionamiento cuando la demanda sobrepase la capacidad del primer compresor.

Otra forma de ahorrar es utilizando un solo compresor que esté acorde a la demanda de aire comprimido por la planta, dejando un margen para las cargas picos.

3.3. Consumo de agua

Los compresores enfriados por agua se caracterizan por tener un alto consumo de agua, de allí es que surgieron los compresores enfriados por aire, en este caso, los compresores son enfriados por agua los cuales generan un consumo considerablemente grande de agua, por lo cual se ve necesario hacer un cambio.

El circuito de enfriamiento de los cuatro compresores es en conjunto, y la medición del gasto de agua por este sistema se realizó en el desfogue, con un monitor de flujo electrónico.

Figura 6. **Medidor-registrador de flujo**

Fuente: Duke Energy.

El monitor de flujo fue instalado el 23 de enero 2012 con el cual se ha registrado el consumo desde esa fecha.

El agua utilizada para el enfriamiento de estos compresores se extrae de pozos que se encuentran en planta, el precio de extracción de este líquido es calculado por el personal de laboratorio, quienes han proporcionado este dato para hacer uso del mismo.

Figura 7. Flujo de agua de enfriamiento

Fuente: elaboración propia, con base en datos obtenidos en Duke Energy.

El consumo promedio de agua de enfriamiento por día de los compresores en estudio es de 55 009 galones, a un precio de Q. 0,011 por galón de agua para la planta, el costo del agua toma en cuenta los siguientes aspectos:

- Costo municipal por paja de agua extraída
- Costo de cloración
- Costo por manejo de equipo

La empresa está haciendo un gasto de Q. 660,50 al día con el agua que se está desechando al ambiente.

Figura 8. **Desfogue de agua de enfriamiento de compresores**

Fuente: Duke Energy.

3.4. Entrega de aire comprimido

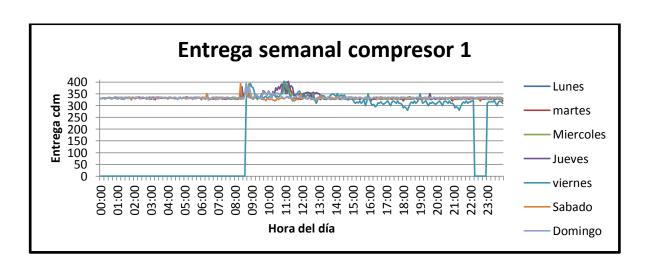

Para el cálculo de la entrega de aire comprimido de estos compresores se utilizó el método volumétrico, el cual se midió en la aspiración de aire, se hace una relación de áreas, el volumen que entra es igual al volumen que sale la herramienta utilizada fue un anemómetro conectado a la aspiración.

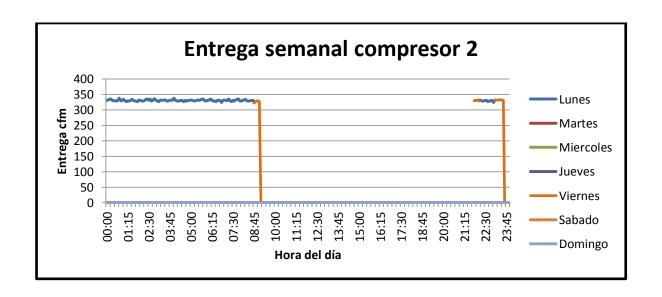
Figura 9. **Anemómetro**

Fuente: Duke Energy.

Figura 10. Entrega de aire comprimido, compresor 1

Fuente: elaboración propia, con base en datos obtenidos en Duke Energy.

El compresor 1 tiene una entrega de aproximadamente 330 cfm y logra suplir los picos de alta demanda.


Tabla V. Datos de entrega compresor 1

Entrega promedio semanal	335,02 cfm
Punto máximo	403 cfm
Punto mínimo	280 cfm

Fuente: elaboración propia, con base en datos obtenidos en Duke Energy.

Gracias al análisis de los datos, se puede establecer que el compresor 1 es ineficiente ya que su entrega nominal es de 424 cfm y en operación está entregando 335,02 cfm, lo que significa un 79 % de carga.

Figura 11. Entrega semanal de aire comprimido, compresor 2

Fuente: elaboración propia, con base en datos obtenidos en Duke Energy.

El compresor 2 mantiene una entrega constante, este compresor no suple las demandas pico y por lo general mantiene una presión un tanto más baja que la del compresor 1.

Tabla VI. Datos de entrega del compresor 2

Entrega promedio semanal	338,57 cfm
Punto máximo	338 cfm
Punto mínimo	0 cfm

Fuente: elaboración propia, con base en datos obtenidos en Duke Energy.

Según la entrega semanal el compresor 2, que se mantiene en 338,57 cfm de los 424 cfm que puede entregar, está a un 79,85 % de carga en capacidad de entrega, en cuanto a la carga eléctrica, este gasta más energía que cuando estuviese entregando 424 cfm con la misma carga eléctrica, lo cual lo hace ineficiente para los parámetros base y genera gastos innecesarios.

En cuanto a los dos compresores Gardner Denver Tamrotor ESS18 se encuentran en *stand by* y no producen aire comprimido.

3.5. Presiones de trabajo

Esta presión fue medida del lado de la descarga del compresor, específicamente en el tanque de almacenamiento.

Tabla VII. Datos de presión del sistema

Presión promedio	101,11 psig	6,96 bar
Máxima presión	102,8 psig	7,08 bar
Mínima presión	94 psig	6,47 bar

Fuente: elaboración propia, con base en datos obtenidos en Duke Energy.

El sistema de aire comprimido, en conjunto es un sistema estable ya que presenta una presión constante durante el funcionamiento, no presenta caídas de presión considerablemente altas.

Por lo tanto en cuestión de pérdidas de presión la red de distribución no requiere de mejoras y/o modificaciones.

Presión de trabajo Semanal 110 100 Lunes 90 Martes PS 80 Miercoles 70 Jueves 60 viernes 50 00:00
01:00
02:00
03:00
04:00
05:00
06:00
07:00
08:00
09:00
11:00
11:00 Sabado Domingo Hora del dia

Figura 12. Presión del sistema durante un día de trabajo

Fuente: elaboración propia, con base en datos obtenidos en Duke Energy.

3.6. Demanda de aire comprimido

Situación en los puntos de consumo: se realizó una inspección de los puntos de consumo para así hacer un listado de los componentes que utilizan aire comprimido.

Para el caso de émbolos y actuadores se utilizan fórmulas, las cuales requieren de datos que se pueden obtener fácilmente, una característica

importante es la cantidad de aire a presión necesaria (caudal) para el funcionamiento de un cilindro. La energía del aire comprimido que alimenta los cilindros se consume en forma de trabajo y una vez usado, el aire se expulsa a la atmósfera por el escape. El consumo teórico de aire en un cilindro es el volumen consumido por ciclo de trabajo.

La cantidad de aire requerida por un cilindro es función del tiempo de duración de cada fase o la frecuencia de realización de una determinada tarea (movimiento lineal), o la velocidad de giro requerida (movimiento rotativo).

Por lo tanto la fórmula para gasto de cilindros neumáticos es:

$$Q = \left(\frac{0,0000471 * D^2 * L}{t}\right) * \left(\frac{P + 1,033}{1,033}\right)$$

- Donde:
 - Q= litros de aire libre en l/min
 - D= diámetro del émbolo en mm
 - o L= carrera del cilindro en mm
 - P= presión de aire en kg/cm²
 - t= tiempo en realizarse la carrera

Finalmente existen tablas que facilitan el cálculo de los consumos en émbolos.

Tabla VIII. Consumo de cilindros por centímetro de carrera

	Presión de trabajo en atmósferas														
Diam. cilindro	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
mm		Consumo de aire en litros por em de carrera del cilindro													
6	0.0005	0.0008	0.0011	0.0014	0.0016	0.0019	0.0022	0.0025	0.0027	0.0030	0.0033	0.0036	0.0038	0.0041	0.0044
12	0.002	0.003	0.004	0.006	0.007	0.008	0.009	0.010	0.011	0.012	0.013	0.014	0.015	0.016	0.018
16	0.004	0.006	0.008	0.010	0.011	0.014	0.016	0.018	0.020	0.022	0.024	0.026	0.028	0.029	0.032
25	0.010	0.014	0.019	0.024	0.029	0.033	0.038	0.043	0.048	0.052	0.057	0.062	0.067	0.071	0.076
35	0.019	0.028	0.038	0.047	0.056	0.066	0.075	0.084	0.093	0.103	0.112	0.121	0.131	0.140	0.149
40	0.025	0.037	0.049	0.061	0.073	0.085	0.097	0.110	0.122	0.135	0.146	0.157	0.171	0.183	0.196
50	0.039	0.058	0.077	0.096	0.115	0.134	0.153	0.172	0.191	0.210	0.229	0.248	0.267	0.286	0.305
70	0.076	0.113	0.150	0.187	0.225	0.262	0.299	0.335	0.374	0.411	0.448	0.485	0.523	0.560	0.597
100	0.155	0.231	0.307	0.383	0.459	0.535	0.611	0.687	0.763	0.839	0.915	0.911	1.067	1.143	1.219
140	0.303	0.452	0.601	0.750	0.899	1.048	1.197	1.346	1.495	1.644	1.793	1.942	2.091	2.240	2.389
200	0.618	0.923	1.227	1.531	1.835	2.139	2.443	2.747	3.052	3.356	3.660	3.964	4.268	4.572	4.876
250	0.966	1.441	1.916	2.392	2.867	3.342	3.817	4.292	4.768	5.243	5.718	6.193	833.3	7.144	7.619

Fuente: BUENACHE, Alejandro. Tecnología Neumática. p. 74.

Para la tabla anterior es necesario conocer la longitud de carrera de un cilindro para poder calcular un estimado del consumo.

Otras fórmulas para calcular el consumo de cilindros de simple efecto o bien de doble efecto son:

Relación de compresión:

Relación de compresión =
$$\frac{101,3 + P_{trabajo}}{101,3}$$
 en kPa

Cilindro de simple efecto:

$$V = s * n * \frac{d^2 * \pi}{4} * Relación de compresión$$

Cilindro de doble efecto

$$V = \left[s * \frac{D^2 * \pi}{4} + s * \frac{D^2 - d^2 * \pi}{4} \right] * n * Relación de compresión$$

- Donde:
 - V= cantidad de aire (l/min)
 - S= longitud de carrera (cm)
 - o n= ciclos por minutos
 - o D= diámetro del émbolo (cm)
 - o d= diámetro del vástago (cm)

También para el cálculo de cilindros, existen tablas estandarizadas que proporcionan las longitudes de carrera de los cilindros.

Tabla IX. Longitudes de carrera normalizada para cilindros neumáticos

Ø VASTAGO [mm]	Ø EMBOLO [mm]	FUERZA NETA [N] a P=6 bar	LONGITUDES DE CARRERAS NORMALIZADAS [mm]
	6	15	10, 25, 40, 80
4	12	60	10, 25, 40, 80, 140, 200
6	16	106	10, 25, 40, 80, 140, 200, 300
10	25	260	25, 40, 80, 140, 200, 300
12	35	509	70, 140, 200, 300
16	40	665	40, 80, 140, 200, 300
18	50	1039	70, 140, 200, 300
22	70	2037	70, 140, 200, 300
25	100	4156	70, 140, 200, 300
30	140	8146	70, 140, 200, 300
40	200	16625	70, 140, 200, 300
50	250	25977	70, 140, 200, 300

Fuente: BUENACHE, Alejandro. Tecnología Neumática. p. 70.

Con la utilización de esta tabla, solo se debe de conocer los diámetros de vástago y émbolo de cada actuador para poder establecer las longitudes de carrera y así calcular el consumo.

Sabiendo qué componentes utilizan aire comprimido se hace utilización de tablas que dan un estimado de los caudales requeridos por equipos, siendo estas las siguientes:

Tabla X. Consumo de aire comprimido por tipo de equipo utilizado

Equipos	Tamaño o tipoª	Presión de aire [Psi]	Consumo de aire [scfm ^h]	
Montacargas (Hoist)	1 ton	70-100	1	
Pistolas de aire (blow guns)	-	70-90	3	
Carretilla neumática (truck Lifts)	14.000-lb cap	70-90	10	
Taladres (Drills, rotary)	1/4"	70-90	20-90	
Motor (Engine, cleaning)	i i	70-90	5	
Amoladoras (Grinders)	Diametro 8"	70-90	50	
Pulverizador de pintura (Paint sprayer)	Para producción	40-70	20	
Pulverizador de pintura (Paint sprayer)	De mano	70-90	2-7	
Remachadoras (Riveters)	De 1/3" a 3"	70-90	50-110	
Talladoras (Carving tools)		70-90	10-15	
Lijadoras (Rotary sanders)		70-90	50	
Cambiador de ruedas (Tire changers)	. 2	70-90	1	
Inflador de ruedas (Tire inflaters)	9	70-90	11/2	
Gato neumático (Tire spreaders)		70-90	1	
Martillos neumáticos (Air Hammers)	Ligeros o pesados	70-90	30-40	
Martillos de arena (Sand hammers)		70-90	25-40	
Destornilladores (Nut setters, runners)	¼-in to¾-in cap	70-90	20-30	
Destornillador (screwdrivers)	Pequeño o grande	70-90	4-10	
Enroscadores (Air bushings)	Pequeño o grande	80-90	4-10	
Puertas neumáticas (Pneumatic doors)		40-9	2	
Fresas de mango (File and burr tools)	· .	70-90	20	
Discos de freno (Rim strippers)	-	100-120	6	
Botes de Spray (Body polishers)		70-90	2	
Aspiradoras (Vacuum cleaners)	i . i	100-120	6	
Pistola de arena (Sand Blasters)	Amplios rangos	90	6-400	

a)1 pulgada = 245 mm // b) scfm: pies cúbicos estándar por minuto = 0,472 Nl/s (1 pie cúbico = 0.0283 m 3)

Fuente: BUENACHE, Alejandro. Tecnología Neumática. p. 66.

Tabla XI. Consumo de aire comprimido para herramientas varias

HERRAMIENTAS	CONSUMO PARA UNA PRESIÓN DE SERVICIO DE 6 BAR (Nm³/h)		
Pequeños automatismos, instrumentos, lógica neumática	7		
Pistola de pintura, llave de impacto, perforadora, lijadora, eepillo	De 9 a 30		
Pulidora, amoladora, atomilladora, herramienta de inflado, pistola	42		
Tronzadora de carrocería, llave de impacto grande, cepilladora	48		
Pequeñas máquinas automáticas y herramientas varias	54		
Grandes herramientas, máquina y material de potencia	61		
Salida de compresor, aparejo neumático	126		

Fuente: BUENACHE, Alejandro. Tecnología Neumática. p. 66.

Tabla XII. Flujo de pérdidas en orificios

Presión	Tamaño del orificio, diámetro en pulgadas³							
manométrica¹ [psi]	1/64	1/32	3/64	1/16	3/82	1/8	3/18	1/4
50	0.225	0.914	2.05	3.64	8.2	14.5	32.8	58.2
60	0.26	1.05	2.35	4.2	9.4	16.8	37.5	67
70	0.295	1.19	2.68	4.76	10.7	19.0	43.0	76
80	0.33	1.33	2.97	5.32	11.9	21.2	47.5	85
90	0.364	1.47	3.28	5.87	13.1	23.5	52.5	94
100	0.40	1.61	3.66	6.45	14.5	25.8	58.3	103
110	0.43	1.76	3.95	7.00	15.7	28.0	63	112
120	0.47	1.90	4.27	7.58	17.0	30.2	68	121
130	0.50	2.04	4.57	8.13	18.2	32.4	73	130
140	0.54	2.17	4.87	8.68	19.5	34.5	78	138
150	0.57	2.33	5.20	9.20	20.7	36.7	83	147
175	0.66	2.65	5.94	10.6	23.8	42.1	95	169
200	0.76	3.07	6.90	12.2	27.5	48.7	110	195

¹) 1 psig = 6,9 KPa $\frac{4}{2}$ 1 sfcm = 0.472 nl/s

Fuente: BUENACHE, Alejandro. Tecnología Neumática. p. 65.

Cuando se realizó el mantenimiento mayor al motor 8, se desmontaron los actuadores presentes en el motor, para darles el respectivo mantenimiento, con

la ayuda del personal se obtuvo datos de los actuadores y así se hicieron los cálculos de consumos de los actuadores de los motores, que son los siguientes.

Se tiene un actuador de 100 mm de diámetro, con una carrera de 28,32 mm, ya que el actuador posee resortes para realizar la carrera de retorno, este es de simple efecto, entonces en la tabla VIII se busca el valor correspondiente a 100 mm de diámetro para una presión de 7 atmosferas, el cual da un valor de 0,611 litros por centímetro de carrera, ahora este valor lo utilizamos para hacer el cálculo.

Consumo =
$$\frac{0.611 \frac{l}{cm} * 2.832 cm}{tiempo de carrera}$$

Con lo que obtenemos el consumo del actuador, el cual es:

$$Consumo = 0.061 \frac{ft^3}{min}$$

Con este mismo método, se calcularon los demás actuadores que están funcionando en planta.

Tabla XIII. Cálculos de consumos de actuadores en planta

Actuador	Diámetro de émbolo	Longitud de carrera	Consumo según tabla	Consumo total
HT, LT, Aceite	110 mm	20,86 mm	0,7575 l/cm de carrera	0,0558 ft3
Booster 2	100 mm	28,32 mm	0,611 l/cm de carrera	0,061 ft3
Damper calderas	200 mm	320 mm	2,443 l/cm de carrera	1,725 ft3

Fuente: elaboración propia, con base en datos obtenidos en Duke Energy.

La siguiente lista de componentes fue utilizada con el fin de realizar un cálculo teórico para hacer una comparación entre la demanda obtenida con los datos de campo y corroborar que los datos obtenidos.

Tabla XIV. Demanda de aire comprimido por equipos

Equipo que utiliza aire comprimido								
Equipo	Ca	Caracteristicas			Cantidad	Consumo total		
Equipo	Diámetros	Diámetros Presión Velocidad		cfm	Cantidad	Consumo total		
Rach neumatico GTAX	3/8"	7 bar		20-30	1	30		
Turbina (lijadoras)	1/2"	6.2 bar	22000 rpm	50	1	50		
Turbina (lijadoras)	1/2"	6.2 bar	22500 rpm	50	1	50		
Enerpac Turbo2 PATG1102N		7 bar		1	1	1		
Joneadora type UB chrismarine		6-9 bar	34-24 rpm	15	1	15		
Chrismarine CPM		6-9 bar	7500 rpm	15	1	15		
Pistola de soplado	1/8"	6-7 bar		14	2	28		
Pistola pulverizadora de pintura		6-7 bar		7	1	7		
Actuadores Valbia 100		4-10 bar		0,732	20	14,64		
Actuadores HT, LT, Aceite		4-10 bar		0,6696	30	20,088		
Damper de calderas		4-10 bar		5,176	10	51,76		
Válvula de tres vias (separadora)		8 bar max		0,422	16	6,752		
Válvula de agua (separadoras de comb)		8 bar max		0,034	6	0,204		
Actuadores V302/V301		4-10 bar		0,343	20	6,86		
Actuadores pendientes		4-10 bar	*	0,35	30	10,5		
Actuadores pendientes		4-10 bar	*	0,51	20	10,2		
Limpieza de Filtros de aceite		7 bar	*	0,75	10	7,5		
	TC	OTAL		•		324,504		
	total c	on fugas		•		330,99408		

Fuente: elaboración propia, con base en datos obtenidos en Duke Energy.

El caudal calculado con la tabla anterior es un caudal suponiendo que todos los componentes son utilizados al mismo tiempo, esto no implica que sea de esa manera.

Según las características de los equipos listados, la presión máxima que debe tener el sistema es de 9 bar (130,5 psig) para la presión máxima, y la presión mínima es 2 bar (29 psig), con los datos anteriores de mediciones del sistema, que según gráficas se mantiene entre 6,20 y 7,17 bar (90 y 104 psig), el sistema es estable y mantiene una presión aceptable para el correcto funcionamiento de los equipos que lo utilizan.

