

EVALUACIÓN DE VULNERABILIDAD DE TORRE DE TELEFONÍA AUTOSOPORTADA DE 60 METROS MEDIANTE LA APLICACIÓN DEL MÉTODO DE ESPECTRO DE CAPACIDAD Y ANÁLISIS ESTÁTICO NO LINEAL (*PUSHOVER*) EN LA CIUDAD DE GUATEMALA

Ing. Raúl Samuel Lémus Colocho

Asesorado por MSc. Ing. Bernardo Elías Garrido

Guatemala, mayo de 2022

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA

FACULTAD DE INGENIERÍA

EVALUACIÓN DE VULNERABILIDAD DE TORRE DE TELEFONÍA AUTOSOPORTADA DE 60 METROS MEDIANTE LA APLICACIÓN DEL MÉTODO DE ESPECTRO DE CAPACIDAD Y ANÁLISIS ESTÁTICO NO LINEAL (*PUSHOVER*) EN LA CIUDAD DE GUATEMALA

TRABAJO DE GRADUACIÓN PRESENTADOA A LA JUNTA DIRECTIVA DE LA FACULTAD DE INGENIERIA

POR

ING. RAÚL SAMUEL LÉMUS COLOCHO
ASESORADO POR EL MSC. ING. BERNARDO ELÍAS GARRIDO

AL CONFERIRSTE EL TÍTULO DE

MAESTRO EN ESTRUCTURAS

GUATEMALA, MAYO DE 2022

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA

NÓMINA DE JUNTA DIRECTIVA

DECANA Inga. Aurelia Anabela Cordova Estrada
VOCAL I Ing. José Francisco Gómez Rivera
VOCAL II Ing. Mario Renato Escobedo Martínez
VOCAL III Ing. José Milton de León Bran
VOCAL IV Br. Christian Moisés de la Cruz Leal
VOCAL V Br. Kevin Armando Cruz Lorente
SECRETARIO Ing. Hugo Humberto Rivera Pérez

TRIBUNAL QUE PRACTICÓ EL EXAMEN GENERAL PRIVADO

DECANA Inga. Aurelia Anabela Cordova Estrada
DIRECTOR MSc. Ing. Edgar Darío Álvarez Cotí

EXAMINADOR MSc. Ing. Armando Fuentes Roca

EXAMINADOR MSc. Ing. Julio César Escobar Zeceña

SECRETARIO Ing. Hugo Humberto Rivera Pérez

HONORABLE TRIBUNAL EXAMINADOR

En cumplimiento con los preceptos que establece la ley de la Universidad de San Carlos de Guatemala, presento a su consideración mi trabajo de graduación el cual se titula:

EVALUACIÓN DE VULNERABILIDAD DE TORRE DE TELEFONÍA AUTOSOPORTADA DE 60 METROS MEDIANTE LA APLICACIÓN DEL MÉTODO DE ESPECTRO DE CAPACIDAD Y ANÁLISIS ESTÁTICO NO LINEAL (*PUSHOVER*) EN LA CIUDAD DE GUATEMALA

Tema que me fuera asignado por la Dirección de la Escuela de Estudios de Postgrado de la Facultad de Ingeniería, con fecha 17 de agosto de 2021.

Ing. Raúl Samuel Lémus Colocho

Decanato Facultad de Ingeniería 24189101- 24189102 secretariadecanato@ingenieria.usac.edu.gt

LNG.DECANATO.OI.354.2022

JINJERSIDAD DE SAN CARLOS DE GUATEMAL

DECANA FACULTAD DE INGENIERÍA

La Decana de la Facultad de Ingeniería de la Universidad de San Carlos de Guatemala, luego de conocer la aprobación por parte del Director de la Escuela de Estudios de Posgrado, al Trabajo de Graduación titulado: EVALUACIÓN DE VULNERABILIDAD DE TORRE DE TELEFONÍA AUTOSOPORTADA DE 60 METROS MEDIANTE LA APLICACIÓN DEL MÉTODO DE ESPECTRO DE CAPACIDAD Y ANÁLISIS ESTÁTICO NO LINEAL (PUSHOVER) EN LA CIUDAD DE GUATEMALA, presentado por: Raúl Samuel Lémus Colocho, que pertenece al programa de Maestría en ciencias en Estructuras después de haber culminado las revisiones previas bajo la responsabilidad de las instancias correspondientes, autoriza la impresión del mismo.

IMPRÍMASE:

inga. Aurelia Anabela Cordova Estra

Decana

Guatemala, mayo de 2022

AACE/gaoc

Guatemala, mayo de 2022

LNG.EEP.OI.354.2022

En mi calidad de Director de la Escuela de Estudios de Postgrado de la Facultad de Ingeniería de la Universidad de San Carlos de Guatemala, luego de conocer el dictamen del asesor, verificar la aprobación del Coordinador de Maestría y la aprobación del Área de Lingüística al trabajo de graduación titulado:

'EVALUACIÓN DE VULNERABILIDAD DE TORRE DE TELEFONÍA AUTOSOPORTADA DE 60 METROS MEDIANTE LA APLICACIÓN DEL MÉTODO DE ESPECTRO DE CAPACIDAD Y ANÁLISIS ESTÁTICO NO LINEAL (PUSHOVER) EN

LA CIUDAD DE GUATEMALA'

presentado Raúl Samuel Lémus Colocho por correspondiente al programa de Maestría en ciencias en Estructuras; apruebo y autorizo el mismo.

Atentamente,

"Id y Enseñad a Todos"

Mtro. Ing. Edgar Darío Alvarez Cotí

Director 1

Escuela de Estudios de Postgrado Facultad de Ingeniería

Guatemala, 21 de octubre de 2021

MSc. Ing Edgar Álvarez Cotí Director, Escuela de Estudios de Postgrado Facultad de Ingeniería Universidad de San Carlos de Guatemala Presente

Por este medio informo a usted, que se ha revisado y APROBADO la siguiente TESIS DE GRADUACIÓN titulada: "EVALUACION DE VULNERABILIDAD DE TORRE DE TELEFONÍA AUTOSOPORTADA DE 60 METROS MEDIANTE LA APLICACIÓN DEL MÉTODO DE ESPECTRO DE CAPACIDAD Y ANALISIS ESTATICO NO LINEAL (PUSHOVER) EN LA CIUDAD DE GUATEMALA" del estudiante Raúl Samuel Lemus Colocho, quien se identifica con numero de carné 100014418, del programa de Maestría en Estructuras.

Con base en la evaluación realizada, se hace constar que se ha evaluado la calidad, validez, pertinencia y coherencia de los resultados obtenidos en el trabajo presentado y según lo establecido en el Normativo de Tesis y Trabajos de Graduación aprobado por Junta Directiva de la Facultad de Ingeniería Punto Sexto inciso 6.10 del Acta 04-2014 de sesión celebrada el 04 de febrero de 2014.

Por lo anterior, se entrega con la presente, la hoja de evaluación aprobada por el docente del curso y toda la documentación administrativa de respaldo, para su aprobación correspondiente por parte de la Escuela de Estudios de Postgrado.

Sin otro particular

Vo. Bo.

Msc. Ing. Armando Fuentes Roca Coordinador Área Estructuras Escuela de Estudios de Postgrado Facultad de Ingeniería

(502) 2418-9142

Escuela de Estudios de Postgrado, Edificio S. 1 Telefono: 2418-9142 / 24188000 ext. 1382 WhatsApp: 5746-9323 Email: información eep Piag osac edo at

https://postgrado.ingenieria.usac.edu.gt

Guatemala, 21 de octubre de 2021

MSc. Ing Edgar Álvarez Coti Director, Escuela de Estudios de Postgrado Facultad de Ingeniería Universidad de San Carlos de Guatemala Presente

Por este medio informo a usted, que, como ASESOR, he revisado y aprobado la siguiente **TÉSIS DE GRADUACIÓN** del alumno:

Carné:

1000-14418

Nombre:

Raúl Samuel Lemus Colocho

Maestría:

Estructuras

Título de la Investigación: Evaluación de vulnerabilidad de torre de telefonía

autosoportada de 60 metros mediante la aplicación del método de espectro de capacidad y análisis estático no lineal

(pushover) en la ciudad de Guatemala.

En este sentido y que el alumno ha cumplido a cabalidad con los honorarios correspondientes, extiendo el Visto Bueno, para el cumplimiento de requisitos de la Escuela de Estudios de Postgrado, de la Facultad de Ingeniería, de la Universidad de San Carlos de Guatemala.

Sin otro particular

Msc. Ing. Bernardo Elías Garrido

Aseson

(sello)

ACTO QUE DEDICO A:

Dios El creador de mi vida, quien me ha dado la sabiduría

y bendición para culminar esta carrera.

Mi familia Al contar con el apoyo, respaldo, cariño y compañía

brindados en todo momento.

Mis padres Por sus consejos, esfuerzo, sacrificio y dedicación al

formarme como persona de bien; quienes me han

acompañado desde mi niñez hasta la presente fecha.

AGRADECIMIENTOS A:

Dios Por darme salud, recursos y sobre todo este gran

privilegio de alcanzar el presente título.

Mi familia Porque son el motivo de superación; especialmente

a mi esposa e hija, por su apoyo y comprensión

durante el tiempo que ha durado la carrera.

Mi asesor Maestro Ingeniero Bernardo Elías Garrido; gracias

por su apoyo y acompañamiento, y por los conocimientos compartidos para la elaboración de la

presente investigación.

Escuela de Estudios Por su formación académica y científica; así también

de Postgrado, USAC al claustro docente, por compartir su conocimiento.

ÍNDICE GENERAL

ÍNDI	CE DE ILU	JSTRACIO	NES	٧
LIST	A DE SÍM	BOLOS		ΙX
GLO	SARIO			ΧI
RES	UMEN		x	Ш
ANT	ECEDENT	ΓES		í۷
PLAI	NTEAMIE	NTO DEL F	PROBLEMAX	ΧI
OBJI	ETIVOS		XX	í۷
HIPĆ	TESIS		XX\	/11
INTR	RODUCCIO	NÒ	xx	ΙX
1.	MARCO	TEÓRICO)	1
	1.1.	Torres tel	lefónicas	1
		1.1.1.	Torre telefónica autosoportada	2
	1.2.	Normativa	a para diseño y análisis de torres telefónicas	3
	1.3.	Tipos de	cargas aplicadas en torres telefónicas	4
		1.3.1.	Cargas muertas o permanentes	4
		1.3.2.	Cargas vivas	4
		1.3.3.	Carga de viento	4
		1.3.4.	Carga de sismo	5
	1.4.	Principios	s del análisis no lineal	5
		1.4.1.	Ductilidad	5
		1.4.2.	Diagrama momento curvatura o momento	
			rotación	6
	1.5.	Análisis e	estático no lineal <i>(pushover</i>)	8
	1.6.	Rótulas p	lásticas	9

	1.7. Diseño por desempeño sísmico de estructuras				10
	1.8.	Método p	ropuesto po	r ATC-40 (espectro de capacidad)	11
		1.8.1.	Espectro d	e respuesta sísmico	11
		1.8.2.	Espectro d	e demanda	12
		1.8.3.	Curva de c	apacidad	13
		1.8.4.	Punto de d	esempeño	14
	1.9.	Niveles d	e riesgo sísr	nico	15
	1.10.	Niveles d	e desempeñ	ю	16
	1.11.	Resumen	de la norma	ATC-40 para la realización del análisis	
		por el mé	todo de esp	ectro de capacidad	18
		1.11.1.	Sectorizaci	ión de la curva de capacidad	28
		1.11.2.	Flujograma	a para aplicación del método de	
			espectro d	e capacidad ATC-40	30
2.	MARCO EXPERIMENTAL31				
	2.1.	Descripci	ón de la torr	e por evaluar	31
		2.1.1.		tructurales	
		2.1.2.	Propiedade	es del acero estructural	36
	2.2.	Integració	ón de cargas	aplicadas	36
		2.2.1.	Carga viva		36
		2.2.2.	Sobrecarga	a muerta	37
		2.2.3.	Carga de s	sismo	38
			2.2.3.1.	Construcción de espectro de	
				respuesta elástico	38
			2.2.3.2.	Período fundamental	47
			2.2.3.3.	Determinación de fallas laterales por	
				el método estático equivalente	48
		2.2.4.	Derivas lat	erales tolerables	52
	2.3.	Análisis n	o lineal en s	software SAP2000	53

	2.3.1.	Modelado de la torre53
	2.3.2.	Generación de grillas54
	2.3.3.	Definición del tipo de material55
	2.3.4.	Definición de los elementos tipo frame 56
	2.3.5.	Dibujo geométrico de la estructura 58
	2.3.6.	Asignación de apoyos en la base 59
	2.3.7.	Definición de patrón de cargas59
	2.3.8.	Asignación de carga viva60
	2.3.9.	Asignación de sobrecarga muerta61
	2.3.10.	Asignación de carga de sismo62
	2.3.11.	Definición de cargas no lineales 63
	2.3.12.	Asignación de rótulas plásticas66
	2.3.13.	Definición de masa sísmica69
	2.3.14.	Definición de espectros de respuesta elásticos 69
	2.3.15.	Análisis de la estructura70
	2.3.16.	Resultados de análisis y curva de capacidad
		SAP200072
2.4.	Análisis	no lineal, procedimiento manual78
	2.4.1.	Conversión de curva de capacidad a formato
		ADRS78
	2.4.2.	Conversión de espectro de respuesta a formato
		ADRS83
	2.4.3.	Superposición de espectro de capacidad y
		espectro de demanda84
	2.4.4.	Representación bilineal del espectro de
		capacidad84
	2.4.5.	Estimación de amortiguamiento y reducción de
		espectro88
	2.4.6.	Resultado de análisis de procedimiento manual 92

3.	TABULA	ACIÓN E IN	ITERPRETACIÓN DE RES	SULTADOS97	
	3.1.	Interpretación de la curva de capacidad			
		3.1.1.	Límites de desplazamien	tos y estados de daño	
			de la torre	97	
		3.1.2.	Falla en rótulas plásticas	de elementos99	
			3.1.2.1. Deformación	lateral y formación de	
			rótulas plástic	cas100	
	3.2.	Punto de	desempeño sísmico	107	
		3.2.1.	Desempeño para period	do de retorno de 475	
			años	108	
		3.2.2.	Desempeño para period	do de retorno de 975	
			años	111	
		3.2.3.	Desempeño para period	lo de retorno de 2475	
			años	114	
	3.3.	Análisis d	e deformación producida p	oor viento117	
CON	CLUSION	IES		121	
REC	OMENDA	CIONES		123	
				125	
APÉI	NDICES			131	
ANE.	XOS			175	

ÍNDICE DE ILUSTRACIONES

FIGURAS

1.	Torres telefónicas	1
2.	Torre autosoportada	2
3.	Norma TIA/EIA y NSE	3
4.	Tipos de ductilidad	6
5.	Diagrama momento de curvatura para elementos de acero	7
6.	Curva pushover	9
7.	Rótulas plásticas	10
8.	Espectro de respuesta	12
9.	Espectro de demanda en formato estándar y ADRS	13
10.	Curva de capacidad	14
11.	Punto de desempeño	15
12.	Factores de participación modal y coeficientes	19
13.	Curva pushover convertida a espectro de capacidad	20
14.	Conversión de espectro de respuesta	21
15.	Superposición de espectro de demanda y capacidad	22
16.	Representación bilineal del espectro de capacidad	23
17.	Amortiguamiento por reducción espectral	24
18.	Intersección del punto de espectro de demanda y espectro de	
	capacidad	28
19.	Sectorización de curva de capacidad	29
20.	Flujograma del método de espectro de capacidad según ATC-40	30
21.	Torre autosoportada de 60 metros	32
22.	Secciones de la torre	33

23.	Elementos estructurales de torre telefónica	34
24.	mapa de zonificación sísmica de Guatemala	40
25.	Construcción de espectro de respuesta	46
26.	Creación de modelo	54
27.	Configuración de grillas	54
28.	Definición de tipos de acero	56
29.	Definición de elementos frame	57
30.	Vista en 2D, 3D y secciones	58
31.	Asignación de apoyos	59
32.	Definición de patrones de carga	60
33.	Asignación de carga viva	61
34.	Asignación de sobrecarga muerta	62
35.	Asignación de cargas laterales de sismo	63
36.	Asignación de carga no lineal gravitacional	64
37.	Punto de control de desplazamiento	65
38.	Definición de patrón de carga pushover	66
39.	Configuración de rótula plástica (axial)	67
40.	Asignación de rótulas en elementos	68
41.	Rtóulas plásticas en elementos frame	68
42.	Definición de masa sísmica	69
43.	Espectro Kd=1 en SAP2000	70
44.	Tipo de armadura analizada	71
45.	Casos de carga analizados	72
46.	Curva de capacidad con SAP2000	73
47.	Resultados de curva de capacidad con SAP2000	74
48.	Curva de capacidad	75
49.	Punto de desempeño con SAP2000, Kd=0.66	76
50.	Punto de desempeño con SAP2000, Kd=0.80	77
51	Punto de desempeño con SAP2000 Kd=1 00	78

52.	Desplazamientos modales en SAP2000	79
53.	Espectro de capacidad	82
54.	Espectro de demanda Kd=0.80	83
55.	Espectro de demanda + espectro de capacidad	84
56.	Representación bilineal curva de capacidad de la torre, formato	
	ADRS	86
57.	Espectro de demanda + bilineal	87
58.	Espectro reducido	89
59.	Primera iteración punto desempeño kd=0.80	90
60.	Segunda iteración punto desempeño kd=0.80	92
61.	Punto de desempeño kd=0.80 procedimiento manual	93
62.	Punto de desempeño kd=1.00 procedimiento manual	93
63.	Punto de desempeño kd= 0.66 procedimiento manual	94
64.	Límites de desplazamiento en curva de capacidad	99
65.	Límites de deformación y fallas en elementos	100
66.	Valores promedio de fuerza y desplazamiento Tr=475 años	110
67.	Punto de desempeño para Tr=475 años	110
68.	Valores promedio de fuerza y desplazamiento Tr =975 años	113
69.	Punto de desempeño para periodo Tr =975 años	113
70.	Valores promedio de fuerza y desplazamiento Tr=2475 años	116
71.	Punto de desempeño para Tr= 2475 años	117
	TABLAS	
l.	Niveles de desempeño según ATC-40	17
II.	Valores de factor K	26
III.	Tipos de comportamiento estructural	26
IV.	Valores para factores de reducción SRAy SRv	27
V.	Limites de desplazamiento en curva de capacidad	29

VI.	Tipos de perfiles estructurales	35
VII.	Propiedades mecánicas de perfiles de acero	36
VIII.	Integración de carga viva	37
IX.	Integración de sobrecarga muerta	37
Χ.	Clasificación de obra	38
XI.	Nivel de protección sísmica y probabilidad de sismo de diseño	41
XII.	Tipos de sismo y el uso de diseños	42
XIII.	Coeficientes de sitio Fa y Fv	43
XIV.	Factor Kd	45
XV.	Periodos de retorno para valores de Kd	45
XVI.	Valores de K⊤ y x	47
XVII.	Peso sísmico de la estructura	49
XVIII.	Valores de parámetros sísmicos	50
XIX.	Distribución de fuerzas laterales por sismo	51
XX.	Derivas laterales permitidas para estructuras de acero	52
XXI.	Secciones de elementos frame por utilizar	57
XXII.	Valores de curva de capacidad	74
XXIII.	Desplazamientos modales	79
XXIV.	Determinación de factores para conversión curva de capacidad a	
	espectro de capacidad	80
XXV.	Valores de espectro de capacidad	81
XXVI.	Representación bilineal formato ADRS	85
XXVII.	Resultados finales procedimiento manual y SAP2000	94
XXVIII.	Límites de desplazamiento lateral Δ	98
XXIX.	Deformaciones laterales y formacion de rótulas	101
XXX.	Punto de desempeño para Tr=475 años en formato ADRS	109
XXXI.	Punto de desempeño para Tr=975 años en formato ADRS	112
XXXII.	Punto de desempeño para Tr=2475 años en formato ADRS	115
XXXIII	Deformaciones para fuerzas producidas por el viento	118

LISTA DE SÍMBOLOS

Símbolo Significado

g Aceleración de la gravedad

S_a Aceleración espectral

βeq Amortiguamiento equivalente

β_o Amortiguamiento histerético viscoso inherente de la

estructura

V_B Corte basal

Δelástica Deriva última permisible rango elástico

Δúltima permisible rango inelástico

Δ_{roof} Desplazamiento en el punto más alto o cumbre

 Δ_y Desplazamiento en el rango elástico Δ_p Desplazamiento en el rango inelástico

S_d Desplazamiento espectralD Desplazamiento lateral

Energía disipada por amortiguamiento de la estructura

Energía máxima por deformación

F_u Esfuerzo último del acero a tracción

SR_A Factor de reducción para aceleración espectral

SR_V Factor de reducción para velocidad espectral

F Fuerza aplicada

F_v Límite de fluencia del acero

T_{eq} Período equivalente

T_i Periodo inicial natural de vibración de la estructura

expresado en segundos

K_i Rigidez estructural inicial

Kef Rigidez estructural efectiva

GLOSARIO

Amortiguamiento Capacidad de la estructura en absorber las

histerético fuerzas externas debido a su configuración

estructural, a través de la flexibilidad de los

materiales.

AGIES Asociación Guatemalteca de Ingeniería

Estructural y Sísmica.

ASCE Sociedad Estadounidense de Ingenieros

Civiles (American Society of Civil

Engineers).

ASTM Sociedad Americana para Pruebas y

Materiales (American Society for Testing

and Materials).

ATC Consejo de Tecnología Aplicada (Applied

Technology Council).

Corte basal Fuerza horizontal aplicada en la base de la

estructura, la cual es producida por el

sismo.

Deriva Desplazamiento lateral medido entre dos

puntos de la estructura, ubicados en la

misma línea vertical.

Espectro de respuesta Representación de un movimiento sísmico

en un punto específico de la superficie

terrestre.

FEMA Agencia Federal para el Manejo de

Emergencias (Federal Agency

Management Agency).

NSE Normas de Seguridad Estructural.

Punto de desempeño Máximo desplazamiento lateral que puede

resistir la estructura. al aplicarle su sismo

de demanda.

Pushover Método de análisis no lineal estático para

determinar la capacidad estructural de sufrir

fuerzas y deformaciones ante sismo.

Rótula plástica Mecanismo de falla estructural producido

por la plastificación del material, luego de

alcanzar la zona inelástica de deformación.

TIA Asociación de la Industria de las

Telecomunicaciones (Telecommunications

Industry Asociation).

RESUMEN

La presente investigación aborda la temática de vulnerabilidad de una torre de telefonía autosoportada metálica de 60 metros de altura; esto debido a que están expuestas a intemperie y son bastante propensas a fuerzas, tanto de sismo como de viento. lo que puede ocasionar daños en su estructura.

El primer capítulo abarca una introducción general de los conceptos fundamentales y teóricos del análisis estático no lineal (*pushover*); para ello se detalla los procedimientos, así como los diferentes pasos a realizar haciendo énfasis en la aplicación del método que muestra la norma ATC-40. En el segundo capítulo se realiza la evaluación al modelo de torre autosoportada de forma cuadrada utilizando normas guatemaltecas (AGIES) para obtener espectros de respuesta, así como las solicitaciones de sismo y de viento en la ubicación geográfica especificada. Seguidamente con ayuda del software SAP2000 se ejemplifica el modelo hasta obtener el punto de desempeño, por último, con la normativa ATC-40 se desarrolló el procedimiento manual obteniendo el punto de desempeño.

Finalmente, en el capítulo tres se hace un análisis de los resultados para los diferentes periodos de retorno sísmico. Con ello se concluye que la estructura tendrá un desempeño dentro del rango permitido y no sufrirá daño ante cualquier posibilidad de ocurrencia de los eventos sísmicos evaluados, no así la torre, que puede sufrir daños ante vientos mayores a 100 km/h.

ANTECEDENTES

Uno de los primeros trabajos de investigación de análisis no lineal de armaduras tipo celosía, como se les conoce en Latinoamérica, fue elaborado en la Universidad Nacional Autónoma de México en mayo de 1996; el mismo se titula: *Análisis no lineal de torres de transmisión*, donde el autor Baena Pita (1996), previo a recibir el título de Maestro en Estructuras, evalúa su aplicación en torres de transmisión de energía eléctrica, las cuales son afectadas por cargas de tipo estático, haciendo referencia de prácticas elaboradas en Australia; para dicho estudio considera las partes estructurales como elementos de pared delgada y los efectos producidos por deformación, por geometría de los elementos, así como los desplazamientos producidos; todo esto apoyándose del método de rigidez.

Por otra parte, Díaz Salambay (2015) redactó la tesis: *Diseño de una torre de telecomunicaciones autosoportada de 42 m de altura y su chequeo en el rango inelástico del comportamiento (procedimiento estático no lineal),* donde plantea el diseño de una torre autosoportada para telefonía de 42 metros de altura, sometida a efectos climáticos de viento y sismo, acordes a la norma ecuatoriana y en concordancia con los estándares internacionales de ASCE7-10 y la TIA/EIA 222-F; mientras que para el diseño de elementos de acero utilizó la norma AISC 360-10. Luego del diseño, utilizó la no linealidad para demandas sísmicas con diferentes tiempos de retorno; posteriormente logró validar las secciones propuestas del diseño, ya que cumplen con las derivas permitidas para la demanda requerida para el sismo.

Otro trabajo investigativo en cuanto a la aplicación de análisis no lineal fue redactado por Bujalance Muñoz en el 2014, con el título: Diseño sísmico de una torre de control para el aeropuerto de Puerto Príncipe (Haití) y su estudio de prestaciones para el terremoto de servicio mediante análisis no lineal tipo pushover, dado que, en el 2010, Haití fue azotado por un terremoto que destruyó en su totalidad la torre de control del principal aeropuerto ubicado en su capital, Puerto Príncipe.

Como una posible solución el autor propuso una torre fabricada en concreto, la cual tiene una forma geométrica octogonal con diámetro de 10 metros en las primeras 7 plantas, y dos plantas superiores en el sexto y séptimo piso de diámetro de 16 metros; a dicha estructura le realizó análisis *pushover*, logrando encontrar el comportamiento sísmico y nivel de daño de la estructura para sismos de servicio de 100 y 500 años de periodo de retorno, utilizando normativa norteamericana como: FEMA 356, FEMA 440 y ATC-40, llegando a la conclusión que el modelo y las dimensiones propuestas tienen un buen comportamiento ante las amenazas sísmicas.

Por otra parte, entre las diversas aplicaciones del método de análisis inelástico se puede ver la aplicación que Mundaca Pérez (2019) le da en edificaciones de concreto desde tipo ordinario hasta esenciales, como lo sugiere en su trabajo: Evaluación del desempeño sísmico en edificaciones esenciales mediante la aplicación del análisis inelástico por desplazamientos, donde aplica los conceptos del análisis estático pushover para evaluar una institución educativa ante evento sísmico, hasta incursionar en el rango inelástico, obteniendo resultados aceptables en cuanto a desplazamientos máximos, y determinando que en terremotos de tipo frecuente y ocasionales el desempeño del edificio es funcional con daños reparables, lo cual garantiza la estabilidad estructural.