Para el consumo de las válvulas neumáticas de tres vías de las separadoras de combustible, utilizando la tabla proporcionada por el fabricante y en campo tomando tiempos de operación. La programación de la máquina es que cada hora durante 2 minutos la válvula opera cerrada, haciendo un retro lavado, por lo que en el día opera durante 48 minutos en el recorrido cerrado. Por su parte, el recorrido abierto de la válvula tiene una operación de 23 horas con 12 minutos en un día. Las separadoras de aceite no cuentan con el actuador para desfogue de agua, solamente las separadoras de combustible las cuales son 6, este actuador opera cierto número de veces abriendo y cerrando, se calculó en campo con la ayuda de un cronómetro cuantas veces en el día abre y cierra. Estos datos de operación y de manuales de fabricante fueron utilizados para estimar los consumos diarios de una separadora de combustible, y por su parte los cálculos para las separadoras de aceite se obviaron los consumos de los actuadores ya que estas no los tienen.

Para todos los consumos calculados, se realizó una toma de tiempos de operación, así como entrevistas con el personal, al observar la utilización de los equipos, se utilizó un factor de utilización del 75 % y un factor de simultaneidad del 85 %.

3.7. Propuesta de mejora

Por medio del análisis de los resultados obtenidos se llegó a concluir que la mejor manera de reducir el gasto innecesario de recursos como el agua y la energía eléctrica es mediante la instalación de un compresor enfriado por aire que tenga una capacidad un tanto superior a 350 cfm. Se recomienda, según investigación en el mercado, que sea un compresor con capacidad de 375 cfm, de los cuales hay disponibilidad y que tenga una presión de entrega de 7 a 8 bar, el cual cumpliría con la demanda de la planta; ya que en el mercado no

existen compresores que tengan en su capacidad nominal 375 cfm, se recomienda un compresor de 428 cfm con presión máxima de 8 bar, preferiblemente que sea un compresor controlado con variador de frecuencia para hacer un consumo menor de potencia. Por otro lado, los compresores actualmente instalados y en operación, pueden pasar a hacer función de backup, para cuando sea necesario retirar de servicio al compresor nuevo por mantenimiento u otro tipo de circunstancia.

Al tener en *backup* a los compresores de agua se debe tomar en cuenta que periódicamente se deben encender por lo menos durante 5 min para evitar averías en el funcionamiento, así como incrustaciones y corrosiones debido al estado de reposo del agua que utiliza para enfriamiento.

3.7.1. Ventajas

El utilizar un compresor enfriado por aire, reduce significativamente los costos de generación de aire comprimido de la situación actual, ya que este no requiere de agua para enfriarse durante la operación, evitando así gastos en el mantenimiento de los equipos que proveen el agua para dicho fin.

El hecho de adquirir un compresor de tecnología reciente y acorde a las necesidades de aire comprimido de la planta, hace que aumente la eficiencia en la producción de este fluido vital para la operación de la planta, menos kW por cada cfm producido.

Debido a que el compresor fue seleccionado a base de los estudios realizados a la configuración actual, los compresores actuales fueron modificados para funcionar a una presión que no es parte del diseño por lo cual esta modificación reduce la eficiencia de los mismos.

3.7.2. Desventajas

Una fuerte inversión en la compra del compresor y los equipos que este requiere para la red de aire comprimido.

Inversión, en adecuar y/o hacer un área correcta para el montaje de este compresor, para que así funcione de una manera óptima.

3.8. Consumo de energía

En base a las lecturas hechas en el período de investigación se hizo una simulación con las características de los compresores recomendados. Con la ayuda de Microsoft Excel y de fórmulas utilizadas durante el estudio de los compresores (ver Tabla XV), para así facilitar la toma de decisiones.

Tabla XV. Cuadro comparativo de compresores

UNIDAD	CANTIDAD							
\$/kWh	0,15	CUADRO COMPARATIVO						
\$/m3	0,40	CUADRO COMPARATIVO						
\$/litro	Incluido en mant.							
	ESS-18	ES-75-4-EWNA	CSD 122	DSD 100	S100-2			
	TAMROTOR	TAMROTOR	KAESER	KAESER	BOGE			
cfm	330,00	330,00	330,00	330,00	330,00			
	TAMROTOR	TAMROTOR	-	-	-			
	Enfriado por aceite	Enfriado por aceite	Enfriado por aceite	Enfriado por aceite	Enfriado por aceite			
	2,00	2,00	1,00	1,00	1,00			
	Agua	Agua	Aire	Aire	Aire			
	Sí	Sí	-	-	-			
Bar	8,00	8,00	8,00	8,00	8,00			
m3/min	2,90	12,00	12,00	12,40	12,10			
kW	18,50	75,00	75,00	75,00	75,00			
%	102,00	102,00	105,00	105,00	102,00			
kW	18,87	76,50	78,75	78,75	76,50			
%	92,00	92,00	94,40	94,40	94,40			
kW	0,70	2,00	2,00	2,20	2,20			
%	88,00	88,00	88,00	88,00	88,00			
kW	21,30	85,42	85,69	85,92	83,53			
kw/m3/min	0	0,23	0,18	0,18	0,18			
kW	4,50	18,20	17,00	17,00	16,00			
%	88,00	89,00	90,00	91,00	90,00			
kW	5,11	20,44	18,88	18,68	17,77			
m3/h	-	61 946,95	0	0	0			
L	-	-	-	-	-			
h	0	5 548,00	5 548,00	5 548,00	5 548,00			
h	0	3 212,00	3 212,00	3 212,00	3 212,00			
h	8 760,00	-	-	-	-			
USD	0	0	60 000,00	60 000,00	60 000,00			
USD	-	Incluido mantenimiento	Incluido mantenimiento	Incluido mantenimiento	Incluido mantenimiento			
USD	-	284,50	280,00	280,00	280,00			
USD	0	24 778,78	0	0	0			
USD	0	66 718,59	52 189,77	51 392,11	52 417,68			
USD	0	10 220,36	9 440,42	9 336,68	8 885,10			
USD	0	102 002,00	61 910,00	61 009,00	61 583,00			
Dif. Con	agua de enfriamiento		40 092,00	40 993,00	40 419,00			
	Agua de enfriamiento	77 223,45	61 910,20	61 008,80	61 582,78			
Dif. Sin	agua de enfriamiento		15 313,25	16 214,65	15 640,67			

3.9. Análisis financiero

Ya que el proyecto requiere un inversión inicial, en la compra del compresor que se seleccione, para este análisis se tomó como base el caso del compresor que genera más ahorro el cual tiene un costo en el consumo de energía eléctrica de 66 868,62 USD, como se puede observar en la tabla XV la cual tiene diferentes casos de compresores en comparación.

Al proyecto se le da un tiempo de vida de diez años, para el cual en consulta con el Banco Central de Guatemala se obtuvo el dato de una taza de inflación del 4,5 %, debido a que Duke Energy Guatemala, tiene la capacidad de comprar el equipo, no se ha definido un porcentaje del valor en deuda.

Tabla XVI. **Análisis financiero**

Análisis Financiero		
Parámetros financieros		
Tasa de inflación	%	4,5%
Tiempo de vida del proyecto	año	10
Costos iniciales		
Mediciones de eficiencia energética	\$	60 000
Costos iniciales totales	\$	60 000
Costos anuales/pagos de deuda		
Costo de O y M (ahorros)	\$	-30
Costo de combustible - caso propuesto	\$	66 798
Costos anuales totales	\$	66 768
Ahorros y renta anuales		
Costo de combustible - caso base	\$	78 217
Costo de agua de enfriamiento	\$	24 779
Total renta y ahorros anuales	\$	102 996
Viabilidad financiera		
TIR antes - impuestos – activos	%	67,0%
Pago simple de retorno del capital	año	1,7
Repago – capital	año	1,6

Con la ayuda del programa RETScreen 4, se realizó el análisis financiero del proyecto, ingresando los datos obtenidos del estudio, y los datos de costos de la inversión, da como resultado la tabla XVI y la figura 13.

El flujo de caja es el siguiente para un tiempo de vida del proyecto de diez años.

Tabla XVII. Flujo de caja

Flujos	de caja anuales		
Año	Antes- impuestos	Después- impuestos	Acumulado
#	\$	\$	\$
0	-60 000	-60 000	-60 000
1	37 691	37 691	-22 309
2	39 152	39 152	16 843
3	40 673	40 673	57 516
4	42 256	42 256	99 771
5	43 904	43 904	143 675
6	45 620	45 620	189 295
7	47 406	47 406	236 701
8	49 267	49 267	285 968
9	51 204	51 204	337 172
10	53 221	53 221	390 393

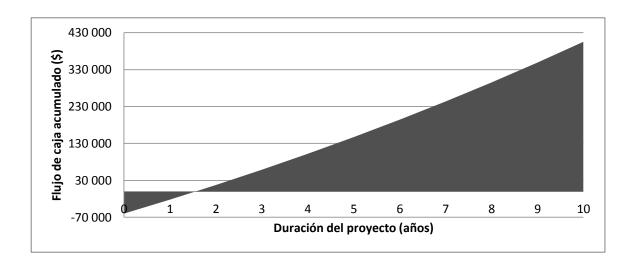


Figura 13. Flujo de caja acumulado

Fuente: elaboración propia, con base en datos obtenidos en Duke Energy.

Con los datos procesados en RETScreen, se obtiene resultados favorables para el proyecto, como se puede apreciar en la figura 13 y en la tabla XVII el proyecto tendría un repago capital de 1,6 años y con una tasa interna de retorno (TIR) de un 67 %. Para el TIR se asume que si este está por encima del 18 % de los cuales 8 % es de riesgo que requiere un banco para un proyecto y sumando un 10 % de riesgo para la empresa, el proyecto se considera viable para la empresa Duke Energy Guatemala.

Tabla XVIII. Reducción de gases de efecto invernadero

sumen de reducción de isiones GEI					
Proyecto de	Caso base emisiones de GEI tCO2	Caso propuesto emisiones GEI tCO2		Reducción anual bruta de emisiones GEI tCO2	Reducción de emisiones GEI anual neta tCO2
medición de la eficiencia energética	149,2	134,7		14,5	14,5
Reducción de emisiones GEI anual neta	14,5	tCO2	33,7	Equivalentes a Ba	

Fuente: datos procesados con RETScreen.

Con el caso base, se generan actualmente 149,2 toneladas de CO2 anuales, con los datos teóricos del caso propuesto se hace una reducción de 14,5 toneladas de CO2 anuales lo cual significa que 33,7 barriles de petróleo no serán consumidos anualmente desde a aplicación del proyecto.

CONCLUSIONES

- Duke Energy es una empresa líder en la generación de energía en la región centroamericana, que está siempre en busca de la mejora y operación eficiente de los procesos.
- El evaluar un sistema de aire comprimido, es de vital importancia ya que en la mayoría de las empresas no se le presta atención a este y con la mejora se pueden producir beneficios económicos para la empresa.
- La creación de un perfil de demanda de aire comprimido es importante ya que con este se tiene una base con la cual detectar si existen o no fugas y gastos innecesarios de aire comprimido.
- 4. La inversión en equipo nuevo para aire comprimido es fuerte, pero los ahorros que genera la mejora del sistema justifican la inversión, y afecta directamente la calidad en la operación de la planta.
- 5. Un proyecto de este tipo, no solo es de beneficio para Duke Energy, este proyecto puede ser aplicado en otro tipo de empresas, ya que el aire comprimido es necesario para casi todas las aplicaciones antes expuestas. Si todas las empresas evaluaran el sistema, ahorrarían recursos valiosos y cada kW ahorrado minimiza la contaminación que se libera al ambiente.

RECOMENDACIONES

Al gerente de mantenimiento

- Concientizar al personal sobre el uso adecuado del aire comprimido, para que informen sobre fugas y el no malgastar este recurso debido al costo que implica para la empresa.
- Utilizar aire comprimido solo si con ello se aumenta la seguridad de operación para el personal, si se logra la reducción de mano de obra o se aumente la producción.

Al personal de mantenimiento

- 3. Utilizar motores eléctricos eficientes para herramientas y actuadores en los casos que sean imprescindibles.
- 4. Utilizar sopladores eléctricos en lugar de aire comprimido para soplar, agitar, limpiar partes o remover residuos ya que con esto se reduce el consumo de aire comprimido y por lo tanto se reduce el costo del mismo.
- 5. Realizar inspecciones periódicas e informar sobre deficiencias o problemas en los secadores de aire, ya que la humedad en el sistema provoca problemas de corrosión en herramientas, actuadores y líneas de transmisión, lo cual lleva a fugas y gastos innecesarios.

BIBLIOGRAFÍA

- BUENACHE VEGA. Alejandro Jesús. Tecnología neumática, teoría, diseño y simulación de componentes y circuitos para la docencia interactiva vía web. Universidad Carlos III de Madrid: Escuela politécnica superior, Departamento de Ingeniería Mecánica, 2010. 280 p.
- CARDONA, Marcela. Aire comprimido [en línea]. Escuela de Ingeniería de Antioquia.
 http://fluidos.eia.edu.co/hidraulica/articuloses/maquinashidraulicas/comprimido/comprimido.htm [Consulta: enero 2013].
- 3. Duke Planta Arizona. *Manuales OEM, mecánica y proceso, Sistema de aire Comprimido.* Wärtsila. 1995. 450 p.
- 4. Kaeser Compresores. *Seminario de aire comprimido Guatemala:* KAESER 2012. 152 p.
- RESNICK, Robert; HALLIDAY, David; KRANE, Kenneth S. Física. 4a.
 ed. Vol. 1 México: Continental, 2002. 566 p.
- 6. WIDMAN, Richard: LINARES, Omar. Compresores Su Funcionamiento y Mantenimiento [en línea]. Widman International SLR. 1 n° abril 2008 56. http://widman.biz/boletines informativos/56.pdf [Consulta: noviembre 2012].

APÉNDICES

Tabla I. Datos de presión del sistema (psi)

hora	Lunes	Martes	Miercoles	Jueves	Viernes	Sabado	Domingo
0:00	101,2	100,2	101,2	101,2	98,1	101,2	101,2
0:05	101,4	100,8	101	102	98,2	101,8	101,8
0:10	100,8	100,9	100,8	100,8	98,7	100,8	100,8
0:15	101,2	101,2	101,2	101,2	98,4	101,2	101,2
0:20	101,15	101,15	101,15	101,15	98,35	101,15	101,15
0:25	101,17	101,2	101	101,12	98,4	100,2	101,12
0:30	100,9	101,2	100,9	101,2	98,1	100,8	100,9
0:35	101,9	100,9	101,9	101,9	98,45	100,9	101,9
0:40	102,5	100,2	101,3	102	98,12	101,2	101,1
0:45	101,7	100,17	101,7	101,7	98	101,15	100,2
0:50	101,4	100,95	100,2	101,4	98,1	101,2	100,8
0:55	101,6	100,26	100,8	101,6	98,4	101,2	100,9
1:00	101,8	100,82	100,9	101,8	98	100,9	101,2
1:05	101,7	101,2	101,2	101,7	98,12	100,2	101,15
1:10	101,9	101,12	101,15	101,9	98,12	101,9	101,2
1:15	101,5	101,5	101,2	101,5	98,45	101,5	101,2
1:20	101,4	101,4	101,2	101,4	98,4	101,4	100,9
1:25	101,5	101,5	100,9	101,5	98,1	101,5	100,2
1:30	101,2	101,2	100,2	101,2	98,2	101,2	101,2
1:35	101,4	101,4	101,4	101,4	98,7	101,4	101,4
1:40	100,8	101,2	100,8	102	98,4	100,8	101,4
1:45	100,5	101,2	100,5	102,3	98,35	100,5	101,1
1:50	100,2	100,8	102,2	100,8	98,4	102,1	100,8
1:55	100,8	101,2	101,2	101,2	98,1	101,2	101,2
2:00	100,9	100,9	102,1	100,9	98,45	101,4	100,9
2:05	101,2	101,9	100,2	101,9	98,12	100,2	101,9
2:10	101,15	102,5	100,8	102	98	100,8	102,5
2:15	101,2	101,7	100,9	101,7	98,1	100,9	101,7
2:20	101,2	101,4	101,2	101,4	98,4	101,2	101,4

2:25	100,9	101,6	101,15	101,6	98	101,15	101,6
2:30	100,2	101,8	101,2	101,8	98,12	101,2	101,8
2:35	101,7	101,7	101,2	101,7	98,12	101,2	101,7
2:40	101,9	101,9	100,9	101,9	98,45	100,9	101,9
2:45	101,5	101,5	100,2	101,5	98,4	100,2	101,5
2:50	101,4	101,4	101,4	101,4	98,1	101,4	101,4
2:55	101,5	101,5	100,2	101,5	98,2	100,2	101,5
3:00	101,2	101,2	100,8	101,2	98,7	100,8	101,2
3:05	101,4	101,4	100,2	101,4	98,4	100,9	101,4
3:10	100,8	100,8	100,8	100,8	98,35	101,2	100,2
3:15	100,5	100,5	100,9	100,5	98,4	101,15	100,8
3:20	100,8	100,8	101,2	100,8	98,1	101,2	100,9
3:25	100,8	100,2	101,15	100,8	98,45	101,2	101,2
3:30	100,9	100,8	101,2	100,9	98,12	100,9	101,15
3:35	101,9	100,9	101,2	101,9	98	100,2	101,2
3:40	101,4	101,2	100,9	102	98,1	102,5	101,2
3:45	100,2	101,15	100,2	101,7	98,4	101,7	100,9
3:50	100,8	101,2	101,4	101,4	98	101,4	100,2
3:55	100,9	101,2	101,6	101,6	98,12	101,6	101,6
4:00	101,2	100,9	101,8	101,8	98,12	101,8	101,8
4:05	101,15	100,2	101,7	101,7	98,45	101,7	101,7
4:10	101,2	101,9	101,9	101,9	98,4	101,9	101,9
4:15	101,2	101,5	101,5	101,5	98,1	101,5	101,5
4:20	100,9	101,4	101,4	101,4	98,2	101,4	101,4
4:25	100,2	101,5	101,5	101,5	98,7	100,2	101,5
4:30	101,2	101,2	101,2	101,2	98,4	100,8	101,2
4:35	101,4	101,4	101,4	101,4	98,35	100,9	101,4
4:40	101,2	101,2	101,2	100,2	98,4	101,2	101,2
4:45	100,5	100,5	100,5	100,8	98,1	101,15	100,5
4:50	101,2	101,2	101,2	100,9	98,45	101,2	101,2
4:55	101	101,3	101,4	101,2	98,12	101,2	101,2
5:00	100,9	100,9	100,9	101,15	98	100,9	100,9
5:05	101,8	101,9	101,7	101,2	98,1	100,2	101,9

5:10	102	102,5	101	101,2	98,4	101,8	102,5
5:15	101,7	101,7	101,7	100,9	98	101,7	101,7
5:20	101,4	101,4	101,4	100,2	98,12	101,4	101,4
5:25	101,6	101,6	101,6	101,6	98,12	101,6	101,6
5:30	101,8	101,8	100,2	101,8	98,45	101,8	101,8
5:35	101,7	101,7	100,8	101,7	98,4	101,7	101,7
5:40	101,9	101,9	100,9	101,9	98,1	101,9	101,9
5:45	100,2	101,5	101,2	101,5	98,2	101,5	101,5
5:50	100,8	101,4	101,15	101,4	98,7	101,4	101,4
5:55	100,9	101,5	101,2	101,5	98,4	101,5	101,5
6:00	101,2	101,2	101,2	100,2	98,35	101,2	101,2
6:05	101,15	101,4	100,9	100,8	98,4	101,4	101,4
6:10	101,2	100,8	100,2	100,9	98,1	100,8	100,8
6:15	101,2	101,1	101,1	101,2	98,45	101,1	101,1
6:20	100,9	101,2	101,2	101,15	98,12	100,2	101,2
6:25	100,2	101,1	101,1	101,2	98	100,8	101,1
6:30	100,9	100,9	100,9	101,2	98,1	100,9	100,9
6:35	101,8	101,9	101,7	101,2	98,1	100,2	101,9
6:40	102	102,5	101	101,2	98,4	101,8	102,5
6:45	101,7	101,7	101,7	101,7	98,12	101,2	101,7
6:50	101,4	101,4	101,4	101,4	98,12	101,2	101,4
6:55	101,6	101,6	101,6	101,6	98,45	100,9	101,6
7:00	101,8	101,8	101,8	101,8	98,4	100,2	101,8
7:05	101,7	101,7	101,7	101,7	98,1	101,7	101,7
7:10	101,9	101,9	101,9	101,9	98,2	101,9	101,9
7:15	101,5	101,5	101,5	101,5	98,7	101,5	100,2
7:20	101,4	101,4	101,4	101,4	98,4	101,4	100,8
7:25	101,5	101,5	101,5	101,5	98,35	101,5	100,9
7:30	100,2	101,2	101,2	101,2	98,4	101,2	101,2
7:35	100,8	101,4	101,4	101,4	98,1	101,4	101,15
7:40	100,9	100,8	100,8	100,8	98,45	100,8	101,2
7:45	101,2	101,2	100,2	101,2	98,12	101,2	101,2
7:50	101,15	101,1	100,8	101,12	98,1	101,12	100,9
7:55	101,2	101,01	100,9	101,01	98,2	101,01	100,2

8:00	101,2	100,9	101,2	100,9	98,7	100,9	100,9
8:05	100,9	101,9	101,15	101,3	98,4	101,9	101,5
8:10	100,2	102	101,2	102,1	98,35	102,3	102,7
8:15	101,7	101,7	101,2	101,7	98,4	101,7	101,7
8:20	101,4	101,4	100,9	101,4	98,1	101,4	101,4
8:25	101,6	101,6	100,2	101,6	98,45	101,6	101,6
8:30	101,8	101,8	101,8	101,8	98,12	101,8	101,8
8:35	101,7	101,7	101,7	101,7	98	101,7	101,7
8:40	101,9	101,9	101,9	101,9	98,1	101,9	101,9
8:45	101,5	101,5	101,5	101,5	98,4	101,5	101,5
8:50	101,4	101,4	101,4	101,4	102,3	101,4	101,4
8:55	101,5	101,5	101,5	101,5	101	101,5	101,5
9:00	101,2	101,2	101,2	100,2	101,1	101,2	101,2
9:05	101,4	101,4	101,4	100,8	101,4	101,4	101,4
9:10	100,8	100,2	100,8	100,9	101,5	100,8	100,8
9:15	101,3	100,8	101,3	101,2	101,3	101,3	101,3
9:20	101	100,9	101,9	101,15	101,9	101,9	101,9
9:25	101,02	101,2	101,02	101,2	101,02	101,02	101,02
9:30	100,9	101,15	100,9	101,2	100,9	100,9	100,9
9:35	101,3	101,2	101,8	100,9	101,2	100,2	101,9
9:40	102,5	101,2	102,3	100,2	102,8	100,8	102,2
9:45	101,7	100,9	101,7	101,7	101,7	100,9	101,7
9:50	101,4	100,2	101,4	101,4	101,4	101,2	100,2
9:55	101,6	100,2	101,6	101,6	101,6	101,15	100,8
10:00	101,8	100,8	101,8	101,8	101,8	101,2	100,9
10:05	101,7	100,9	101,7	101,7	101,7	101,2	101,2
10:10	101,9	101,2	101,9	101,9	101,9	100,9	101,15
10:15	101,5	101,15	101,5	101,5	101,5	100,2	101,2
10:20	101,4	101,2	101,4	101,4	101,4	101,4	100,2
10:25	101,5	101,2	100,2	101,5	101,5	101,5	100,8
10:30	101,2	100,9	100,8	101,2	100,2	101,2	100,9
10:35	101,4	100,2	100,9	101,4	100,8	101,4	101,2
10:40	100,8	100,8	101,2	100,8	100,9	100,8	101,15
10:45	101,1	101,1	101,15	101,1	101,2	101,1	101,2
10:50	100,8	100,8	101,2	100,8	101,15	100,8	101,2
10:55	100,2	100,05	101,2	100,05	101,2	100,05	100,9

11:00	100,8	100,9	100,9	100,9	101,2	100,9	100,2
11:05	100,9	101,7	100,2	101,8	100,9	101,9	101,2
11:10	101,2	102,3	100,9	102,1	100,2	102,5	102
11:15	101,15	101,7	100,2	101,7	101,7	101,7	101,7
11:20	101,2	101,4	101,4	101,4	101,4	101,4	101,4
11:25	101,2	101,6	101,6	101,6	101,6	101,6	101,6
11:30	100,9	101,8	101,8	101,8	101,8	101,8	101,8
11:35	100,2	101,7	101,7	101,7	101,7	101,7	101,7
11:40	101,9	101,9	101,9	101,9	101,9	101,9	101,9
11:45	101,5	101,5	101,5	101,5	101,5	101,5	101,5
11:50	101,4	101,4	101,4	101,4	101,4	101,4	101,4
11:55	101,5	101,5	101,5	101,5	101,5	101,5	101,5
12:00	101,7	101,7	101,7	101,7	101,7	101,7	101,7
12:05	101,9	101,9	101,9	101,9	101,9	101,9	101,9
12:10	101,5	100,2	101,5	101,5	101,5	101,5	101,5
12:15	101,4	100,8	101,4	101,4	101,4	101,4	101,4
12:20	101,5	100,9	101,5	101,5	101,5	101,5	101,5
12:25	101,2	101,2	101,2	101,2	101,2	101,2	101,2
12:30	101,4	101,15	101,4	101,4	101,4	101,4	101,4
12:35	100,8	101,2	100,8	100,8	100,8	100,8	100,8
12:40	101,1	101,2	101,1	101,1	101,1	101,1	101,1
12:45	100,8	100,9	100,8	100,8	100,8	100,8	100,8
12:50	100	100,2	101,9	101,2	101,9	101,5	101,9
12:55	100,9	100,9	100,9	100,9	100,9	100,9	100,9
13:00	101,8	101,5	101,3	101,5	101,8	101,2	101,5
13:05	102,3	102,1	102	102,5	102,3	102	102,4
13:10	101,7	101,7	101,7	100,2	101,7	101,7	101,7
13:15	101,4	101,4	101,4	100,8	101,4	101,4	101,4
13:20	101,6	101,6	101,6	100,9	101,6		101,6
13:25	101,8	101,8	101,8	101,2	101,8	101,8	101,8
13:30	101,7	101,7	101,7	101,15	101,7	101,7	101,7
13:35	101,9	101,9	101,9	101,2	101,9	101,9	100,2
13:40	101,5	101,5	101,5	101,2	101,5	101,5	100,8
13:45	101,4	101,4	101,4	100,9	101,4	101,4	100,9
13:50	101,5	101,5	101,5	100,2	101,5	101,5	101,2
13:55	101,2	101,2	101,2	101,2	101,2	101,2	101,15

14:00	101,4	101,4	101,4	101,4	101,4	101,4	101,2
14:05	100,8	100,8	100,8	100,8	100,8	100,8	101,2
14:10	101,2	101,2	101,2	101,2	101,2	101,2	100,9
14:15	100,8	100,8	100,8	100,8	100,8	100,8	100,2
14:20	100,2	100,2	100,2	100,2	100,2	100,2	100,2
14:25	100,9	100,9	100,9	100,9	100,9	100,9	100,9
14:30	101,6	101,7	101,2	101	101,9	101,2	101,9
14:35	102,5	102,3	102	102,7	102,2	102,6	102,1
14:40	101,7	101,7	101,7	101,7	101,7	101,7	101,7
14:45	101,4	101,4	101,4	101,4	101,4	101,4	101,4
14:50	101,6	101,6	101,6	101,6	101,6	101,6	101,6
14:55	101,8	100,2	101,8	101,8	101,8	101,8	101,8
15:00	101,7	100,8	101,7	101,7	101,7	101,7	101,7
15:05	101,9	100,9	101,9	101,9	101,9	101,9	101,9
15:10	101,5	101,2	101,5	101,5	101,5	101,5	101,5
15:15	101,4	101,15	101,4	101,4	101,4	101,4	101,4
15:20	101,5	101,2	101,5	101,5	101,5	101,5	101,5
15:25	101,7	101,2	101,7	101,7	101,7	101,7	101,7
15:30	101,9	100,9	101,9	101,9	101,9	101,9	101,9
15:35	101,5	100,2	101,5	101,5	101,5	101,5	101,5
15:40	101,4	101,4	101,4	101,4	101,4	101,4	101,4
15:45	101,5	101,5	101,5	101,5	101,5	101,5	101,5
15:50	101,2	101,2	101,2	101,2	101,2	100,2	101,2
15:55	101,4	101,4	101,4	101,4	101,4	100,8	101,4
16:00	100,8	100,8	100,8	100,8	100,8	100,9	100,8
16:05	101,4	101,4	101,4	101,4	101,4	101,2	101,4
16:10	100,8	100,8	100,8	100,8	100,8	101,15	100,8
16:15	101,1	101,1	101,1	101,1	101,1	101,2	101,1
16:20	100,9	100,9	100,9	100,9	100,9	101,2	100,9
16:25	101	101,2	101,8	101,9	101,2	100,9	101,9
16:30	102,5	102,2	102,8	102,1	102,7	100,2	102,5
16:35	101,7	101,7	101,7	101,7	101,7	101,7	101,7
16:40	101,4	101,4	101,4	101,4	101,4	101,4	101,4
16:45	101,6	101,6	101,6	101,6	101,6	101,6	101,6
16:50	101,8	101,8	101,8	101,8	101,8	101,8	101,8
16:55	101,7	101,7	101,7	101,7	101,7	101,7	101,7

17:00	101,9	101,9	101,9	100,2	101,9	101,9	101,9
17:05	101,5	101,5	101,5	100,8	101,5	101,5	101,5
17:10	101,4	101,4	101,4	100,9	101,4	101,4	101,4
17:15	101,5	101,5	101,5	101,2	101,5	101,5	101,5
17:20	101,2	101,2	101,2	101,15	101,2	101,2	101,2
17:25	101,4	101,4	101,4	101,2	101,4	101,4	101,4
17:30	100,8	100,8	100,8	101,2	100,8	100,8	100,8
17:35	100	101,5	101,5	100,9	101,5	101,5	101,5
17:40	101,1	101,9	100,2	100,2	101,9	101,9	101,9
17:45	100	101,5	100,8	101,5	101,5	100,2	101,5
17:50	100,9	100,9	100,9	100,9	100,9	100,8	100,9
17:55	101,9	101,9	101,2	100,2	101,9	100,9	101,9
18:00	102,5	100,2	101,15	100,8	102,5	101,2	102,5
18:05	101,7	100,8	101,2	100,9	101,7	101,15	101,7
18:10	101,4	100,9	101,2	101,2	101,4	101,2	101,4
18:15	101,6	101,2	100,9	101,15	101,6	101,2	101,6
18:20	101,8	101,15	100,2	101,2	101,8	100,9	101,8
18:25	101,7	101,2	100,2	101,2	101,7	100,2	101,7
18:30	101,9	101,2	100,8	100,9	101,9	101,9	101,9
18:35	101,5	100,9	100,9	100,2	101,5	101,5	101,5
18:40	101,4	100,2	101,2	101,4	101,4	101,4	101,4
18:45	101,5	101,5	101,15	101,5	101,5	101,5	101,5
18:50	101,7	101,7	101,2	101,7	101,7	101,7	101,7
18:55	101,9	101,9	101,2	101,9	101,9	101,9	101,9
19:00	101,5	101,5	100,9	101,5	101,5	101,5	101,5
19:05	101,4	101,4	100,2	101,4	101,4	101,4	101,4
19:10	101,5	101,5	101,5	101,5	101,5	101,5	101,5
19:15	101,2	101,2	101,2	101,2	101,2	101,2	101,2
19:20	101,4	101,4	101,4	101,4	101,4	101,4	101,4
19:25	100,8	100,8	100,8	100,8	100,8	100,8	100,8
19:30	101,12	101,12	101,12	101,12	101,12	101,12	101,12
19:35	101	101,5	101,5	101,5	101,5	101,5	101,5
19:40	100	101,5	101,5	101,5	101,5	101,5	101,5
19:45	100,9	100,9	100,9	100,9	100,9	100,9	100,9
19:50	101,5	100,9	100,9	100,2	101,5	101,5	101,5
19:55	101,4	100,2	101,2	101,4	101,4	101,4	101,4

20:00	101,7	100,8	101,7	101,7	101,7	101,7	101,7
20:05	100,5	100,9	100,5	100,5	100,5	100,5	100,5
20:10	101,6	101,2	100,2	101,6	101,6	101,6	101,6
20:15	101,8	101,15	100,8	101,8	101,8	101,8	101,8
20:20	101,7	101,2	100,9	101,7	101,7	101,7	101,7
20:25	101,9	101,2	101,2	101,9	101,9	101,9	101,9
20:30	101,5	100,9	101,15	101,5	101,5	101,5	101,5
20:35	101,4	100,2	101,2	101,4	101,4	101,4	101,4
20:40	101,5	101,5	101,2	101,5	101,5	101,5	101,5
20:45	101,2	101,2	100,9	101,2	101,2	101,2	101,2
20:50	101,4	101,4	100,2	101,4	101,4	101,4	101,4
20:55	101,5	101,5	101,5	100,2	101,5	101,5	101,5
21:00	101,5	101,5	101,5	100,8	101,5	101,5	101,5
21:05	100,8	100,8	100,8	100,9	100,8	100,2	100,8
21:10	100,2	100,2	100,2	101,2	100,2	100,8	100,2
21:15	100,9	100,9	100,9	101,15	100,9	100,9	100,9
21:20	101,5	100,9	100,9	100,2	101,5	101,5	101,5
21:25	101,4	100,2	101,2	101,4	101,4	101,4	101,4
21:30	101,7	101,7	101,7	100,9	101,7	101,2	101,7
21:35	101,4	101,4	101,4	100,2	101,4	101,2	100,2
21:40	101,6	101,6	101,6	101,6	101,6	100,9	100,8
21:45	101,8	101,8	101,8	101,8	101,8	100,2	100,9
21:50	101,7	101,7	101,7	101,7	101,7	100,9	101,2
21:55	100,2	101,2	101,2	101,2	101,2	100,2	101,15
22:00	100,8	101,5	101,5	101,5	101,5	101,5	101,2
22:05	100,9	101,4	101,4	101,4	101,4	101,4	101,2
22:10	101,2	101,5	101,5	101,5	101,5	101,5	100,9
22:15	101,15	101,7	101,7	101,7	101,7	101,7	100,2
22:20	101,2	101,9	101,9	101,9	97	101,9	101,9
22:25	101,2	101,5	101,5	101,5	98	101,5	101,5
22:30	100,9	101,4	101,4	101,4	96	101,4	101,4
22:35	100,2	101,5	101,5	101,5	98	101,5	101,5
22:40	101,2	101,2	101,2	101,2	97	101,2	101,2
22:45	101,4	101,4	101,4	101,4	96	101,4	101,4
22:50	100,8	100,8	100,8	100,8	94	100,8	100,8
22:55	100,5	100,5	100,5	100,5	96	100,5	100,5

23:00	100,8	100,8	100,8	100,8	97	100,8	100,8
23:05	100,2	100,2	100,2	100,2	94	100,2	100,2
	•		•				
23:10	100,9	100,9	100,9	100,9	100,9	100,9	100,9
23:15	101,5	100,9	100,9	100,2	101,5	101,5	101,5
23:20	101,4	100,2	101,2	101,4	101,4	101,4	101,4
23:25	101,12	101,12	101,12	101,12	101,12	101,12	101,12
23:30	101,4	101,4	101,4	101,4	101,4	101,4	101,4
23:35	101,6	101,6	101,6	101,6	101,6	101,6	101,6
23:40	101,132	101,5	101,5	101,5	101,5	101,5	101,5
23:45	101,7	101,7	101,7	101,7	101,7	101,7	101,7
23:50	101,2	101,2	101,2	101,2	101,2	101,2	101,2
23:55	101,5	101,5	101,5	101,5	101,5	101,5	101,5
Prom día	101,2882	101,2417	101,2269	101,304	100,0938	101,2644	101,336
Prom semanal	101,1079						

Tabla II. Datos entrega compresor 1 (cfm)

hora	Lunes	Martes	Miercoles	Jueves	Viernes	Sabado	Domingo
0:00	329	331	329	329	0	329	329
0:05	331	329	331	331	0	331	331
0:10	332	333	333	332	0	332	332
0:15	334	331	328	334	0	334	334
0:20	330	332	332	330	0	330	330
0:25	332	331	332	332	0	332	332
0:30	335	334	331	335	0	335	335
0:35	331	333	335	331	0	331	331
0:40	329	328	332	329	0	329	329
0:45	331	332	333	331	0	332	332
0:50	334	332	336	334	0	334	334
0:55	336	331	331	336	0	330	330
1:00	330	335	328	330	0	332	332
1:05	331	332	336	331	0	335	335
1:10	331	333	332	331	0	331	330

1:10	331	333	332	331	0	331	330
1:15	332	336	328	332	0	329	336
1:20	328	331	332	328	0	331	335
1:25	331	328	332	331	0	334	325
1:30	336	336	331	336	0	336	336
1:35	331	332	335	331	0	330	331
1:40	336	334	332	336	0	336	330
1:45	335	336	333	335	0	335	336
1:50	325	329	325	325	0	325	334
1:55	336	332	336	336	0	336	330
2:00	331	334	331	331	0	331	331
2:05	330	333	330	330	0	330	336
2:10	336	332	336	336	0	336	334
2:15	334	336	334	334	0	334	332
2:20	330	336	330	330	0	330	331
2:25	331	330	331	331	0	331	331
2:30	336	331	336	336	0	336	336
2:35	334	331	334	334	0	334	334
2:40	332	332	332	332	0	332	330
2:45	331	328	331	331	0	331	336
2:50	330	331	330	330	0	330	335
2:55	329	336	329	329	0	330	325
3:00	328	331	328	328	0	336	336
3:05	331	336	332	331	0	335	331
3:10	335	335	332	335	0	325	330
3:15	331	325	331	331	0	336	336
3:20	333	336	335	333	0	331	334
3:25	336	331	332	336	0	330	330
3:30	334	330	333	334	0	336	331
3:35	331	336	331	331	0	334	336
3:40	335	334	335	335	0	330	334
3:45	332	332	332	332	0	331	332
3:50	332	332	332	332	0	336	331
3:55	331	331	331	331	0	334	331
4:00	334	334	328	334	0	332	334
4:05	335	335	332	335	0	331	335

4:10	336	336	332	336	0	336	336
4:15	332	332	331	332	0	332	332
4:20	334	334	335	334	0	334	330
4:25	329	329	332	329	0	329	336
4:30	330	330	333	330	0	330	335
4:35	328	328	328	328	0	328	325
4:40	331	331	331	331	0	331	336
4:45	335	335	335	335	0	335	331
4:50	330	330	330	330	0	330	330
4:55	332	332	332	332	0	332	336
5:00	333	333	333	333	0	333	334
5:05	336	336	328	336	0	336	330
5:10	337	330	332	337	0	337	331
5:15	331	331	332	331	0	331	330
5:20	335	331	331	335	0	335	336
5:25	330	332	335	330	0	330	335
5:30	334	328	332	334	0	334	325
5:35	335	331	333	335	0	335	336
5:40	330	336	330	330	0	330	331
5:45	335	331	335	335	0	335	330
5:50	333	336	333	333	0	333	336
5:55	332	335	332	332	0	332	334
6:00	334	325	334	334	0	334	330
6:05	335	336	335	335	0	335	331
6:10	330	331	330	330	0	330	336
6:15	328	330	328	328	0	328	334
6:20	350	336	350	350	0	350	332
6:25	325	334	325	325	0	325	331
6:30	329	325	329	329	0	329	329
6:35	330	331	330	330	0	330	330
6:40	328	333	328	328	0	336	330
6:45	329	334	329	329	0	335	336
6:50	330	335	330	330	0	325	335
6:55	332	336	332	332	0	336	325
7:00	330	331	328	330	0	331	336
7:05	335	330	332	335	0	330	331