El trabajo de graduación de maestría en Ingeniería Industrial elaborado por Zabala Jorquera, en el 2017, denominado: *Modelado y análisis pushover de la respuesta sísmica de estructuras de acero*, el autor incorpora y hace uso de software de cálculo estructural *Autodesk Robot Structural Analysis Professional* para aplicar la técnica de *pushover* a varios modelos de estructuras de acero con uniones precalificadas, donde estudia a fondo cómo influye la utilización de arriostres en estructuras de acero y su relación con la respuesta sísmica, utilizando la norma de Euro código EN 1998-1:2004, con lo cual concluye que la utilización de arriostramientos en pórticos con conexiones resistentes a momento, mejoran los coeficientes de ductilidad y sobrerresistencia.

Las normativas mundiales de construcción resaltan la importancia de garantizar estabilidad estructural y determinar la vulnerabilidad sísmica; puede verse cómo Salcedo Barco (2017) en su investigación: Desempeño sísmico por el método pushover de un edificio construido en la ciudad de Barranquilla bajo la norma NSR-10, hace uso de la normativa sismorresistente de Colombia para determinar el desempeño y derivas máximas producidas por una amenaza sísmica alta, utilizando el software ETABS, hasta obtener deformaciones y resistencia de la edificación a través de la gráfica de capacidad, hasta alcanzar el punto de desempeño, esperando que la edificación, en caso de someterse a un temblor de diseño, opere normalmente, tanto en sus elementos verticales como horizontales (columnas, vigas), para no llegar al límite de colapso.

El autor concluye que el modelo, posteriormente al temblor de diseño muestra un comportamiento bastante adecuado, ya que se encuentra sin rótulas plásticas y sin daños graves; ante ello la edificación puede ser ocupada inmediatamente luego del sismo.

En Perú, Blas Francia y Sosa Altamiza, (2019) realizan un enfoque del análisis estático no lineal aplicándolo en puentes, en su trabajo: Evaluación del desempeño sísmico bajo el método de análisis estático no lineal pushover, caso puente Riecito, ubicado en el distrito de Bellavista – Piura, en donde evalúan el comportamiento y desempeño sísmico con la técnica de pushover, pero utilizando el software comercial exclusivo para puentes denominado CSIBRIDGE V.20.2; así también hacen uso de la norma norteamericana AASHTO para obtener resultados finales ante eventos telúricos con periodos de retorno de 1000 y 475 años, observando que el nivel de desempeño del puente es de ocupación inmediata para mil años, y de 475 en su punto máximo de límite de fluencia, sin tener deformación en la rótula; por lo tanto se sigue garantizando su estabilidad.

De igual importancia son las investigaciones realizadas en países centroamericanos, como la elaborada por Portillo et al. (2011) en la Universidad de El Salvador, denominada. Introducción al diseño de marcos de concreto reforzados, por el método de análisis estático no lineal (pushover), utilizando un software especializado; en la misma se analiza el desempeño de edificaciones de concreto con estructura diseñada con base en marcos planos; para ello realizaron un modelo de edificio de 4 pisos y 8 marcos planos, siguiendo la norma técnica de diseño por sismo de El Salvador y apoyándose en software SAP2000 como herramienta de apoyo en la técnica de pushover, obteniendo así una secuencia de fallas producidas por las rótulas plásticas y la capacidad de la edificación, gráficamente.

Se observa que el análisis *pushover* por medio de software es un método bastante aceptable, que optimiza el tiempo y los recursos debido a la rapidez en mostrar resultados; además, porque mide la magnitud de daño surgido en los miembros estructurales, ocasionado por el sismo considerado para diseño, y así

verificar si la edificación se encuentra entre el rango de aceptación para su ocupación.

Sumado a lo expuesto en cuanto a marcos de concreto reforzado Fuentes Rivera Silva (2018) hace uso del método de *pushover* como lo demuestra en la tesis: *Desempeño sísmico de un edificio de cinco niveles de concreto armado mediante el análisis estático no lineal "pushover", haciendo uso de modelo de un edificio compuesto de 5 niveles con ocupación de apartamentos.* Este se ubica en Lima, Perú, y se diseñó con base en la norma peruana de diseño E-030; a tal modelo le aplica cargas estáticas laterales incrementales, simulando las producidas por fuerzas de sismo hasta alcanzar un desplazamiento en el techo del edificio, obteniendo de esta manera los espectros de demanda y capacidad, respectivamente, siendo de utilidad para predecir el comportamiento sísmico y evitar el colapso estructural.

Planteada así la cuestión mediante la modelación en software del edificio, se logró determinar un total de 285 rótulas plásticas que alcanzan la deformación de cedencia, pero manteniéndose siempre entre el rango de seguridad de vida y no llegando al colapso de elementos; además, mediante el análisis *pushover* obtiene el punto máximo de desplazamiento para la estructura, siendo esta de 15.62 cm para una fuerza basal de 1406 toneladas.

La investigación denominada: Análisis estático no lineal y evaluación del desempeño sísmico de un edificio de 8 niveles diseñado con la norma E.030", realizada por Choque Sucasaca y Luque Solís, en el 2019, aborda la teoría y aplicación del diseño sísmico basado en desempeño para un edificio de 8 niveles ubicado en la ciudad de Arequipa; para ello realizaron 2 modelos estructurales de concreto reforzado: el primero con pórticos o marcos y el segundo utilizando muros de corte, esto con la finalidad de estudiar el comportamiento ante

diferentes amenazas sísmicas, haciendo uso de la norma peruana, apoyándose con el software ETABS, así como de cálculos manuales a través del método de la rigidez.

Finalmente, Torre Gómez (2019) realizó la investigación: Análisis no lineal estático de una edificación de albañilería confinada en la ciudad de Huancavelica en el 2018, en la cual evaluó una edificación de 4 pisos construida en mampostería, destinada a vivienda familiar, aplicando la normativa peruana E-70 y E-30. Posteriormente obtuvo la capacidad del edificio y determinó el nivel de desempeño con base en la norma ATC-40; de esta manera demostró que la estructura se encuentra según clasificación de norma en ocupación inmediata, lo que significa que los daños en sus componentes son leves o moderados.

PLANTEAMIENTO DEL PROBLEMA

La gran esbeltez de las torres telefónicas aunado a las cargas laterales provocadas por terremotos conlleva a sufrir desplazamientos verticales considerables; estos deforman la estructura a tal extremo que incursionan en el rango inelástico del material, pudiendo afectar la resistencia de la estructura; por lo que se busca evaluar el nivel de daño provocado por sismo.

En los últimos años, la tecnología de las redes de telecomunicaciones ha tomado un papel fundamental y esencial para el crecimiento social, acortando distancias entre las personas, generando crecimiento económico y mejorando la economía del país. Sin embargo, las comunicaciones alámbricas que dieron inicio a la telefonía se van quedando rezagadas; una de las razones puede ser el alto costo o la reducción de espacios al necesitar postes, o por evitar conflictos entre las autoridades municipales al solicitar los permisos correspondientes, por inconvenientes ornamentales que pueden generar; por lo tanto las comunicaciones inalámbricas han ganado auge, ya que cuentan con mejores beneficios, al cubrir grandes distancias y llegar a lugares remotos e inaccesibles del país, mediante la utilización de antenas colocadas sobre torres metálicas.

Las torres telefónicas autosoportadas son edificaciones conocidas como de tipo armadura o JOIST; esta consiste en barras rectas de acero conectadas en nudos y sometidas a esfuerzos de tensión o compresión, pudiendo presentarse pequeñas fuerzas de flexión.

Es necesario hacer notar que una de las mayores amenazas para el país es la sísmica, debido a que se encuentra entre tres grandes placas tectónicas (Cocos, Norteamérica y del Caribe) y se cuenta con una base histórica de eventos que han causado daños de consideración e incluso víctimas humanas; de allí se desprende la importancia de realizar un análisis más a fondo de las estructuras edificadas posterior al último evento sísmico, ocurrido en febrero de 1976, ya que la amenaza sigue latente. Por esta razón han surgido normativas constructivas que rigen la construcción para diferentes tipologías, considerando las demandas de sitio según la ubicación geográfica y la amenaza sísmica.

El diseño estructural de torres metálicas se enfoca únicamente dentro del rango lineal de deformación del material más conocido como rango elástico, pero toda estructura sometida a sismos de alta intensidad, previo a fallar, presenta grandes deformaciones y una secuencia de fallas, incursionando así en el rango inelástico de los elementos.

La ingeniería estructural ha generado grandes conocimientos, uno de ellos y de mucha utilidad en la actualidad se denomina: diseño por desempeño; este ayuda a entender cómo se comporta una estructura al exceder su capacidad elástica, y es así como en los años 90's surgen varias metodologías como la del comité Visión 2000, en Norteamérica, la cual propone niveles de desempeño sísmico considerando las propiedades no lineales; también se puede mencionar la norma ATC-40, la cual viene a reforzar el diseño por desempeño, implementando la técnica *pushover*, FEMA, entre otras normativas.

Las torres de telecomunicaciones son las más utilizadas en Guatemala, debido a su fácil montaje e instalación y se ven en gran porcentaje en el entorno cotidiano; no obstante, debido a su altura (60 m) son estructuras bastante flexibles y esbeltas, lo que las hace vulnerables a fuerzas provocadas por sismo, viento e incluso fenómenos hidrometeorológicos, pudiendo estos provocar su colapso.

A raíz de esos parámetros intrínsecos y considerando las debilidades de la estructura surge la siguiente interrogante:

 ¿Cuál es el nivel de desempeño de una torre telefónica de 60 metros construida en la ciudad de Guatemala?

Esta investigación pretende resolver las siguientes interrogantes secundarias:

- ¿Cuál es el estado de daño de la torre telefónica producido por el sismo de diseño?
- ¿Cumple la deriva máxima con la norma guatemalteca AGIES?
- ¿Cuál es la curva de capacidad y punto de desempeño de la torre telefónica?
- ¿Se encuentran los daños esperados dentro de los márgenes permitidos por las normativas?

OBJETIVOS

General

Determinar la vulnerabilidad sísmica mediante análisis estático no lineal de una torre telefónica de 60 metros de altura ubicada en la ciudad de Guatemala.

Específicos

- Estimar el estado de daño posterior producido en la torre por el sismo de diseño y viento en el valle de la ciudad de Guatemala.
- Analizar y comparar la deriva máxima con la norma de diseño para Guatemala (AGIES).
- Obtener la curva de capacidad y punto máximo de desempeño de la estructura.
- Comparar los daños estructurales con los límites permitidos en las normativas de diseño para su futura prevención.

HIPÓTESIS

Aplicar la metodología de análisis estático no lineal, *pushover*, en una torre telefónica de 60 metros de altura, para un sismo máximo con periodo de retorno de 975 años, mostrará un nivel de desempeño de seguridad de vida aceptable.

INTRODUCCIÓN

El crecimiento a pasos agigantados de la tecnología, así como la demanda de internet y telefonía inalámbrica (celular), ha impulsado a las empresas de esa rama a expandir su cobertura, ya que este es un factor clave para el desarrollo socioeconómico de un país. Las torres de telefonía autosoportadas son en el ámbito nacional y centroamericano, una de las tipologías preferidas y más utilizadas debido a su seguridad, rapidez de ensamble y eficiencia estructural; sobre todo para garantizar operatividad y estabilidad ante amenazas sísmicas, proporcionando una mayor garantía y confiabilidad a inversionistas y a los usuarios finales.

La importancia del comportamiento estructural, previo a la ocurrencia de eventos sísmicos de considerable magnitud, aunado a un diseño inapropiado a las condiciones y ubicación geográfica, son la causa principal de los daños que suceden en estas estructuras, tanto así, que pueden incluso obtenerse grandes pérdidas económicas y/o en casos mayores, acompañarse de pérdidas lamentables de vidas humanas.

Con estos factores típicos se puede realizar una estimación del riesgo, ya que el país tiene en su historial cronológico diversos terremotos devastadores e importantes que han afectado tipologías constructivas y edificaciones, como el ocurrido en 1976. Desde esa fecha han empezado a surgir nuevas normativas y estudios sísmicos en países altamente vulnerables a movimientos telúricos, debido a que esa amenaza no deja de crear cierta incertidumbre en cuanto a la seguridad y capacidad de las estructuras; por lo tanto, esta investigación propone

evaluar la vulnerabilidad de una torre de 60 metros, aplicando el análisis no lineal por medio de ordenador y software estructural para obtener su desempeño.

El primer capítulo abarca la teoría básica de torres telefónicas, como también las diferentes tipologías; igualmente el fundamento y los conceptos básicos de análisis no lineal y diseño por desempeño sísmico, utilizado para la evaluación estructural por medio de la metodología propuesta en la norma ATC-40, a fin de obtener la curva *pushover* y el método de espectro de capacidad. También proporciona los niveles de daño ocasionados por sismos de diseño para periodos de retorno indicados en la normativa.

El segundo capítulo contiene el marco experimental donde se modela en software estructural SAP2000 una torre telefónica autosoportada de 60 metros, dibujando su geometría y elementos estructurales y aplicando las cargas indicadas por normativa, para luego llevar a cabo el análisis no lineal *pushover*.

El tercer capítulo contempla el análisis, tabulación e interpretación de los resultados obtenidos por el software de diseño estructural SAP2000, encontrando así la curva de capacidad, el punto de desempeño sísmico y los niveles de daño de la estructura.

1. MARCO TEÓRICO

1.1. Torres telefónicas

Las torres telefónicas son estructuras diseñadas y fabricadas con acero, que sirven para soportar antenas y tienen como objetivo transmitir y mejorar el nivel de señal, así como expandir su alcance para el correcto funcionamiento de los equipos móviles (celulares) en áreas donde no exista cobertura. Son estructuras con tipología conocida como armadura, en las que sus miembros forman figuras geométricas en su mayoría triangulares, las cuales proporcionan rigidez y aumentan la economía, así como su fácil instalación y transporte a lugares remotos. Según Boj (2013) "pueden encontrarse torres con alturas que varían desde 30 hasta 102 metros" (p. 12). Sus geometrías, diseños y tipologías son variadas y se observan en la siguiente figura.

Figura 1. Torres telefónicas

Fuente: Cambio digital. *Antenas celulares no representan riesgos para la salud, según expertos*. Consultado el 2 de julio de 2021. Recuperado de https://cambiodigital-ol.com/2020/06/antenas-celulares-no-representan-riesgos-para-la-salud-segun-expertos/

1.1.1. Torre telefónica autosoportada

De acuerdo con García Segura (2001) las torres telefónicas autosoportadas "son aquellas que no necesitan tirantes o arriostramientos para mantener su posición vertical" (p, 3). Señala el mismo autor que las torres autosoportadas son aquellas que se soportan a sí mismas. Estas estructuras tienden a ser anchas en su parte inferior, pueden ser de sección variable, delgadas en su parte superior o de sección recta. Las torres autosoportadas se pueden considerar como estructuras tipo péndulo, debido a que concentran una gran masa en su parte superior y se apoyan únicamente en un cuerpo o columna.

Figura 2. **Torre autosoportada**


Fuente: [Fotografía de Raúl Samuel Lémus Colocho]. (Ciudad de Jutiapa, Jutiapa. 2021). Colección particular. Jutiapa.

1.2. Normativa para diseño y análisis de torres telefónicas

Las normativas actuales tanto para diseño como análisis o evaluación de torres deben cumplir ciertos estándares internacionales, tanto para su construcción como posterior operación. Países como Estados Unidos, la Unión Europea, Canadá, entre otros son pioneros en cuanto la fabricación y diseño estructural. Puede mencionarse la norma TIA/EIA-222-G (*Telecommunications Industry Association*), la cual fue creada en el 2005 como una de las principales que se debe considerar para el diseño, ya que incorpora cargas mínimas a utilizar.

A la vez Guatemala también cuenta con normativa elaborada por la Asociación Guatemalteca de Ingeniería Estructural y Sísmica, más conocida como AGIES en su versión final del 2018 denominadas: Normas de Seguridad Estructural (NSE); dichas normas contemplan la topografía, velocidad de viento según ubicación geográfica, así como solicitaciones y combinaciones de carga. La Figura muestra la normativa que se va a utilizar para determinación de cargas de diseño y análisis estructural.

Figura 3. Norma TIA/EIA y NSE

Fuente: AGIES. (2018). *Normas de seguridad estructural para Guatemala NSE 2.* Consultado el 7 de julio de 2021. Recuperado de https://www.agies.org/biblioteca/nse-2-edicion-2018/https://vdocuments.mx/norme-tia-eia-222-f.html.

1.3. Tipos de cargas aplicadas en torres telefónicas

Las cargas utilizadas para diseño y modelado de torres telefónicas se definen en varias categorías como lo menciona (García Segura, 2001) haciendo principal énfasis en las siguientes:

1.3.1. Cargas muertas o permanentes

La consideración para cargas permanentes toma en cuenta el peso propio de la estructura, además de elementos fijos principalmente de antenas, plataforma de descanso, cableado, escaleras, entre otros.

1.3.2. Cargas vivas

La carga viva se define como aquella que es movible, por lo que para el caso de antenas se puede considerar al personal técnico que labora sobre la torre, realizando actividades de montaje y mantenimiento.

1.3.3. Carga de viento

El viento es el factor que mayor daño provoca en este tipo de estructuras y depende principalmente de la ubicación geográfica y topográfica; su importancia radica en que estos actúan perpendicularmente produciendo empuje como también succión en toda el área de la torre, antenas e incluso en cables de alimentación. Esta fuerza será determinada mediante la utilización de la norma guatemalteca AGIES.

1.3.4. Carga de sismo

El sismo produce aceleraciones dinámicas en el suelo; las mismas se transforman en fuerzas horizontales que actúan sobre la masa de la estructura. Dichas cargas dependen de la sismicidad del área y proximidad de placas tectónicas o fallas geológicas; Guatemala cuenta con zonas debidamente identificadas para la obtención de valores de fuerzas de sismo.

1.4. Principios del análisis no lineal

El concepto de análisis no lineal se puede definir como el método que hace uso de la relación fuerza vs deformación, además de la no linealidad geométrica de los elementos que configuran la estructura. Otra definición bastante adecuada en relación con el principio, Ocaña Peláez (2016) señala que: "el análisis no lineal proporciona los medios para calcular la respuesta estructural más allá del rango elástico. Incluye la fuerza y la rigidez asociada con un deterioro en el comportamiento del material no elástico y desplazamientos mayores" (p. 9).

1.4.1. Ductilidad

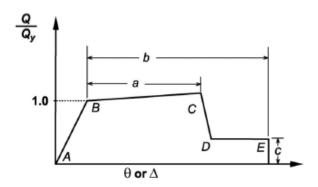
Previo a incursionar en el estudio es necesario comprender cómo se deforman los materiales según el tipo de esfuerzos al que son sometidos. Puede decirse que ductilidad es la capacidad que tiene un elemento o sistema, para sufrir deformación sin llegar a romperse. Existen varias formas de ductilidades como menciona Alonso (2016), resaltando las siguientes:

- Por carga axial
- De la sección transversal
- Del miembro

De la estructura

TIPO DE DUCTILIDAD DEFINICIÓN REPRESENTACIÓN ESQUEMÁTICA DUCTILIDAD DEL MATERIAL (AXIAL) ε $M_{\mathbf{i}}$ DUCTILIDAD DE LA Mρ $\mu x = \frac{X_u}{X_v}$ SECCIÓN (CURVATURA) x M_{i} DUCTILIDAD DEL MIEMBRO (ROTACIÓN) DUCTILIDAD DE LA **ESTRUCTURA** (DESPLAZAMIENTO)

Figura 4. Tipos de ductilidad


Fuente: Alonso, R. Cálculo sísmico de estructuras convencionales de edificación, aplicando métodos lineales y no lineales implementados en diferentes normas. Estudio comparativo. Consultado el 2 de octubre de 2021. Recuperado de https://fdocuments.ec/document/calculosismico-de-estructuras-convencionales-de-edificacion-aplicando-metodos.html?page.

1.4.2. Diagrama momento curvatura o momento rotación

Otro concepto importante en el tema son los diagramas de momento curvatura, ya que estos representan el comportamiento de la sección en todas sus etapas (rango elástico e inelástico) pudiendo obtener la degradación de la rigidez hasta que el elemento alcanza la falla. Existen diagramas para los

diferentes tipos de materiales, ya sea de concreto reforzado, acero estructural, o de madera, aluminio, entre otros. El código norteamericano ASCE 41 del año 2017 muestra algunos tipos de modelos para diagramas como el ejemplo de la incluido en la siguiente figura, el cual representa elementos o componentes elaborados en acero.

Figura 5. Diagrama momento de curvatura para elementos de acero

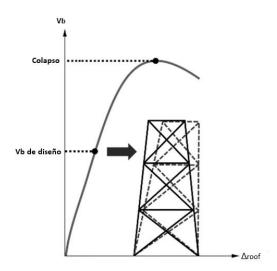
Fuente: ASCE 41-17. Evaluación Sísmica de edificaciones existentes|, construcción en acero.

Consultado el 2 de octubre de 2021. Recuperado de https://www.construccionenacero.

com/blog/no-52-evaluacion-sismica-de-edificaciones-existentes.

En la figura anterior se pueden ver las tres etapas de trabajo de un elemento, del punto A hacia B, conocida como zona de rigidez elástica en la cual los elementos pueden deformarse y retomar su posición original sin sufrir daño alguno; del punto B hacia C se tiene la zona postelástica en la cual la rigidez sufre una considerable degradación. Finalmente, entre los puntos C y D ocurre el momento último o residual previo al colapso del elemento.

1.5. Análisis estático no lineal (pushover)

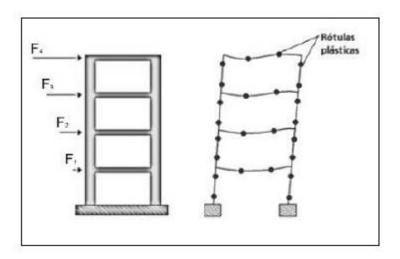

El método *pushover* se utiliza grandemente en la actualidad debido a su fácil aplicación para localizar la respuesta y comportamiento sísmico; aparte de ello su curva demanda-capacidad, la cual, en algunas bibliografías puede encontrarse con el nombre de carga incremental.

La técnica consiste en considerar la estructura como la de un sistema equivalente de un grado de libertad con su respectiva masa efectiva y rigidez, se aplican cargas estáticas laterales perpendiculares a toda la elevación de la estructura; estas se incrementan progresivamente en su magnitud hasta hacerlas incursionar en la zona inelástica produciendo agrietamiento y rótulas plásticas, para finalmente alcanzar el colapso.

Riffo Villagrán (2020) expone en su informe de investigación que "el análisis *pushover* consiste en someter una estructura a una serie de cargas estáticas en toda su altura, con el objetivo de representar el primer modo vibracional, cargando lateralmente la estructura hasta alcanzar el desplazamiento máximo y llegar al colapso" (p. 28).

La figura muestra el desplazamiento Δ_{roof} en la cumbre, la cual se produce por fuerza horizontal con lo cual se obtiene gráficamente la curva *pushover* o curva de capacidad.

Figura 6. Curva pushover


Fuente: Wahab, M.A., Kurian, V.J. y Liw, M. Condition Assessment Techniques for Aged Fixed-Type Offshore Platforms Considering decommissioning: a Historical Review. Consultado el 2 de julio de 2021. Recuperado de: https://doi.org/10.1007/s11804-020-00181-z.

1.6. Rótulas plásticas

Todas las estructuras se introducen en el rango no lineal debido a la deformación producida por las cargas; seguidamente los elementos que las conforman (vigas, columnas, breizas, entre otros), se debilitan, llegando a fatigarse dando inicio al aparecimiento de grietas en determinados puntos, estas zonas de deformación son conocidas como rótulas plásticas.

Velásquez Londoño (2017) define una rótula plástica como "el concepto teórico que idealiza el comportamiento de una sección de concreto en la que la armadura a tracción ha alcanzado la plastificación y puede girar bajo incrementos de carga sin apenas aumentar el momento" (p.21).

Figura 7. Rótulas plásticas

Fuente: AIE. Diseño sísmico por capacidad para edificios de varios niveles. rótulas plásticas y su concepto en el diseño estructural Consultado el 5 de octubre de 2021. Recuperado de https://filadd.com/doc/mecanismo-de-rotulacion-pdf-estructuras-iv.

1.7. Diseño por desempeño sísmico de estructuras

Al hablar del diseño por desempeño, en palabras breves se puede decir que consiste en: evaluar o cuantificar la cantidad de daño producido a una estructura o edificación al ser sometida a sismo y determinar el posible impacto generado clasificado en varios niveles. También Cahuana et al. (2015) hace mención de este diseño con base en el código SEAOC de la siguiente manera: "la ingeniería basada en desempeño es una serie de procedimientos para que las edificaciones tengan un desempeño sismorresistente controlable y predecible, cuando responden a niveles definidos de sismo, dentro de los niveles de confiabilidad definidos" (p. 20).

El nacimiento y aplicación de la temática se remonta a la década de los años 90s con la aparición de normativas enfocadas a evaluación y rehabilitación sísmica de edificaciones. Los métodos actuales utilizados son variados, pero especialmente se establecen por especialistas del ramo como la agencia Federal para el Manejo de Emergencias (FEMA, por sus siglas en inglés), así como también la Sociedad de Ingenieros Estructurales de California más conocida como SEAOC, quienes establecen en 1995 el Comité Visión 2000; posteriormente en el año 1996 la misma sociedad crea la norma ATC-40 con la finalidad de evaluar la funcionalidad de las diferentes edificaciones, luego de un evento telúrico.

1.8. Método propuesto por ATC-40 (espectro de capacidad)

La normativa ATC-40 cuenta con el método de espectro de capacidad, conformado por la combinación de dos gráficas: espectro de demanda más curva de capacidad; esta última se obtiene por el *pushover*, haciendo posible de esa manera visualizar gráficamente el comportamiento estructural cuando se aplican ciertos movimientos sísmicos. Al punto donde convergen dichas graficas se le conoce como punto de desempeño y representa el desplazamiento máximo de la estructura previo al colapso, para cierta demanda sísmica solicitada.

1.8.1. Espectro de respuesta sísmico

El espectro de respuesta no es más que la representación de un movimiento sísmico en un punto específico de la superficie terrestre; se elaboran con base en registros de acelerogramas; dependen del tipo de suelo, así como de la ubicación geográfica, ya que cada región tiene características diferentes. Si se representa gráficamente la aceleración coincide en el eje Y, mientras que el tiempo en el eje X. Noriega (2016) define un espectro de respuesta como "la representación gráfica donde se muestran las máximas respuestas que produce una acción dinámica determinada sobre un oscilador de un grado de libertad, el

cual consiste en una masa m, sostenida en un resorte de rigidez k del sistema" (p. 15).