7:10	330	331	332	330	0	336	330
7:15	335	328	331	335	0	334	336
7:20	330	329	335	330	0	330	334
7:25	334	327	332	334	0	331	330
7:30	332	328	333	332	0	336	331
7:35	331	331	331	331	0	334	336
7:40	330	329	329	330	0	332	334
7:45	332	328	327	332	0	331	332
7:50	335	331	328	335	0	335	331
7:55	334	332	329	334	0	334	334
8:00	336	328	327	336	0	336	336
8:05	331	329	328	331	0	331	331
8:10	332	327	331	332	0	332	332
8:15	331	330	329	331	0	331	331
8:20	334	332	328	334	0	394	334
8:25	332	328	331	380	0	332	332
8:30	329	349	329	329	0	329	329
8:35	345	347	345	345	0	345	345
8:40	394	385	381	394	325	360	394
8:45	350	341	360	350	350	350	350
8:50	335	352	394	335	375	335	381
8:55	355	342	332	355	394	355	355
9:00	331	330	331	331	380	331	331
9:05	332	328	335	332	375	332	332
9:10	340	342	332	340	350	340	340
9:15	345	346	333	345	343	345	345
9:20	340	341	340	340	325	340	340
9:25	335	336	335	335	335	335	335
9:30	330	332	330	330	336	330	330
9:35	331	328	331	331	350	331	331
9:40	360	363	360	360	325	330	360
9:45	355	359	355	355	336	328	355
9:50	350	350	350	350	339	321	350
9:55	345	347	345	345	334	331	345
10:00	360	362	360	360	335	328	360
10:05	350	347	350	350	340	325	350

10:10	328	330	328	328	348	328	328
10:15	354	359	354	354	352	324	354
10:20	345	342	345	345	349	322	345
10:25	351	350	351	375	336	321	351
10:30	352	353	352	365	341	331	352
10:35	350	351	350	380	336	325	350
10:40	348	347	348	371	341	330	348
10:45	351	353	351	391	352	331	338
10:50	352	389	352	381	362	332	336
10:55	402	400	402	402	403	328	328
11:00	352	375	385	398	396	332	335
11:05	351	360	370	400	380	339	336
11:10	401	403	401	401	365	332	338
11:15	351	378	351	375	345	333	335
11:20	340	361	340	384	336	329	332
11:25	350	352	350	376	320	325	331
11:30	345	344	345	345	336	320	338
11:35	340	341	340	340	329	322	335
11:40	350	330	350	350	342	328	341
11:45	345	331	345	345	360	325	345
11:50	350	328	350	350	362	328	337
11:55	349	327	349	349	350	349	336
12:00	348	330	348	348	346	327	330
12:05	351	350	351	351	336	331	332
12:10	352	331	352	352	341	332	331
12:15	355	330	355	355	339	331	328
12:20	356	328	356	356	347	332	329
12:25	353	335	353	353	338	332	331
12:30	353	351	353	353	328	332	332
12:35	352	331	352	352	325	328	331
12:40	356	335	356	356	350	329	328
12:45	350	328	350	350	325	320	327
12:50	355	329	355	355	310	330	329
12:55	351	331	351	351	325	335	328
13:00	350	330	350	350	329	336	331
13:05	342	325	342	342	339	342	331

13:10	338	337	338	338	344	338	332
13:15	329	328	329	329	341	329	329
13:20	331	327	335	331	340	331	331
13:25	332	330	332	332	325	330	332
13:30	334	331	333	334	329	336	334
13:35	330	330	331	330	336	335	330
13:40	332	327	329	332	342	325	332
13:45	335	329	327	335	348	336	335
13:50	331	328	328	331	350	331	331
13:55	329	327	329	329	345	330	329
14:00	331	330	327	331	339	336	331
14:05	334	331	334	334	351	334	330
14:10	336	329	336	336	336	330	336
14:15	330	327	330	330	342	331	335
14:20	331	328	331	331	345	336	325
14:25	331	330	331	331	339	334	336
14:30	332	329	332	332	345	332	331
14:35	328	328	328	328	336	331	330
14:40	331	331	331	331	325	331	336
14:45	336	327	336	336	324	336	334
14:50	331	328	335	331	337	331	330
14:55	336	329	332	336	329	336	331
15:00	335	330	333	335	324	335	336
15:05	325	331	331	325	315	325	334
15:10	336	328	329	336	310	336	332
15:15	331	330	327	331	315	331	331
15:20	330	329	335	330	311	330	330
15:25	336	327	332	336	320	336	336
15:30	334	330	333	334	310	334	334
15:35	330	331	331	330	315	330	330
15:40	331	328	329	331	325	331	330
15:45	336	331	327	336	300	336	336
15:50	334	329	328	334	315	334	335
15:55	332	332	329	332	350	332	325
16:00	331	330	327	331	325	331	336
16:05	330	320	330	330	310	330	331

16:10	329	329	329	329	301	330	330
16:15	328	328	328	328	305	336	336
16:20	331	327	335	331	295	335	334
16:25	335	331	332	335	300	325	330
16:30	331	329	333	331	312	336	331
16:35	333	330	331	333	310	331	336
16:40	336	327	329	336	315	330	334
16:45	334	328	327	334	310	336	332
16:50	331	329	328	331	305	334	331
16:55	335	330	329	335	310	330	335
17:00	332	331	327	332	315	331	332
17:05	332	328	332	332	320	336	332
17:10	331	330	335	331	310	334	331
17:15	334	329	332	334	300	332	334
17:20	335	327	333	335	315	330	335
17:25	336	330	331	336	320	336	336
17:30	332	331	329	332	315	335	330
17:35	334	328	327	334	310	325	336
17:40	329	331	328	329	320	336	335
17:45	330	329	329	330	310	331	325
17:50	328	332	327	328	310	330	336
17:55	331	330	332	331	305	336	331
18:00	335	320	333	335	290	334	330
18:05	330	329	331	330	295	330	336
18:10	332	328	329	332	290	331	334
18:15	333	327	327	333	280	336	330
18:20	336	331	328	336	295	334	331
18:25	337	327	329	337	310	332	336
18:30	331	328	327	331	315	331	334
18:35	335	329	335	335	310	335	332
18:40	330	330	330	330	320	330	331
18:45	334	331	334	334	310	334	334
18:50	335	328	335	335	315	335	335
18:55	330	330	330	330	325	330	330
19:00	335	329	335	335	350	336	335
19:05	333	327	332	333	325	335	333

19:10	332	330	333	332	310	325	332
19:15	334	331	331	334	315	336	330
19:20	335	328	329	335	321	331	336
19:25	330	331	327	330	311	330	335
19:30	328	329	328	328	300	336	325
19:35	350	327	329	350	312	334	336
19:40	325	328	327	325	310	330	331
19:45	329	329	329	329	315	331	330
19:50	330	330	330	330	310	336	336
19:55	328	331	328	328	305	334	334
20:00	329	328	335	329	310	332	330
20:05	330	330	332	330	315	331	331
20:10	332	329	333	332	320	332	336
20:15	330	327	331	330	310	330	334
20:20	335	330	329	335	300	335	332
20:25	330	331	327	330	315	330	331
20:30	335	328	328	335	320	335	335
20:35	330	331	329	330	315	330	330
20:40	334	329	327	334	310	334	334
20:45	332	332	332	332	320	330	332
20:50	331	330	335	331	310	336	331
20:55	330	320	332	330	310	335	330
21:00	332	329	333	332	305	325	332
21:05	335	328	331	335	290	336	335
21:10	334	327	329	334	295	331	330
21:15	336	327	327	336	290	330	336
21:20	331	328	328	331	280	336	335
21:25	333	329	329	333	295	334	325
21:30	334	330	327	334		330	
21:35	335	331	335		315	331	331
21:40	331	328	331	331	311	336	330
21:45	329	330	335	329	320	330	336
21:50	331	329	332	331	310	336	334
21:55	332	327	333	332	315	335	330
22:00	335	330	331	335	315	325	331
22:05	331	331	335	331	320	336	336

22:10	335	328	332	335	320	331	334
22:15	330	331	333	330	0	330	332
22:20	332	329	331	332	0	330	331
22:25	333	332	329	333	0	336	333
22:30	335	330	327	335	0	335	335
22:35	336	320	335	336	0	325	336
22:40	334	329	332	334	0	336	330
22:45	331	328	333	331	0	331	336
22:50	335	327	331	335	0	330	335
22:55	336	331	329	336	0	336	325
23:00	331	329	327	331	310	335	336
23:05	332	330	328	332	315	325	331
23:10	336	327	329	336	316	336	330
23:15	331	331	327	331	318	331	336
23:20	330	330	335	330	315	330	334
23:25	328	328	332	328	322	336	330
23:30	332	327	333	332	310	334	331
23:35	336	330	331	336	300	330	336
23:40	334	328	329	334	315	331	334
23:45	331	327	327	331	320	336	332
23:50	332	329	328	332	315	334	331
23:55	331	320	329	331	310	332	331
prom dia	335,7431	333,2813	336,0801	337,1181	335,2466	333,7491	333,9479
prom semanal		335,0237					

Fuente: elaboración propia, con base en datos obtenidos en Duke Energy.

Tabla III. Consumo eléctrico compresor 1 (KW)

hora	Lunes	Martes	Miércoles	Jueves	Viernes	Sábado	Domingo
0:00	70,8	77,56	78,65	79,66	0	77,554	78,5
0:05	71	75	77,56	77,65	0	78,64	79,64
0:10	73	77,56	79,54	78	0	78,54	77,84
0:15	70,1	78,5	78,654	77,56	0	79,664	79,65
0:20	70,2	79,64	79,323	75	0	77,97	77,85

0:25	71,1	77,84	77,65	77,56	0	78,64	78,65
0:30	70,2	79,65	78,32	78,5	0	79,54	79,56
0:35	70,8	77,85	78,68	79,64	0	77,64	77,56
0:40	70,8	78,65	79,66	77,84	0	77,684	75,69
0:45	71,5	79,56	77,65	79,65	0	77,623	79,36
0:50	72,3	77,56	78	77,85	0	78,156	77,65
0:55	70,1	75,69	77,56	78,65	0	79,54	78,55
1:00	71,5	79,36	75	79,56	0	77,664	79,65
1:05	71,58	77,65	77,56	77,56	0	78,654	78,26
1:10	70,25	78,55	78,5	75,69	0	78,654	79,53
1:15	70,56	79,65	79,64	79,36	0	77,56	77,56
1:20	70,45	78,26	77,84	77,65	0	75	77,85
1:25	70,1	79,53	79,65	78,55	0	77,56	76,98
1:30	73,54	77,56	77,85	79,65	0	78,5	78,64
1:35	71,2	77,85	78,65	78,26	0	79,64	79,654
1:40	72,56	76,98	79,56	79,53	0	77,84	79,54
1:45	71,26	78,64	77,56	77,56	0	79,65	78,54
1:50	70,2	79,654	75,69	77,85	0	77,85	77,4
1:55	70,8	79,54	79,36	76,98	0	78,65	77,554
2:00	70,8	78,54	77,65	78,64	0	79,56	78,64
2:05	69,554	77,4	78,55	79,654	0	77,56	78,54
2:10	72,3	77,554	79,65	79,54	0	75,69	79,664
2:15	70,1	78,64	78,26	78,54	0	79,36	77,97
2:20	71,5	78,54	79,53	77,4	0	77,65	78,64
2:25	71,58	79,664	77,56	77,554	0	78,55	79,54
2:30	70,25	77,97	77,85	78,64	0	79,65	77,64
2:35	70,56	78,64	76,98	78,54	0	78,26	77,684
2:40	70,45	79,54	78,64	79,664	0	79,53	77,623
2:45	70,1	77,64	79,654	77,97	0	77,56	78,156
2:50	70,2	77,684	79,54	78,64	0	77,85	79,54
2:55	70,8	77,623	78,54	79,54	0	76,98	77,664
3:00	70,8	78,156	77,4	77,64	0	78,64	78,654
3:05	72,54	79,54	77,554	77,684	0	79,654	78,654
3:10	72,3	77,664	78,64	77,623	0	79,54	77,422
3:15	70,1	78,654	78,54	78,156	0	78,54	77,64
3:20	71,5	78,654	79,664	79,54	0	77,4	78,65

3:30 70,25 77,64 78,64 78,654 0 78,64 79,54 3:35 70,56 78,643 79,54 78,654 0 78,54 78,65 3:40 70,45 78,46 77,64 77,422 0 79,664 79,32 3:45 70,1 77,56 77,684 77,64 0 77,97 77,61 3:50 70,2 75 77,623 78,643 0 78,64 78,33 3:55 70,8 77,56 78,156 78,46 0 79,54 78,66 4:00 70,8 78,5 79,54 77,64 0 77,64 79,66 4:05 75,21 79,64 77,664 78,65 0 77,684 77,61 4:05 75,21 79,64 77,664 78,65 0 77,684 77,61 4:10 72,3 77,84 78,654 77,56 0 77,56 77,56 4:20 71,5								
3:35 70,56 78,643 79,54 78,654 0 78,54 78,65 3:40 70,45 78,46 77,64 77,422 0 79,664 79,32 3:45 70,1 77,56 77,684 77,64 0 77,97 77,63 3:50 70,2 75 77,623 78,643 0 78,64 78,33 3:55 70,8 77,56 78,156 78,46 0 79,54 78,63 4:00 70,8 78,5 79,54 77,64 0 77,64 79,64 4:05 75,21 79,64 77,664 78,65 0 77,684 77,64 4:10 72,3 77,84 78,654 77,56 0 77,623 78 4:10 72,3 77,84 78,654 77,56 0 77,623 78 4:10 72,3 77,85 77,422 78,654 79,54 75 4:20 71,5 77,85 <th< th=""><th>3:25</th><th>71,58</th><th>77,422</th><th>77,97</th><th>77,664</th><th>0</th><th>77,554</th><th>77,56</th></th<>	3:25	71,58	77,422	77,97	77,664	0	77,554	77,56
3:40 70,45 78,46 77,64 77,422 0 79,664 79,32 3:45 70,1 77,56 77,684 77,64 0 77,97 77,61 3:50 70,2 75 77,623 78,643 0 78,64 78,33 3:55 70,8 77,56 78,156 78,46 0 79,54 78,63 4:00 70,8 78,5 79,54 77,64 0 77,64 79,64 4:05 75,21 79,64 77,664 78,65 0 77,684 77,61 4:10 72,3 77,84 78,654 77,56 0 77,623 78 4:10 72,3 77,84 78,654 79,54 0 78,156 77,61 4:10 72,3 77,84 78,654 79,54 0 78,156 77,56 4:20 71,5 77,85 77,422 78,654 0 79,54 75 4:25 71,58	3:30	70,25	77,64	78,64	78,654	0	78,64	79,54
3:45 70,1 77,56 77,684 77,64 0 77,97 77,63 3:50 70,2 75 77,623 78,643 0 78,64 78,33 3:55 70,8 77,56 78,156 78,46 0 79,54 78,63 4:00 70,8 78,5 79,54 77,64 0 77,64 79,64 77,664 77,684 77,684 77,684 77,684 77,684 77,684 77,684 77,684 77,684 77,684 77,684 77,685 77,685 77,564 77,56 0 77,623 78 4:10 72,3 77,84 78,654 79,54 0 78,156 77,56 4:10 71,5 77,85 77,422 78,654 0 79,54 75 4:20 71,5 77,85 77,422 78,654 0 79,54 75 4:30 70,25 79,56 78,643 77,65 0 76,23 78,5	3:35	70,56	78,643	79,54	78,654	0	78,54	78,654
3:50 70,2 75 77,623 78,643 0 78,64 78,33 3:55 70,8 77,56 78,156 78,46 0 79,54 78,66 4:00 70,8 78,5 79,54 77,64 0 77,64 79,66 4:05 75,21 79,64 77,664 78,65 0 77,684 77,623 4:10 72,3 77,84 78,654 77,56 0 77,623 78 4:15 70,1 79,65 78,654 79,54 0 78,156 77,56 4:20 71,5 77,85 77,422 78,654 0 79,54 75 4:20 71,5 77,85 77,422 78,654 0 79,54 75 4:20 71,5 77,86 77,422 78,654 0 79,54 75 4:20 71,5 78,65 77,64 79,323 0 77,56 77,56 4:30 70,25 79,56<	3:40	70,45	78,46	77,64	77,422	0	79,664	79,323
3:55 70,8 77,56 78,156 78,46 0 79,54 78,66 4:00 70,8 78,5 79,54 77,64 0 77,64 79,64 4:05 75,21 79,64 77,664 78,65 0 77,684 77,69 4:10 72,3 77,84 78,654 77,56 0 77,623 78 4:15 70,1 79,65 78,654 79,54 0 78,156 77,56 4:20 71,5 77,85 77,422 78,654 0 79,54 75 4:30 70,25 79,56 78,643 77,65 0 76,23 78,55 4:30 70,25 79,56 78,643 77,65 0 76,23 78,55 4:35 70,56 77,56 78,46 78,32 0 77,56 79,64 4:40 70,45 75,69 77,64 78,68 0 78,5 77,84 4:50 70,8 7	3:45	70,1	77,56	77,684	77,64	0	77,97	77,65
4:00 70,8 78,5 79,54 77,64 0 77,64 79,64 4:05 75,21 79,64 77,664 78,65 0 77,684 77,69 4:10 72,3 77,84 78,654 77,56 0 77,623 78 4:15 70,1 79,65 78,654 79,54 0 78,156 77,56 4:20 71,5 77,85 77,422 78,654 0 79,54 75 4:30 70,25 79,56 78,643 77,65 0 76,23 78,5 4:35 70,56 77,56 78,46 78,32 0 77,56 79,66 4:40 70,45 75,69 77,64 78,68 0 78,5 77,86 4:45 70,2 79,36 78,65 79,66 0 79,64 79,65 4:50 70,8 77,65 77,56 77,65 0 77,84 77,85 5:00 70,254 79,	3:50	70,2	75	77,623	78,643	0	78,64	78,32
4:05 75,21 79,64 77,664 78,65 0 77,684 77,61 4:10 72,3 77,84 78,654 77,56 0 77,623 78 4:15 70,1 79,65 78,654 79,54 0 78,156 77,56 4:20 71,5 77,85 77,422 78,654 0 79,54 75 4:25 71,58 78,65 77,64 79,323 0 77,56 77,56 4:30 70,25 79,56 78,643 77,65 0 76,23 78,5 4:35 70,56 77,56 78,46 78,32 0 77,56 79,64 4:40 70,45 75,69 77,64 78,68 0 78,5 77,84 4:50 70,8 77,65 77,56 77,65 77,65 77,65 77,84 4:50 70,8 77,65 77,56 77,56 77,76 77,86 78,65 5:00 70,254	3:55	70,8	77,56	78,156	78,46	0	79,54	78,68
4:10 72,3 77,84 78,654 77,56 0 77,623 78 4:15 70,1 79,65 78,654 79,54 0 78,156 77,56 4:20 71,5 77,85 77,422 78,654 0 79,54 75 4:25 71,58 78,65 77,64 79,323 0 77,56 77,56 4:30 70,25 79,56 78,46 78,32 0 77,56 79,64 4:40 70,45 75,69 77,64 78,68 0 78,5 77,86 4:45 70,2 79,36 78,65 79,66 0 79,64 79,63 4:50 70,8 77,65 77,56 77,65 0 77,84 77,81 4:50 70,8 77,65 77,56 77,65 0 77,84 77,81 4:50 70,8 78,55 79,54 78 0 79,65 78,61 5:00 70,254 79,65 78,654 77,56 0 77,85 79,56 5:05 7	4:00	70,8	78,5	79,54	77,64	0	77,64	79,66
4:15 70,1 79,65 78,654 79,54 0 78,156 77,56 4:20 71,5 77,85 77,422 78,654 0 79,54 75 4:25 71,58 78,65 77,64 79,323 0 77,56 77,56 4:30 70,25 79,56 78,643 77,65 0 76,23 78,5 4:35 70,56 77,56 78,46 78,32 0 77,56 79,66 4:40 70,45 75,69 77,64 78,68 0 78,5 77,66 4:45 70,2 79,36 78,65 79,66 0 79,64 79,63 4:50 70,8 77,65 77,56 77,65 0 77,84 77,83 4:55 70,8 78,55 79,54 78 0 79,65 78,63 5:05 72,3 78,65 78,654 77,56 0 77,85 79,56 5:10 70,1 79,53<	4:05	75,21	79,64	77,664	78,65	0	77,684	77,65
4:20 71,5 77,85 77,422 78,654 0 79,54 75 4:25 71,58 78,65 77,64 79,323 0 77,56 77,56 4:30 70,25 79,56 78,643 77,65 0 76,23 78,5 4:35 70,56 77,56 78,46 78,32 0 77,56 79,66 4:40 70,45 75,69 77,64 78,68 0 78,5 77,84 4:45 70,2 79,36 78,65 79,66 0 79,64 79,63 4:50 70,8 77,65 77,56 77,65 0 77,84 77,85 4:50 70,8 77,65 77,56 77,65 0 77,84 77,85 4:50 70,8 77,65 77,56 77,65 0 77,84 77,85 5:00 70,254 79,65 78,654 77,56 0 77,85 79,56 5:10 70,1 79,	4:10	72,3	77,84	78,654	77,56	0	77,623	78
4:25 71,58 78,65 77,64 79,323 0 77,56 77,56 4:30 70,25 79,56 78,643 77,65 0 76,23 78,5 4:35 70,56 77,56 78,46 78,32 0 77,56 79,64 4:40 70,45 75,69 77,64 78,68 0 78,5 77,84 4:45 70,2 79,36 78,65 79,66 0 79,64 79,63 4:50 70,8 77,65 77,56 77,65 0 77,84 77,85 4:50 70,8 78,55 79,54 78 0 79,65 78,65 5:00 70,254 79,65 78,654 77,56 0 77,85 79,56 5:05 72,3 78,26 79,323 75 0 78,65 75,66 5:10 70,1 79,53 77,65 77,56 0 79,56 75,69 5:10 71,58 77,85<	4:15	70,1	79,65	78,654	79,54	0	78,156	77,56
4:30 70,25 79,56 78,643 77,65 0 76,23 78,55 4:35 70,56 77,56 78,46 78,32 0 77,56 79,64 4:40 70,45 75,69 77,64 78,68 0 78,5 77,84 4:45 70,2 79,36 78,65 79,66 0 79,64 79,65 4:50 70,8 77,65 77,56 77,65 0 77,84 77,81 4:55 70,8 78,55 79,54 78 0 79,65 78,65 5:00 70,254 79,65 78,654 77,56 0 77,85 79,56 5:05 72,3 78,26 79,323 75 0 78,65 77,56 5:10 70,1 79,53 77,65 77,56 0 79,56 75,69 5:10 70,1 79,53 77,65 77,56 0 77,56 79,36 5:20 71,58 77,85 </th <th>4:20</th> <th>71,5</th> <th>77,85</th> <th>77,422</th> <th>78,654</th> <th>0</th> <th>79,54</th> <th>75</th>	4:20	71,5	77,85	77,422	78,654	0	79,54	75
4:35 70,56 77,56 78,46 78,32 0 77,56 79,64 4:40 70,45 75,69 77,64 78,68 0 78,5 77,84 4:45 70,2 79,36 78,65 79,66 0 79,64 79,65 4:50 70,8 77,65 77,56 77,65 0 77,84 77,85 4:55 70,8 78,55 79,54 78 0 79,65 78,65 5:00 70,254 79,65 78,654 77,56 0 77,85 79,56 5:05 72,3 78,26 79,323 75 0 78,65 77,56 5:10 70,1 79,53 77,65 77,56 0 79,56 75,69 5:15 71,5 77,56 78,32 78,5 0 77,56 79,36 5:20 71,58 77,85 78,68 79,64 0 75,69 77,69 5:30 70,56 78,64 <th>4:25</th> <th>71,58</th> <th>78,65</th> <th>77,64</th> <th>79,323</th> <th>0</th> <th>77,56</th> <th>77,56</th>	4:25	71,58	78,65	77,64	79,323	0	77,56	77,56
4:40 70,45 75,69 77,64 78,68 0 78,5 77,84 4:45 70,2 79,36 78,65 79,66 0 79,64 79,65 4:50 70,8 77,65 77,56 77,65 0 77,84 77,85 4:55 70,8 78,55 79,54 78 0 79,65 78,65 5:00 70,254 79,65 78,654 77,56 0 77,85 79,56 5:05 72,3 78,26 79,323 75 0 78,65 77,56 5:10 70,1 79,53 77,65 77,56 0 79,56 75,69 5:15 71,5 77,56 78,32 78,5 0 77,56 79,36 5:20 71,58 77,85 78,68 79,64 0 75,69 77,65 5:30 70,56 78,64 77,65 79,65 0 77,65 79,56 5:35 70,45 79,654 <th>4:30</th> <th>70,25</th> <th>79,56</th> <th>78,643</th> <th>77,65</th> <th>0</th> <th>76,23</th> <th>78,5</th>	4:30	70,25	79,56	78,643	77,65	0	76,23	78,5
4:45 70,2 79,36 78,65 79,66 0 79,64 79,65 4:50 70,8 77,65 77,56 77,65 0 77,84 77,85 4:55 70,8 78,55 79,54 78 0 79,65 78,65 5:00 70,254 79,65 78,654 77,56 0 77,85 79,56 5:05 72,3 78,26 79,323 75 0 78,65 77,56 5:10 70,1 79,53 77,65 77,56 0 79,56 75,69 5:15 71,5 77,56 78,32 78,5 0 77,56 79,36 5:20 71,58 77,85 78,68 79,64 0 75,69 77,65 5:25 70,25 76,98 79,66 77,84 0 79,36 78,55 5:30 70,56 78,64 77,65 79,65 0 77,65 79,65 5:40 70,1 79,54 77,56 78,65 0 79,65 79,53 5:45 70,2	4:35	70,56	77,56	78,46	78,32	0	77,56	79,64
4:50 70,8 77,65 77,56 77,65 0 77,84 77,85 4:55 70,8 78,55 79,54 78 0 79,65 78,65 5:00 70,254 79,65 78,654 77,56 0 77,85 79,56 5:05 72,3 78,26 79,323 75 0 78,65 77,56 5:10 70,1 79,53 77,65 77,56 0 79,56 75,69 5:15 71,5 77,56 78,32 78,5 0 77,56 79,36 5:20 71,58 77,85 78,68 79,64 0 75,69 77,69 5:25 70,25 76,98 79,66 77,84 0 79,36 78,59 5:30 70,56 78,64 77,65 79,65 0 77,65 79,69 5:35 70,45 79,654 78 77,85 0 78,55 78,26 5:40 70,1 79,54 77,56 78,65 0 79,65 79,53 5:45 70,2<	4:40	70,45	75,69	77,64	78,68	0	78,5	77,84
4:55 70,8 78,55 79,54 78 0 79,65 78,65 5:00 70,254 79,65 78,654 77,56 0 77,85 79,56 5:05 72,3 78,26 79,323 75 0 78,65 77,56 5:10 70,1 79,53 77,65 77,56 0 79,56 75,69 5:15 71,5 77,56 78,32 78,5 0 77,56 79,36 5:20 71,58 77,85 78,68 79,64 0 75,69 77,65 5:25 70,25 76,98 79,66 77,84 0 79,36 78,51 5:30 70,56 78,64 77,65 79,65 0 77,65 79,65 5:35 70,45 79,654 78 77,85 0 78,55 78,26 5:40 70,1 79,54 77,56 78,65 0 79,65 79,53 5:45 70,2 78,54 75 79,56 0 78,26 77,56 5:50 70,8 <th>4:45</th> <th>70,2</th> <th>79,36</th> <th>78,65</th> <th>79,66</th> <th>0</th> <th>79,64</th> <th>79,65</th>	4:45	70,2	79,36	78,65	79,66	0	79,64	79,65
5:00 70,254 79,65 78,654 77,56 0 77,85 79,56 5:05 72,3 78,26 79,323 75 0 78,65 77,56 5:10 70,1 79,53 77,65 77,56 0 79,56 75,69 5:15 71,5 77,56 78,32 78,5 0 77,56 79,36 5:20 71,58 77,85 78,68 79,64 0 75,69 77,65 5:25 70,25 76,98 79,66 77,84 0 79,36 78,55 5:30 70,56 78,64 77,65 79,65 0 77,65 79,65 5:35 70,45 79,654 78 77,85 0 78,55 78,20 5:40 70,1 79,54 77,56 78,65 0 79,65 79,53 5:45 70,2 78,54 75 79,56 0 78,26 77,56 5:50 70,8 77,4	4:50	70,8	77,65	77,56	77,65	0	77,84	77,85
5:05 72,3 78,26 79,323 75 0 78,65 77,56 5:10 70,1 79,53 77,65 77,56 0 79,56 75,69 5:15 71,5 77,56 78,32 78,5 0 77,56 79,36 5:20 71,58 77,85 78,68 79,64 0 75,69 77,65 5:25 70,25 76,98 79,66 77,84 0 79,36 78,55 5:30 70,56 78,64 77,65 79,65 0 77,65 79,65 5:35 70,45 79,654 78 77,85 0 78,55 78,20 5:40 70,1 79,54 77,56 78,65 0 79,65 79,53 5:45 70,2 78,54 75 79,56 0 78,26 77,56 5:50 70,8 77,4 77,56 77,56 0 79,53 77,85 5:55 70,8 77,554	4:55	70,8	78,55	79,54	78	0	79,65	78,65
5:10 70,1 79,53 77,65 77,56 0 79,56 75,69 5:15 71,5 77,56 78,32 78,5 0 77,56 79,36 5:20 71,58 77,85 78,68 79,64 0 75,69 77,65 5:25 70,25 76,98 79,66 77,84 0 79,36 78,55 5:30 70,56 78,64 77,65 79,65 0 77,65 79,65 5:35 70,45 79,654 78 77,85 0 78,55 78,20 5:40 70,1 79,54 77,56 78,65 0 79,65 79,53 5:45 70,2 78,54 75 79,56 0 78,26 77,56 5:50 70,8 77,4 77,56 77,56 0 79,53 77,85 5:55 70,8 77,554 78,5 75,69 0 77,56 76,93 6:00 71,23 78,64	5:00	70,254	79,65	78,654	77,56	0	77,85	79,56
5:15 71,5 77,56 78,32 78,5 0 77,56 79,36 5:20 71,58 77,85 78,68 79,64 0 75,69 77,65 5:25 70,25 76,98 79,66 77,84 0 79,36 78,55 5:30 70,56 78,64 77,65 79,65 0 77,65 79,65 5:35 70,45 79,654 78 77,85 0 78,55 78,20 5:40 70,1 79,54 77,56 78,65 0 79,65 79,53 5:45 70,2 78,54 75 79,56 0 78,26 77,56 5:50 70,8 77,4 77,56 77,56 0 79,53 77,81 5:55 70,8 77,554 78,5 75,69 0 77,56 76,98 6:00 71,23 78,64 79,64 78,5 0 77,85 78,64	5:05	72,3	78,26	79,323	75	0	78,65	77,56
5:20 71,58 77,85 78,68 79,64 0 75,69 77,65 5:25 70,25 76,98 79,66 77,84 0 79,36 78,55 5:30 70,56 78,64 77,65 79,65 0 77,65 79,65 5:35 70,45 79,654 78 77,85 0 78,55 78,20 5:40 70,1 79,54 77,56 78,65 0 79,65 79,53 5:45 70,2 78,54 75 79,56 0 78,26 77,56 5:50 70,8 77,4 77,56 77,56 0 79,53 77,85 5:55 70,8 77,554 78,5 75,69 0 77,56 76,98 6:00 71,23 78,64 79,64 78,5 0 77,85 78,64	5:10	70,1	79,53	77,65	77,56	0	79,56	75,69
5:25 70,25 76,98 79,66 77,84 0 79,36 78,55 5:30 70,56 78,64 77,65 79,65 0 77,65 79,65 5:35 70,45 79,654 78 77,85 0 78,55 78,20 5:40 70,1 79,54 77,56 78,65 0 79,65 79,53 5:45 70,2 78,54 75 79,56 0 78,26 77,56 5:50 70,8 77,4 77,56 77,56 0 79,53 77,85 5:55 70,8 77,554 78,5 75,69 0 77,56 76,98 6:00 71,23 78,64 79,64 78,5 0 77,85 78,64	5:15	71,5	77,56	78,32	78,5	0	77,56	79,36
5:30 70,56 78,64 77,65 79,65 0 77,65 79,65 5:35 70,45 79,654 78 77,85 0 78,55 78,20 5:40 70,1 79,54 77,56 78,65 0 79,65 79,53 5:45 70,2 78,54 75 79,56 0 78,26 77,56 5:50 70,8 77,4 77,56 77,56 0 79,53 77,85 5:55 70,8 77,554 78,5 75,69 0 77,56 76,98 6:00 71,23 78,64 79,64 78,5 0 77,85 78,64	5:20	71,58	77,85	78,68	79,64	0	75,69	77,65
5:35 70,45 79,654 78 77,85 0 78,55 78,20 5:40 70,1 79,54 77,56 78,65 0 79,65 79,53 5:45 70,2 78,54 75 79,56 0 78,26 77,56 5:50 70,8 77,4 77,56 77,56 0 79,53 77,81 5:55 70,8 77,554 78,5 75,69 0 77,56 76,98 6:00 71,23 78,64 79,64 78,5 0 77,85 78,64	5:25	70,25	76,98	79,66	77,84	0	79,36	78,55
5:40 70,1 79,54 77,56 78,65 0 79,65 79,53 5:45 70,2 78,54 75 79,56 0 78,26 77,56 5:50 70,8 77,4 77,56 77,56 0 79,53 77,85 5:55 70,8 77,554 78,5 75,69 0 77,56 76,98 6:00 71,23 78,64 79,64 78,5 0 77,85 78,64	5:30	70,56	78,64	77,65	79,65	0	77,65	79,65
5:45 70,2 78,54 75 79,56 0 78,26 77,56 5:50 70,8 77,4 77,56 77,56 0 79,53 77,85 5:55 70,8 77,554 78,5 75,69 0 77,56 76,98 6:00 71,23 78,64 79,64 78,5 0 77,85 78,64	5:35	70,45	79,654	78	77,85	0	78,55	78,26
5:50 70,8 77,4 77,56 77,56 0 79,53 77,81 5:55 70,8 77,554 78,5 75,69 0 77,56 76,98 6:00 71,23 78,64 79,64 78,5 0 77,85 78,64	5:40	70,1	79,54	77,56	78,65	0	79,65	79,53
5:55 70,8 77,554 78,5 75,69 0 77,56 76,98 6:00 71,23 78,64 79,64 78,5 0 77,85 78,64	5:45	70,2	78,54	75	79,56	0	78,26	77,56
6:00 71,23 78,64 79,64 78,5 0 77,85 78,64	5:50	70,8	77,4	77,56	77,56	0	79,53	77,85
	5:55	70,8	77,554	78,5	75,69	0	77,56	76,98
C.OF 72.2 70.54 77.04 70.64 0 76.00 70.65	6:00	71,23	78,64	79,64	78,5	0	77,85	78,64
6:05 72,3 78,54 77,84 79,64 0 76,98 79,65	6:05	72,3	78,54	77,84	79,64	0	76,98	79,654
6:10 70,1 79,664 79,65 77,84 0 78,64 79,54	6:10	70,1	79,664	79,65	77,84	0	78,64	79,54
6:15 71,5 77,97 77,85 79,65 0 79,654 78,54	6:15	71,5	77,97	77,85	79,65	0	79,654	78,54
6:20 70,85414 78,674 78,18485 78,36074 0 78,35385 78,488	6:20	70,85414	78,674	78,18485	78,36074	0	78,35385	78,48817

C-25	70.25	70.54	70.50	70.65	0	70.54	77.554
6:25	70,25	79,54	79,56	78,65	0	78,54	77,554
6:30	70,56	77,64	77,56	79,56	0	77,4	78,64
6:35	70,45	77,684	75,69	77,56	0	77,554	78,54
6:40	70,1	77,623	79,36	75,69	0	78,64	79,664
6:45	71,354	78,156	77,65	79,36	0	78,54	77,97
6:50	71,2	79,54	78,55	77,65	0	79,664	78,64
6:55	72,56	77,664	79,65	78,55	0	77,97	79,54
7:00	71,26	78,654	78,26	79,65	0	78,64	77,64
7:05	70,2	78,654	79,53	78,26	0	79,54	77,684
7:10	70,8	77,56	77,56	79,53	0	77,64	77,623
7:15	70,8	75	77,85	77,56	0	77,684	78,156
7:20	70,654	77,56	76,98	77,85	0	77,623	79,54
7:25	72,3	78,5	78,64	76,98	0	78,156	77,664
7:30	70,1	79,64	79,654	78,64	0	79,54	78,654
7:35	71,5	77,84	79,54	79,654	0	77,664	78,654
7:40	71,58	79,65	78,54	79,54	0	78,654	77,422
7:45	70,25	77,85	77,4	78,54	0	78,654	77,64
7:50	70,56	78,65	77,554	77,4	0	77,422	78,643
7:55	70,45	79,56	78,64	77,554	0	77,85	78,65
8:00	70,1	77,56	78,54	78,64	0	78,65	77,56
8:05	71,56	75,69	79,664	78,54	0	79,56	79,54
8:10	71,2	79,36	77,97	79,664	0	77,56	78,654
8:15	72,56	77,65	78,64	77,97	0	75,69	79,323
8:20	71,26	78,55	79,54	78,64	0	79,36	77,65
8:25	80,23	79,65	77,64	79,54	0	77,65	78,32
8:30	79,98	78,26	77,684	77,64	0	78,55	78,68
8:35	70,65	79,53	77,623	77,684	0	79,65	79,66
8:40	71,54	77,56	78,156	77,623	77,56	78,26	77,65
8:45	70,664	77,85	79,54	78,156	75,69	79,53	78
8:50	69,5	76,98	77,664	79,54	78,5	77,56	77,56
8:55	69,654	78,64	78,654	77,664	79,64	77,85	75
9:00	70,13	79,654	78,654	78,654	77,84	76,98	77,56
9:05	68,654	79,54	77,422	78,654	79,65	78,64	78,5
9:10	90,33	78,54	77,64	77,422	77,85	79,654	79,64
9:15	81,42	77,4	78,65	77,64	78,65	79,54	77,84
9:20	77,65	77,554	77,56	78,5	79,56	78,54	79,65

		-0.64					
9:25	78,55	78,64	79,54	79,64	77,56	77,4	77,85
9:30	79,65	78,54	78,654	77,84	75,69	77,554	78,65
9:35	78,26	79,664	79,323	79,65	79,36	78,64	79,56
9:40	79,53	77,97	77,65	77,85	77,65	78,54	77,56
9:45	77,56	78,64	78,32	78,65	78,55	79,664	75,69
9:50	77,85	79,54	78,68	79,56	79,65	77,97	79,36
9:55	76,98	77,64	79,66	77,56	78,26	78,64	77,65
10:00	78,64	77,684	77,65	75,69	79,53	79,54	78,55
10:05	79,654	77,623	78	79,36	77,56	77,64	79,65
10:10	79,54	78,156	77,56	77,65	77,85	77,684	78,26
10:15	78,54	79,54	75	78,55	76,98	77,623	79,53
10:20	77,4	77,56	77,56	79,65	78,64	78,156	77,56
10:25	77,554	76,23	78,5	78,26	79,654	79,54	77,85
10:30	78,64	77,56	79,64	79,53	79,54	77,56	76,98
10:35	78,54	78,5	77,84	77,56	78,54	76,23	78,64
10:40	79,664	79,64	79,65	77,85	77,4	77,56	79,654
10:45	77,97	77,84	77,85	76,98	77,554	78,5	79,54
10:50	78,64	79,65	78,65	78,64	78,64	79,64	78,54
10:55	79,54	77,85	79,56	79,654	78,54	77,84	77,4
11:00	77,64	78,65	77,56	79,54	79,664	79,65	77,554
11:05	77,684	79,56	75,69	78,54	77,97	77,85	78,64
11:10	77,623	77,56	79,36	77,4	78,64	78,65	78,54
11:15	78,156	75,69	77,65	77,554	79,54	79,56	79,664
11:20	79,54	79,36	78,55	78,64	77,64	77,56	77,97
11:25	77,56	77,65	79,65	78,54	77,684	75,69	78,64
11:30	76,23	78,55	78,26	79,664	77,623	79,36	79,54
11:35	77,56	79,65	79,53	77,97	78,156	77,65	77,64
11:40	78,5	78,26	77,56	78,64	79,54	78,55	77,684
11:45	79,64	79,53	77,85	79,54	77,664	79,65	77,623
11:50	77,84	77,56	76,98	77,64	78,654	78,26	78,156
11:55	79,65	77,85	78,64	77,684	78,654	79,53	79,54
12:00	77,85	76,98	79,654	77,623	77,422	77,56	77,664
12:05	78,98	78,64	79,54	78,156	77,64	77,85	78,654
12:10	75,9	79,654	78,54	79,54	78,5	76,98	78,654
12:15	85,69	79,54	77,4	77,664	79,64	78,64	77,422
12:20	78,9	78,54	77,554	78,654	77,84	79,654	77,64