ESPECTRO DE RESPUESTA

1,5

0,5

0,00

1,00

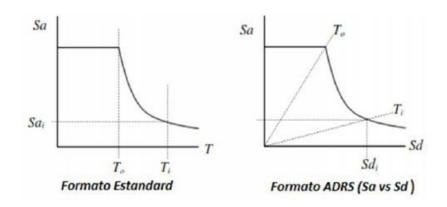
2,00

3,00

4,00

5,00

Figura 8. Espectro de respuesta


Fuente: elaboración propia, empleando Excel.

1.8.2. Espectro de demanda

Es la conversión por medio de ecuaciones del espectro de respuesta sísmico de pseudoaceleración vs tiempo, a un nuevo formato de aceleración vs desplazamiento espectral conocido también como ADSR (*Aceleration Displacement Spectral Response*).

Ramírez Quisque (2015) lo define como: "la representación gráfica de un determinado sismo representando el movimiento del suelo mediante el método de espectro-capacidad" (p. 64).

Figura 9. Espectro de demanda en formato estándar y ADRS

Fuente: elaboración propia, empleando el formato Estándar y el ADRS.

1.8.3. Curva de capacidad

Simboliza gráficamente la capacidad de la estructura y se obtiene con base en fuerzas laterales vs desplazamientos; en algunas bibliografías es nombrada la curva de *pushover*. Moreno González (2006) la define como "la relación que existe entre la resistencia a la carga lateral de una estructura y su desplazamiento lateral" (p. 92).

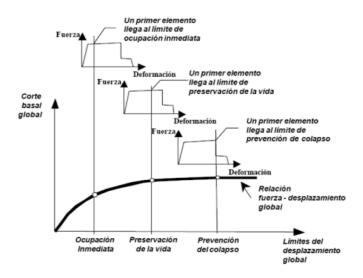


Figura 10. Curva de capacidad

Fuente: Slebi Acevedo y Vargas Prado (2014). Análisis y aplicación del método estático no lineal en columnas reforzadas con disipación especial de energía.

1.8.4. Punto de desempeño

Al observar gráficamente se puede interpretar como el punto de intersección entre la curva o espectro de capacidad con el espectro de demanda; significa el valor máximo de desplazamiento lateral que puede resistir la estructura al aplicarle su sismo de demanda. Yugcha Quilumba (2018) lo define como "el punto de máximo desplazamiento de la estructura esperado, para una determinada demanda sísmica" (p. 57).

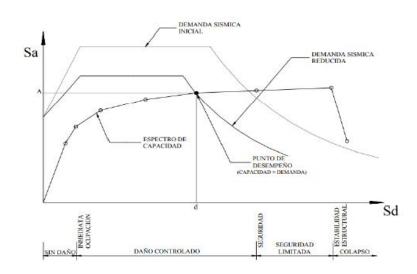


Figura 11. Punto de desempeño

Fuente: Salcedo Barco (2017). Desempeño sísmico por el método pushover de un edificio construido en la ciudad de Barranquilla bajo la norma NSR-10.

1.9. Niveles de riesgo sísmico

La peligrosidad sísmica en determinado sitio se representa a través de eventos sísmicos, los cuales tienen probabilidad de ocurrencia cada cierto tiempo; esto se conoce como periodo de retorno. Según la norma se clasifican en 3 niveles:

- Sismo de servicio SE: es el movimiento telúrico de baja intensidad con una probabilidad de 50 % de excederse en 50 años. El tiempo o periodo de retorno estimado es de 75 años.
- Sismo de diseño DE: es el movimiento con intensidad moderada hasta severa; su probabilidad de excederse es de 10 %, en un intervalo de 50 años; se considera 500 años como periodo de retorno.

 Sismo máximo ME: movimiento sísmico con intensidad severa y baja ocurrencia; su probabilidad de excedencia es de 5 % en 50 años; se estima que el periodo de retorno para el sismo máximo es de 1000 años.

1.10. Niveles de desempeño

Se puede interpretar como el límite de daño al cual puede ser sujeta la estructura. La norma ATC-40 separa toma en cuenta dos aspectos: elementos estructurales y no estructurales.

Para este caso, únicamente se considera la opción de miembros estructurales, ya que para torres telefónicas todos los elementos están sometidos a esfuerzos producidos, ya sea por cargas externas (sismos) o cargas internas (esfuerzos corte, flexión, axial, entre otros).

Los niveles de desempeño a que hace referencia la norma ATC-40 son los siguientes:

- SP-1. Ocupación inmediata: este nivel el daño estructural producido por las cargas es limitado, manteniendo la estructura en total funcionamiento.
- SP-2. Daño controlado: es el estado intermedio entre el límite de ocupación inmediata y seguridad de vida. La estructura pudo haber sufrido algún daño estructural limitado, pero las vidas humanas no corren peligro.
- SP-3. Seguridad de vida: se pueden observar da
 ños estructurales considerables en los elementos, pero estos pueden repararse y rehabilitarse previo a volverlos a ocupar. El riesgo a sufrir bajas humanas es poco.

- SP-4. Seguridad limitada: es el estado intermedio entre el límite de seguridad de vida y seguridad limitada, pero para los ocupantes este nivel representa un alto grado de peligro.
- SP-5. Estabilidad estructural: este nivel representa el peligro más alto, debido a que la estructura se encuentra al límite previo del colapso, ya sea por daño parcial o total; se pueden observar daños sustanciales.
- SP-6. No considerado: no se contempla como nivel específico en el desempeño estructural, es una condición de evaluación sísmica de los componentes que no resisten cargas estructurales.

Tabla I. Niveles de desempeño según ATC-40

	Niveles de desempeño estructural						
Niveles de desempeño no estructurales	SP-1 Ocupación inmediata	SP-2 Daño controlado	SP-3 Seguridad de vida	SP-4 Seguridad Iimitada	SP-5 Estabilidad estructural	SP-6 No considerado	
NP-A Operacional	1-A Operacional	2-A	N-R	N-R	N-R	N-R	
NP-B Ocupación Inmediata	1-B Ocupación Inmediata	2-B	3-B	N-R	N-R	N-R	
NP-C Seguridad de Vida	1-C	2-C	3-C Seguridad de vida	4-C	5-C	6-C	
NP-D Amenaza reducida	N-R	2-D	3-D	4-D	5-D	6-D	
NP-E No considerado	N-R	N-R	3-E	4-E	5-E Estabilidad estructural	No aplica	

N-R: Combinación no recomendable.

1.11. Resumen de la norma ATC-40 para la realización del análisis por el método de espectro de capacidad

Para llevar a cabo el procedimiento de encontrar el punto de desempeño estructural, la norma ATC establece tres procedimientos, de los cuales únicamente se hará énfasis en el método analítico; esto debido a su sencillez en aplicación y construcción: es un método iterativo que puede ser elaborado con apoyo de hoja electrónica para su mejor comprensión. La propuesta es la siguiente:

- Se construye la respectiva curva de pushover representativa de la estructura.
- Convertir la curva pushover a espectro de capacidad en formato ADRS (S_a
 S_d). Para llevar a cabo dicha conversión es necesario hacer uso de las siguientes ecuaciones:

$$\begin{aligned} \mathsf{PF}_1 &= \left[\frac{\sum_{i=1}^{\mathsf{N}} (\mathsf{w}_i \emptyset_{i1})/\mathsf{g}}{\sum_{i=1}^{\mathsf{N}} (\mathsf{w}_i \emptyset_{i1}^2)/\mathsf{g}} \right] & \mathsf{Ecuación} \ 1 \\ \boldsymbol{\alpha}_1 &= \frac{\left[\sum_{i=1}^{\mathsf{N}} (w_i \emptyset_{i1}^2)/\mathsf{g} \right]^2}{\left[\sum_{i=1}^{\mathsf{N}} w_i / \mathsf{g} \right] \left[\sum_{i=1}^{\mathsf{N}} (\mathsf{w}_i \emptyset_{i1}^2)/\mathsf{g} \right]} \ \mathsf{Ecuación} \ 2 \\ \boldsymbol{S}_a &= \frac{V/W}{\alpha_1} & \mathsf{Ecuación} \ 3 \\ \boldsymbol{S}_d &= \frac{\Delta_{roof}}{PF_1 \emptyset_{roof} \ 1} & \mathsf{Ecuación} \ 4 \end{aligned}$$

Siendo:

PF₁ = factor de participación modal del primer modo natural de vibración.

 α_1 = coeficiente modal de masa del primer modo.

W_i/g = masa asignada al nivel i.

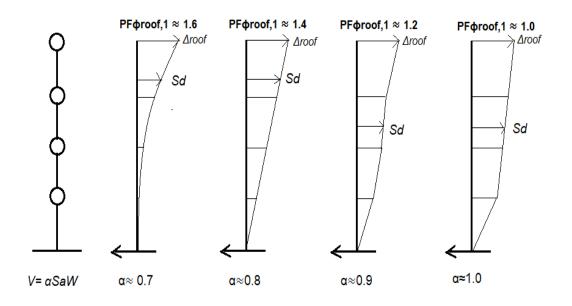
 Φ_{i1} = amplitud del modo 1 en el nivel i.

N = nivel N o el nivel más alto de la porción de la estructura.

V = fuerza cortante en la base

W = peso de estructura (carga muerta) más porcentaje de cargas vivas

 Δ_{roof} = desplazamiento de techo (se obtiene de curva de *pushover*)


S_a = aceleración espectral

S_d = desplazamiento espectral

 $\emptyset_{roof,1}$ = amplitud del primer modo de vibración en el techo

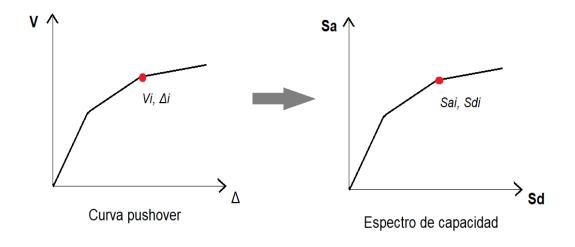

Los valores para amplitudes y coeficientes modales se pueden obtener con base en una dinámica estructural y el modelo de aplicación de carga lateral, considerando las deformaciones que arroja el primer modo fundamental de vibración de la estructura.

Figura 12. Factores de participación modal y coeficientes

La gráfica resultante de la conversión por cada punto de la curva *pushover* a espectro de capacidad se observa en la siguiente figura.

Figura 13. Curva pushover convertida a espectro de capacidad

- Elaborar el espectro de respuesta elástico (ver figura 8), el cual depende de la ubicación geográfica y condiciones de sitio de la estructura en análisis.
- Convertir el espectro de respuesta elástico (S_a T) a formato espectro de demanda ADRS (S_a – S_d), con lo cual es necesario transformar cada punto de la curva haciendo uso de las siguientes ecuaciones:

$$S_{di} = \frac{T_i^2}{4^*\pi^2} S_{ai} g$$
 Ecuación 5

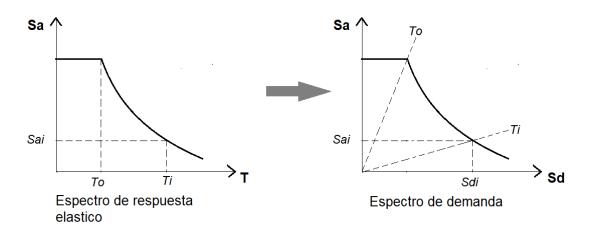
$$S_{ai}g = \frac{2\pi}{T_i}S_v$$
 Ecuación 6

$$S_{di} = \frac{T_i}{2\pi} S_v$$
 Ecuación 7

Donde:

T_i = periodo natural de vibración

S_{di} = desplazamiento espectral para un punto dado i


g = aceleración de la gravedad

Sai = aceleración espectral para un punto dado i

 S_v = velocidad espectral

Realizando la conversión se obtiene una gráfica en términos de desplazamiento, visualizando además cómo se incorpora el periodo simbolizado por líneas rectas, las cuales pasan por el origen de las coordenadas, como se observa en la figura 14.

Figura 14. Conversión de espectro de respuesta

A continuación, se realiza la gráfica del espectro de demanda y sobre la misma se superpone el espectro de capacidad; (ver figura 15); en ella se puede observar que el periodo T₁ es constante hasta el punto A; para el punto B se el periodo T₂ va decreciendo debido a que la estructura ya se encuentra en el rango inelástico; por tanto, sufre degradación.

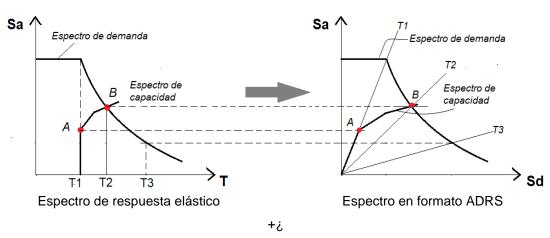
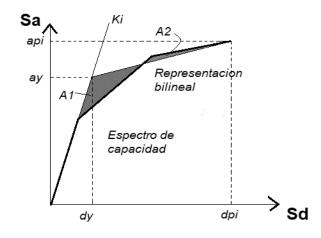



Figura 15. Superposición de espectro de demanda y capacidad

Fuente: ATC-40. Seismic Evaluation and Retrofit of Concrete Buildings. Consultado el 17 de octubre de 2021. Recuperado de https://www.atcouncil.org/pdfs/atc40toc.pdf.

 Se debe realizar la construcción de una curva bilineal del espectro de capacidad como ilustra la figura 16, para determinar el amortiguamiento efectivo, así como la reducción del espectro de demanda.

Figura 16. Representación bilineal del espectro de capacidad

Fuente: ATC-40. Seismic Evaluation and Retrofit of Concrete Buildings. Consultado el 17 de octubre de 2021. Recuperado de https://www.atcouncil.org/pdfs/atc40toc.pdf.

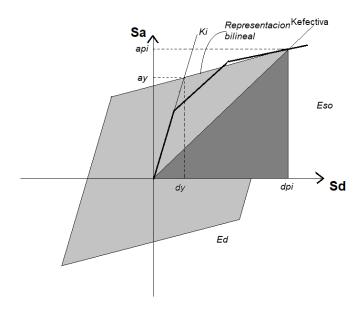
Estimación de amortiguamiento y reducción del 5 % del espectro de demanda. Todas las estructuras cuentan con amortiguamiento histerético inherente desde su concepción; este ocurre debido a que el sismo lleva a la estructura hasta su rango de deformación inelástica. El amortiguamiento se representa como un sistema equivalente viscoso y se calcula con las siguientes ecuaciones:

$$\beta_{eq}$$
= β_0 +0.05 Ecuación 8

$$\beta_o = \frac{1}{4\pi} \frac{E_d}{E_{so}}$$
 Ecuación 9

Donde:

 β_0 = amortiguamiento histerético viscoso


 β_{eq} = amortiguamiento equivalente

0.05 = amortiguamiento viscoso inherente de la estructura

Ed = energía disipada por amortiguamiento

Eso = energía máxima por deformación

Figura 17. Amortiguamiento por reducción espectral

Fuente: ATC-40. Seismic Evaluation and Retrofit of Concrete Buildings. Consultado el 17 de octubre de 2021. Recuperado de https://www.atcouncil.org/pdfs/atc40toc.pdf.

Para calcular el área sombreada de la región E_d se puede simbolizar o interpretar como una figura geométrica de paralelogramo, la cual se repite 4 veces; así mismo la región E_{so} corresponde a un triángulo, con lo que se obtienen las siguientes ecuaciones:

$$E_d=4(a_yd_{pi}-d_ya_{pi})$$
 Ecuación 10

$$E_{so} = \frac{1}{2} a_{pi} d_{pi}$$
 Ecuación 11

Si se sustituye E_d y E_{so} en la ecuación 9 y se opera algebraicamente, se tiene el amortiguamiento equivalente como lo muestra la ecuación 12, la cual es útil para determinar el factor de reducción del espectro de demanda.

$$\beta_{eq}(\%) = \frac{63.7(a_y d_{pi} - d_y a_{pi})}{a_{pi} d_{pi}} + 5$$
 Ecuación 12

Con el uso de la ecuación se pueden obtener valores de reducción de espectro muy similares a los del código FEMA; dicha ecuación se debe utilizar para valores de amortiguamiento menores a 25 %.

ara estructuras de baja ductilidad como el concreto reforzado se hace necesario introducir un factor de modificación k, el cual está relacionado con el sismo, para finalmente obtener la ecuación de amortiguamiento efectivo β_{eff} .

$$\beta_{\text{eff}}(\%) = \frac{63.7 \text{k}(a_y d_{pi} - d_y a_{pi})}{a_{pi} d_{pi}} + 5$$
 Ecuación 13

Los valores del factor k se obtienen a partir de la clasificación que la norma ATC-40 hace, dividiendo en 3 categorías como se muestra en la tabla siguiente.

Tabla II. Valores de factor K

Tipo de comportamiento estructural	β ₀ (%)	К		
Tipo A	≤16.25 >16.25	1.0 $1.13 - \frac{0.51(a_y d_{pi} - d_y a_{pi})}{a_{pi} d_{pi}}$		
Tipo B	≤25 >25	0.67 $0.845 - \frac{0.446(a_y d_{pi} - d_y a_{pi})}{a_{pi} d_{pi}}$		
Tipo C	Cualquier valor	0.33		

Fuente: elaboración propia, con datos obtenidos de ATC-40,1996.

El comportamiento estructural anterior se clasifica acorde a la curva de histéresis; en el tipo A se consideran las estructuras con ciclos estables; en el B, las básicas, que cuentan con una moderada reducción del área, y, por último, en el tipo C, las estructuras presentan comportamiento sustancial, así como una mayor reducción de área.

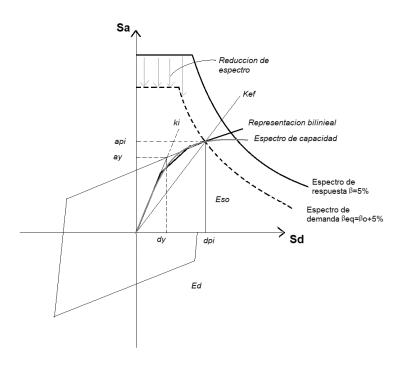
Tabla III. Tipos de comportamiento estructural

Duración del movimiento	Edificaciones esencialmente nuevas	Edificaciones existentes en regular estado	Edificaciones existentes pobres
Corto	Tipo A	Tipo B	Tipo C
Largo	Tipo B	Tipo C	Tipo C

Fuente: elaboración propia, con datos obtenidos de ATC-40,1996.

Asimismo, para realizar la reducción del espectro de demanda, la norma muestra valores tanto para aceleración SR_A como velocidad espectral SR_V.

Tabla IV. Valores para factores de reducción SRA y SRv


Comportamiento A		Comportamiento B			Comportamiento C				
β _o (%)	0/) 0	SRA	SR _v	βeff	SRA	SR_v	$eta_{ ext{eff}}$	SRA	SR_v
Po (70)	$eta_{ ext{eff}}$	(1/B _s)	(1/B _L)		(1/B _s)	(1/B _L)		(1/B _s)	(1/B _L)
0	5	1	1	5	1	1	5	1	1
5	10	0.78	0.83	8	0.83	0.87	7	0.91	0.93
15	20	0.55	0.66	15	0.64	0.73	10	0.78	0.83
25	28	0.44	0.57	22	0.53	0.63	13	0.69	0.76
35	35	0.38	0.52	26	0.47	0.59	17	0.61	0.7
> 45	40	0.33	0.5	29	0.44	0.56	20	0.56	0.67

Fuente: elaboración propia, con datos obtenidos de ATC-40,1996.

Para finalizar ya con las gráficas combinadas y convertidas a formato ADSR, se procede a encontrar el punto donde converge el espectro de demanda con el de capacidad (punto de desempeño), con lo cual se asume un valor cercano aproximado a dicho punto con sus coordenadas (dpi, api); seguidamente se construye la representación bilineal del espectro de capacidad con los puntos (dy,ay); ya con esos valores se calculan factores de reducción y se realiza la gráfica del espectro de demanda reducido; luego se verifica si este coincide con la curva de capacidad en una tolerancia que esté dentro del 5 % (0.95dpi≤di≤1.05dpi) del desplazamiento inicial asumido.

De no ser así, se vuelve asumir un nuevo punto (d_{pi}, a_{pi}) y el proceso se repite nuevamente hasta alcanzar la tolerancia permitida; al llegar a dicha tolerancia se concluye que ese es el valor del punto de desempeño.

Figura 18. Intersección del punto de espectro de demanda y espectro de capacidad

Fuente: ATC-40. Seismic Evaluation and Retrofit of Concrete Buildings. Consultado el 17 de octubre de 2021. Recuperado de https://www.atcouncil.org/pdfs/atc40toc.pdf.

1.11.1. Sectorización de la curva de capacidad

Al clasificar el nivel y ubicar los diferentes puntos de desempeño se hace necesario dividir la curva de capacidad en sectores, definiendo límites de daño por etapas, los cuales van surgiendo al incrementarse el desplazamiento lateral; para ello se adecuan de acuerdo con los propuestos en la norma ATC-40

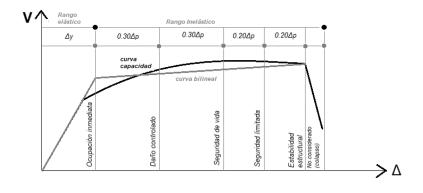

clasificados en 6 niveles de desempeño. En la tabla V se aprecian los límites entre niveles de desempeño, y en la figura 19 la respectiva representación ilustrativa o gráfica de los mismos.

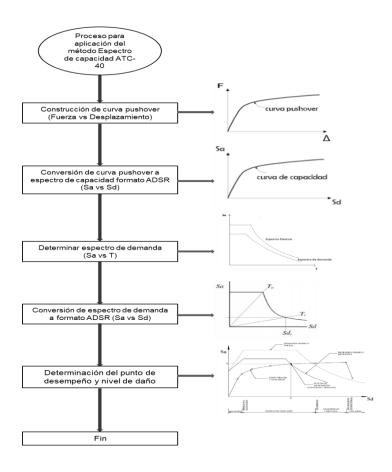
Tabla V. Límites de desplazamiento en curva de capacidad

Nivel de desempeño estructural	Límite de desplazamiento lateral Δ			
	_			
Ocupación inmediata SP-1	Δy			
Daño controlado SP-2	Δу+0.30 Δр			
Seguridad de vida SP-3	Δу+0.60 Δр			
Seguridad limitada SP-4	Δу+0.80 Δр			
Estabilidad estructural SP-5	Δy+Δp			
No considerado (colapso) SP 6	Δ ≥ Δy+Δp			

Fuente: elaboración propia.

Figura 19. Sectorización de curva de capacidad

Fuente: INGESOFT. *Diseño sismorresistente*. Consultado el 28 de septiembre de 2021.


Recuperado de http://www.ici.edu.pe/brochure/normas/Norma%20E.030%20Dise% C3%B1osismorresistente.pdf.

Siendo Δy el desplazamiento elástico y Δp el desplazamiento inelástico.

1.11.2. Flujograma para aplicación del método de espectro de capacidad ATC-40

Finalmente se hace un flujograma (ver figura 20) para resumir el proceso y elaboración del método de espectro de capacidad; de esa forma se obtiene como resultado final el punto de desempeño y nivel de daño.

Figura 20. Flujograma del método de espectro de capacidad según ATC-40

Fuente: elaboración propia, empleando SmartArt y Excel.

2. MARCO EXPERIMENTAL

2.1. Descripción de la torre por evaluar

En cuanto a la estructura que se someterá a evaluación, está fabricada en acero estructural con perfiles tipo L, además de perfiles circulares HSS, los cuales se unen formando nudos, algunos rígidos y otros con movimiento libre (articulados).

La torre tiene una altura total desde la base hasta la cumbre de 60 metros; su forma en planta es cuadrada; además cuenta con ancho que va desde 6.50 metros en la base, hasta 1.80 m al llegar a una altura de 48 metros; a partir de allí se mantiene un ancho constante culminando a los 60 metros de altura. Cuenta con una plataforma de descanso ubicada en la cumbre, así como también con una escalera de acceso con su respectiva protección y peldaños de hierro.

En la siguiente figura puede apreciarse a escala, las dimensiones que tendrá la torre autosoportada.

6.0

Figura 21. Torre autosoportada de 60 metros

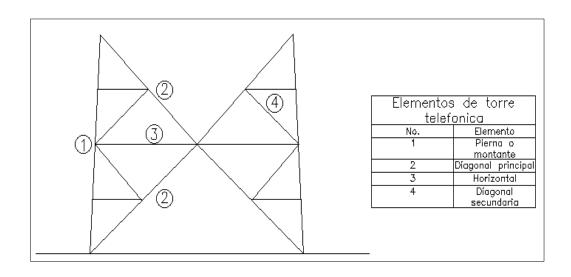
Fuente: elaboración propia, empleando AutoCAD 2019.

Para comprender y ejemplificar fácilmente la composición de la torre se dividirá en un número de diez secciones de 6 metros, que es el equivalente a 20 pies (ver figura 22), ya que es la medida estándar en la que se fabrican los elementos de acero, mejorando así la maniobrabilidad, además de reducir el

costo de transporte y de ensamblaje debido a que se puede construir en lugares remotos y de difícil acceso.

\$-10 \$-9 \$-6 \$-5 \$-5 \$-1

Figura 22. Secciones de la torre


Fuente: elaboración propia, empleando AutoCAD 2019.

La estructura se conforma de arriostramientos primarios concéntricos en forma de X, resaltando su tipología debido a que es una de las más efectivas

para controlar desplazamientos horizontales. Los elementos que la conforman son los siguientes:

- Elementos verticales: denominados patas, piernas o montantes, para el ejemplo se utiliza en forma de sección circular.
- Elementos diagonales o breizas: son formados de angular tipo L de diferentes medidas.
- Elementos horizontales: conectan las piernas de la torre en dirección paralela al suelo y también son elementos de angular tipo L, al igual que las breizas.

Figura 23. Elementos estructurales de la torre telefónica

Fuente: elaboración propia, empleando AutoCAD 2019.

2.1.1. Perfiles estructurales

En Guatemala se comercializa variedad de perfiles estructurales y son fabricados acordes a normas internacionales establecidas; estos se distribuyen con base en la norma norteamericana de AISC (*American Institute of Steel Construction*). En el desarrollo del presente trabajo, para los elementos sometidos a esfuerzo de compresión y flexión como las piernas o montantes, se utilizará un perfil de tipo tubular redondo, hueco, conocido en la nomenclatura como HSS; mientras que, para elementos sometidos a tensión y compresión, específicamente los diagonales y horizontales, la sección que se va a utilizar será de tipo angular en forma de L, con alas iguales que forman un ángulo recto de 90 grados. Los perfiles antes mencionados se muestran en la tabla siguiente.