42.25	76.2	77.4	70.64	70.654	70.65	70.54	70.642
12:25	76,3	77,4	78,64	78,654	79,65	79,54	78,643
12:30	78,988	77,554	78,54	77,422	77,85	78,54	78,46
12:35	77,98	78,64	79,664	77,64	78,65	77,4	77,64
12:40	78,26	78,54	77,97	78,643	79,56	77,554	78,65
12:45	79,53	79,664	78,64	78,46	77,56	78,64	77,56
12:50	77,56	77,97	79,54	77,64	75,69	78,54	79,54
12:55	77,85	78,64	77,64	78,65	79,36	79,664	78,654
13:00	76,98	79,54	77,684	78,5	77,65	77,97	79,323
13:05	78,64	77,64	77,623	79,64	78,55	78,64	77,65
13:10	79,654	77,684	78,156	77,84	79,65	79,54	78,32
13:15	79,54	77,623	79,54	79,65	78,26	77,64	78,68
13:20	78,54	78,156	77,664	77,85	79,53	77,684	79,66
13:25	77,4	79,54	78,654	78,65	77,56	77,623	77,65
13:30	77,554	77,664	78,654	79,56	77,85	78,156	78
13:35	78,64	78,654	77,422	77,56	76,98	79,54	77,56
13:40	78,54	78,654	77,64	75,69	78,64	77,56	75
13:45	79,664	77,422	78,643	79,36	79,654	76,23	77,56
13:50	77,97	77,85	78,65	77,65	79,54	77,56	78,5
13:55	78,64	78,65	77,56	78,55	78,54	78,5	79,64
14:00	79,54	79,56	79,54	79,65	77,4	79,64	77,84
14:05	77,64	77,56	78,654	78,26	77,554	77,84	79,65
14:10	77,684	75,69	79,323	79,53	78,64	79,65	77,85
14:15	77,623	79,36	77,65	77,56	78,54	77,85	78,65
14:20	78,156	77,65	78,32	77,85	77,654	78,65	79,56
14:25	79,54	78,55	78,68	76,98	77,323	79,56	77,56
14:30	77,56	79,65	79,66	78,64	77,35	77,56	75,69
14:35	76,23	78,26	77,65	79,654	79,296	75,69	79,36
14:40	77,56	79,53	78	79,54	76,7	79,36	77,65
14:45	78,5	77,56	77,56	78,54	76,464	77,65	78,55
14:50	79,64	77,85	75	77,4	79,532	78,55	79,65
14:55	77,84	76,98	77,56	77,554	77,644	79,65	78,26
15:00	79,65	78,64	78,5	78,64	76,464	78,26	79,53
15:05	77,85	79,654	79,64	78,54	77,35	79,53	77,56
15:10	78,65	79,54	77,84	79,664	77,16	77,56	77,85
15:15	79,56	78,54	79,65	77,97	77,34	77,85	76,98
15:20	77,56	77,4	77,85	78,64	78,396	76,98	78,64

15:25	75,69	77,554					
		77,334	78,65	79,54	77,52	78,64	79,654
	79,36	78,64	79,56	77,64	78,36	79,654	79,54
15:35	77,65	78,54	77,56	77,684	77,34	79,54	78,54
15:40	78,55	79,664	75,69	77,623	76,7	78,54	77,4
15:45	79,65	77,97	79,36	78,156	77,87	77,4	77,554
15:50	78,26	78,64	77,65	79,54	78,95	77,554	78,64
15:55	79,53	79,54	78,55	77,664	79,45	78,64	78,54
16:00	77,56	77,64	79,65	78,654	76,7	78,54	79,664
16:05	77,85	77,684	78,26	78,654	77,51	79,664	77,97
16:10	76,98	77,623	79,53	77,422	78,5	77,97	78,64
16:15	78,64	78,156	77,56	77,64	77,654	78,64	79,54
16:20	79,654	79,54	77,85	78,643	77,323	79,54	77,64
16:25	79,54	77,56	76,98	78,46	77,35	77,64	77,684
16:30	78,54	76,23	78,64	77,64	77,66546	77,684	77,623
16:35	78,54	77,56	79,654	78,65	78,66	77,623	78,156
16:40	77,4	78,5	79,54	77,56	74,34	78,156	79,54
16:45	77,554	79,64	78,54	79,54	73,16	79,54	77,664
16:50	78,64	77,84	77,4	78,654	77,54	77,56	78,654
16:55	78,54	79,65	77,554	79,323	77,543	76,23	78,654
17:00 7	79,664	77,85	78,64	77,65	77,35	77,56	77,422
17:05	77,97	78,65	78,54	78,32	77,16	78,5	77,64
17:10	78,64	79,56	79,664	78,68	77,34	79,64	78,643
17:15	79,54	77,56	77,97	79,66	78,396	77,84	78,46
17:20	77,64	75,69	78,64	77,65	77,52	79,65	77,64
17:25	77,684	79,36	79,54	84,45	78,36	77,85	78,91
17:30 7	77,623	77,65	77,64	81,45	77,34	78,98	79,31
17:35	78,156	78,55	77,684	83,12	78,666	75,9	78,42
17:40	79,54	79,65	77,623	78,5	77,87	85,21	81,66
17:45	77,664	78,26	78,156	79,64	78,95	78,9	77,64
17:50 7	78,654	79,53	79,54	77,84	79,45	76,3	79,54
17:55	78,654	77,56	77,664	79,65	78,54	78,988	79,65
18:00	77,422	77,85	78,654	77,85	77,51	77,98	77,54
18:05	77,64	76,98	78,654	78,65	78,5	77,56	78,65
18:10	78,643	78,64	77,422	79,56	77,654	75	77,56
18:15	78,46	79,654	77,64	77,56	77,323	77,56	79,54
18:20	77,64	79,54	78,643	75,69	77,35	78,5	78,654

40.00			-0.46	-0.00	- 0.46		
18:25	78,65	78,54	78,46	79,36	73,16	79,64	79,323
18:30	77,56	77,4	77,64	77,65	74,34	77,84	77,65
18:35	78,55	77,554	78,65	78,55	73,16	79,65	78,32
18:40	79,65	78,64	77,56	79,65	75,52	77,85	78,68
18:45	78,26	78,54	79,54	78,26	73,16	78,65	79,66
18:50	79,53	79,664	78,654	79,53	74,34	79,56	77,65
18:55	77,56	77,97	79,323	77,56	77,35	77,56	78
19:00	77,85	78,64	77,65	77,85	77,16	75,69	77,56
19:05	76,98	79,54	78,32	76,98	77,34	79,36	75
19:10	78,64	77,64	78,68	78,64	78,396	77,65	77,56
19:15	79,654	77,684	79,66	79,654	77,52	78,55	78,5
19:20	79,54	77,623	77,65	79,54	78,36	79,65	79,64
19:25	78,54	78,156	78	78,54	77,34	78,26	77,84
19:30	77,4	79,54	77,56	77,4	78,56	79,53	79,65
19:35	77,554	77,56	75	77,554	77,87	77,56	77,85
19:40	78,5	76,23	77,56	78,5	78,95	77,85	78,65
19:45	79,64	77,56	78,5	79,64	79,45	76,98	79,56
19:50	77,84	78,5	79,64	77,84	73,16	78,64	77,56
19:55	79,65	79,64	77,84	79,65	77,51	79,654	75,69
20:00	77,85	77,84	79,65	77,85	78,5	79,54	79,36
20:05	78,65	79,65	77,85	78,65	79,5	78,54	77,65
20:10	79,56	77,85	78,65	79,56	77,54	77,4	78,55
20:15	77,56	78,65	79,56	77,56	78,45	77,554	79,65
20:20	75,69	79,56	77,56	75,69	77,154	78,64	78,26
20:25	79,36	77,56	75,69	79,36	77,34	78,54	79,53
20:30	77,65	75,69	79,36	77,65	77,52	79,664	77,56
20:35	78,55	79,36	77,65	78,55	77,44	77,97	77,85
20:40	79,65	77,65	78,55	79,65	78,1	78,64	76,98
20:45	78,26	78,55	79,65	78,26	77,54	79,54	78,64
20:50	79,53	79,65	78,26	79,53	78,45	77,64	79,654
20:55	77,56	78,26	79,53	77,56	77,154	77,684	79,54
21:00	77,85	79,53	77,56	77,85	77,34	77,623	78,54
21:05	76,98	77,56	77,85	76,98	77,52	78,156	77,4
21:10	78,64	77,85	76,98	78,64	77,34	79,54	77,554
21:15	79,654	76,98	78,64	79,654	77,52	77,664	78,64
21:20	79,54	78,64	79,654	79,54	77,44	78,654	78,54