Tabla VI. **Tipos de perfiles estructurales**

Tipo de perfil	Ejemplo de nomenclatura según AISC	Ilustración	
Ángulo	L 2 ½"x2 ½"x1/4"	$\frac{b}{ t }$	
Tubular redondo	HSS 4"x3/8"		

Fuente: elaboración propia, con datos obtenidos de AISC 341-16.

2.1.2. Propiedades del acero estructural

Para las propiedades mecánicas del acero estructural que conforma la torre se utilizará acero al carbono fabricado bajo la norma norteamericana ASTM (*American Standar for testing & materials*), siendo los más comerciales el acero A-36 y A-53. La tabla VII especifica el tipo de acero que se va a utilizar para los diferentes elementos, así como sus respectivos límites, tanto de fluencia como de tensión ultima.

Tabla VII. Propiedades mecánicas de perfiles de acero

Elemento	Norma	Esfuerzo mínimo de fluencia F _y (kg/cm²)	Esfuerzo de tensión mínimo último F _u (kg/cm²)
Tubo estructural HSS	ASTM A-53	2460	4220
Perfiles tipo L	ASTM A-36	2530	4080 a 5620

Fuente: elaboración propia.

2.2. Integración de cargas aplicadas

El modelo se analizará de acuerdo con los tipos de cargas mencionados en el capítulo uno, las cuales son: carga viva, carga muerta y carga de sismo.

2.2.1. Carga viva

Este tipo de carga comprende únicamente el peso del personal que realiza la instalación de antenas o mantenimiento de la torre. Tanto la norma TIA/EIA-

222-F como la NSE de AGIES para Guatemala, no especifican valores de carga viva para torres telefónicas, por lo que se considera un número máximo de trabajadores laborando sobre la torre de 4 personas con un peso promedio de 85 kg. Esta carga será aplicada y distribuida proporcionalmente en los nodos superiores de la torre.

Tabla VIII. Integración de carga viva

# personas	Peso (kg)	Total
4 técnicos	85	340

Fuente: elaboración propia.

2.2.2. Sobrecarga muerta

Todos los componentes adicionales, excepto el peso propio de la estructura, se denominan sobrecarga muerta. En ella se incluye escalera de acceso, plataformas, antenas, entre otros.

Tabla IX. Integración de sobrecarga muerta

Descripción	Cantidad	Peso	Subtotal (kg)
Antenas marca Andrew	12 unidades	18.5 kg	222.00
1900 MHz	12 dillidddos	10.0 kg	222.00
Soportes para instalar	4 unidades	100 kg	400.00
antenas	ramadado	roo ng	100.00
Antenas de microondas			
MMO de 1.8 m de	4 unidades	70.2 kg	280.80
diámetro			

Continuación de la tabla IX.

Plataforma de descanso	1 unidad	200 kg	200.00
Cables de feeders	960 metros	1.2 kg/m	1152.00
Escaleras de ascenso	60 metros	10 kg/m	600.00
Carga n	nuerta sobrepue	sta	2854.80 kg

Fuente: elaboración propia.

2.2.3. Carga de sismo

Para la determinación de cargas de sismo es necesario construir primeramente el espectro de respuesta elástico; este hace uso de las normas de seguridad estructural para Guatemala, elaborada por AGIES en la última versión del año 2018.

2.2.3.1. Construcción de espectro de respuesta elástico

 Clasificación de obra: el primer paso es clasificar la estructura (torre de telecomunicación) según el tipo de obra que propone la norma NSE-2; para ello se utiliza la siguiente tabla:

Tabla X. Clasificación de obra

Categoría	Definición	Ejemplo
l Obra utilitaria	Albergan personas de manera incidental y no tienen instalaciones de estar, de trabajo o no son habitables	 Bodegas que no clasifican como importantes. Instalaciones agrícolas o industriales de ocupación incidental

Continuación de la tabla X.

II Ordinaria	Tienen una ocupación menor a 300 personas y no se encuentran en categoría I, III o IV	Edificaciones con ocupación entre 300 a 500 personas
III Importante	Pueden albergar gran cantidad de personas y prestan servicios importantes, pero no esenciales luego de un desastre	 Obras y edificios gubernamentales que no son esenciales Edificios educativos, guarderías públicas y privadas Prisiones, museos Obras de que no sean esenciales incluyendo subestaciones eléctricas, líneas de alto voltaje, redes de agua, drenajes puentes, central de telecomunicaciones
IV Esenciales	Son las que permanecen en operación continua durante y después de un siniestro	 Instalaciones de defensa civil, bomberos, policía y de comunicaciones Centrales telefónicas, de telecomunicación y de radiodifusión Aeropuertos, hangares de aeronaves, estaciones ferroviarias y sistemas masivos de transporte Plantas de energía e instalaciones para la operación continua de las obras Puentes sobre rutas centroamericanas y las que la autoridad competente considere

Fuente: Asociación Guatemalteca de Ingeniería Estructural y Sísmica, AGIES. (2018). *Normas de seguridad estructural para Guatemala NSE 1.*

Se observó que la estructura puede encajar en la categoría III o IV, pero debido a que el estudio tuvo como objetivo determinar su vulnerabilidad, se inició con una categoría ordinaria y posteriormente se fueron incrementando los niveles hasta lograr su colapso, según el tipo de sismo.

Sismicidad y nivel de protección

Para determinar el índice de sismicidad se hace uso de la figura 24 con base en la ubicación. Adicionalmente, la norma presenta la tabla A-1 (ver en los apéndices) como ayuda auxiliar y más detallada para la obtención de los valores de índice de sismicidad para cualquiera de los 341 municipios que conforman el país.

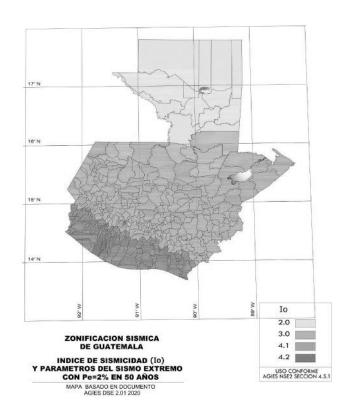


Figura 24 Mapa de zonificación sísmica de Guatemala

Fuente: Asociación Guatemalteca de Ingeniería Estructural y Sísmica, AGIES. (2018).

Normas de Seguridad Estructural para Guatemala NSE 2.

El valor del índice de sismicidad lo obtenido para la ciudad de Guatemala, es de 4.1. Posteriormente se procede a obtener el nivel de protección; para ello se utiliza la siguiente tabla:

Tabla XI. Nivel de protección sísmica y probabilidad de sismo de diseño

Índice de	Clase de obra			
sismicidad	Esencial	Importante	Ordinaria	Utilitaria
lo = 4	Е	D	D	С
lo = 3	D	С	С	В
lo = 2	С	В	В	Α
Probabilidad de exceder el sismo de diseño	5 % en 50 años	5 % en 50 años	10 % en 50 años	Sismo mínimo

Fuente: Asociación Guatemalteca de Ingeniería Estructural y Sísmica, AGIES. *Normas de Seguridad Estructural para Guatemala NSE 2.* Consultado el 12 de septiembre de 2021.

Recuperado de https://www.agies.org/wp-content/uploads/2018/08/NSE-2-2018-Edici%C3%

B3n-Beta-Demandas-estructurales.pdf-

Puede apreciarse que, para un índice de sismicidad I₀=4 y clase de obra ordinaria, corresponde un nivel de protección D y sismo de diseño de 10 % en 50 años.

Clasificación de sitio

La clasificación del sitio es fundamental para determinar las características del suelo. Este se obtiene por ensayos de mecánica de suelos y es elaborado por personal geotécnico. Se clasifica en categorías AB, C, D, E o F, siendo los suelos tipo A los de mayor capacidad de soporte y el suelo F el de menor capacidad. En este caso se asume medio y será el suelo tipo D.

Sismo de diseño

El sismo de diseño a utilizar depende de la clasificación de obra y están definidos para estructuras con amortiguamiento de 5%. La norma NSE-2 hace referencia a los siguientes:

Tabla XII. Tipos de sismo y el uso de diseños

Tipo de sismo	Probabilidad de	Usos
	excedencia	
Sismo básico	Tiene 10 % de probabilidad •	Obras ordinarias
	nominal de ser excedido •	Donde permitan disposiciones
	en un período de 50 años.	en las normas NSE 3, 4, 5 y 7
Sismo severo	Tiene 5 % de probabilidad •	Obras importantes y esenciales
	nominal de ser excedido •	Donde indique normas NSE 3,
	en un período de 50 años.	5 y 7
Sismo extremo	Tiene 2 % de probabilidad	 Sismo de base para mapa de
	nominal de ser excedido	zonificación
	en un período de 50 años	
Sismo mínimo	Reducción del sismo	Obra utilitaria
	básico.	 Casos de readecuación
		sísmica de obra existente.

Fuente: Asociación Guatemalteca de Ingeniería Estructural y Sísmica, AGIES. (2018). *Normas de Seguridad Estructural para Guatemala NSE 2.* Consultado el 12 de septiembre de 2021. Recuperado de https://www.agies.org/wp-content/uploads/2018/08/NSE-2-2018-Edici%C3% B3n-Beta-Demandas-estructurales.pdf.

 Parámetros S_{cr} y S_{1r:} para el municipio de Guatemala según la tabla A-1 (ver apéndice) los valores son:

$$S_{cr} = 1.43$$

$$S_{1r} = 0.88$$

 Coeficientes de sitio F_a y F_{v:} los coeficientes de sitio tienen los mismos valores y dependen únicamente de su clase, así como del índice de sismicidad.

Tabla XIII. Coeficientes de sitio Fa y Fv

Clase de sitio	Índice de sismicidad			
	2	3	4.1	4.2
AB	1.0	1.0	1.0	С
С	1.0	1.0	1.0	В
D	1.0	1.0	1.0	1.0
Е	1.0	1.0	1.0	1.0
F		Se req	uiere evaluaciór	n específica

Fuente: Asociación Guatemalteca de Ingeniería Estructural y Sísmica, AGIES. (2018). *Normas de Seguridad Estructural para Guatemala NSE 2.* Consultado el 13 de septiembre de 2021.

Recuperado de https://www.agies.org/wp-content/uploads/2018/08/NSE-2-2018-Edici%C3%B3n-Beta-Demandas-estructurales.pdf.

De la tabla anterior para un índice de sismicidad I_0 = 4.1 en clase de sitio D se muestran los valores:

 $F_a = 1.0$

 $F_{v} = 1.0$

 Ajuste por clase de sitio: el ajuste para clase de sitio se obtiene mediante las ecuaciones mostradas:

$$S_{cs} = S_{cr} * F_a$$
 Ecuación 14

$$S_{1s} = S_{1r} * F_v$$
 Ecuación 15

$$S_{cs} = 1.43*1.00 = 1.43 g$$

$$S_{1s} = 0.88*1.00 = 0.88 g$$

 Periodo de vibración de transición: periodo que divide periodos cortos de largos en segundos.

$$T_s = \frac{S_{1s}}{S_{cs}}$$
 Ecuación 16

$$T_s$$
= 0.88/1.43 = 0.615 s

$$T_0=0.2*0.615=0.123 s$$

 Factor K_d: este factor muestra la probabilidad que ocurra el sismo de diseño con base en el nivel de protección sísmica necesario.

Tabla XIV. Factor Kd

Nivel de sismo	Factor K _d
Sismo ordinario – 10 % de probabilidad de ser excedido en 50	0.66
años	
Sismo severo – 5 % probabilidad de ser excedido en 50 años	0.80
Sismo extremo – 2 % probabilidad de ser excedido en 50 años	1.00
Sismo mínimo – condición de excepción	0.55

Fuente: Asociación Guatemalteca de Ingeniería Estructural y Sísmica, AGIES. (2018). *Normas de Seguridad Estructural para Guatemala NSE 2. pp. (4-8).*

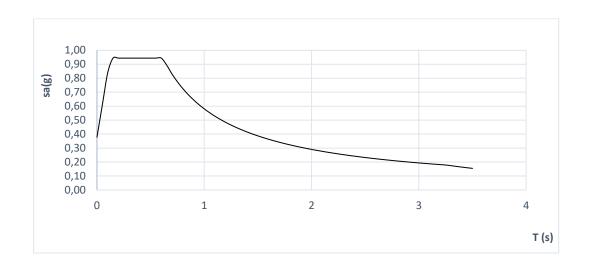
Los sismos asociados al factor Kd tienen probabilidades de ser excedidos en cierta cantidad N de años y vienen acompañados por periodos de retorno; estos valores están calculados y se observan en la tabla XV.

Tabla XV. Periodos de retorno para valores de Kd

Probabilidad de	Probabilidad de	Periodo de	Factor Kd
excedencia en 50	excedencia anual	retorno	
años (%)	(%)	(años)	
10	0.211	475	0.66
5	0.103	975	0.80
2	0.040	2475	1.00

Fuente: elaboración propia.

El factor K_d que va a utilizarse será para un sismo ordinario con un valor de 0.66. Es necesario realizar la calibración acorde a la probabilidad de excedencia mostrada; esto se logra utilizando las siguientes ecuaciones:


$$S_{cd} = K_d * S_{cs}$$
 Ecuación 18
 $S_{1d} = K_d * S_{1s}$ Ecuación 19

 $S_{cd} = 0.66*1.43 = 0.9438$

 $S_{1d} = 0.66*0.88 = 0.5808$

 Construcción de espectro de respuesta: con los valores anteriormente obtenidos se procede a realizar la gráfica a la cual la norma NSE-2 define como espectro de respuesta. En el eje de las abscisas se encuentra el periodo T en segundos y en las ordenadas la aceleración espectral Sa en unidades de gravedad g.

Figura 25. Construcción de espectro de respuesta

Fuente: elaboración propia, empleando Excel.

2.2.3.2. Período fundamental

Para el cálculo del periodo fundamental se hace uso de la fórmula empírica con base en los valores de la norma NSE-3 en la sección 2.1.6.

$$T_a = K_T^* h_n^x$$
 Ecuación 20

T_a = periodo fundamental de la estructura en segundos h_n = altura de la estructura en metros

Los valores de K_T y x son determinados a partir del sistema constructivo estructural de la edificación.

Tabla XVI. Valores de K_T y X

Sistema estructural	Кт	X
E2, E3, E4 o E5	0.049	0.75
E1 de concreto reforzado	0.047	0.90
E1 de acero	0.072	0.80
E3 o E4 de acero rigidizados	0.072	0.75
Todos los demás sistemas estructurales	0.0488	0.75

Fuente: Asociación Guatemalteca de Ingeniería Estructural y Sísmica, AGIES. (2018). *Normas de Seguridad Estructural para Guatemala NSE 2. pp. (2-4)*. Consultado el 13 de septiembre de 2021. Recuperado de https://www.agies.org/wp-content/uploads/2018/08/NSE-2-2018-Edici%C3%B3n-Beta-Demandas-estructurales.pdf.

La estructura corresponde a un sistema de acero rigidizado, ya que cuenta con breizas o arriostramientos que reducen la deformación lateral, en la norma NSE7 que contiene el diseño en acero, a dicho tipo lo define como sistema E3 o

E4. Con los valores definidos y la altura de la torre (h_n = 60 m) se realiza el cálculo para el periodo empírico.

$$T_a = 0.072*60^{0.75} = 1.552 \text{ s}$$

2.2.3.3. Determinación de fuerzas laterales por el método estático equivalente

El método estático equivalente, aunque su metodología es empírica, es de gran ayuda para obtener el cortante basal y simular las fuerzas de acción del sismo en toda la elevación de la edificación.

El corte basal viene definido por:

W_s = peso sísmico de la edificación

Cs = coeficiente sísmico de diseño

Peso sísmico de la edificación: el peso sísmico será definido como lo indica la norma AGIES, se considera el 100 % de carga muerta que significa el peso propio y sobrecarga, más el 25 % de carga viva. Se discretizará la torre la torre en diez secciones obteniendo peso por cada una de ellas incluyendo todos los valores de carga muerta, sobrecarga y carga viva para obtener el peso sísmico total.

Tabla XVII. Peso sísmico de la estructura

	Peso propio	Sobrecarga	Carga viva	Total (kg)
Sección	(kg)	(kg)	(kg)	
1	368.56			368.56
2	359.38			359.38
3	350.20			350.20
4	341.39			341.39
5	326.92			326.92
6	318.91			318.91
7	311.41			311.41
8	271.75			271.75
9	302.54			302.54
10	234.87	2854.80	85.00	3174.67
	3185.94			6125.73

Fuente: elaboración propia.

• Coeficiente sísmico C_s: este coeficiente se determina por la ecuación:

$$C_s = \frac{S_a(T)}{R^*\beta_d}$$
 Ecuación 22

Siendo las variables:

S_a(T) = demanda sísmica de diseño en función del periodo

R = factor de reducción

T = periodo fundamental de vibración

 β_d = 1 para estructuras con amortiguamiento del 5 %.

 $S_a(T)$ se obtiene de evaluar el periodo fundamental T=1.55 s en el espectro de respuesta, obteniendo un valor $S_a(T) = 0.375$.

El factor de reducción depende del sistema estructural considerado, además del material con que se elabora. Según la tabla siguiente, le corresponde un valor R de 3.

Tabla XVIII. Valores de parámetros sísmicos

Sistema de resistencia lateral	Parámetros sísmicos		Limitaciones estructurales del sistema, incluyendo altura (m)					
	R	Ωο	Cd	В	С	D	Ē	F
E7A-10 Torres de telecomunicaciones	3	1.5	3	NL	NL	NL	NL	NL

Fuente: elaboración propia, con datos obtenidos de *Normas de Seguridad Estructural para Guatemala NSE 2. pp. (2-4)*. Consultado el 14 de octubre de 2021. Recuperado de https://www.agies.org/wp-content/uploads/2018/08/ NSE-2-2018-Edici%C3%B3n-Beta-Demandas-estructurales.pdf.

$$C_s = 0.375/(3*1) = 0.125$$

Finalmente, con los datos ya recolectados se calcula el cortante basal.

$$V_B = C_s * W_s = 0.125 * 6125.73 = 765.716 \text{ kg}$$

 Fuerzas laterales de sismo: el corte basal debe ser distribuido en toda la estructura generando fuerzas laterales. Para su distribución se utiliza el peso sísmico por secciones y sus respectivas alturas por medio de la ecuación:

$$F_{x} = C_{yx} * V_{B}$$
 Ecuación 23

$$C_{xy} = \frac{W_{x} * h_{x}^{k}}{\sum_{i=1}^{n} (W_{i} * h_{i}^{k})}$$
 Ecuación 24

 F_x = cortante de cedencia sobre el nivel x

 h_x = altura del nivel x

 $k = 1 \text{ si T} \le 0.5 \text{ s}, 0.75 + 0.5T_s \text{ para } 0.5 < T \le 2.5 \text{ s}, 2 \text{ si T} > 2.5 \text{ s}$

Tabla XIX. Distribución de fuerzas laterales por sismo

Nivel	Altura desde la base hasta nivel i (m), h _x	Porción de peso sísmico efectivo asignado a nivel W _x (kg)	Distribución exponencial K	W _x * h _x ^k	Factor de distribución vertical C _{xy}	Fuerza lateral inducida a nivel (kg), F _y
10	60	3174.67	1.06	241042.45	0.70	535.23
9	54	302.54	1.06	20548.93	0.06	45.63
8	48	271.75	1.06	16296.04	0.05	36.19
7	42	311.41	1.06	16215.06	0.05	36.01
6	36	318.91	1.06	14107.76	0.04	31.33
5	30	326.92	1.06	11926.07	0.03	26.48
4	24	341.39	1.06	9836.13	0.03	21.84
3	18	350.20	1.06	7443.32	0.02	16.53
2	12	359.38	1.06	4974.94	0.01	11.05
1	6	368.56	1.06	2451.34	0.01	5.44
	Σ	6125.73	$\sum (W_i h_i^k)$	344842.04	1.00	765.72

Fuente: elaboración propia.

2.2.4. Derivas laterales tolerables

Todas las estructuras manejan cierto grado de ductilidad, dependiendo del material constitutivo; por ejemplo, las de concreto se comportan más rígidamente que las de acero; es por ello que ante fuerzas laterales sufren poco o considerables desplazamientos respecto de su posición original, a estos desplazamientos las normas sísmicas le denominan derivas y pueden ser de piso o de techo; en el presente modelo se utilizará deriva de techo con la finalidad de obtener el valor del desplazamiento máximo que puede sufrir la estructura, tanto en el rango elástico como inelástico. La tabla XXIV indica el límite máximo que se va a utilizar. Para definir deriva se utilizará la letra griega delta (Δ).

Tabla XX. Derivas laterales permitidas para estructuras de acero

		Categoría		
Estructura	l o II	III	IV	
Estructuras, que no sean muros de corte de mampostería, cuatro pisos o menos por encima de la base, con paredes interiores, divisiones, techos y sistemas de muros exteriores que han sido diseñados para acomodar las derivas de piso.	0.025 h _{sx}	0.020 h _{sx}	0.015 h _{sx}	
Estructuras de muros de corte de mampostería en voladizo.	0.010 h _{sx}	0.010 h _{sx}	0.010 h _{sx}	
Otras estructuras de muros de corte de mampostería.	0.007 h _{sx}	0.007 h _{sx}	0.007 h _{sx}	
Todas las demás estructuras.	0.020 h _{sx}	0.015h _{sx}	0.010 h _{sx}	

Fuente: Asociación Guatemalteca de Ingeniería Estructural y Sísmica, AGIES. *Normas de Seguridad Estructural para Guatemala NSE 7.5, 2018.* Consultado el 12 de septiembre de 2021. Recuperado de file:///C:/Users/mayra/Downloads/NSE-7.5-2018-Disen%CC%83o-de-Edificaciones-de-Acero.pdf.

Donde h_{sx} es la altura de estructura en análisis desde la base hasta la cumbre, siendo esta de 60 metros.

$$\Delta$$
última = 0.010*60 m = 0.60 m = 60 cm.

La deriva elástica se calcula con la ecuación siguiente:

$$\Delta_{elástica} = \Delta_{última} / C_d$$
 Ecuación 25

El valor del coeficiente C_d está definido en la tabla XVIII, para el sistema estructural E7A-10 el C_d es 3.

2.3. Análisis no lineal en software SAP2000

El tema del modelado comprende la realización de una serie de pasos, que abarcan desde la creación en 3d de la torre autosoportada hasta culminar en la generación de curva *pushover* y el punto de desempeño.

2.3.1. Modelado de la torre

Se crea un nuevo modelo definiendo las unidades de medida, así como el tipo de plantilla, en este ejemplo se utilizó la plantilla *blank* y se generaron las grillas según la altura y dimensión de la torre.

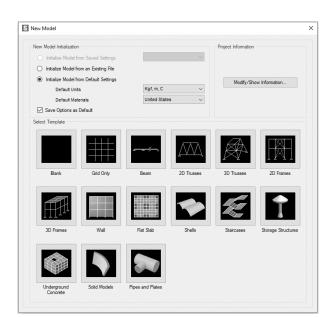


Figura 26. Creación de modelo

Fuente: elaboración propia, captura de pantalla del nuevo modelo, empleando software SAP2000.

2.3.2. Generación de grillas

Las grillas se modularon acorde a la medida, con vista en planta, además de elevación del plano de la torre, sus dimensiones en la base son de 6.5 m en el eje X; ya que la torre es cuadrada se tiene el mismo valor en dirección E igual a 6.5 m, para la dirección Z se consideran a cada 1.5 y 3 metros.

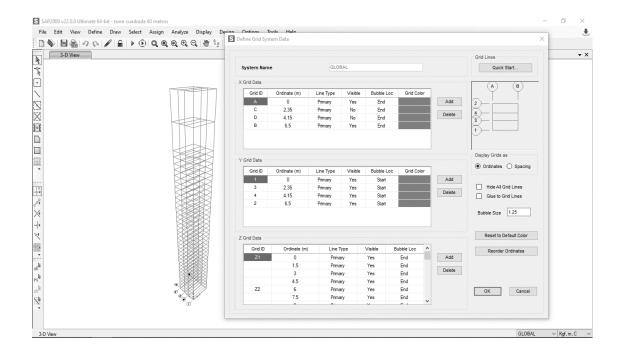


Figura 27. **Configuración de grillas**

Fuente: elaboración propia. Captura de pantalla de configuración realizada, empleando software SAP2000.

2.3.3. Definición del tipo de material

El material principal que se va a utilizar es acero estructural y comprende dos tipos de grado según su fabricación; para los de tipo angular se utilizará acero A36 mientras que los perfiles tubulares HSS, serán de acero A53GrB. Únicamente se modificó el peso del acero; el valor que se aplicará por unidad de volumen será de 7860 kg/m³.

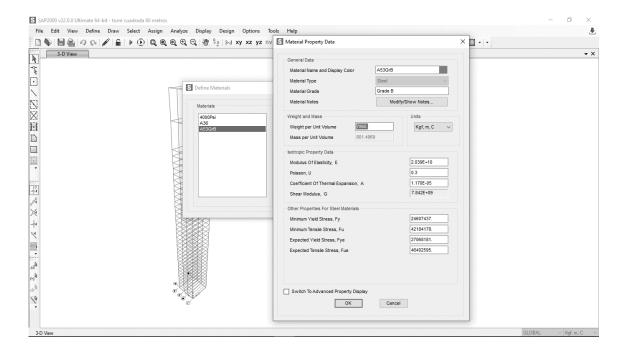
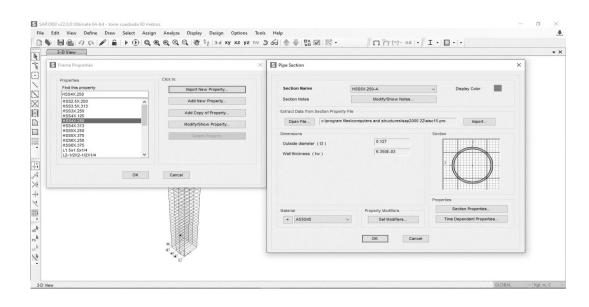


Figura 28. **Definición de tipos de acero**

Fuente: elaboración propia. Captura de pantalla sobre propiedades materiales del acero, empleando software SAP2000.

2.3.4. Definición de los elementos tipo frame

Se les llama elementos *frame* a cada una de las piezas que conforman la estructura. Las secciones que van a emplearse según el plano de la torre son de tipo angular en forma de L; así también se cuenta con secciones de tubo circular HSS, con las siguientes medidas:

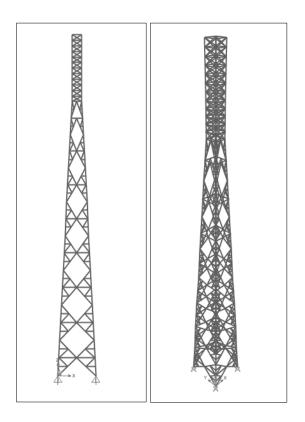

Tabla XXI. Secciones de elementos frame por utilizar

Elemento	Material	Medida
Tubo estructural HSS		5"x0.250"
	ASTM A-53	4"x0.313"
		4"x0.250"
		3.5"x0.313"
Dorfilos tino I	ACTM A 26	2"x2"x1/4"
Perfiles tipo L	ASTM A-36	1.5"x1.5"x1/4"

Fuente: elaboración propia.

Con las secciones descritas en la tabla anterior se procede a crear los diferentes tipos de elementos con su respectivo material.

Figura 29. **Definición de elementos** *frame*



Fuente: elaboración propia. Captura de pantalla de elementos *frame*, diseñados con software SAP2000.

2.3.5. Dibujo geométrico de la estructura

Es sin duda alguna el paso más laborioso y de mayor cuidado: primero se procedió a dibujar la elevación XZ; cabe destacar que es necesario hacer uso de los iconos de intersección, así como del punto medio para facilitar el dibujo de los elementos. Finalizada la elevación XZ con la ayuda de la opción *replicate* y *mirror* se realizan las elevaciones XY, obteniendo así la estructura en 3D.

Figura 30. Vista en 2D, 3D y secciones

Fuente: elaboración propia, empleando AutoCAD 2019.

2.3.6. Asignación de apoyos en la base

El tipo de apoyo que va a utilizarse es de articulado o apoyado, el cual no transmite momento y tiene 3 grados de libertad. Para asignar apoyos se seleccionan los nodos de la base en el plano XY y Z=0; la opción se encuentra en assign joint restraints.

Figura 31. Asignación de apoyos

Fuente: elaboración propia. Captura de pantalla de los apoyos asignados.

2.3.7. Definición de patrón de cargas

Deben añadirse los diferentes patrones de carga que se van a utilizar al llevar a cabo el análisis. Estos son: peso propio, sobrecarga muerta, carga viva y cargas laterales estáticas, las cuales producen el empuje debido al sismo; estas se determinaron por el método estático equivalente.

S Define Load Patterns Х Load Patterns Click To: Self Weight Auto Lateral Add New Load Pattern Load Pattern Name Туре Multiplier Load Pattern v 0 Cargas laterales (estaticas) Other Add Copy of Load Pattern DEAD Dead Modify Load Pattern VIVA Sobrecarga muerta Super Dead Delete Load Pattern Show Load Pattern Notes. OK Cancel

Figura 32. **Definición de patrones de carga**

Fuente: elaboración propia. Captura de pantalla de patrones diseñados con SAP2000.

2.3.8. Asignación de carga viva

La carga viva actúa en la cumbre de la torre; la carga total se distribuye en los 4 nodos que se encuentran a la altura Z=60~m y se establecen en dirección gravitacional. El valor de carga viva asignado en cada nodo es 340 kg/4 = 85.00 kg.

SAP2000 v22.0.0 Ultimate 64-bit - torre cuadrada 60 me File Edit View Define Draw Select Assign Analyze Display Design Options Tools Help .
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □ □ □ · □ · □ · · \$ □ □ 国区区 \ □ □ \$ S Assign Joint Forces Load Pattern Force Global Y Force Global Z Moment about Global Y Moment about Global Z O Add to Existing Loads Replace Existing Loads O Delete Existing Loads Reset Form to Default Values OK Close Apply

Figura 33. Asignación de carga viva

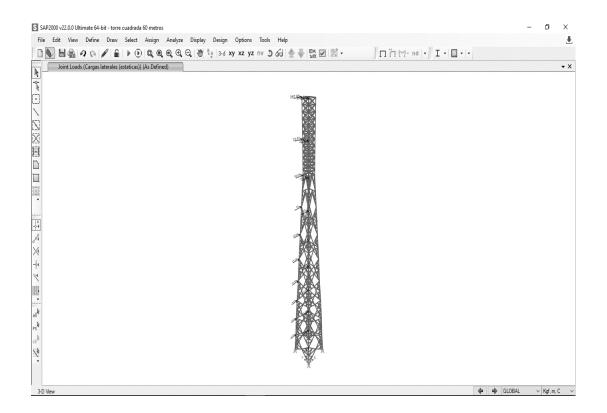
Fuente: elaboración propia. Captura de pantalla de diseño de carga viva realizado con SAP2000.

2.3.9. Asignación de sobrecarga muerta

Para ingresar la sobrecarga muerta se realiza el procedimiento similar al de la carga viva, distribuyéndola dentro de los mismos 4 nodos ubicados en la parte superior a la altura de 60 metros; el valor asignado en cada uno de los nodos es de 713.70 kg, el cual actúa en dirección gravitacional.

SAP2000 v22.0.0 Ultimate 64-bit - torre cuadrada 60 metros File Edit View Define Draw Select Assign Analyze Display Design Options Tools Help 1 **▼** X S Assign Joint Forces Load Pattern Coordinate System Force Global X Force Global Y Force Global Z Moment about Global Y kgf-m Moment about Global Z kgf-m O Add to Existing Loads Replace Existing Loads O Delete Existing Loads Reset Form to Default Values OK Close Apply

Figura 34. Asignación de sobrecarga muerta


Fuente: elaboración propia. Captura de pantalla del diseño de sobrecarga muerta, empleando el programa SAP2000.

2.3.10. Asignación de carga de sismo

Las fuerzas laterales de sismo que fueron calculadas en la tabla XVII se asignarán en los nodos respectivos a las alturas correspondientes; para ello se dividen dentro del número de ejes que resisten la fuerza lateral; deben colocarse perpendiculares a cada una de las caras de la torre como se muestra en la figura. Debido a que los cuatro lados de la estructura son idénticos, lo cual la define

como una estructura simétrica, se asignará y analizará únicamente el eje 1 en dirección XZ.

Figura 35. Asignación de cargas laterales de sismo

Fuente: elaboración propia. Captura de pantalla de asignación de cargas laterales, empleando el programa SAP2000.

2.3.11. Definición de cargas no lineales

Para el presente ejercicio las cargas no lineales que se van a utilizar son las gravitacionales y también la denominada *pushover*, la primera utiliza el peso sísmico y la segunda las cargas laterales producidas por el sismo; luego se incrementan paulatinamente simulando fuerzas externas, producto de movimientos telúricos.

S Load Case Data - Nonlinear Static Load Case Name Load Case Type Set Def Name ∨ Design... Gravitacionales Modify/Show... Static Analysis Type Zero Initial Conditions - Start from Unstressed State O Linear O Continue from State at End of Nonlinear Case Nonlinear Geometric Nonlinearity Parameters None All Modal Loads Applied Use Modes from Case O P-Delta Loads Applied O P-Delta plus Large Displacements Load Type Scale Factor Load Pattern ∨ DEAD Mass Source Load Pattern DEAD Previous Add Sobrecarga muerta VIVA Load Pattern 0.25 Modify Delete Other Parameters ОК Modify/Show.. Load Application Final State Only Modify/Show. Cancel Default Modify/Show.

Figura 36. Asignación de carga no lineal gravitacional

Fuente: elaboración propia. Captura de pantalla de asignación de carga no lineal gravitacional, empleando el programa SAP2000.

Para definir el patrón *pushover* es necesario tomar un punto de control, considerando el mayor desplazamiento respecto de la base, para ello se utiliza el punto más alto de la torre; el nudo a utilizar tiene el número 127 (ver figura 37).

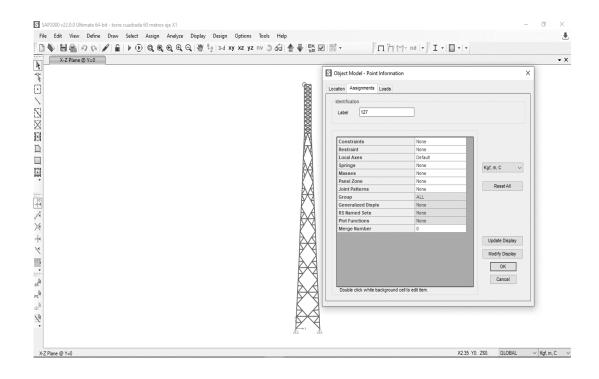


Figura 37. Punto de control de desplazamiento

Fuente: elaboración propia. Captura de pantalla de punto de control, diseñado con el programa SAP2000.

Además, se debe configurar el valor máximo de desplazamiento del punto de control que corresponde a la deriva última inelástica (Δ_u) con valor de 0.60 metros; por lo que se analizará la estructura hasta 0.80 metros.

La carga de sismo que se obtuvo por medio del método estático equivalente se considera únicamente como una fuerza lateral de empuje; por lo tanto, no se multiplica por la aceleración de la gravedad como se observa en la figura 38.

S Load Case Data - Nonlinear Static S Load Application Control for Nonlinear Static Analysis Load Case Name Load Application Control ∨ Design... Static pushover X O Full Load Analysis Type O Zero Initial Conditions - Start from Unstressed State O Linear Displacement Control Continue from State at End of Nonlinear Case Control Displacement O Use Conjugate Displacement All Modal Loads Applied Use Modes from Case O P-Delta Load to a Monitored Displacement Magnitude of O P-Delta plus Large Displacements Load Type Load Name Scale Factor Add DOF U1 ~ Modify Delete Modify/Show... ОК Displ Control Load Application Modify/Show... Multiple States Results Saved Cancel OK User Defined

Figura 38. **Definición de patrón de carga pushover**

Fuente: elaboración propia. Captura de pantalla de patrón de carga, diseñado con el programa SAP2000.

2.3.12. Asignación de rótulas plásticas

La filosofía del tipo de estructuras conocidas como celosía o armaduras se enfoca en que todos los elementos trabajen únicamente a esfuerzos, ya sea de tensión o compresión. Los montantes o patas de la torre son considerados como columnas debido a que pueden soportar esfuerzos de flexión y compresión simultáneamente, para el presente ejemplo no se consideran esfuerzos de flexión, debido a que las longitudes de arriostramientos son pequeñas; por lo tanto, se analizarán todos los elementos únicamente a fuerza axial, tanto para diagonales, como para horizontales y montantes.

Posterior a ello se define el tipo de rótula plástica haciendo énfasis en el uso de la norma ASCE 41-13; el software ya cuenta con los diagramas de momentos rotación y curvatura y en el presente caso, fuerza-desplazamiento. Es necesario,

previo a la asignación, definir las propiedades de articulación que se va a utilizar, como se ve en la figura 39.

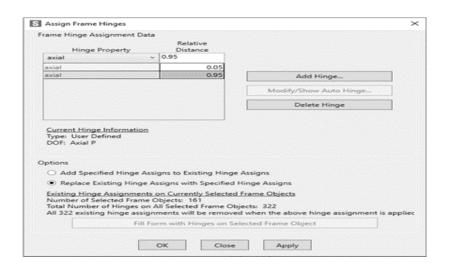

Frame Hinge Property Data for axial - Axial F S Define Frame Hinge Properties Defined Hinge Props Click to: Name Add New Property. Modify/Show Property... Delete Property Show Hinge Details Show Generated Props ☑ Use Yield Force Use Yield Disp (Steel Objects Only) Cancel ОК Cancel Collapse Prevention

Figura 39. Configuración de rótula plástica (axial)

Fuente: elaboración propia. Captura de pantalla de configuración realizada, empleando el programa SAP2000.

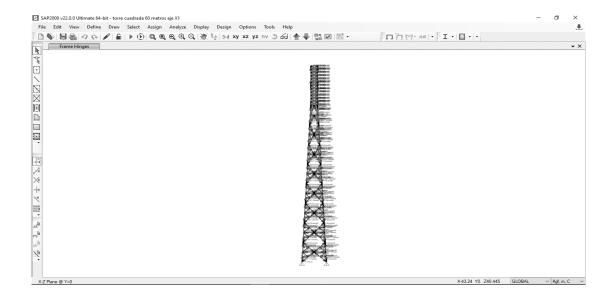

Luego de la configuración se procede a seleccionar los elementos que conforman la torre, asignándoles rótulas de tipo axial. Para todos los elementos se asume que la falla plástica ocurre a distancias de 0.05 L y 0.95 L.

Figura 40. **Asignación de rótulas en elementos**

Fuente: elaboración propia. Captura de pantalla de configuración realizada, empleando el programa SAP2000.

Figura 41. Rótulas plásticas en elementos frame

Fuente: elaboración propia. Captura de pantalla de configuración realizada, empleando el programa SAP2000.

2.3.13. Definición de masa sísmica

La norma AGIES establece como masa sísmica el 100 % del total de carga muerta y 25 % del total de carga viva. Para carga muerta se tiene el peso propio de la estructura, así como la sobrecarga muerta. La figura 42 muestra la forma de asignación, especificando patrones de carga.

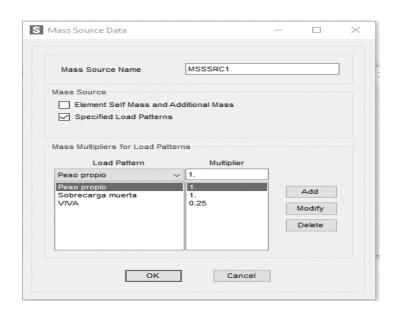


Figura 42. **Definición de masa sísmica**

Fuente: elaboración propia. Captura de pantalla de definición realizada, empleando el programa SAP2000.

2.3.14. Definición de espectros de respuesta elásticos

El ingreso del espectro de diseño se realiza por medio de bloc de notas. Se usarán 3 tipos diferentes de sismos que corresponden a los valores Kd= 0.66, 0.80 y 1, que representan el sismo ordinario, severo y extremo en la ciudad de Guatemala.

Figura 43. Espectro Kd=1 en SAP2000

Fuente: elaboración propia. Captura de pantalla del espectro definido, empleando el programa SAP2000.

2.3.15. Análisis de la estructura

Previo a realizar el análisis se selecciona el tipo de plano (ver figura 44) para armadura 2D con reacciones en X y Z.

S Analysis Options Available DOFs ☑ UX ☐ UY ☑ UZ ☐ RX ☑ RY Fast DOFs ок Space Frame Plane Frame Plane Grid Space Truss Cancel Solver Options.. XZ Plane XY Plane Automatically save XML, Excel or Microsoft Access tabular file after analysis File name Database Tables Named Set

Figura 44. Tipo de armadura analizada

Fuente: elaboración propia. Captura de pantalla de armadura analizada, empleando el programa SAP2000.

Por último, se realiza la corrida del programa para todos los casos de carga que serán analizados (lineal y no lineal).

Set Load Cases to Run Х Click to: Case Name Туре Status Action DEAD Linear Static Not Run Run MODAL Modal Not Run Run VIVA Linear Static Not Run Run Linear Static Sobrecarga muerta Not Run Run Gravitacionales Nonlinear Static Not Run Run Nonlinear Static Not Run Run pushover X Run/Do Not Run All Delete All Results Show Load Case Tree.. Analysis Monitor Options Model-Alive O Always Show Run Now O Never Show Cancel Show After seconds

Figura 45. Casos de carga analizados

Fuente: elaboración propia. Captura de pantalla que evidencia los casos analizados, aplicando el programa SAP2000.

2.3.16. Resultados de análisis y curva de capacidad SAP2000

Como resultado final el programa muestra la gráfica producto de las fuerzas laterales de empuje vs desplazamiento lateral, en el nodo de control en la dirección de análisis X.

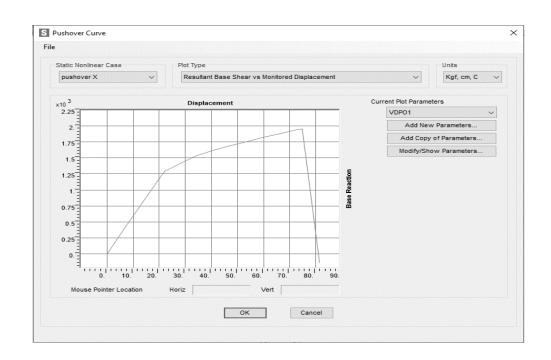


Figura 46. Curva de capacidad con SAP2000

Fuente: elaboración propia. Captura de pantalla de diseño realizado con el programa SAP2000.

Además, se pueden obtener los valores numéricos correspondientes a cada punto de la curva *pushover*, según la figura 47.

Figura 47. Resultados de curva de capacidad SAP2000

ter:	As Noted					Р	ushover Capacit	ty Curve				
	LoadCase Text	Step Unitless	Displacement	BaseForce Kgt	AtoB Unitless	BtoIO Unitless	IOtoLS Unitless	LStoCP Unitless	CPtoC Unitless	CtoD Unitless	DtoE Unitless	
	pushover X		0 -0.000353		322	0	0	0	0	0	(0
	pushover X		1 6.538109	385.2	322	0	0	0	0	0	(0
	pushover X		2 13.07657	770.5	322	0	0	0	0	0	(0
	pushover X		3 19.615032	1155.7	322	0	0	0	0	0	(0
	pushover X		4 22.001799	1296.4	319	3	0	0	0	0	(0
	pushover X		5 33.622718	1523.5	316	6	0	0	0	0	(0
	pushover X		6 40.16118	1614.7	311	9	2	0	0	0	(0
	pushover X		7 46.699641	1685.5	309	10	3	0	0	0	(0
	pushover X		53.238103	175	309	9	4	0	0	0	(0
	pushover X		9 59.776564	1820.4	307	10	5	0	0	0	(0
	pushover X		0 66.315026	1882.	306	10	4	2	0	0	(0
	pushover X		1 72.853487	1940.9	304	11	4	3	0	0	(0
	pushover X		2 74.827751	1956.1	303	12	4	2	0	1	(0
	pushover X		01.007000	100.0	301	14	3	2	0	1	(0

Fuente: elaboración propia. Aplicación del programa SAP2000.

Estos mismos valores serán utilizados para realizar manualmente el procedimiento y determinar el punto de desempeño.

Tabla XXII. Valores de curva de capacidad

	Curva de capacid	ad					
Paso	Paso Desplazamiento (cm) Fuerza (kg)						
0	0.00	0.00					
1	6.54	385.26					
2	13.08	770.52					
3	19.62	1155.77					
4	22.00	1296.41					

Continuación de la tabla XXII.

5	33.62	1523.54
6	40.16	1614.76
7	46.70	1685.53
8	53.24	1753.00
9	59.78	1820.44
10	66.31	1882.10
11	72.85	1940.99
12	74.83	1956.12
13	81.37	-136.84

Fuente: elaboración propia.

La figura 48 representa la curva de capacidad de la torre en dirección X, se puede apreciar los dos rangos (elástico e inelástico) observando la degradación de la rigidez y seguidamente culminar en el colapso.

2500 2000 1500 1000 500 0 20 40 60 80 Desplazamiento (cm)

Figura 48. Curva de capacidad

Fuente: elaboración propia, empleando Excel.

En las figuras 49 a la 51 pueden observarse resultados numéricos y gráficos para el punto de desempeño; adicionalmente, el periodo equivalente y amortiguamiento efectivo para los diferentes tipos de sismo.

S Pushover Curve File Static Nonlinear Case Plot Type Units ATC-40 Capacity Spectrum Kgf, cm, C pushover X Current Plot Parameters Spectral Displacement 1.2 A40P01 Add New Parameters 1.08 0.96 Modify/Show Parameters. 0.84 Performance Point (V, D) (1287.844, 21.856) Performance Point (Sa, Sd) (0.46, 18.262) 0.36 Performance Point (Teff, Beff) (1.264, 0.05) 0.24 0.12 Mouse Pointer Location Horiz Vert ОК Cancel

Figura 49. Punto de desempeño con SAP2000, Kd=0.66

Fuente: elaboración propia, empleando el programa SAP2000.

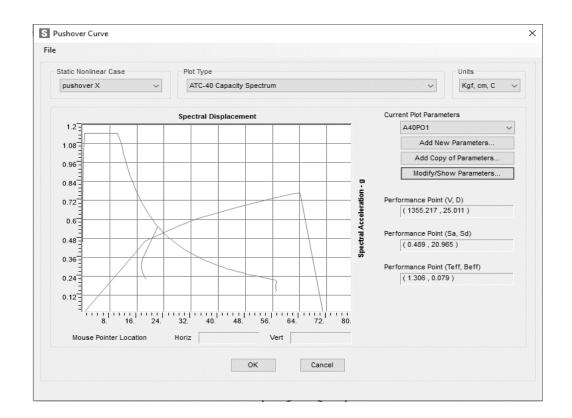


Figura 50. Punto de desempeño con SAP2000, Kd=0.80

Fuente: elaboración propia, empleando el programa SAP2000.



Figura 51. Punto de desempeño con SAP2000, Kd=1.00

Fuente: elaboración propia, empleando el programa SAP2000.

2.4. Análisis no lineal, procedimiento manual

El procedimiento manual requiere la evaluación de varios pasos mencionados en el capítulo 1.

2.4.1. Conversión de curva de capacidad a formato ADRS

Este procedimiento utiliza los valores de la curva de capacidad obtenida para la dirección X. Previo a ello es necesario recurrir a los datos del análisis modal, ya que la conversión implica el uso de los desplazamientos modales para el primer modo de vibración; estos se obtienen de manera gráfica o utilizando la tabla de resultados del software. Se determinarán por medio del modelo gráfico

(ver figura 52), el cual ejemplifica la obtención de valores para las secciones 1, 2, 5 y 10 de la torre, y así sucesivamente para los 10 desplazamientos modales.

SAP2000 v22.0.0 Ultimate 64-bit - torre cuadrada 60 mer. SAP2000 v22.0.0 Ultimate 64-bit - torre valation value value value value value value value value value value

Figura 52. **Desplazamientos modales en SAP2000**

Fuente: elaboración propia, empleando el programa SAP2000.

Los valores obtenidos se muestran en la tabla XXIII y se denotan por la letra griega Φ ; luego se dividen dentro del desplazamiento con el valor mayor para obtener los valores normalizados.

Tabla XXIII. Desplazamientos modales

Sección	Øi (cm)	Øi (cm) normalizados
10.00	7.0700	1.00
9.00	5.5733	0.79
8.00	4.2176	0.60

Continuación de la tabla XXIII.

7.00	3.1392	0.44
6.00	2.2338	0.32
5.00	1.5072	0.21
4.00	0.9416	0.13
3.00	0.5204	0.07
2.00	0.2296	0.03
1.00	0.0588	0.01

Fuente: elaboración propia.

Con los desplazamientos modales se obtienen los valores de factor de participación modal (PF₁) y el coeficiente modal de masa α_1 ; ambos para el primer modo de vibración.

Tabla XXIV. Determinación de factores para conversión de curva de capacidad a espectro de capacidad

	Peso w		Gi (am)	WiØi (kg-	WiØi/g	WiØi^2	WØi^2/g	Wi/g
Sección	(kg)	Øi (cm)	Øi (cm) normalizados	cm)	(kg-s2)	(kg-	(kg-cm-	(kg-
						cm2)	s2)	s2/cm)
10.00	1704.77	7.0700	1.00	1704.77	1.74	1704.77	1.74	1.74
9.00	302.54	5.5733	0.79	238.49	0.24	188.00	0.19	0.31
8.00	271.75	4.2176	0.60	162.11	0.17	96.71	0.10	0.28
7.00	311.41	3.1392	0.44	138.27	0.14	61.39	0.06	0.32
6.00	318.91	2.2338	0.32	100.76	0.10	31.84	0.03	0.33
5.00	326.92	1.5072	0.21	69.69	0.07	14.86	0.02	0.33
4.00	341.39	0.9416	0.13	45.47	0.05	6.06	0.01	0.35
3.00	350.20	0.5204	0.07	25.78	0.03	1.90	0.00	0.36

Continuación de la tabla XXIV.

2.00	359.38	0.2296	0.03	11.67	0.01	0.38	0.00	0.37
1.00	368.56	0.0588	0.01	3.07	0.00	0.03	0.00	0.38
	4655.83				2.55		2.15	4.75
W	4655.83	Kg						
ΣwiØi/g	2.55	kg-s2						
ΣwiØi^2/g	2.15	kg-m-s2		PF1	1.187			
Σwi/g	4.75	kg-s2/cm		α	0.637			

Fuente: elaboración propia.

A continuación, se utilizan las ecuaciones 3 y 4 para realizar la conversión ADRS. Se necesita además definir el valor de aceleración que es igual 981 cm/s².

$$S_{a1} = \frac{\frac{385.26kg}{4655.84kg}}{0.637} = 0.13$$
 $S_{aig1} = 0.13 * 981 \frac{cm}{s^2} = 127.32 \frac{cm}{s^2}$ $S_{d1} = \frac{6.54cm}{1.187} = 5.51 cm$

Tabla XXV. Valores de espectro de capacidad

		Espectro de capacidad	
Paso	Sa _i (g)	Saig (cm/s²)	Sd _i (cm)
0	0.00	0.00	0.00
1	0.13	127.32	5.51
2	0.26	254.67	11.02
3	0.39	382.01	16.53
4	0.44	428.49	18.53
5	0.51	503.57	28.32
6	0.54	533.72	33.83

Continuación de la tabla XXV.

7	0.57	557.11	39.34
8	0.59	579.41	44.85
9	0.61	601.70	50.36
10	0.63	622.08	55.86
11	0.65	641.54	61.36
12	0.66	646.54	63.03
13	0.00	0.00	68.54

Fuente: elaboración propia.

Seguidamente se grafican los datos. Se tiene el espectro en coordenadas ADRS en términos de desplazamiento y aceleración, según ilustra la figura 53.

700,00 600,00 500,00 **300,00 8** 300,00 200,00 100,00 0,00 0,00 10,00 20,00 30,00 40,00 50,00 60,00 70,00 80,00 Sd (cm)

Figura 53. Espectro de capacidad

Fuente: elaboración propia, empleando Excel.

2.4.2. Conversión de espectro de respuesta a formato ADRS

Respecto de la conversión del espectro elástico es casi similar al paso realizado para el espectro de capacidad. El formato necesario es Sa-Sd; del espectro elástico ya se tiene la aceleración Sa para cada uno de los puntos, por lo tanto, únicamente se realiza la conversión del periodo T a valores de desplazamiento Sd, utilizando la ecuación 5 para desplazamiento.

Al resultado final del espectro de respuesta en formato ADRS también se le conoce como espectro de demanda y se muestra en la figura 54. Los datos están tabulados en los apéndices.

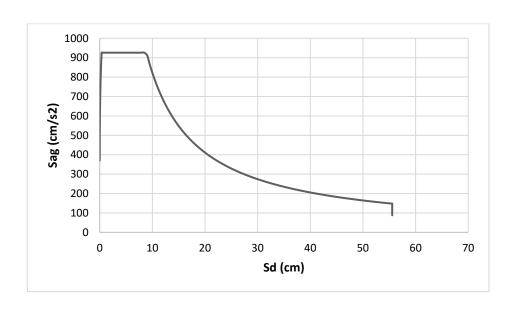


Figura 54. Espectro de demanda kd=0.80

Fuente: elaboración propia, empleando Excel.

2.4.3. Superposición del espectro de capacidad y espectro de demanda

Se realiza la representación gráfica de los dos espectros, simultáneamente, y se obtiene una aproximación en la intersección de los dos espectros, determinando así un posible punto de desempeño.