21:25 78,54 79,654 79,54 78,54 78,54 78,654 79,664 21:30 77,4 79,54 78,54 77,4 77,54 77,422 77,97 21:35 77,554 78,54 77,4 77,554 78,64 77,64 78,64 77,64 78,64 77,64 78,64 77,64 78,64 77,6		•		1	1	•		
21:35 77,554 78,54 77,4 77,554 78,45 77,64 78,64 21:40 78,64 77,4 77,554 78,64 77,154 78,643 79,54 21:45 78,54 77,554 78,64 78,54 77,34 78,46 77,64 21:50 79,664 78,64 78,54 79,664 77,97 77,44 75 77,684 21:55 77,97 78,54 79,664 77,97 78,64 78,45 77,56 78,156 22:00 78,64 79,664 77,97 78,64 79,54 77,56 78,156 22:05 79,54 77,97 78,64 79,54 77,56 78,55 79,54 22:15 77,684 70,5 77,64 77,64 77,56 79,54 77,64 77,64 77,64 77,56 78,65 78,65 78,65 78,65 78,65 78,65 78,65 77,64 77,56 78,65 77,66 77,64 77,62	21:25	78,54	79,654	79,54	78,54	78,1	78,654	79,664
21:40 78,64 77,4 77,554 78,64 77,154 78,643 79,54 21:45 78,54 77,554 78,64 78,54 77,34 78,46 77,64 21:50 79,664 78,64 78,54 79,664 77,52 77,56 77,684 21:55 77,97 78,54 79,664 77,97 77,44 75 77,623 22:00 78,64 79,664 77,97 78,64 78,45 77,56 78,156 22:05 79,54 77,97 78,64 79,54 77,56 78,156 22:10 77,64 78,64 79,54 77,64 77,664 79,54 77,56 79,64 77,664 22:15 77,684 70,5 77,64 77,684 0 77,85 78,654 22:20 77,623 71 77,684 77,623 78,156 0 77,85 78,654 22:25 78,156 70,654 79,54 77,623 78,654 77	21:30	77,4	79,54	78,54	77,4	77,54	77,422	77,97
21:45 78,54 77,554 78,64 78,54 77,34 78,46 77,64 21:50 79,664 78,64 78,54 79,664 77,52 77,56 77,684 21:55 77,97 78,54 79,664 77,97 77,44 75 77,623 22:00 78,64 79,664 77,97 78,64 78,45 77,56 78,156 22:05 79,54 77,97 78,64 79,54 77,56 78,156 22:10 77,64 78,64 79,54 77,56 79,64 77,664 22:15 77,684 70,5 77,64 77,684 0 77,84 78,654 22:20 77,623 71 77,684 77,623 0 79,65 78,654 22:25 78,156 70,654 77,623 78,156 0 77,85 77,422 22:30 79,54 71,56 78,156 79,54 0 78,65 77,64 22:35 77,664	21:35	77,554	78,54	77,4	77,554	78,45	77,64	78,64
21:50 79,664 78,64 78,54 79,664 77,52 77,56 77,684 21:55 77,97 78,54 79,664 77,97 77,44 75 77,623 22:00 78,64 79,664 77,97 78,64 78,45 77,56 78,156 22:05 79,54 77,97 78,64 79,54 75,52 78,5 79,54 22:10 77,64 78,64 79,54 77,64 77,56 79,64 77,664 22:15 77,684 70,5 77,64 77,684 0 77,84 78,654 22:20 77,623 71 77,684 77,623 0 79,65 78,654 22:25 78,156 70,654 77,623 78,156 0 77,85 77,422 22:30 79,54 71,56 78,156 79,54 0 78,65 77,64 22:30 79,54 71,56 78,156 79,54 0 78,65 77,64 <th< td=""><td>21:40</td><td>78,64</td><td>77,4</td><td>77,554</td><td>78,64</td><td>77,154</td><td>78,643</td><td>79,54</td></th<>	21:40	78,64	77,4	77,554	78,64	77,154	78,643	79,54
21:55 77,97 78,54 79,664 77,97 77,44 75 77,623 22:00 78,64 79,664 77,97 78,64 78,45 77,56 78,156 22:05 79,54 77,97 78,64 79,54 75,52 78,5 79,54 22:10 77,64 78,64 79,54 77,56 79,64 77,664 22:15 77,684 70,5 77,64 77,684 0 77,84 78,654 22:20 77,623 71 77,684 77,623 0 79,65 78,654 22:25 78,156 70,654 77,623 78,156 0 77,85 77,64 22:25 78,156 70,654 77,623 78,156 0 77,85 77,64 22:25 78,156 70,654 77,523 78,156 0 77,85 77,64 22:25 78,156 70,654 78,156 79,54 0 78,65 77,64 22:35 <t< td=""><td>21:45</td><td>78,54</td><td>77,554</td><td>78,64</td><td>78,54</td><td>77,34</td><td>78,46</td><td>77,64</td></t<>	21:45	78,54	77,554	78,64	78,54	77,34	78,46	77,64
22:00 78,64 79,664 77,97 78,64 78,45 77,56 78,156 22:05 79,54 77,97 78,64 79,54 75,52 78,5 79,54 22:10 77,64 78,64 79,54 77,56 79,64 77,664 22:15 77,684 70,5 77,64 77,684 0 77,84 78,654 22:20 77,623 71 77,684 77,623 0 79,65 78,654 22:25 78,156 70,654 77,623 78,156 0 77,85 77,642 22:30 79,54 71,56 78,156 79,54 0 78,65 77,64 22:35 77,664 70,654 79,54 77,664 0 79,56 78,643 22:40 78,654 71,54 77,664 78,654 0 77,56 78,64 22:45 78,654 71,64 78,654 78,654 77,422 0 79,36 78,65 <th< td=""><td>21:50</td><td>79,664</td><td>78,64</td><td>78,54</td><td>79,664</td><td>77,52</td><td>77,56</td><td>77,684</td></th<>	21:50	79,664	78,64	78,54	79,664	77,52	77,56	77,684
22:05 79,54 77,97 78,64 79,54 75,52 78,5 79,54 22:10 77,64 78,64 79,54 77,64 77,56 79,64 77,664 22:15 77,684 70,5 77,64 77,684 0 77,84 78,654 22:20 77,623 71 77,684 77,623 0 79,65 78,654 22:25 78,156 70,654 77,623 78,156 0 77,85 77,422 22:30 79,54 71,56 78,156 79,54 0 78,65 77,64 22:35 77,664 70,654 79,54 77,664 0 79,56 78,643 22:35 77,664 70,654 79,54 77,664 0 79,56 78,643 22:40 78,654 71,64 78,654 78,654 0 75,69 77,64 22:45 78,654 71,64 78,654 77,422 0 79,36 78,65 22	21:55	77,97	78,54	79,664	77,97	77,44	75	77,623
22:10 77,64 78,64 79,54 77,64 77,56 79,64 77,664 22:15 77,684 70,5 77,64 77,684 0 77,84 78,654 22:20 77,623 71 77,684 77,623 0 79,55 78,654 22:25 78,156 70,654 77,623 78,156 0 77,85 77,422 22:30 79,54 71,56 78,156 79,54 0 78,65 77,64 22:35 77,664 70,654 79,54 77,664 0 79,56 78,643 22:40 78,654 71,54 77,664 78,654 0 77,56 78,64 22:45 78,654 71,64 78,654 78,654 77,422 0 79,36 78,65 22:50 78,64 70,54 78,654 77,422 77,64 0 77,65 77,56 23:00 79,664 78,5 77,64 78,643 77,35 78,55 <	22:00	78,64	79,664	77,97	78,64	78,45	77,56	78,156
22:15 77,684 70,5 77,64 77,684 0 77,84 78,654 22:20 77,623 71 77,684 77,623 0 79,65 78,654 22:25 78,156 70,654 77,623 78,156 0 77,85 77,422 22:30 79,54 71,56 78,156 79,54 0 78,65 77,64 22:35 77,664 70,654 79,54 77,664 0 79,56 78,643 22:40 78,654 71,54 77,664 78,654 0 77,56 78,46 22:45 78,654 71,64 78,654 78,654 0 75,69 77,64 22:50 78,64 70,5 78,654 77,422 0 79,36 78,65 23:00 79,664 78,5 77,64 78,643 77,35 78,55 79,54 23:05 77,97 79,64 78,643 78,46 77,56 78,26 79,323 78,65 <t< td=""><td>22:05</td><td>79,54</td><td>77,97</td><td>78,64</td><td>79,54</td><td>75,52</td><td>78,5</td><td>79,54</td></t<>	22:05	79,54	77,97	78,64	79,54	75,52	78,5	79,54
22:20 77,623 71 77,684 77,623 0 79,65 78,654 22:25 78,156 70,654 77,623 78,156 0 77,85 77,422 22:30 79,54 71,56 78,156 79,54 0 78,65 77,64 22:35 77,664 70,654 79,54 77,664 0 79,56 78,643 22:40 78,654 71,54 77,664 78,654 0 77,56 78,46 22:45 78,654 71,64 78,654 78,654 0 75,69 77,64 22:50 78,64 70,5 77,422 77,64 0 77,65 78,65 23:00 79,664 78,5 77,64 78,643 77,35 78,55 79,54 23:05 77,97 79,64 78,643 78,46 77,56 78,654 79,65 78,654 79,55 78,654 79,55 78,65 77,56 78,65 78,654 79,55 78,65	22:10	77,64	78,64	79,54	77,64	77,56	79,64	77,664
22:25 78,156 70,654 77,623 78,156 0 77,85 77,422 22:30 79,54 71,56 78,156 79,54 0 78,65 77,64 22:35 77,664 70,654 79,54 77,664 0 79,56 78,643 22:40 78,654 71,54 77,664 78,654 0 77,56 78,46 22:45 78,654 71,64 78,654 78,654 0 75,69 77,64 22:50 78,64 70,5 78,654 77,422 0 79,36 78,65 22:55 78,54 70,5 77,422 77,64 0 77,65 77,56 23:00 79,664 78,5 77,64 78,643 78,64 78,654 79,65 78,55 79,54 23:10 78,64 77,84 78,46 77,64 77,55 78,26 79,323 23:15 79,54 79,65 77,64 78,65 77,56 78,32 <	22:15	77,684	70,5	77,64	77,684	0	77,84	78,654
22:30 79,54 71,56 78,156 79,54 0 78,65 77,64 22:35 77,664 70,654 79,54 77,664 0 79,56 78,643 22:40 78,654 71,54 77,664 78,654 0 77,56 78,46 22:45 78,654 71,64 78,654 78,654 0 75,69 77,64 22:50 78,64 70,54 78,654 77,422 0 79,36 78,65 22:55 78,54 70,5 77,422 77,64 0 77,65 77,56 23:00 79,664 78,5 77,64 78,643 77,35 78,55 79,54 23:10 78,64 77,84 78,46 77,64 78,654 79,65 78,654 23:10 78,64 77,84 78,46 77,64 77,56 78,26 79,323 23:20 77,64 77,85 78,91 77,56 74,34 77,56 78,68	22:20	77,623	71	77,684	77,623	0	79,65	78,654
22:35 77,664 70,654 79,54 77,664 0 79,56 78,643 22:40 78,654 71,54 77,664 78,654 0 77,56 78,46 22:45 78,654 71,64 78,654 78,654 0 75,69 77,64 22:50 78,64 70,54 78,654 77,422 0 79,36 78,65 22:55 78,54 70,5 77,422 77,64 0 77,65 77,56 23:00 79,664 78,5 77,64 78,643 77,35 78,55 79,54 23:05 77,97 79,64 78,643 78,46 78,654 79,65 78,654 23:10 78,64 77,84 78,46 77,55 78,26 79,323 23:20 77,64 77,85 78,91 77,56 74,34 77,56 78,32 23:30 77,623 75,9 78,42 78,654 77,655 76,98 79,66 23:35	22:25	78,156	70,654	77,623	78,156	0	77,85	77,422
22:40 78,654 71,54 77,664 78,654 0 77,56 78,46 22:45 78,654 71,64 78,654 78,654 0 75,69 77,64 22:50 78,64 70,54 78,654 77,422 0 79,36 78,65 22:55 78,54 70,5 77,422 77,64 0 77,65 77,56 23:00 79,664 78,5 77,64 78,643 77,35 78,55 79,54 23:05 77,97 79,64 78,643 78,46 78,654 79,65 78,654 23:10 78,64 77,84 78,46 77,64 77,55 78,26 79,323 23:15 79,54 79,65 77,64 78,65 77,56 74,34 77,56 78,32 23:20 77,64 77,85 78,91 77,56 74,34 77,56 78,63 23:30 77,623 75,9 78,42 78,654 77,6554 76,98 79,66	22:30	79,54	71,56	78,156	79,54	0	78,65	77,64
22:45 78,654 71,64 78,654 78,654 76,69 77,64 22:50 78,64 70,54 78,654 77,422 0 79,36 78,65 22:55 78,54 70,5 77,422 77,64 0 77,65 77,56 23:00 79,664 78,5 77,64 78,643 77,35 78,55 79,54 23:05 77,97 79,64 78,643 78,46 78,654 79,65 78,654 23:10 78,64 77,84 78,46 77,64 77,55 78,26 79,323 23:15 79,54 79,65 77,64 78,65 77,565 79,53 77,65 23:20 77,64 77,85 78,91 77,56 74,34 77,56 78,32 23:25 77,684 78,98 79,31 79,54 77,65 78,68 23:35 78,156 81,56 83,12 79,323 77,899 78,64 77,65 23:40 79,54 <td>22:35</td> <td>77,664</td> <td>70,654</td> <td>79,54</td> <td>77,664</td> <td>0</td> <td>79,56</td> <td>78,643</td>	22:35	77,664	70,654	79,54	77,664	0	79,56	78,643
22:50 78,64 70,54 78,654 77,422 0 79,36 78,65 22:55 78,54 70,5 77,422 77,64 0 77,65 77,56 23:00 79,664 78,5 77,64 78,643 77,35 78,55 79,54 23:05 77,97 79,64 78,643 78,46 78,654 79,65 78,654 23:10 78,64 77,84 78,46 77,64 77,55 78,26 79,323 23:15 79,54 79,65 77,64 78,65 77,565 79,53 77,65 23:20 77,64 77,85 78,91 77,56 74,34 77,56 78,32 23:25 77,684 78,98 79,31 79,54 77,655 79,56 78,68 23:30 77,623 75,9 78,42 78,654 77,6554 76,98 79,66 23:40 79,54 78,9 77,64 77,65 78,123 79,54 78,56	22:40	78,654	71,54	77,664	78,654	0	77,56	78,46
22:55 78,54 70,5 77,422 77,64 0 77,65 77,56 23:00 79,664 78,5 77,64 78,643 77,35 78,55 79,54 23:05 77,97 79,64 78,643 78,46 78,654 79,65 78,654 23:10 78,64 77,84 78,46 77,64 77,55 78,26 79,323 23:15 79,54 79,65 77,64 78,65 77,565 79,53 77,65 23:20 77,64 77,85 78,91 77,56 74,34 77,56 78,32 23:25 77,684 78,98 79,31 79,54 77,54 77,85 78,68 23:30 77,623 75,9 78,42 78,654 77,6554 76,98 79,66 23:40 79,54 78,9 77,64 77,65 78,123 79,654 78 23:45 77,56 76,3 79,54 78,32 78,053 79,54 77,56	22:45	78,654	71,64	78,654	78,654	0	75,69	77,64
23:00 79,664 78,5 77,64 78,643 77,35 78,55 79,54 23:05 77,97 79,64 78,643 78,46 78,654 79,65 78,654 23:10 78,64 77,84 78,46 77,64 77,55 78,26 79,323 23:15 79,54 79,65 77,64 78,65 77,565 79,53 77,65 23:20 77,64 77,85 78,91 77,56 74,34 77,56 78,32 23:25 77,684 78,98 79,31 79,54 77,654 77,85 78,68 23:30 77,623 75,9 78,42 78,654 77,6554 76,98 79,66 23:35 78,156 81,56 83,12 79,323 77,899 78,64 77,65 23:40 79,54 78,9 77,64 77,65 78,123 79,54 78 23:45 77,56 76,3 79,54 78,32 78,053 79,54 77,56	22:50	78,64	70,54	78,654	77,422	0	79,36	78,65
23:05 77,97 79,64 78,643 78,46 78,654 79,65 78,654 23:10 78,64 77,84 78,46 77,64 77,55 78,26 79,323 23:15 79,54 79,65 77,64 78,65 77,565 79,53 77,65 23:20 77,64 77,85 78,91 77,56 74,34 77,56 78,32 23:25 77,684 78,98 79,31 79,54 77,54 77,85 78,68 23:30 77,623 75,9 78,42 78,654 77,6554 76,98 79,66 23:35 78,156 81,56 83,12 79,323 77,899 78,64 77,65 23:40 79,54 78,9 77,64 77,65 78,123 79,654 78 23:45 77,56 76,3 79,54 78,32 78,053 79,54 77,56 23:50 78,54 78,988 79,65 78,68 77,55 77,56 83,54	22:55	78,54	70,5	77,422	77,64	0	77,65	77,56
23:10 78,64 77,84 78,46 77,64 77,55 78,26 79,323 23:15 79,54 79,65 77,64 78,65 77,565 79,53 77,65 23:20 77,64 77,85 78,91 77,56 74,34 77,56 78,32 23:25 77,684 78,98 79,31 79,54 77,54 77,85 78,68 23:30 77,623 75,9 78,42 78,654 77,6554 76,98 79,66 23:35 78,156 81,56 83,12 79,323 77,899 78,64 77,65 23:40 79,54 78,9 77,64 77,65 78,123 79,654 78 23:45 77,56 76,3 79,54 78,32 78,053 79,54 77,56 23:50 78,54 78,988 79,65 78,68 77,55 77,56 83,54 23:55 78,54 77,98 77,54 79,66 78,321 77,13 77,15 <	23:00	79,664	78,5	77,64	78,643	77,35	78,55	79,54
23:15 79,54 79,65 77,64 78,65 77,565 79,53 77,65 23:20 77,64 77,85 78,91 77,56 74,34 77,56 78,32 23:25 77,684 78,98 79,31 79,54 77,54 77,85 78,68 23:30 77,623 75,9 78,42 78,654 77,6554 76,98 79,66 23:35 78,156 81,56 83,12 79,323 77,899 78,64 77,65 23:40 79,54 78,9 77,64 77,65 78,123 79,654 78 23:45 77,56 76,3 79,54 78,32 78,053 79,54 77,56 23:50 78,54 78,988 79,65 78,68 77,55 77,56 83,54 23:55 78,54 77,98 77,54 79,66 78,321 77,13 77,15 Consumo diario 75,65692 78,09332 78,34103 78,68765 81,43913 78,31597	23:05	77,97	79,64	78,643	78,46	78,654	79,65	78,654
23:20 77,64 77,85 78,91 77,56 74,34 77,56 78,32 23:25 77,684 78,98 79,31 79,54 77,54 77,85 78,68 23:30 77,623 75,9 78,42 78,654 77,6554 76,98 79,66 23:35 78,156 81,56 83,12 79,323 77,899 78,64 77,65 23:40 79,54 78,9 77,64 77,65 78,123 79,654 78 23:45 77,56 76,3 79,54 78,32 78,053 79,54 77,56 23:50 78,54 78,988 79,65 78,68 77,55 77,56 83,54 23:55 78,54 77,98 77,54 79,66 78,321 77,13 77,15 Consumo diario 75,65692 78,09332 78,34103 78,68765 81,43913 78,31597 78,36958	23:10	78,64	77,84	78,46	77,64	77,55	78,26	79,323
23:25 77,684 78,98 79,31 79,54 77,54 77,85 78,68 23:30 77,623 75,9 78,42 78,654 77,6554 76,98 79,66 23:35 78,156 81,56 83,12 79,323 77,899 78,64 77,65 23:40 79,54 78,9 77,64 77,65 78,123 79,654 78 23:45 77,56 76,3 79,54 78,32 78,053 79,54 77,56 23:50 78,54 78,988 79,65 78,68 77,55 77,56 83,54 23:55 78,54 77,98 77,54 79,66 78,321 77,13 77,15 Consumo diario 75,65692 78,09332 78,34103 78,68765 81,43913 78,31597 78,36958	23:15	79,54	79,65	77,64	78,65	77,565	79,53	77,65
23:30 77,623 75,9 78,42 78,654 77,6554 76,98 79,66 23:35 78,156 81,56 83,12 79,323 77,899 78,64 77,65 23:40 79,54 78,9 77,64 77,65 78,123 79,654 78 23:45 77,56 76,3 79,54 78,32 78,053 79,54 77,56 23:50 78,54 78,988 79,65 78,68 77,55 77,56 83,54 23:55 78,54 77,98 77,54 79,66 78,321 77,13 77,15 Consumo diario 75,65692 78,09332 78,34103 78,68765 81,43913 78,31597 78,36958	23:20	77,64	77,85	78,91	77,56	74,34	77,56	78,32
23:35 78,156 81,56 83,12 79,323 77,899 78,64 77,65 23:40 79,54 78,9 77,64 77,65 78,123 79,654 78 23:45 77,56 76,3 79,54 78,32 78,053 79,54 77,56 23:50 78,54 78,988 79,65 78,68 77,55 77,56 83,54 23:55 78,54 77,98 77,54 79,66 78,321 77,13 77,15 Consumo diario 75,65692 78,09332 78,34103 78,68765 81,43913 78,31597 78,36958	23:25	77,684	78,98	79,31	79,54	77,54	77,85	78,68
23:40 79,54 78,9 77,64 77,65 78,123 79,654 78 23:45 77,56 76,3 79,54 78,32 78,053 79,54 77,56 23:50 78,54 78,988 79,65 78,68 77,55 77,56 83,54 23:55 78,54 77,98 77,54 79,66 78,321 77,13 77,15 Consumo diario 75,65692 78,09332 78,34103 78,68765 81,43913 78,31597 78,36958	23:30	77,623	75,9	78,42	78,654	77,6554	76,98	79,66
23:45 77,56 76,3 79,54 78,32 78,053 79,54 77,56 23:50 78,54 78,988 79,65 78,68 77,55 77,56 83,54 23:55 78,54 77,98 77,54 79,66 78,321 77,13 77,15 Consumo diario 75,65692 78,09332 78,34103 78,68765 81,43913 78,31597 78,36958	23:35	78,156	81,56	83,12	79,323	77,899	78,64	77,65
23:50 78,54 78,988 79,65 78,68 77,55 77,56 83,54 23:55 78,54 77,98 77,54 79,66 78,321 77,13 77,15 Consumo diario 75,65692 78,09332 78,34103 78,68765 81,43913 78,31597 78,36958	23:40	79,54	78,9	77,64	77,65	78,123	79,654	78
23:55 78,54 77,98 77,54 79,66 78,321 77,13 77,15 Consumo diario 75,65692 78,09332 78,34103 78,68765 81,43913 78,31597 78,36958	23:45	77,56	76,3	79,54	78,32	78,053	79,54	77,56
Consumo diario 75,65692 78,09332 78,34103 78,68765 81,43913 78,31597 78,36958	23:50	78,54	78,988	79,65	78,68	77,55	77,56	83,54
	23:55	78,54	77,98	77,54	79,66	78,321	77,13	77,15
Consumo semanal 78,4148	Consumo diario	75,65692	78,09332	78,34103	78,68765	81,43913	78,31597	78,36958
	Consumo semanal	78,4148						

Fuente: elaboración propia, con base en datos obtenidos en Duke Energy.

Tabla IV. Datos de entrega compresor 2 (cfm)

hora	Lunes	Martes	Miércoles	Jueves	Viernes	Sábado	Domingo
00:00	0	0	0	0	331	0	0
00:05	0	0	0	0	332	0	0
00:10	0	0	0	0	334	0	0
00:15	0	0	0	0	335	0	0
00:20	0	0	0	0	331	0	0
00:25	0	0	0	0	330	0	0
00:30	0	0	0	0	329	0	0
00:35	0	0	0	0	328	0	0
00:40	0	0	0	0	331	0	0
00:45	0	0	0	0	338	0	0
00:50	0	0	0	0	329	0	0
00:55	0	0	0	0	331	0	0
01:00	0	0	0	0	334	0	0
01:05	0	0	0	0	330	0	0
01:10	0	0	0	0	327	0	0
01:15	0	0	0	0	329	0	0
01:20	0	0	0	0	328	0	0
01:25	0	0	0	0	330	0	0
01:30	0	0	0	0	334	0	0
01:35	0	0	0	0	331	0	0
01:40	0	0	0	0	329	0	0
01:45	0	0	0	0	328	0	0
01:50	0	0	0	0	327	0	0
01:55	0	0	0	0	332	0	0
02:00	0	0	0	0	331	0	0
02:05	0	0	0	0	329	0	0
02:10	0	0	0	0	328	0	0
02:15	0	0	0	0	330	0	0
02:20	0	0	0	0	334	0	0
02:25	0	0	0	0	335	0	0
02:30	0	0	0	0	331	0	0
02:35	0	0	0	0	335	0	0
02:40	0	0	0	0	328	0	0
02:45	0	0	0	0	332	0	0
02:50	0	0	0	0	336	0	0

2:55		0	0	0	333	0	0
3:00		0	0	0	329	0	0
3:05		0	0	0	327	0	0
3:10		0	0	0	331	0	0
3:15		0	0	0	332	0	0
3:20		0	0	0	331	0	0
3:25		0	0	0	332	0	0
3:30		0	0	0	332	0	0
3:35		0	0	0	328	0	0
3:40		0	0	0	329	0	0
3:45		0	0	0	331	0	0
3:50		0	0	0	332	0	0
3:55		0	0	0	331	0	0
4:00		0	0	0	338	0	0
4:05		0	0	0	331	0	0
4:10		0	0	0	329	0	0
4:15		0	0	0	328	0	0
4:20		0	0	0	329	0	0
4:25		0	0	0	331	0	0
4:30		0	0	0	330	0	0
4:35		0	0	0	327	0	0
4:40		0	0	0	331	0	0
4:45		0	0	0	328	0	0
4:50		0	0	0	330	0	0
4:55		0	0	0	331	0	0
5:00		0	0	0	332	0	0
5:05		0	0	0	331	0	0
5:10		0	0	0	329	0	0
5:15		0	0	0	328	0	0
5:20		0	0	0	331	0	0
5:25		0	0	0	332	0	0
5:30		0	0	0	331	0	0
5:35	Ц	0	0	0	332	0	0
5:40	Ц	0	0	0	335	0	0
5:45	Ц	0	0	0	334	0	0
5:50		0	0	0	329	0	0

5:55		0	0	0	328	0	0
6:00		0	0	0	331	0	0
6:05		0	0	0	332	0	0
6:10		0	0	0	335	0	0
6:15		0	0	0	331	0	0
6:20		0	0	0	329	0	0
6:25		0	0	0	328	0	0
6:30		0	0	0	327	0	0
6:35		0	0	0	331	0	0
6:40		0	0	0	332	0	0
6:45		0	0	0	329	0	0
6:50		0	0	0	324	0	0
6:55		0	0	0	331	0	0
7:00		0	0	0	332	0	0
7:05		0	0	0	331	0	0
7:10		0	0	0	330	0	0
7:15		0	0	0	335	0	0
7:20		0	0	0	329	0	0
7:25		0	0	0	327	0	0
7:30		0	0	0	331	0	0
7:35		0	0	0	328	0	0
7:40		0	0	0	332	0	0
7:45		0	0	0	334	0	0
7:50		0	0	0	335	0	0
7:55		0	0	0	329	0	0
8:00		0	0	0	328	0	0
8:05		0	0	0	331	0	0
8:10		0	0	0	332	0	0
8:15		0	0	0	334	0	0
8:20		0	0	0	329	0	0
8:25		0	0	0	328	0	0
8:30		0	0	0	329	0	0
8:35		0	0	0	330	0	0
8:40		0	0	0	331	0	0
8:45	322	0	0	0	328	0	0
8:50	325	0	0	0		0	0

					_		
8:55	329	0	0	0		0	0
9:00	330	0	0	0		0	0
9:05	327	0	0	0		0	0
9:10	0	0	0	0		0	0
9:15	0	0	0	0		0	0
9:20	0	0	0	0		0	0
9:25	0	0	0	0		0	0
9:30	0	0	0	0		0	0
9:35	0	0	0	0		0	0
9:40	0	0	0	0		0	0
9:45	0	0	0	0		0	0
9:50	0	0	0	0		0	0
9:55	0	0	0	0		0	0
10:00	0	0	0	0		0	0
10:05	0	0	0	0		0	0
10:10	0	0	0	0		0	0
10:15	0	0	0	0		0	0
10:20	0	0	0	0		0	0
10:25	0	0	0	0		0	0
10:30	0	0	0	0		0	0
10:35	0	0	0	0		0	0
10:40	0	0	0	0		0	0
10:45	0	0	0	0		0	0
10:50	0	0	0	0		0	0
10:55	0	0	0	0		0	0
11:00	0	0	0	0		0	0
11:05	0	0	0	0		0	0
11:10	0	0	0	0		0	0
11:15	0	0	0	0		0	0
11:20	0	0	0	0		0	0
11:25	0	0	0	0		0	0
11:30	0	0	0	0		0	0
11:35	0	0	0	0		0	0
11:40	0	0	0	0		0	0
11:45	0	0	0	0		0	0
11:50	0	0	0	0		0	0

11:55	0	0	0	0	0	0
12:00	0	0	0	0	0	0
12:05	0	0	0	0	0	0
12:10	0	0	0	0	0	0
12:15	0	0	0	0	0	0
12:20	0	0	0	0	0	0
12:25	0	0	0	0	0	0
12:30	0	0	0	0	0	0
12:35	0	0	0	0	0	0
12:40	0	0	0	0	0	0
12:45	0	0	0	0	0	0
12:50	0	0	0	0	0	0
12:55	0	0	0	0	0	0
13:00	0	0	0	0	0	0
13:05	0	0	0	0	0	0
13:10	0	0	0	0	0	0
13:15	0	0	0	0	0	0
13:20	0	0	0	0	0	0
13:25	0	0	0	0	0	0
13:30	0	0	0	0	0	0
13:35	0	0	0	0	0	0
13:40	0	0	0	0	0	0
13:45	0	0	0	0	0	0
13:50	0	0	0	0	0	0
13:55	0	0	0	0	0	0
14:00	0	0	0	0	0	0
14:05	0	0	0	0	0	0
14:10	0	0	0	0	0	0
14:15	0	0	0	0	0	0
14:20	0	0	0	0	0	0
14:25	0	0	0	0	0	0
14:30	0	0	0	0	0	0
14:35	0	0	0	0	0	0
14:40	0	0	0	0	0	0
14:45	0	0	0	0	0	0
14:50	0	0	0	0	0	0