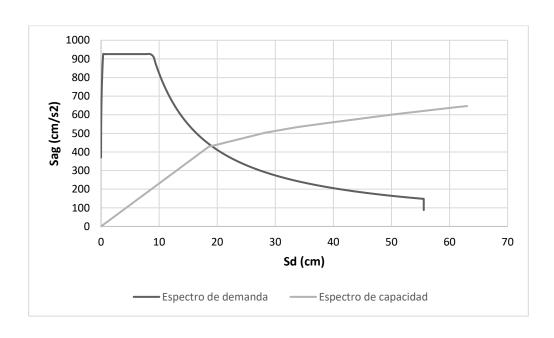


Figura 55. Espectro de demanda + espectro de capacidad

Fuente: elaboración propia, empleando Excel.

2.4.4. Representación bilineal del espectro de capacidad

La representación bilineal, como su nombre lo indica, simula el espectro de capacidad en únicamente dos líneas, facilitando la obtención del espectro de demanda reducido. Para ello se tomarán dos puntos del espectro de capacidad:

el primero será el de cedencia y el segundo, de colapso; los dos puntos se unen por medio de líneas rectas.

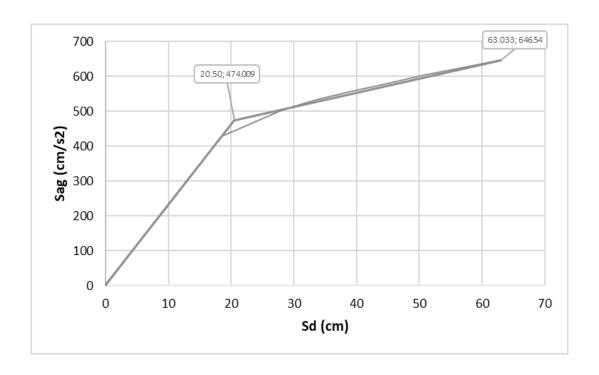

Los valores por utilizar se muestran en la tabla XXVI y la representación gráfica en la figura 56. En color naranja se observa el espectro de capacidad y en verde el equivalente en representación bilineal; nótese que el área que se encierra dentro de las dos curvas debe ser casi idéntica (A1 = A2), con el objeto de obtener resultados más confiables y precisos.

Tabla XXVI. Representación bilineal formato ADRS

Representación bilineal								
a _y	474.009	cm/s ²						
dy	20.500	Cms						
a _{pi}	646.544	cm/s ²						
d _{pi}	63.033	Cms						

Fuente: elaboración propia.

Figura 56. Representación bilineal curva de capacidad de la torre, formato ADRS

Seguidamente se grafican el espectro bilineal y el de demanda.

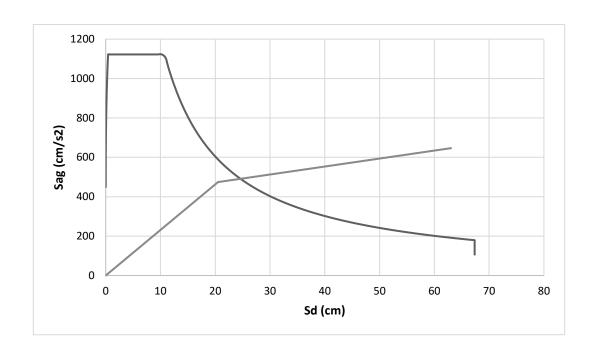


Figura 57. Espectro de demanda + bilineal

Al asumir y ubicar un punto aproximado de intersección se puede tomar un primer valor Sd= 24 cm; este desplazamiento tiene el mismo valor tanto para el espectro de demanda como para la curva bilineal, ya que se encuentran en el mismo plano y a la misma escala. Para facilidad se construye una ecuación de la recta que pasa por el punto de cedencia y el de colapso de la siguiente forma:

$$Sd(Sag) = 4.057 * (Sd - 63.033) + 646.54$$
 Ecuación 26

Para el punto indicado los valores correspondientes son:

$$Sag = a_{pi} = 488.207 \text{ cm/s}^2 \text{ y } Sd = d_{pi} = 24 \text{ cm}.$$

2.4.5. Estimación de amortiguamiento y reducción de espectro

Seguidamente se obtiene el amortiguamiento efectivo haciendo uso de las ecuaciones 9. 10, 11 y 12.

$$E_d$$
=4($a_y d_{pi}$ - $d_y a_{pi}$) Ecuación 10
 E_d = 4*(474.009*24.000-20.500*488.207) = 5471.906 cm²/s²

$$E_{so} = \frac{1}{2} a_{pi} d_{pi}$$
 Ecuación 11
 $E_{so} = \frac{1}{2} *48.207 *24.000 = 5858.485 \text{ cm}^2/\text{s}^2$

$$\beta_o = \frac{1}{4\pi} \frac{E_d}{E_{so}}$$
 Ecuación 9

$$\beta_0 = 5471.906/(4^*\pi^*5858.485) = 7.43 \%$$

$$\beta_{eq}(\%) = \frac{63.7(a_y d_{pi} - d_y a_{pi})}{a_{pi} d_{pi}} + 5$$
 Ecuación 12

$$\beta_{eq} = 7.43\% + 5\% = 12.43\%$$

A continuación, con el amortiguamiento equivalente se hace uso de la tabla IV para encontrar los factores de reducción de espectro. La clasificación por utilizar, según el comportamiento estructural, es el tipo A.

Para un amortiguamiento de 10 % el factor $SR_A = 0.78$, $SR_V = 0.83$ y para 20 % será de $SR_A = 0.55$, $SR_V = 0.66$; en la presente evaluación el valor es de 12.43 %, por lo que se debe realizar interpolación. Posterior a esta se tienen los valores siguientes: $SR_A = 0.724$ y $SR_V = 0.789$.

Estos factores de reducción obtenidos se deben multiplicar por el espectro de demanda, produciendo así el espectro reducido con amortiguamiento mayor

a 5 % del crítico. Los valores se muestran en el anexo 4 para cada tipo de sismo y valor de kd.

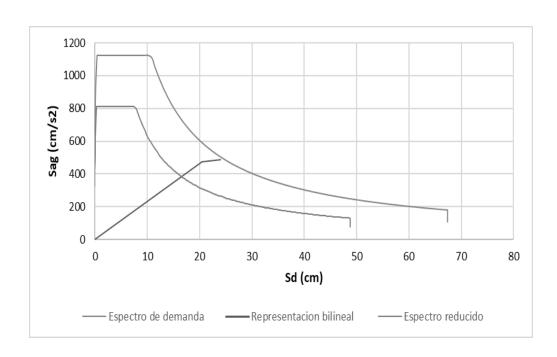


Figura 58. Espectro reducido

Fuente: elaboración propia, empleando Excel.

Conocidas las coordenadas del punto asumido de la representación bilineal, S_{ag} = 488.207 cm/s² y S_{d} = 24.00 cm se procede a obtener el periodo equivalente, resolviendo para Ti por medio de la ecuación 5. La ecuación resultante es la siguiente:

$$T=2^*\pi^*\sqrt{\frac{S_{di}}{S_{ai}^*g}}$$
 Ecuación 27

La anterior ecuación representa el periodo equivalente en el punto en análisis. El periodo equivalente para la primera iteración es:

$$T=2* \pi*\sqrt{(24.00/488.207)} =1.393 s$$

Seguidamente se evalúa el periodo obtenido en el espectro reducido y se tienen los valores siguientes:

$$Sa*g_{red} (1.393) = 358.8930 \text{ cm/s}^2$$

 $Sd_{red} (1.393) = 17.643 \text{ cm}$

La figura 59 ejemplifica los valores obtenidos para cada punto, tanto del espectro de demanda como de la representación bilineal para el mismo periodo.

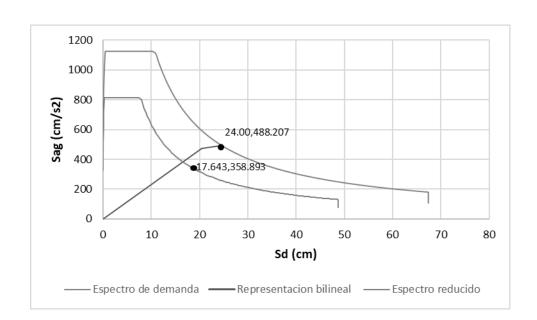


Figura 59. Primera iteración punto desempeño kd=0.80

Fuente: elaboración propia, empleando Excel.

El punto óptimo se obtiene cuando la diferencia de entre los dos puntos de desplazamiento Sd se encuentra en el rango $0.95 \le \Delta_{dpi} \le 1.05$; lo que significa tener una diferencia máxima de 0.05 centímetros; de lo contrario se debe hacer un nuevo intento con otro punto; el proceso es repetitivo hasta alcanzar el valor aceptable que cumpla con el rango estipulado.

$$\Delta_{dpi} = 24 \text{ cm} - 17.643 \text{ cm} = 6.357 \text{ cm} \ge 0.05 \text{ cm}$$

Como la diferencia obtenida no cumple y esta es de 6.357 cm; significa que el valor debe ser menor al propuesto inicialmente. El nuevo valor por utilizar como desplazamiento es de 22 cm.

Sag =
$$a_{pi}$$
 = 480.094 cm/s² y Sd = d_{pi} = 22 cm.
 E_d =4($a_v d_{pi}$ - $d_v a_{pi}$) Ecuación 10

 $E_d = 2345.103 \text{ cm}^2/\text{s}^2$

$$E_{so} = \frac{1}{2} a_{pi} d_{pi}$$
 Ecuación 11

 $E_{so} = 5281.035 \text{ cm}^2/\text{s}^2$

 $\beta_0 = 3.54 \%$

 $\beta_{eq}=8.54\%$

 $SR_A = 0.844 \text{ y } SR_V = 0.880$

T = 1.345 s

 $Sa*g_{red} (1.345) = 433.5845 \text{ cm/s}^2$

 $Sd_{red} (1.345) = 19.869 cm$

 $\Delta_{dpi} = 22cm - 19.869 \text{ cm} = 2.131 \text{ cm} \ge 0.05 \text{ cm}$

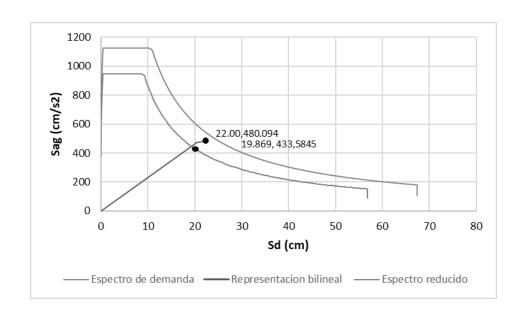


Figura 60. Segunda iteración punto desempeño kd=0.80

Nuevamente la diferencia entre valores de desplazamiento supera el rango limite y es necesario realizar una nueva iteración de menor valor al actual; el proceso es repetitivo y finalmente, luego de varias iteraciones con ayuda de hoja electrónica se llega al punto de desempeño para el punto $S_{ag} = 477.1335 \text{ cm/s}^2$ y desplazamiento $S_{d} = 21.272 \text{ cm}$.

2.4.6. Resultado de análisis de procedimiento manual

Con apoyo de hoja electrónica se obtienen gráfica y numéricamente los datos finales, como se aprecia en las figuras 61 a 63.

Figura 61. Punto de desempeño kd=0.80 procedimiento manual

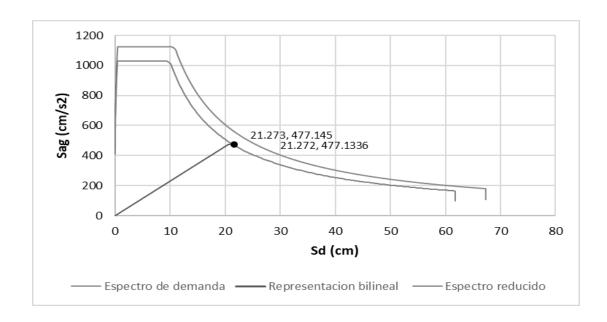
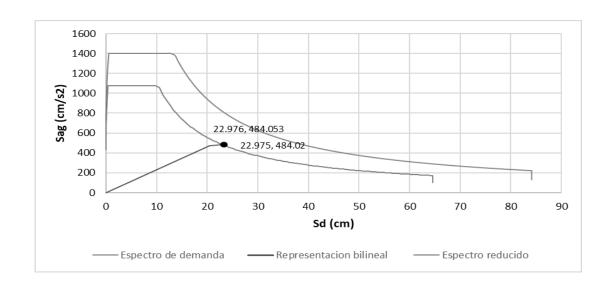



Figura 62. Punto de desempeño kd=1.00 procedimiento manual

Fuente: elaboración propia, empleando Excel.

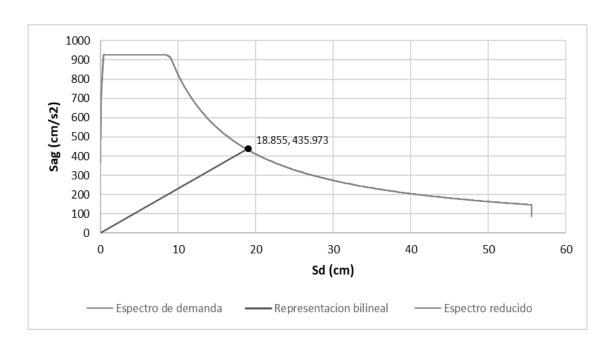


Figura 63. Punto de desempeño kd= 0.66 procedimiento manual

A continuación, se procederá a presentar los resultados finales para los diferentes niveles de sismo estipulados en la norma AGIES NSE-2 (sismo ordinario, severo y extremo) con valores Kd = 0.66, 0.80 y 1.00, respectivamente. (La memoria de cálculo para cada valor de Kd se puede apreciar en el apéndice 1).

Tabla XXVII. Resultados finales procedimiento manual y SAP2000

		SAP20	00			
	Kd=0.66	Kd =0.80	Kd=1.00	Kd=0.66	Kd =0.80	Kd=1.00
Sa*g (cm/s²)	435.97	477.13	484.02	451.26	479.71	512.08
S _d (cm)	18.86	21.27	22.98	18.26	20.97	24.32
T _{eq} (s)	1.23	1.33	1.37	1.26	1.31	1.36

Continuación de la tabla XXVII.

β _{eq} (%)	0.05	0.07	0.11	0.05	0.08	0.12
F (kg)	1319.04	1443.57	1464.42	1287.84	1355.22	1431.76
D (cm)	22.38	25.25	27.28	21.86	25.01	28.93

Fuente: elaboración propia.

3. TABULACIÓN E INTERPRETACIÓN DE RESULTADOS

Una vez aplicado el método *pushover*, se procede a realizar el análisis correspondiente considerando los resultados obtenidos con software y manualmente, para luego culminar con la obtención de las conclusiones de la investigación.

3.1. Interpretación de la curva de capacidad

Con los valores obtenidos en el software de la curva de capacidad se hace necesario sectorizar y dividirla acorde a la norma ATC-40, con la finalidad de identificar las regiones y comprender cada uno de los niveles de daño como se verá más adelante.

3.1.1. Límites de desplazamientos y estados de daño de la torre

Para obtener los límites de desplazamiento es necesario hacer uso de la representación bilineal del espectro de capacidad, con el fin de obtener los valores limites tanto del desplazamiento elástico como inelástico; los resultados son:

- Deriva o desplazamiento ultimo: Δ_{ultima} = 74.83 cm
- Deriva o desplazamiento elástico: $\Delta_{\text{elástico}} = \Delta_{\text{y}} = 24.33 \text{ cm}$
- Desplazamiento inelástico $\Delta_p = \Delta_{\text{ultima}}$ $\Delta_{\text{elástico}} = 50.50$ cm

Seguidamente, se hace uso de la tabla V y se realizan los cálculos numéricos de los desplazamientos que corresponden a cada uno de los niveles de desempeño, estos servirán de patrón comparativo.

Tabla XXVIII. Límites de desplazamiento lateral Δ

Nivel de desempeño estructural	Límite de desplazamiento lateral Δ
Ocupación inmediata SP-1	$\Delta y = 24.33 \text{ cm}$
Daño controlado SP-2	Δ y+0.30 Δ p = 24.33 +15.15 = 39.48 cm
Seguridad de vida SP-3	$\Delta y + 0.60 \ \Delta p = 24.33 + 30.30 = 54.63$
	cm
Seguridad limitada SP-4	$\Delta y + 0.80 \ \Delta p = 24.33 + 40.4 = 64.73$
	cm
Estabilidad estructural SP-5	$\Delta y + \Delta p = 24.33 + 50.50 = 74.83$ cm
No considerado (colapso) SP-6	Δ ≥ Δy+Δp ≥74.83 cm

Fuente: elaboración propia.

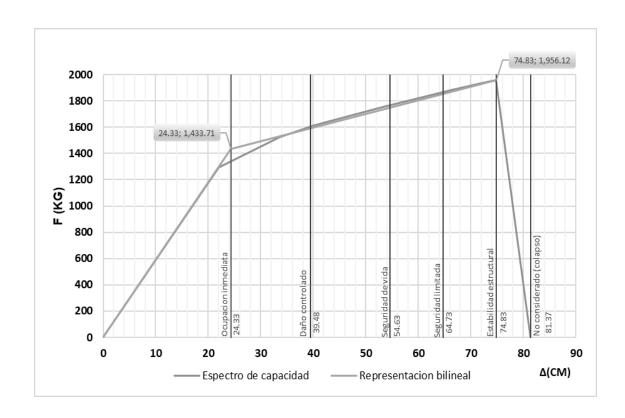


Figura 64. Límites de desplazamiento en curva de capacidad

En la figura 64 se puede observar la curva de capacidad y su representación bilineal; igualmente se añaden los límites de desplazamiento lateral para diferentes niveles de desempeño, de acuerdo con lo establecido en ATC-40; estos se representan en las líneas verticales con sus correspondientes valores.

3.1.2. Falla en rótulas plásticas de elementos

Los partes que forman parte de la estructura tienden a sufrir fallas conforme aumenta su deformación; son producidas debido a las fuerzas laterales; el software SAP2000 cuenta con una escala de colores que ejemplifican los límites

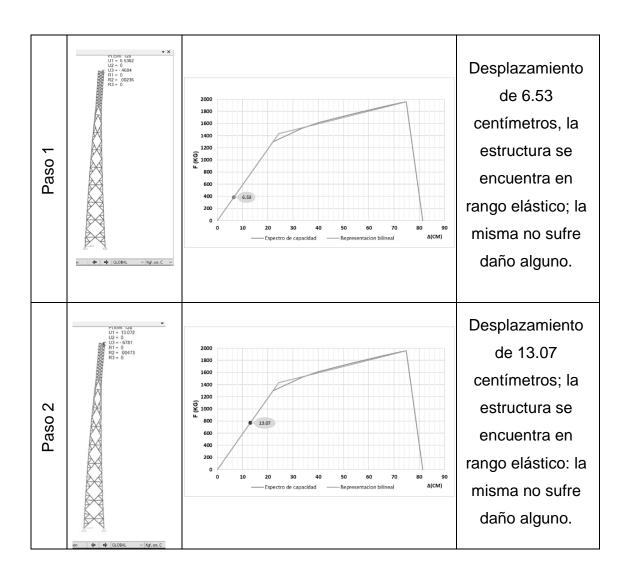
aceptables elaborados con base en los diagramas momento vs curvatura o fuerza vs desplazamiento, o para el caso de cargas axiales.

F A Seguridad de vida Cocupacion immediata Cocupaci

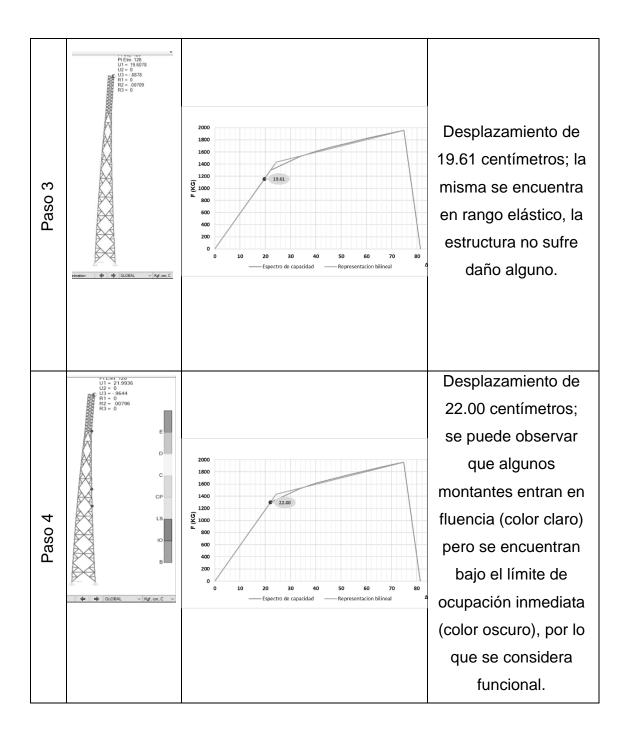
Figura 65. Límites de deformación y fallas en elementos

Fuente: elaboración propia, empleando el programa SAP2020.

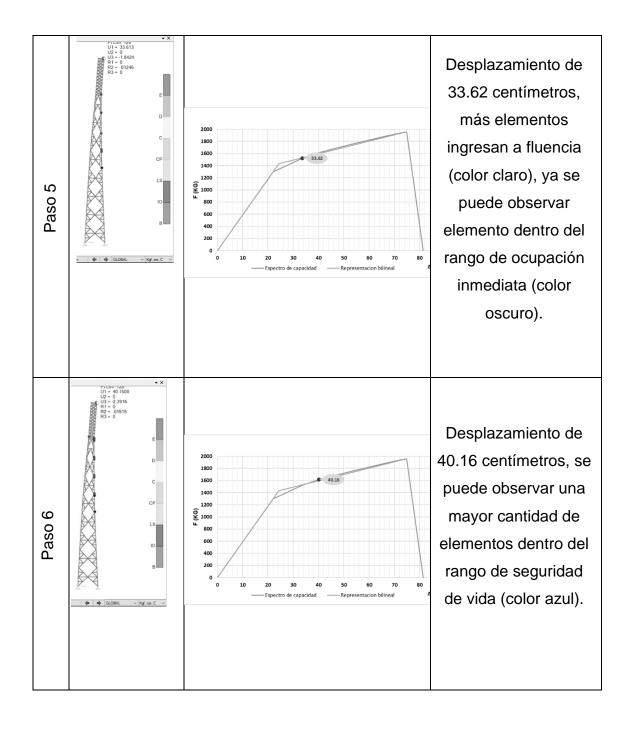
La imagen anterior muestra la coloración que el programa utiliza para dar a conocer los resultados, siendo su interpretación la siguiente: entre los puntos A y B se ubica el rango lineal o elástico; entre el punto B a C ocurre el rango inelástico. Entre los puntos C y D la resistencia se ve afectada y decrece grandemente; finalmente, entre D y E se alcanza el colapso del elemento.

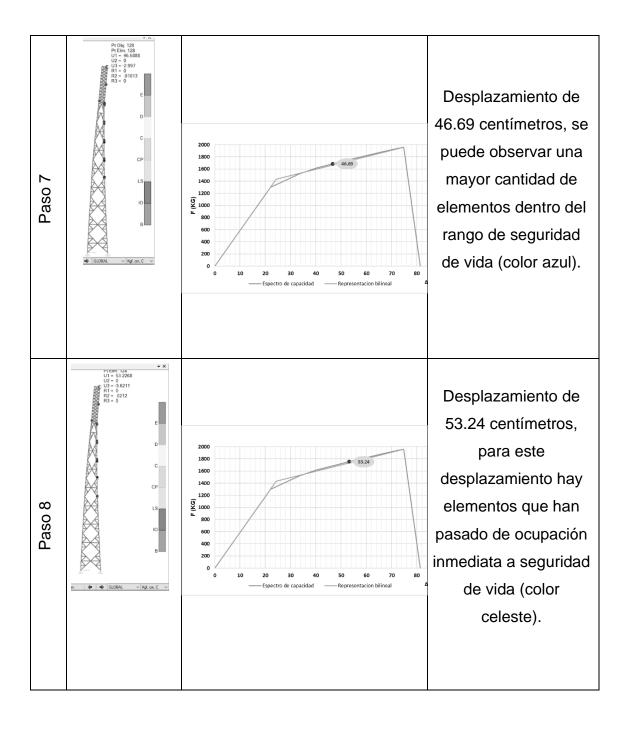

3.1.2.1. Deformación lateral y formación de rótulas plásticas

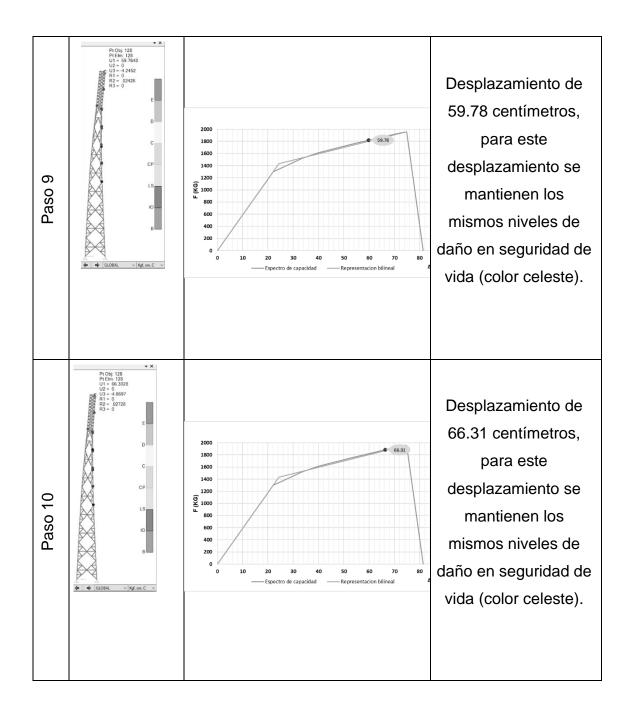
A continuación, se muestra la generación de las diferentes fallas que se generan conforme se aplica e incrementa la fuerza lateral. También se adiciona su punto de coordenadas ubicadas dentro de la curva de capacidad, indicando la posición y su estado de deformación. Para ello se utilizará la tabla XXIX donde

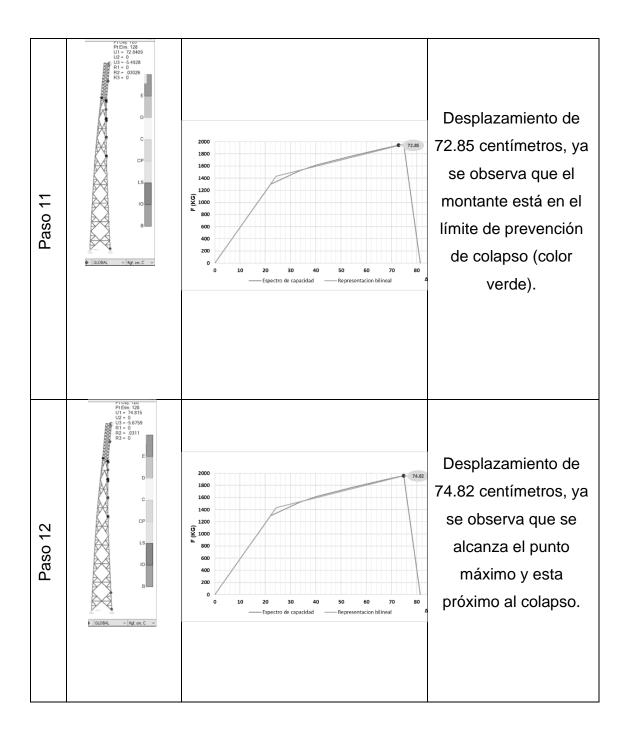

se muestran los valores de desplazamiento y fuerza en una secuencia de 13 pasos o etapas desde su posición original hasta el desplazamiento lateral último.

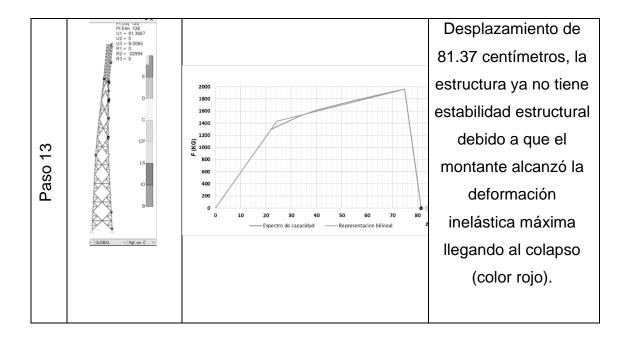
En la tabla siguiente se muestra la sucesión y aparecimiento de rótulas plásticas, además del nivel de daño en el que se encuentran, de acuerdo con la clasificación de colores del programa SAP, ya definidos en la figura 65.


Tabla XXIX. **Deformaciones laterales y formación de rótulas**


Continuación de la tabla XXIX.


Continuación de la tabla XXIX.


Continuación de la tabla XXIX.


Continuación de la tabla XXIX.

Continuación de la tabla XXIX.

Continuación de la tabla XXIX.

Fuente: elaboración propia.

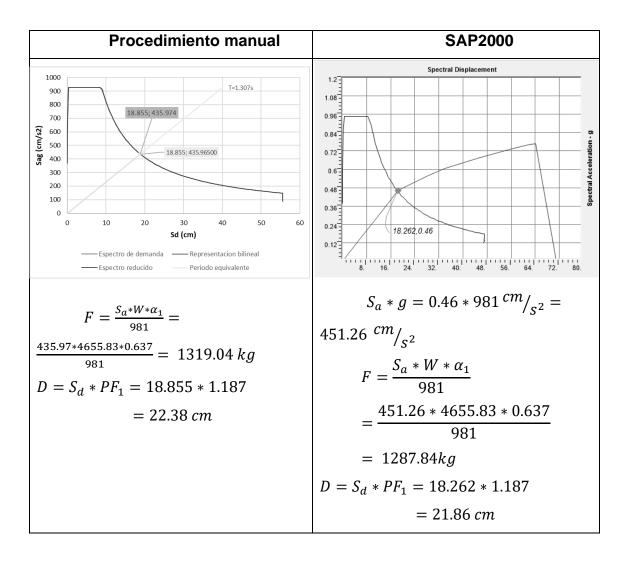
3.2. Punto de desempeño sísmico

El análisis y obtención del punto de desempeño será evaluado para 3 tipos diferentes de periodo de retorno mencionados en la tabla XV, que son los definidos por la norma guatemalteca y con posibilidad de ocurrencia en la región. Con anterioridad pueden encontrarse resultados mediante el uso de software SAP2000, así también realizando un procedimiento manual; en ambos se observa bastante similitud, por lo tanto, se hace el cálculo promedio de los valores, para posteriormente llegar a resultados finales.

3.2.1. Desempeño para periodo de retorno de 475 años

En la siguiente figura se muestran los valores de aceleración y desplazamiento para un sismo básico con periodo de retorno de 475 años; las gráficas se encuentran en formato ADRS, con el cual se obtuvieron los siguientes resultados:

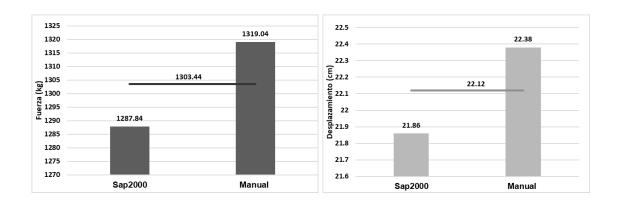
Para cálculo realizado manualmente:


 S_{d} = 18.855 cm y S_{ag} = 435.97 cm/s²

Para cálculo realizado en software SAP2000:

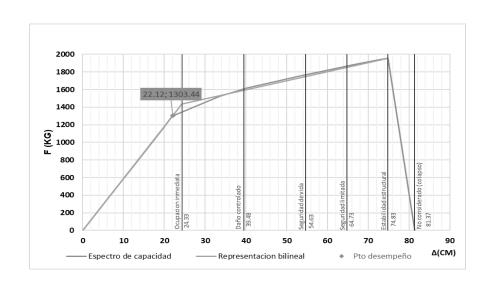
 S_{d} = 18.262 cm y S_{ag} = 451.26 cm/s²

Seguidamente, con los valores anteriores se procede a encontrar cuál es la fuerza lateral que produce la aceleración, así como su desplazamiento; todo esto se indica en la tabla siguiente.


Tabla XXX. Punto de desempeño para Tr=475 años en formato ADRS

Fuente: elaboración propia, empleando Excel.

Con los desplazamientos y fuerzas obtenidos por los dos métodos se determina el promedio, encontrando que la fuerza es igual a 1303.44 kg y el desplazamiento que provoca esa fuerza es de 22.12 centímetros.


Figura 66. Valores promedio de fuerza y desplazamiento Tr=475 años

Fuente: elaboración propia, empleando Excel.

Con el valor medio calculado para desplazamiento y fuerza, se deben ubicar dentro de la curva de capacidad dando como resultado final el punto de desempeño (ver la siguiente figura).

Figura 67. Punto de desempeño para Tr=475 años

Fuente: elaboración propia, empleando el programa SAP2000.

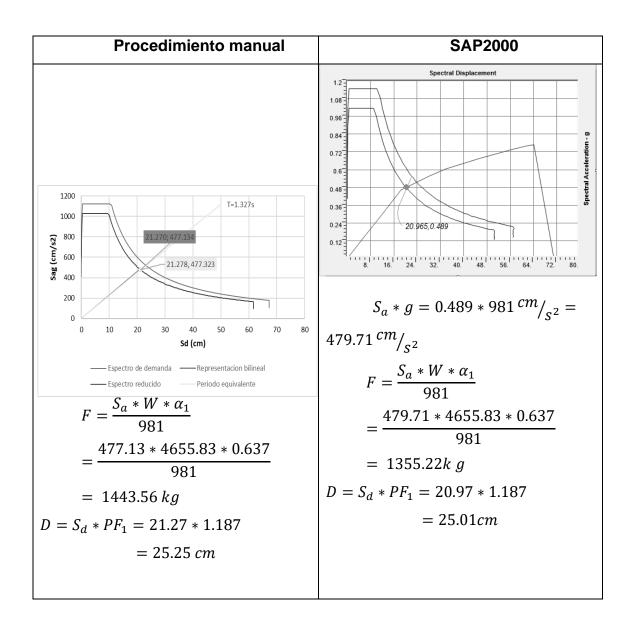
El punto de desempeño para un sismo con periodo de 475 años producirá una fuerza lateral de 1303.44 kilogramos con un desplazamiento de 22.12 centímetros.

Al observar la ubicación del punto de desempeño en la gráfica, se visualiza su ubicación en el rango lineal y bajo el límite de ocupación inmediata; por lo tanto, no sufre daño alguno. Posteriormente al sismo, su nivel de desempeño es totalmente operacional.

3.2.2. Desempeño para periodo de retorno de 975 años

Para el periodo de retorno de 975 años o sismo severo, los resultados encontrados son los siguientes:

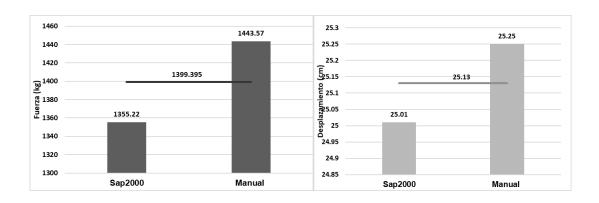
Cálculo realizado manualmente:


 S_{d} = 21.27 cm y S_{ag} = 477.13 cm/s²

Para cálculo realizado en software SAP2000:

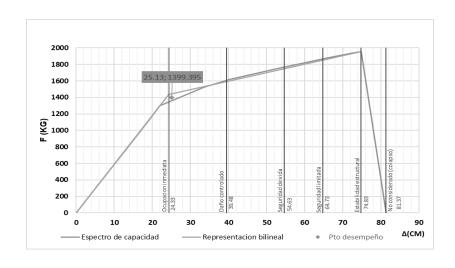
 S_{d} = 20.965 cm y S_{ag} = 479.71 cm/s²

Seguidamente con los valores anteriores se procede a encontrar cuál es la fuerza lateral que produce la aceleración, así como su desplazamiento; todo esto se indica en la tabla XXXI.


Tabla XXXI. Punto de desempeño para Tr=975 años en formato ADRS

Fuente: elaboración propia, empleando el programa SAP2000.

Utilizando los valores para desplazamiento y fuerza obtenidos por los dos métodos, se realiza el promedio de ambos.


Figura 68. Valores promedio de fuerza y desplazamiento Tr=975 años

Fuente: elaboración propia, empleando Excel.

Seguidamente con los valores promedio calculados para desplazamiento y fuerza se ubican dentro de la curva de capacidad dando como resultado final el punto de desempeño (ver figura 69).

Figura 69. Punto de desempeño para periodo Tr =975 años

Fuente: elaboración propia, empleando Excel.

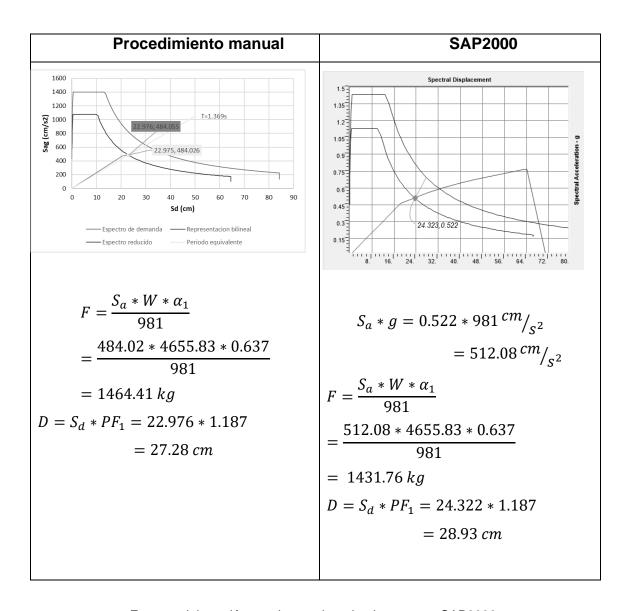
El punto de desempeño para un sismo con periodo de 975 años producirá una fuerza lateral de 1399.39 kilogramos, con un desplazamiento de 25.13 centímetros.

Al ubicar el punto de desempeño en la gráfica puede observarse que se encuentra en el inicio del rango no lineal y entre el límite superior de daño controlado y límite inferior de ocupación inmediata; lo que significa que posteriormente al sismo de esa magnitud, su nivel de desempeño es de ocupación inmediata.

3.2.3. Desempeño para periodo de retorno de 2475 años

Finalmente, para el tipo de sismo más raro o extremo con periodo de retorno de 2475 años, los valores que se obtuvieron de la evaluación tanto para aceleración como para desplazamiento espectral son los siguientes:

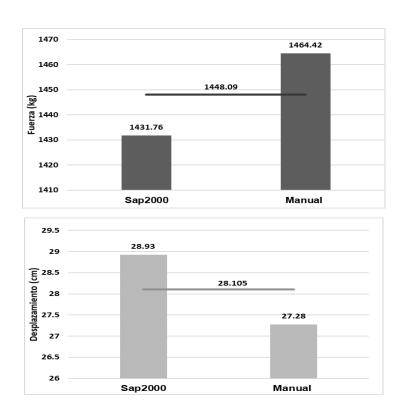
Cálculo realizado manualmente:


 S_{d} = 22.97 cm y S_{ag} = 484.02 cm/s²

Para cálculo realizado en software SAP2000:

 $S_d = 24.323 \text{ cm y } S_{ag} = 512.08 \text{ cm/s}^2$

Estos valores se muestran detalladamente en la tabla siguiente en formato ADRS, y su conversión numérica a valores de fuerza en kilogramos, y desplazamiento lateral expresado en centímetros.


Tabla XXXII. Punto de desempeño para Tr=2475 años en formato ADRS

Fuente: elaboración propia, empleando el programa SAP2000.

Con el resultado de los valores para desplazamiento y fuerza obtenidos por los dos métodos se determina el promedio de ambos.

Figura 70. Valores promedio de fuerza y desplazamiento Tr=2475 años

Fuente: elaboración propia, empleando SAP2000.

Además, con los valores promedio calculados para desplazamiento y fuerza, se deben ubicar dentro de la curva de capacidad, dando como resultado final el punto de desempeño (ver la siguiente figura).

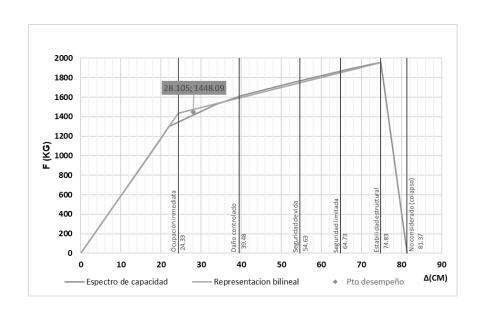
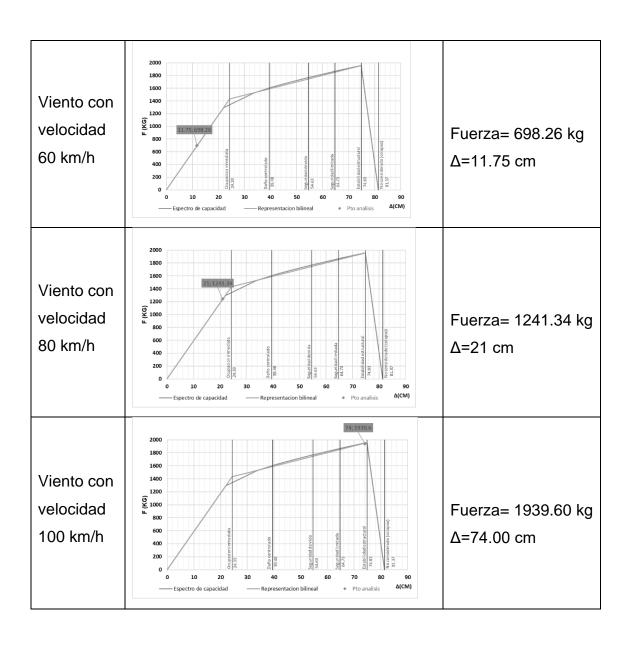
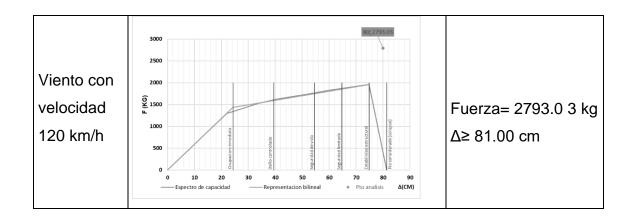


Figura 71. Punto de desempeño para Tr= 2475 años

Fuente: elaboración propia, empleando el programa SAP2000.


Al evaluar el sismo con periodo de 2475 años el punto de desempeño obtenido producirá una fuerza lateral de 1448.09 kilogramos, con un desplazamiento de 28.105 centímetros.

La ubicación del punto de desempeño en la gráfica denota que se encuentra dentro del rango no lineal y entre los estados de daño de ocupación inmediata y daño controlado. Esto significa que posteriormente al sismo extremo, el nivel de desempeño estructural es de ocupación inmediata.


3.3. Análisis de deformación producida por viento

En relación con el análisis por viento se determinaron los valores de fuerzas que producen las diferentes velocidades de viento, actuando perpendicularmente en una de las caras de la torre para posteriormente con base en la curva de capacidad ubicar dicho valor, obteniendo así su desplazamiento correspondiente. El cálculo de la fuerza que actúa en cada eje se muestra en el anexo 3.

Tabla XXXIII. Deformaciones para fuerzas producidas por el viento

Continuación de la tabla XXXIII.

Fuente: elaboración propia, empleando el programa SAP2000.

En la tabla anterior se tienen fuerzas y desplazamientos para ráfagas de viento con valores de 60, 80, 100 y 120 km/h; se aprecia que para un viento de 60 km/h la torre sufre un desplazamiento aproximado de 11.75 cm, conforme aumenta la velocidad para 80 km/h se desplaza 21 centímetros; con viento de 100 km/h el desplazamiento es de 74 centímetros; por último, para viento de 120 km/h la estructura según la curva de capacidad llega a alcanzar el colapso.

CONCLUSIONES

- 1. Al aplicar el método de espectro de capacidad y análisis estático no lineal pushover para desempeño sísmico haciendo uso de los diferentes periodos de retorno e intensidades de sismo mencionadas en la norma AGIES, se obtienen niveles y estados de daño mínimos, los cuales no afectan la capacidad estructural ni ponen en riesgo la vida de los habitantes circundantes a la torre, luego de presentarse cualquier evento sísmico; mientras que al llevar a cabo el análisis de vientos toda ráfaga que actúe perpendicularmente a cualesquiera de las caras de la torre asumiendo velocidades de viento mayores a 100 km/h, provocan deformaciones inelásticas y daño severo, llegando a alcanzar el colapso estructural.
- Con base en el análisis de desplazamiento lateral se puede determinar que la deriva máxima que actúa en la torre se encuentra bajo el límite estipulado por la norma AGIES, tomando en consideración los parámetros de altura, así como la clasificación del tipo de estructura.
- 3. Respecto de la curva de capacidad con base en la configuración estructural de armadura utilizada para una torre de forma cuadrada, se pudo observar que tienen poca rigidez; esto se refleja en su resistencia lateral, haciendo que la torre sufra desplazamientos altos ante bajos valores de fuerzas horizontales. No obstante, los puntos de desempeño para sismos con periodos de retorno de 475, 975 y 2475 años alcanzan puntos máximos; el valor mayor corresponde a un desplazamiento de 28 centímetros; este no llega a alcanzar el nivel de daño controlado, por lo que se considera que

puede ocuparse inmediatamente luego del sismo, o mejor dicho la torre sigue funcionando con toda normalidad.

- 4. A partir del análisis del punto de desempeño se puede concluir que los daños estructurales presentados están dentro del intervalo permitido tanto por la norma AGIES como por la ATC-40 para deformaciones, ya que no alcanzan puntos de riesgos donde se ponga en peligro el aspecto más importante como la preservación de las vidas humanas.
- 5. Luego de evaluar y comparar la vulnerabilidad, tanto para sismo como para viento, se demuestra que las estructuras reticulares esbeltas de tipo armadura, son más propensas a recibir daño y llegar a colapso únicamente al exponerse a fuerzas de viento, ya que el empuje que este produce es elevado; mientras que al considerar fuerzas sísmicas, debido a que la estructura se simula como un sistema de un grado de libertad, y como el peso de la torre es bastante bajo, de la misma manera lo es la fuerza sísmica, no llegando así a producir daño de consideración alguno. De lo anterior se puede aceptar la hipótesis planteada, ya que para un sismo mayor a 975 años no existe daño estructural y su desempeño es aceptable.

RECOMENDACIONES

- Al observar la secuencia de la formación de rótulas plásticas debido al desplazamiento lateral se recomienda realizar modificaciones en la configuración de la geometría estructural; por ejemplo, reducir la distancia de arriostres en forma de X para elevar la rigidez y capacidad de deformación de la estructura.
- Tomar en consideración los efectos p-delta para futuras investigaciones, así
 como el comportamiento de los elementos ante cambios de temperatura,
 debido a que ya se han dado cambios bruscos de temperatura,
 principalmente en el altiplano del país.
- Debido a que actualmente existen nuevas investigaciones y normativas internacionales en el ámbito del análisis no lineal, se recomienda utilizar el método propuesto por FEMA; de la misma forma hacer uso del análisis dinámico no lineal con el fin de comparar resultados.
- 4. Verificar el análisis, diseño y predimensionamiento, para cumplir en cuanto a derivas los requerimientos de las normas vigentes, encontrando un equilibrio entre seguridad estructural, precio y funcionalidad, ya que una estructura con menor deriva posee mayor rigidez, lo que se traduce en secciones estructurales de mayor tamaño, aumentando costos y peso; por lo tanto, no siempre es la más económica.

REFERENCIAS

- Alonso Alonso, R. (2016). Cálculo sísmico de estructuras convencionales de edificación aplicando métodos lineales y no lineales implementados en diferentes normas. Estudio comparativo. Madrid: (Tesis de maestría). Universidad Politécnica de Madrid, España. Recuperado de https://oa.upm.es/44488/1/Trabajo%20Fin% 20Master_Ruben%20Alonso_Ingenieria%20Sismica.pdf.
- 2. AGIES (2018). AGIES. (2018). Normas de seguridad estructural. Guatemala. Recuperado de https://www.agies.org/bibliotecas/-
- ATC-40. (1996). Seismic evaluation and retrofit of concrete building.
 Applied Technology Council. California. Recuperado de https://kupdf.net/download/atc-40-seismic-evaluation-and-retrofit-of-concrete-buildings_58aa7ac56454a75066b1e8d9_pdf.
- Bahena Pita, A. (1996). Analisis no lineal de torres de transmisión. México
 D. F.: UNAM. Dirección General de Bibliotecas. Recuperado de https://repositorio.unam.mx/ contenidos/88055.
- 5. Blas Francia, J. M., y Sosa Altamiza, E. P. (2019). Evaluación del desempeño sismico bajo el método de análisis estático no lineal pushover, caso puente Riecito ubicado en el distrito de Bella Vista Piura. Lima, Perú: Universidad Ricardo Palma. Recuperado de https://repositorio.urp.edu.pe/bitstream/handle/URP/2634/T030_71 129000-T.pdf?sequence=1&isAllowed =y.

- Boj Guare, E. A. (2013). Metodología de optimización en el diseño de estructuras metálicas de soporte para antenas de telecomunicaciones en la industria celular. Guatemala: Universidad de San Carlos de Guatemala. Recuperado de http://biblioteca. usac.edu.gt/tesis/08/08_0737_M.pdf.
- 7. Bujalance Muñoz, F. J. (2014). Diseño sísmico de una torre de control para el aeropuerto de Puerto Príncipe (Haití) y su estudio de prestaciones para el terremoto de servicio mediante análisis no lineal tipo pushover. España: Universidad de Sevilla. Recuperado de https://biblus.us.es/bibing/proyectos/abreproy/90110/fichero /TFG GIA BUJALANCEMUNOZFRANCISCOJAVIER.pdf.
- 8. Cahuana Quichca, R., & Quispe Juño, J. J. (2015). Desempeño sísmico del centro de salud en San Cristóbal del distrito, provincia y región de Huancavelica, diseñado con el Reglamento Nacional de Construcciones y aceptando una deriva máxima de 1 %. Lincay-Huancavelica: Universidad Nacional de Huancavelica. Recuperado de https://repositorio.unh.edu.pe/bitstream/handle/UNH/257/TP% 20-%20UNH%20CIVIL%200040.pdf?sequence=1&isAllowed=y.
- 9. Choque Sucasaca, J. F. y Luque Solis, E. D. (2019). Análisis estático no lineal y evaluación del desempeño sísmico de un edificio de 8 niveles diseñado con la norma E.030. Arequipa, Perú: Universidad Nacional de San Agustín de Arequipa. Recuperado de http://repositorio.unsa.edu.pe/handle/UNSA/8866.
- Cutimbo Choque, W. (2016). Ingeniería sismorresistente. Perú.
 Recuperado de https://kupdf.net/download/ingenier-iacute-a-sismorresistente-2016_58cd3c44dc0d605e20c34643_pdf.

- 11. Díaz Salambay, A. R. (2015). Diseño de una torre de telecomunicaciones autosoportada de 42 m de altura y su chequeo en el rango inelástico del comportamiento (procedimiento estático no lineal). Ambato, Ecuador: Universidad Técnica de Ambato. Recuperado de https://repositorio.uta.edu.ec/handle/123456789/11817.
- 12. Fuentes Rivera Silva, N. F. (2018). Desempeño sísmico de un edificio de cinco niveles de concreto armado mediante el análisis estático no lineal "pushover". Huaraz, Perú: Universidad Nacional "Santiago Antúnez de Mayolo". Recuperado de http://repositorio.unasam. edu.pe/bitstream/handle/UNASAM/2191/T033_47486172_T.pdf?s equence=1&isAllowed=y.
- García Segura, O. (2001). Análisis y diseño de una torre ausoportada de comunicación. (Tesis de licenciatura). México, D. F: Universidad Nacional Autónoma de México. Recuperado de https://repositorio. unam.mx/contenidos/3527643.
- 14. López Manzano, C. A., Pérez Alfaro, C. R. y Solórzano Navarro, L. A. (2017). Aplicación de la metodología de evaluación estructural por desempeño sísmico para la evaluación del ala norte del edificio de la Facultad de Medicina de la Universidad de El Salvador. San Salvador: Universidad de El Salvador. Recuperado de https://ri.ues.edu.sv/id/eprint/13122.
- Moreno González, R. (2006). Evaluación del riesgo sísmico en edificios mediante análisis estático no lineal: aplicación a diversos escenarios sísmicos de Barcelona. (Tesis de doctorado).