14:55	0	0	0	0	0	0
15:00	0	0	0	0	0	0
15:05	0	0	0	0	0	0
15:10	0	0	0	0	0	0
15:15	0	0	0	0	0	0
15:20	0	0	0	0	0	0
15:25	0	0	0	0	0	0
15:30	0	0	0	0	0	0
15:35	0	0	0	0	0	0
15:40	0	0	0	0	0	0
15:45	0	0	0	0	0	0
15:50	0	0	0	0	0	0
15:55	0	0	0	0	0	0
16:00	0	0	0	0	0	0
16:05	0	0	0	0	0	0
16:10	0	0	0	0	0	0
16:15	0	0	0	0	0	0
16:20	0	0	0	0	0	0
16:25	0	0	0	0	0	0
16:30	0	0	0	0	0	0
16:35	0	0	0	0	0	0
16:40	0	0	0	0	0	0
16:45		0	0	0	0	0
16:50		0	0	0	0	0
16:55		0	0	0	0	0
17:00		0	0	0	0	0
17:05		0	0	0	0	0
17:10		0	0	0	0	0
17:15		0	0	0	0	0
17:20		0	0	0	0	0
17:25		0	0	0	0	0
17:30		0	0	0	0	0
17:35		0	0	0	0	0
17:40 17:45		0	0	0	0	0
17:45			0	0	0	0
17:50		0	U	0	U	U

17:55	0	0	0	0	0
18:00	0	0	0	0	0
18:05	0	0	0	0	0
18:10	0	0	0	0	0
18:15	0	0	0	0	0
18:20	0	0	0	0	0
18:25	0	0	0	0	0
18:30	0	0	0	0	0
18:35	0	0	0	0	0
18:40	0	0	0	0	0
18:45	0	0	0	0	0
18:50	0	0	0	0	0
18:55	0	0	0	0	0
19:00	0	0	0	0	0
19:05	0	0	0	0	0
19:10	0	0	0	0	0
19:15	0	0	0	0	0
19:20	0	0	0	0	0
19:25	0	0	0	0	0
19:30	0	0	0	0	0
19:35	0	0	0	0	0
19:40	0	0	0	0	0
19:45	0	0	0	0	0
19:50	0	0	0	0	0
19:55	0	0	0	0	0
20:00	0	0	0	0	0
20:05	0	0	0	0	0
20:10	0	0	0	0	0
20:15	0	0	0	0	0
20:20	0	0	0	0	0
20:25	0	0	0	0	0
20:30	0	0	0	0	0
20:35	0	0	0	0	0
20:40	0	0	0	0	0
20:45	0	0	0	0	0
20:50	0	0	0	0	0

20:55		0	0	0		0	0
21:00		0	0	0		0	0
21:05		0	0	0		0	0
21:10		0	0	0		0	0
21:15		0	0	0		0	0
21:20		0	0	0		0	0
21:25		0	0	0		0	0
21:30		0	0	0		0	0
21:35		0	0	0		0	0
21:40		0	0	0		0	0
21:45		0	0	0		0	0
21:50	330	0	0	0		0	0
21:55	331	0	0	0		0	0
22:00	330	0	0	0		0	0
22:05	332	0	0	0		0	0
22:10	329	0	0	0	332	0	0
22:15		0	0	0	331	0	0
22:20		0	0	0	328	0	0
22:25		0	0	0	329	0	0
22:30		0	0	0	330	0	0
22:35		0	0	0	331	0	0
22:40		0	0	0	327	0	0
22:45		0	0	0	329	0	0
22:50		0	0	0	329	0	0
22:55		0	0	0	331	0	0
23:00		0	0	0	324	0	0
23:05	332	0	0	0	332	0	0
23:10	331	0	0	0		0	0
23:15	332	0	0	0		0	0
23:20	331	0	0	0		0	0
23:25	333	0	0	0		0	0
23:30	332	0	0	0		0	0
23:35	331	0	0	0		0	0
23:40	0	0	0	0		0	0
23:45	0	0	0	0		0	0
23:50	0	0	0	0		0	0

23:55	0	0	0	0		0	0
prom dia	329,5714	0	0	0	346,6009	0	0
prom semana	338,0861						

Fuente: elaboración propia, con base en datos obtenidos en Duke Energy.

Tabla V. Dato de consumo eléctrico compresor 2 (KW)

hora	Lunes	Martes	Miercoles	Jueves	Viernes	Sabado
0:00	0	0	0	0	78,116	0
0:05	0	0	0	0	78,352	0
0:10	0	0	0	0	78,824	0
0:15	0	0	0	0	79,06	0
0:20	0	0	0	0	78,116	0
0:25	0	0	0	0	77,88	0
0:30	0	0	0	0	77,644	0
0:35	0	0	0	0	77,408	0
0:40	0	0	0	0	78,116	0
0:45	0	0	0	0	79,768	0
0:50	0	0	0	0	77,644	0
0:55	0	0	0	0	78,116	0
1:00	0	0	0	0	78,824	0
1:05	0	0	0	0	77,88	0
1:10	0	0	0	0	77,172	0
1:15	0	0	0	0	77,644	0
1:20	0	0	0	0	77,408	0
1:25	0	0	0	0	77,88	0
1:30	0	0	0	0	78,824	0
1:35	0	0	0	0	78,116	0
1:40	0	0	0	0	77,644	0
1:45	0	0	0	0	77,408	0
1:50	0	0	0	0	77,172	0
1:55	0	0	0	0	78,352	0
2:00	0	0	0	0	78,116	0
2:05	0	0	0	0	77,644	0

2:10	0	0	0	0	77,408	0
2:15	0	0	0	0	77,88	0
2:20	0	0	0	0	78,824	0
2:25	0	0	0	0	79,06	0
2:30	0	0	0	0	78,116	0
2:35	0	0	0	0	79,06	0
2:40	0	0	0	0	77,408	0
2:45	0	0	0	0	78,352	0
2:50	0	0	0	0	79,296	0
2:55	0	0	0	0	78,588	0
3:00	0	0	0	0	77,644	0
3:05	0	0	0	0	77,172	0
3:10	0	0	0	0	78,116	0
3:15	0	0	0	0	78,352	0
3:20	0	0	0	0	78,116	0
3:25	0	0	0	0	78,352	0
3:30	0	0	0	0	78,352	0
3:35	0	0	0	0	77,408	0
3:40	0	0	0	0	77,644	0
3:45	0	0	0	0	78,116	0
3:50	0	0	0	0	78,352	0
3:55	0	0	0	0	78,116	0
4:00	0	0	0	0	79,768	0
4:05	0	0	0	0	78,116	0
4:10	0	0	0	0	77,644	0
4:15	0	0	0	0	77,408	0
4:20	0	0	0	0	77,644	0
4:25	0	0	0	0	78,116	0
4:30	0	0	0	0	77,88	0
4:35	0	0	0	0	77,172	0
4:40	0	0	0	0	78,116	0
4:45	0	0	0	0	77,408	0
4:50	0	0	0	0	77,88	0
4:55	0	0	0	0	78,116	0
5:00	0	0	0	0	78,352	0
5:05	0	0	0	0	78,116	0

5:10	0	0	0	0	77,644	0
5:15	0	0	0	0	77,408	0
5:20	0	0	0	0	78,116	0
5:25	0	0	0	0	78,352	0
5:30	0	0	0	0	78,116	0
5:35	0	0	0	0	78,352	0
5:40	0	0	0	0	79,06	0
5:45	0	0	0	0	78,824	0
5:50	0	0	0	0	77,644	0
5:55	0	0	0	0	77,408	0
6:00	0	0	0	0	78,116	0
6:05	0	0	0	0	78,352	0
6:10	0	0	0	0	79,06	0
6:15	0	0	0	0	78,116	0
6:20	0	0	0	0	77,644	0
6:25	0	0	0	0	77,408	0
6:30	0	0	0	0	77,172	0
6:35	0	0	0	0	78,116	0
6:40	0	0	0	0	78,352	0
6:45	0	0	0	0	77,644	0
6:50	0	0	0	0	76,464	0
6:55	0	0	0	0	78,116	0
7:00		0	0	0	78,352	0
7:05		0	0	0	78,116	0
7:10		0	0	0	77,88	0
7:15		0	0	0	79,06	0
7:20		0	0	0	77,644	0
7:25		0	0	0	77,172	0
7:30		0	0	0	78,116	0
7:35		0	0	0	77,408	0
7:40		0	0	0	78,352	0
7:45		0	0	0	78,824	0
7:50		0	0	0	79,06	0
7:55		0	0	0	77,644	0
8:00		0	0	0	77,408	0
8:05		0	0	0	78,116	0

8:10		0	0	0	78,352	0
8:15		0	0	0	78,824	0
8:20		0	0	0	77,644	0
8:25		0	0	0	77,408	0
8:30		0	0	0	77,644	0
8:35		0	0	0	77,88	0
8:40		0	0	0	78,116	0
8:45	75,992	0	0	0	77,408	0
8:50	77,55	0	0	0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0
8:55	78,96	0	0	0		0
9:00	79,65	0	0	0		0
9:05	78,28	0	0	0		0
9:10		0	0	0		0
9:15		0	0	0		0
9:20		0	0	0		0
9:25		0	0	0		0
9:30		0	0	0		0
9:35		0	0	0		0
9:40		0	0	0		0
9:45		0	0	0		0
9:50		0	0	0		0
9:55		0	0	0	0	0
10:00		0	0	0	0	0
10:05		0	0	0	0	0
10:10		0	0	0	0	0
10:15		0	0	0	0	0
10:20		0	0	0	0	0
10:25		0	0	0	0	0
10:30		0	0	0	0	0
10:35		0	0	0	0	0
10:40		0	0	0	0	0
10:45		0	0	0	0	0
10:50		0	0	0	0	0
10:55		0	0	0	0	0
11:00		0	0	0	0	0
11:05		0	0	0	0	0

11:10		0	0	0	0	0
11:15		0	0	0	0	0
11:20	0	0	0	0	0	0
11:25	0	0	0	0	0	0
11:30	0	0	0	0	0	0
11:35	0	0	0	0	0	0
11:40	0	0	0	0	0	0
11:45	0	0	0	0	0	0
11:50	0	0	0	0	0	0
11:55	0	0	0	0	0	0
12:00	0	0	0	0	0	0
12:05	0	0	0	0	0	0
12:10	0	0	0	0	0	0
12:15	0	0	0	0	0	0
12:20	0	0	0	0	0	0
12:25	0	0	0	0	0	0
12:30	0	0	0	0	0	0
12:35	0	0	0	0	0	0
12:40	0	0	0	0	0	0
12:45	0	0	0	0	0	0
12:50	0	0	0	0	0	0
12:55	0	0	0	0	0	0
13:00	0	0	0	0	0	0
13:05	0	0	0	0	0	0
13:10	0	0	0	0	0	0
13:15	0	0	0	0	0	0
13:20	0	0	0	0	0	0
13:25	0	0	0	0	0	0
13:30	0	0	0	0	0	0
13:35	0	0	0	0	0	0
13:40	0	0	0	0	0	0
13:45	0	0	0	0	0	0
13:50	0	0	0	0	0	0
13:55	0	0	0	0	0	0
14:00	0	0	0	0	0	0
14:05	0	0	0	0	0	0

14:10	0	0	0	0	0	0
14:15	0	0	0	0	0	0
14:20	0	0	0	0	0	0
14:25	0	0	0	0	0	0
14:30	0	0	0	0	0	0
14:35	0	0	0	0	0	0
14:40	0	0	0	0	0	0
14:45	0	0	0	0	0	0
14:50	0	0	0	0	0	0
14:55	0	0	0	0	0	0
15:00	0	0	0	0	0	0
15:05	0	0	0	0	0	0
15:10	0	0	0	0	0	0
15:15	0	0	0	0	0	0
15:20	0	0	0	0	0	0
15:25	0	0	0	0	0	0
15:30	0	0	0	0	0	0
15:35	0	0	0	0	0	0
15:40	0	0	0	0	0	0
15:45	0	0	0	0	0	0
15:50	0	0	0	0	0	0
15:55	0	0	0	0	0	0
16:00	0	0	0	0	0	0
16:05	0	0	0	0	0	0
16:10	0	0	0	0	0	0
16:15	0	0	0	0	0	0
16:20	0	0	0	0	0	0
16:25	0	0	0	0	0	0
16:30	0	0	0	0	0	0
16:35	0	0	0	0	0	0
16:40	0	0	0	0	0	0
16:45	0	0	0	0	0	0
16:50	0	0	0	0	0	0
16:55	0	0	0	0	0	0
17:00	0	0	0	0	0	0
17:05	0	0	0	0	0	0

17:10	0	0	0	0	0	0
17:15	0	0	0	0	0	0
17:20	0	0	0	0	0	0
17:25	0	0	0	0	0	0
17:30	0	0	0	0	0	0
17:35	0	0	0	0	0	0
17:40	0	0	0	0	0	0
17:45	0	0	0	0	0	0
17:50	0	0	0	0		0
17:55	0	0	0	0		0
18:00	0	0	0	0		0
18:05	0	0	0	0		0
18:10	0	0	0	0		0
18:15	0	0	0	0		0
18:20	0	0	0	0		0
18:25	0	0	0	0		0
18:30	0	0	0	0		0
18:35	0	0	0	0		0
18:40	0	0	0	0		0
18:45	0	0	0	0		0
18:50	0	0	0	0		0
18:55	0	0	0	0		0
19:00	0	0	0	0		0
19:05	0	0	0	0		0
19:10	0	0	0	0		0
19:15	0	0	0	0		0
19:20	0	0	0	0		0
19:25	0	0	0	0		0
19:30	0	0	0	0		0
19:35	0	0	0	0		0
19:40	0	0	0	0		0
19:45	0	0	0	0		0
19:50	0	0	0	0		0
19:55	0	0	0	0		0
20:00		0	0	0		0
20:05		0	0	0		0

20:10		0	0	0		0
20:15		0	0	0		0
20:20		0	0	0		0
20:25		0	0	0		0
20:30		0	0	0		0
20:35		0	0	0		0
20:40		0	0	0		0
20:45		0	0	0		0
20:50		0	0	0		0
20:55		0	0	0		0
21:00		0	0	0		0
21:05		0	0	0		0
21:10		0	0	0		0
21:15		0	0	0		0
21:20		0	0	0		0
21:25		0	0	0		0
21:30		0	0	0		0
21:35		0	0	0		0
21:40		0	0	0		0
21:45		0	0	0		0
21:50		0	0	0		0
21:55	77,85	0	0	0		0
22:00	78,63	0	0	0		0
22:05	79,551	0	0	0		0
22:10	77,644	0	0	0	78,352	0
22:15		0	0	0	78,116	0
22:20		0	0	0	77,408	0
22:25		0	0	0	77,644	0
22:30		0	0	0	77,88	0
22:35		0	0	0	78,116	0
22:40		0	0	0	77,172	0
22:45		0	0	0	77,644	0
22:50		0	0	0	77,644	0
22:55		0	0	0	78,116	0
23:00		0	0	0	76,464	0
23:05	78,352	0	0	0	78,352	0

23:10	77,23	0	0	0	0
23:15	78,23	0	0	0	0
23:20	77,32	0	0	0	0
23:25	76,35	0	0	0	0
23:30	77,59	0	0	0	0
23:35	78,665	0	0	0	0
23:40		0	0	0	0
23:45		0	0	0	0
23:50		0	0	0	0
23:55		0	0	0	0
Consumo día	78,06062	0	0	0	0
consumo s	emana				

Fuente: elaboración propia, con base en datos obtenidos en Duke Energy.

Tabla VI. Consumo de agua de los compresores (galones)

Fecha	consumo de agua	Diferencia
26-sep	10 405 308	58 349
27-sep	10 463 657	65 333
28-sep	10 528 990	62 237
29-sep	10 591 227	58 349
30-sep	10 649 576	62 237
01-oct	10 711 812	78 650
02-oct	10 790 462	58 349
03-sep	10 848 811	62 237
04-sep	10 911 048	68 622
05-oct	10 979 670	62 237
06-oct	11 041 907	58 349
07-oct	11 100 256	67 276
08-oct	11 167 532	56 976
09-oct	11 224 508	64 422
10-oct	11 288 930	62 237
11-oct	11 351 167	41 803
12-oct	11 392 970	39 499
13-oct	11 432 469	48 931

14-oct	11 481 400	44 504
15-oct	11 525 904	62 237
16-oct	11 588 141	27 859
17-oct	11 616 000	48 802
18-oct	11 664 802	42 278
19-oct	11 707 080	40 162
20-oct	11 747 242	44 971
21-oct	11 792 213	48 456
22-oct	11 840 669	35 267
23-oct	11 875 936	47 620
24-oct	11 923 556	51 336
25-oct	11 974 892	49 464
26-oct	12 024 356	52 690
27-oct	12 077 046	48 456
28-oct	12 125 502	49 166
29-oct	12 174 668	49 306
30-oct	12 223 974	62 237
31-oct	12 286 210	62 424
01-nov	12 348 634	59 976
02-nov	12 408 610	63 821
03-nov	12 472 431	59 558
04-nov	12 531 990	65 405
05-nov	12 597 394	62 237
06-nov	12 659 631	41 803
07-nov	12 701 434	39 499
08-nov	12 740 934	58 349
09-nov	12 799 282	49 306
10-nov	12 848 588	44 064
11-nov	12 892 652	48 931
12-nov	12 941 583	41 803
13-nov	12 983 386	49 766
14-nov	13 033 153	52 646
15-nov	13 085 799	51 571
16-nov	13 137 370	59 371
17-nov	13 196 741	66 701
18-nov	13 263 442	59 501

40	42 222 042	62.024
19-nov	13 322 943	63 821
20-nov	13 386 764	62 424
21-nov	13 449 188	58 464
22-nov	13 507 652	60 984
23-nov	13 568 636	56 880
24-nov	13 625 516	59 501
25-nov	13 685 016	64 123
26-nov	13 749 140	57 888
27-nov	13 807 028	59 328
28-nov	13 866 356	61 344
29-nov	13 927 700	57 931
30-nov	13 985 631	52 992
01-dic	14 038 623	58 320
02-dic	14 096 943	61 200
03-dic	14 158 143	59 371
04-dic	14 217 514	65 131
05-dic	14 282 645	54 000
06-dic	14 336 645	55 440
07-dic	14 392 085	59 760
08-dic	14 451 845	61 243
09-dic	14 513 088	57 931
10-dic	14 571 020	65 131
11-dic	14 636 151	57 024
12-dic	14 693 175	60 912
13-dic	14 754 087	64 123
14-dic	14 818 210	61 920
15-dic	14 880 130	66 312
16-dic	14 946 442	64 123
17-dic	15 010 565	58 320
18-dic	15 068 885	65 664
19-dic	15 134 549	59 553
20-dic	15 194 102	64 224
21-dic	15 258 326	62 784
22-dic	15 321 110	58 464
23-dic	15 379 574	60 336
24-dic	15 439 910	56 880

25-dic	15 496 790	59 904
26-dic	15 556 694	62 784
27-dic	15 619 478	64 224
28-dic	15 683 702	65 664
29-dic	15 749 366	57 024
30-dic	15 806 390	59 904
31-dic	15 866 294	62 914
01-ene	15 929 208	63 533
02-ene	15 992 740	60 048
03-ene	16 052 788	62 251
04-ene	16 115 040	61 344
05-ene	16 176 384	59 904
06-ene	16 236 288	65 664
07-ene	16 301 952	62 574
08-ene	16 364 526	61 344
09-ene	16 425 870	58 464
10-ene	16 484 334	59 040
11-ene	16 543 374	61 200
12-ene	16 604 574	59 400
13-ene	16 663 974	58 320
14-ene	16 722 294	58 320
15-ene	16 780 614	59 904
16-ene	16 840 518	58 464
17-ene	16 898 982	61 344
18-ene	16 960 326	57 888
19-ene	17 018 214	58 752
20-ene	17 076 966	61 056
21-ene	17 138 022	50 584

Fuente: elaboración propia, con base en datos obtenidos en Duke Energy.