- Barcelona: Universidad Politécnica de Cataluña. Recuperado de https://upcommons.upc.edu/handle/2117/93559.
- Mundaca Pérez, A. (2019). Evaluacion del desempeño sismico en edificaciones esenciales mediante la aplicación del análisis inelástico por desplazamientos. (Tesis de maestría). Chiclayo, Perú: Escuela de Posgrado, Universidad César Vallejo. Recuperado de https://hdl.handle.net/20.500.12692/31511.
- Noriega Vega, M. C. (2016). Definición y estudio comparativo de espectros para diseño sísmico de la norma NEC SE DS con otras normas internacionales. Quito: Pontificia Universidad Católica del Ecuador. Recuperado de http://repositorio.puce.edu.ec/handle/ 22000/12493.
- 18. Ocaña Peláez, A. P. (2016). Análisis no lineal de un marco de un edificio de concreto reforzado, diseñado a ejes y con una excentricidad entre ejes. (Tesis de maestría). Puebla, México: Benemérita Universidad Autónoma de Puebla. Recuperado de https://hdl. handle.net/20.500.12371/2289.
- 19. Portillo, W. Y., Rodríguez Martinez, J. M. y Martinez Soto, C. M. (2011). Introducción al diseño de marcos de concreto reforzado, por el m+etodo de análisis estático no lineal (push-over), utilizando un software especializado. El Salvador: Universidad de El Salvador. Recuperado de https://es.scribd.com/document/286717104/ Introduccion-Al-Diseno-de-Marcos-de-Concreto-Reforzado-Por-El-Metodo-Push-Over.

- 20. Ramírez Quispe, J. (2014). Desempeño sismorresistente del módulo C, del mercado de abastos de los baños del INCA. Cajamarca, Perú: Universidad Nacional de Cajamarca. Recuperado de http://repositorio.unc.edu.pe/handle/UNC/89.
- Riffo Villagrán, A. E. (2020). Evaluación del desempeño sísmico para edificios de marcos excéntricos de acero. Chile: Universidad de Concepción. Recuperado de http://repositorio.udec.cl/jspui/handle /11594/530.
- 22. Salcedo Barco, Y. H. (2017). Desempeño sismico por el método pushover de un edificio construido en la ciudad de Barranquilla bajo la norma NSR-10. Barranquilla, Colombia: Universidad de La Costa. Recuperado de http://hdl.handle.net/11323/248.
- 23. Sinisterra Bonilla, H. (2017). Determinación del desempeño sísmico para edificios en pórticos de concreto reforzado diseñados bajo la norma de diseño sismorresistente C.C.C.S.R. 84. (Tesis de maestría). Colombia: Pontificia Universidad Javeriana. Recuperado de https://www.academia.edu/36851338/Determinacion_desempe%C 3%B1o_sismico.
- 24. Slebi Acevedo, C. J., y Vargas Prado, D. F. (2014). Análisis y aplicación del método estático no lineal en columnas reforzadas con disipación especial de energía. Bucaramanga: Universidad Pontificia Bolivariana.
- 25. Torre Gómez, J. (2019). Analisis no lineal estático de una edificación de albañilería confinada en la ciudad de Huancavelica 2018.

- Huancavelica, Perú: Universidad Nacional de Huancavelica. Recuperado de http://repositorio.unh.edu.pe/handle/UNH/2591.
- Velásquez Londoño, C. (2017). Evaluación experimental de la longitud de rotación plástica en vigas de hormigón parcialmente pretensadas. (Tesis de maestría). Barcelona: Universidad Politénica de Catalunya. Recuperado de http://hdl.handle.net/ 2117/117001.
- 27. Yugcha Quilumba, B. I. (2018). Evaluación estructural por desempeño para una construcción informal mediante el método pushover, sector La Forestal, cantón Quito, Provincia Pichincha. Quito: Universidad Central del Ecuador. Recuperado de http://www.dspace.uce.edu.ec/handle/25000/17316.
- Zabala Jorquera, D. A. (2017). Modelado y análisis Pushover de la respuesta sísmica de estructuras de acero. (Tesis de maestría). Cartagena, España: Universidad Politécnica de Cartagena. Recuperado de http://hdl.handle.net/10317/6092.

APÉNDICES

Apéndice 1. Memoria de cálculo peso propio de la torre

Elemento	Medida	Longitud (m)	Área sección	Peso unitario	Peso	Subtotal
			(m2)	(kg/m3)	(kg/m)	
Horizontal	L1.5"x1.5"x1/4"	6.21	0.000444	7860.00	3.49	21.66
Diagonal 1	L2"x2"x1/4"	17.27	0.000605	7860.00	4.76	82.12
Diagonal 2	L1.5"x1.5"x1/4"	14.7352	0.000444	7860.00	3.49	51.42
Montante	HSS5"x0.250"	12.02	0.002258	7860.00	17.75	213.36
			1	1	I	368.56
Sección 2						
Elemento	Medida	Longitud (m)	Área sección	Peso unitario	Peso	Subtotal
			(m2)	(kg/m3)	(kg/m)	
Horizontal	L1.5"x1.5"x1/4"	5.62	0.000444	7860.00	3.49	19.61
Diagonal 1	L2"x2"x1/4"	16.45	0.000605	7860.00	4.76	78.20
Diagonal 2	L1.5"x1.5"x1/4"	13.8238	0.000444	7860.00	3.49	48.24
Montante	HSS5"x0.250"	12.02	0.002258	7860.00	17.75	213.32
	•	•	•	•	•	359.38
Sección 3						•
Elemento	Medida	Longitud (m)	Área sección	Peso unitario	Peso	Subtotal
			(m2)	(kg/m3)	(kg/m)	
Horizontal	L1.5"x1.5"x1/4"	5.03	0.000444	7860.00	3.49	17.56
Diagonal 1	L2"x2"x1/4"	15.67	0.000605	7860.00	4.76	74.50
Diagonal 2	L1.5"x1.5"x1/4"	12.85	0.000444	7860.00	3.49	44.84
Montante	HSS5"x0.250"	12.02	0.002258	7860.00	17.75	213.30
	-	1	<u>'</u>	1		350.20
Sección 4						•
Elemento	Medida	Longitud (m)	Área sección	Peso unitario	Peso	Subtotal
			(m2)	(kg/m3)	(kg/m)	
Horizontal	L1.5"x1.5"x1/4"	4.44	0.000444	7860.00	3.49	15.51
Diagonal 1	L2"x2"x1/4"	14.94	0.000605	7860.00	4.76	71.05
Diagonal 2	L1.5"x1.5"x1/4"	11.9084	0.000444	7860.00	3.49	41.56
Montante	HSS5"x0.250"	12.02	0.002258	7860.00	17.74	213.28
						341.39

Continuación de apéndice 1.

Sección 5						
Elemento	Medida	Longitud (m)	Área sección	Peso unitario	Peso	Subtotal
			(m2)	(kg/m3)	(kg/m)	
Horizontal	L1.5"x1.5"x1/4"	3.86	0.000444	7860.00	3.49	13.46
Diagonal 1	L2"x2"x1/4"	14.27	0.000605	7860.00	4.76	67.87
Diagonal 2	L1.5"x1.5"x1/4"	10.9882	0.000444	7860.00	3.49	38.35
Montante	HSS4"x0.313"	12.02	0.002194	7860.00	17.24	207.25
			1	1		326.92
Sección 6						
Elemento	Medida	Longitud (m)	Área sección	Peso unitario	Peso	Subtotal
			(m2)	(kg/m3)	(kg/m)	
Horizontal	L1.5"x1.5"x1/4"	3.27	0.000444	7860.00	3.49	11.41
Diagonal 1	L2"x2"x1/4"	13.68	0.000605	7860.00	4.76	65.03
Diagonal 2	L1.5"x1.5"x1/4"	10.1024	0.000444	7860.00	3.49	35.26
Montante	HSS4"x0.313"	12.02	0.002193	7860.00	17.24	207.22
			I	I	L	318.91
Sección 7						
Elemento	Medida	Longitud (m)	Área sección	Peso unitario	Peso	Subtotal
			(m2)	(kg/m3)	(kg/m)	
Horizontal	L1.5"x1.5"x1/4"	2.68	0.000444	7860.00	3.49	9.36
Diagonal 1	L2"x2"x1/4"	13.15	0.000605	7860.00	4.76	62.55
Diagonal 2	L1.5"x1.5"x1/4"	9.2554	0.000444	7860.00	3.49	32.30
Montante	HSS4"x0.313"	12.02	0.002193	7860.00	17.24	207.20
						311.41
Sección 8	-	- 1	1	1		
Elemento	Medida	Longitud (m)	Área sección	Peso unitario	Peso	Subtotal
			(m2)	(kg/m3)	(kg/m)	
Horizontal	L1.5"x1.5"x1/4"	3.89	0.000444	7860.00	3.49	13.59
Diagonal 1	L2"x2"x1/4"	12.81	0.000605	7860.00	4.76	60.93
Diagonal 2	L1.5"x1.5"x1/4"	8.1696	0.000444	7860.00	3.49	28.51
Montante	HSS4"x0.250"	12.02	0.001786	7860.00	14.04	168.73
	1		-1	1		271.75
Sección 9						1
Elemento	Medida	Longitud (m)	Área sección	Peso unitario	Peso	Subtotal
			(m2)	(kg/m3)	(kg/m)	
Horizontal	L1.5"x1.5"x1/4"	10.80	0.000444	7860.00	3.49	37.69
Diagonal 1	L1.5"x1.5"x1/4"	24.71	0.000444	7860.00	3.49	86.23

Continuación de apéndice 1.

Montante	HSS 3.5"x0.313"	12.02	0.001891	7860.00	14.86	178.62	
	1	1	<u>'</u>	1		302.54	
sección 10							
Elemento	Medida	Longitud (m)	Área sección	Peso unitario	Peso	Subtotal	
			(m2)	(kg/m3)	(kg/m)		
Horizontal	L1.5"x1.5"x1/4"	10.80	0.000444	7860.00	3.49	37.69	
Diagonal 1	L1.5"x1.5"x1/4"	24.71	0.000444	7860.00	3.49	86.23	
Montante	HSS 3.5"x0.188"	12.02	0.001174	7860.00	9.23	110.94	
	- 1	1	•	1	•	234.87	

Fuente: elaboración propia.

Apéndice 2. Valores de aceleración y periodo para espectros de respuesta elástico

Kd= 0.66		Kd= 0.80		Kd= 1.00	
T(s)	Sa (T) g	T (s)	Sa (T) g	T (s)	Sa (T) g
0.000	0.378	0.000	0.458	0.000	0.572
0.050	0.608	0.050	0.736	0.050	0.921
0.100	0.838	0.100	1.015	0.100	1.269
0.150	0.944	0.150	1.144	0.150	1.430
0.200	0.944	0.200	1.144	0.200	1.430
0.250	0.944	0.250	1.144	0.250	1.430
0.300	0.944	0.300	1.144	0.300	1.430
0.350	0.944	0.350	1.144	0.350	1.430
0.400	0.944	0.400	1.144	0.400	1.430
0.450	0.944	0.450	1.144	0.450	1.430
0.500	0.944	0.500	1.144	0.500	1.430
0.550	0.944	0.550	1.144	0.550	1.430

Continuación de apéndice 2.

0.600	0.944	0.600	1.144	0.600	1.430
0.650	0.894	0.650	1.083	0.650	1.354
0.700	0.830	0.700	1.006	0.700	1.257
0.750	0.774	0.750	0.939	0.750	1.173
0.800	0.726	0.800	0.880	0.800	1.100
0.850	0.683	0.850	0.828	0.850	1.035
0.900	0.645	0.900	0.782	0.900	0.978
0.950	0.611	0.950	0.741	0.950	0.926
1.000	0.581	1.000	0.704	1.000	0.880
1.050	0.553	1.050	0.670	1.050	0.838
1.100	0.528	1.100	0.640	1.100	0.800
1.150	0.505	1.150	0.612	1.150	0.765
1.200	0.484	1.200	0.587	1.200	0.733
1.250	0.465	1.250	0.563	1.250	0.704
1.300	0.447	1.300	0.542	1.300	0.677
1.350	0.430	1.350	0.521	1.350	0.652
1.400	0.415	1.400	0.503	1.400	0.629
1.450	0.401	1.450	0.486	1.450	0.607
1.500	0.387	1.500	0.469	1.500	0.587
1.550	0.375	1.550	0.454	1.550	0.568
1.600	0.363	1.600	0.440	1.600	0.550
1.650	0.352	1.650	0.427	1.650	0.533
1.700	0.342	1.700	0.414	1.700	0.518
1.750	0.332	1.750	0.402	1.750	0.503
1.800	0.323	1.800	0.391	1.800	0.489
1.850	0.314	1.850	0.381	1.850	0.476

Continuación de apéndice 2.

1.900	0.306	1.900	0.371	1.900	0.463
1.950	0.298	1.950	0.361	1.950	0.451
2.000	0.290	2.000	0.352	2.000	0.440
2.050	0.283	2.050	0.343	2.050	0.429
2.100	0.277	2.100	0.335	2.100	0.419
2.150	0.270	2.150	0.327	2.150	0.409
2.200	0.264	2.200	0.320	2.200	0.400
2.250	0.258	2.250	0.313	2.250	0.391
2.300	0.253	2.300	0.306	2.300	0.383
2.350	0.247	2.350	0.300	2.350	0.374
2.400	0.242	2.400	0.293	2.400	0.367
2.450	0.237	2.450	0.287	2.450	0.359
2.500	0.232	2.500	0.282	2.500	0.352
2.550	0.228	2.550	0.276	2.550	0.345
2.600	0.223	2.600	0.271	2.600	0.338
2.650	0.219	2.650	0.266	2.650	0.332
2.700	0.215	2.700	0.261	2.700	0.326
2.750	0.211	2.750	0.256	2.750	0.320
2.800	0.207	2.800	0.251	2.800	0.314
2.850	0.204	2.850	0.247	2.850	0.309
2.900	0.200	2.900	0.243	2.900	0.303
2.950	0.197	2.950	0.239	2.950	0.298
3.000	0.194	3.000	0.235	3.000	0.293
3.050	0.190	3.050	0.231	3.050	0.289
3.100	0.187	3.100	0.227	3.100	0.284
3.150	0.184	3.150	0.223	3.150	0.279

Continuación de apéndice 2.

3.200	0.182	3.200	0.220	3.200	0.275
3.250	0.179	3.250	0.217	3.250	0.271
3.300	0.176	3.300	0.213	3.300	0.267
3.350	0.173	3.350	0.210	3.350	0.263
3.400	0.171	3.400	0.207	3.400	0.259
3.450	0.168	3.450	0.204	3.450	0.255
3.500	0.166	3.500	0.201	3.500	0.251
3.550	0.164	3.550	0.198	3.550	0.248
3.600	0.161	3.600	0.196	3.600	0.244
3.650	0.159	3.650	0.193	3.650	0.241
3.700	0.157	3.700	0.190	3.700	0.238
3.750	0.155	3.750	0.188	3.750	0.235
3.800	0.153	3.800	0.185	3.800	0.232
3.850	0.151	3.850	0.183	3.850	0.229
3.900	0.147	3.900	0.178	3.900	0.223
3.950	0.143	3.950	0.174	3.950	0.217
4.000	0.140	4.000	0.169	4.000	0.212

Fuente: elaboración propia.

Apéndice 3. Valores de aceleración y desplazamiento para espectro de demanda

Espectro de		Espectro de		Espectro de	
demanda k	d=0.66	demanda	kd=0.80	demanda kd=1.00	
Sa*g (cm/s2)	Sdi (cm)	Sa*g (cm/s2)	Sdi (cm)	Sa*g (cm/s2)	Sdi (cm)
370.347	0.000	448.906	0.000	561.132	0.000
483.187	0.008	585.682	0.009	732.102	0.012
596.027	0.038	722.457	0.046	903.072	0.057
708.868	0.101	859.233	0.122	1074.042	0.153
821.708	0.208	996.009	0.252	1245.012	0.315
925.868	0.366	1122.264	0.444	1402.830	0.555
925.868	0.528	1122.264	0.640	1402.830	0.800
925.868	0.718	1122.264	0.871	1402.830	1.088
925.868	0.938	1122.264	1.137	1402.830	1.421
925.868	1.187	1122.264	1.439	1402.830	1.799
925.868	1.466	1122.264	1.777	1402.830	2.221
925.868	1.774	1122.264	2.150	1402.830	2.687
925.868	2.111	1122.264	2.558	1402.830	3.198
925.868	2.477	1122.264	3.003	1402.830	3.753
925.868	2.873	1122.264	3.482	1402.830	4.353
925.868	3.298	1122.264	3.998	1402.830	4.997
925.868	3.752	1122.264	4.548	1402.830	5.685
925.868	4.236	1122.264	5.135	1402.830	6.418
925.868	4.749	1122.264	5.757	1402.830	7.196
925.868	5.291	1122.264	6.414	1402.830	8.017
925.868	5.863	1122.264	7.107	1402.830	8.884

Continuación de apéndice 3.

925.868	6.464	1122.264	7.835	1402.830	9.794
925.868	7.094	1122.264	8.599	1402.830	10.749
925.868	7.754	1122.264	9.399	1402.830	11.748
925.868	8.443	1122.264	10.234	1402.830	12.792
911.624	9.020	1104.998	10.934	1381.248	13.667
876.561	9.381	1062.498	11.371	1328.123	14.214
844.096	9.742	1023.147	11.808	1278.933	14.760
813.950	10.103	986.606	12.246	1233.257	15.307
785.882	10.463	952.585	12.683	1190.731	15.854
759.686	10.824	920.832	13.120	1151.040	16.400
735.180	11.185	891.128	13.558	1113.910	16.947
712.206	11.546	863.280	13.995	1079.100	17.494
690.624	11.907	837.120	14.432	1046.400	18.040
670.312	12.267	812.499	14.870	1015.624	18.587
651.160	12.628	789.285	15.307	986.606	19.134
633.072	12.989	767.360	15.744	959.200	19.680
615.962	13.350	746.621	16.182	933.276	20.227
599.752	13.711	726.973	16.619	908.716	20.774
584.374	14.072	708.332	17.056	885.415	21.320
569.765	14.432	690.624	17.494	863.280	21.867
555.868	14.793	673.780	17.931	842.224	22.414
542.633	15.154	657.737	18.368	822.171	22.960
530.014	15.515	642.441	18.806	803.051	23.507
517.968	15.876	627.840	19.243	784.800	24.054
506.458	16.236	613.888	19.680	767.360	24.601
495.448	16.597	600.543	20.118	750.678	25.147
	•	•	•	•	•

Continuación de apéndice 3.

484.906	16.958	587.765	20.555	734.706	25.694
474.804	17.319	575.520	20.992	719.400	26.241
465.114	17.680	563.775	21.430	704.718	26.787
455.812	18.040	552.499	21.867	690.624	27.334
446.874	18.401	541.666	22.304	677.082	27.881
438.281	18.762	531.249	22.742	664.062	28.427
430.011	19.123	521.226	23.179	651.532	28.974
422.048	19.484	511.573	23.617	639.467	29.521
414.374	19.844	502.272	24.054	627.840	30.067
406.975	20.205	493.303	24.491	616.629	30.614
399.835	20.566	484.648	24.929	605.811	31.161
392.941	20.927	476.292	25.366	595.366	31.707
386.281	21.288	468.220	25.803	585.275	32.254
379.843	21.648	460.416	26.241	575.520	32.801
373.616	22.009	452.868	26.678	566.085	33.347
367.590	22.370	445.564	27.115	556.955	33.894
361.755	22.731	438.491	27.553	548.114	34.441
356.103	23.092	431.640	27.990	539.550	34.987
350.624	23.453	424.999	28.427	531.249	35.534
345.312	23.813	418.560	28.865	523.200	36.081
340.158	24.174	412.313	29.302	515.391	36.627
335.156	24.535	406.249	29.739	507.812	37.174
330.298	24.896	400.362	30.177	500.452	37.721
325.580	25.257	394.642	30.614	493.303	38.267
320.994	25.617	389.084	31.051	486.355	38.814
316.536	25.978	383.680	31.489	479.600	39.361

Continuación de apéndice 3.

312.200	26.339	378.424	31.926	473.030	39.908
307.981	26.700	373.310	32.363	466.638	40.454
303.875	27.061	368.333	32.801	460.416	41.001
299.876	27.421	363.486	33.238	454.358	41.548
295.982	27.782	358.766	33.675	448.457	42.094
292.187	28.143	354.166	34.113	442.708	42.641
288.489	28.504	349.683	34.550	437.104	43.188
284.882	28.865	345.312	34.987	431.640	43.734
281.365	29.225	341.049	35.425	426.311	44.281
277.934	29.586	336.890	35.862	421.112	44.828
274.585	29.947	332.831	36.299	416.039	45.374
271.317	30.308	328.869	36.737	411.086	45.921
268.125	30.669	325.000	37.174	406.249	46.468
265.007	31.029	321.220	37.611	401.526	47.014
261.961	31.390	317.528	38.049	396.910	47.561
258.984	31.751	313.920	38.486	392.400	48.108
256.074	32.112	310.393	38.924	387.991	48.654
253.229	32.473	306.944	39.361	383.680	49.201
250.446	32.834	303.571	39.798	379.464	49.748
247.724	33.194	300.271	40.236	375.339	50.294
245.060	33.555	297.043	40.673	371.303	50.841
242.453	33.916	293.883	41.110	367.353	51.388
239.901	34.277	290.789	41.548	363.486	51.934
237.402	34.638	287.760	41.985	359.700	52.481
234.955	34.998	284.793	42.422	355.992	53.028
232.557	35.359	281.887	42.860	352.359	53.574
	•	•	•	•	•

230.208	35.720	279.040	43.297	348.800	54.121
227.906	36.081	276.250	43.734	345.312	54.668
225.649	36.442	273.514	44.172	341.893	55.215
223.437	36.802	270.833	44.609	338.541	55.761
221.268	37.163	268.203	45.046	335.254	56.308
219.140	37.524	265.625	45.484	332.031	56.855
217.053	37.885	263.095	45.921	328.869	57.401
215.006	38.246	260.613	46.358	325.766	57.948
212.996	38.606	258.177	46.796	322.721	58.495
211.024	38.967	255.787	47.233	319.733	59.041
209.088	39.328	253.440	47.670	316.800	59.588
207.187	39.689	251.136	48.108	313.920	60.135
205.321	40.050	248.874	48.545	311.092	60.681
203.487	40.410	246.651	48.982	308.314	61.228
201.687	40.771	244.469	49.420	305.586	61.775
199.917	41.132	242.324	49.857	302.905	62.321
198.179	41.493	240.217	50.294	300.271	62.868
196.471	41.854	238.146	50.732	297.683	63.415
194.791	42.215	236.111	51.169	295.138	63.961
193.141	42.575	234.110	51.606	292.637	64.508
191.518	42.936	232.143	52.044	290.178	65.055
189.922	43.297	230.208	52.481	287.760	65.601
188.352	43.658	228.305	52.918	285.382	66.148
186.808	44.019	226.434	53.356	283.043	66.695
185.289	44.379	224.593	53.793	280.741	67.241
183.795	44.740	222.782	54.231	278.477	67.788

182.325	45.101	221.000	54.668	276.250	68.335
180.878	45.462	219.246	55.105	274.057	68.881
179.453	45.823	217.519	55.543	271.899	69.428
178.052	46.183	215.820	55.980	269.775	69.975
176.671	46.544	214.147	56.417	267.684	70.522
175.312	46.905	212.500	56.855	265.625	71.068
173.974	47.266	210.878	57.292	263.597	71.615
172.656	47.627	209.280	57.729	261.600	72.162
171.358	47.987	207.706	58.167	259.633	72.708
170.079	48.348	206.156	58.604	257.696	73.255
168.819	48.709	204.629	59.041	255.787	73.802
167.578	49.070	203.125	59.479	253.906	74.348
166.355	49.431	201.642	59.916	252.053	74.895
165.149	49.791	200.181	60.353	250.226	75.442
163.961	50.152	198.741	60.791	248.426	75.988
162.790	50.513	197.321	61.228	246.651	76.535
161.635	50.874	195.922	61.665	244.902	77.082
160.497	51.235	194.542	62.103	243.177	77.628
159.375	51.596	193.182	62.540	241.477	78.175
158.268	51.956	191.840	62.977	239.800	78.722
157.176	52.317	190.517	63.415	238.146	79.268
156.100	52.678	189.212	63.852	236.515	79.815
155.038	53.039	187.925	64.289	234.906	80.362
153.990	53.400	186.655	64.727	233.319	80.908
152.957	53.760	185.402	65.164	231.753	81.455
151.937	54.121	184.166	65.601	230.208	82.002

150.931	54.482	182.947	66.039	228.683	82.548
149.938	54.843	181.743	66.476	227.179	83.095
148.958	55.204	180.555	66.913	225.694	83.642
147.991	55.564	179.383	67.351	224.229	84.188
146.087	55.564	177.076	67.351	221.345	84.188
144.221	55.564	174.813	67.351	218.516	84.188
142.389	55.564	172.593	67.351	215.741	84.188
140.592	55.564	170.415	67.351	213.019	84.188
138.830	55.564	168.278	67.351	210.348	84.188
137.100	55.564	166.181	67.351	207.727	84.188

Apéndice 4. Fuerzas producidas por el viento a velocidad 60 km/h

Fuerza proc	lucida por vien	to a diferer	ntes altur	as para ve	elocidad	l de 60 km/h
	0.00					0.00
S-1	6	0.67	3.2	17.28	1	37.05
S-2	12	0.84	3.2	17.28	1	46.45
S-3	18	0.95	3.2	17.28	1	52.53
S-4	24	1.04	3.2	17.28	1	57.51
S-5	30	1.13	3.2	17.28	1	62.48
S-6	36	1.2	3.2	17.28	1	66.36
S-7	42	1.255	3.2	17.28	1	69.40
S-8	48	1.31	3.2	17.28	1	72.44
S-9	54	1.365	3.2	17.28	1	75.48

S-10	60	1.42	3.2	17.28	1	78.52
Velocidad v	Velocidad viento					
Qs		17.28	kg/m²			

Apéndice 5. Fuerzas de viento por sección de torre, para velocidad de 60 km/h

	Sección 1								
Miembro	Medida	Longitud	Área elemento	Presión (kg/m²)	Fuerza				
		(m)	(m²/m)		(kg)				
Horizontal	L1.5"x1.5"x1/4"	6.20	0.0375	37.05	8.61				
Diagonal 1	L2"x2"x1/4"	17.27	0.0500	37.05	31.99				
Diagonal 2	L1.5"x1.5"x1/4"	14.74	0.0375	37.05	20.47				
Montante	HSS5"x0.250"	12.02	0.0813	37.05	36.18				
		4			97.25				
		Se	cción 2		1				
Miembro	Medida	Longitud	Área elemento	Presión (kg/m²)	Fuerza				
		(m)	(m ² /m)		(kg)				
Horizontal	L1.5"x1.5"x1/4"	5.62	0.0375	46.45	9.79				
Diagonal 1	L2"x2"x1/4"	16.45	0.0500	46.45	38.19				
Diagonal 2	L1.5"x1.5"x1/4"	13.82	0.0375	46.45	24.08				
Montante	HSS5"x0.250"	12.02	0.0813	46.45	45.36				
					117.42				
		Se	cción 3		•				
Miembro	Medida	Longitud	Área elemento	Presión (kg/m²)	Fuerza				
		(m)	(m ² /m)		(kg)				
Horizontal	L1.5"x1.5"x1/4"	5.03	0.0375	52.53	9.91				
Diagonal 1	L2"x2"x1/4"	15.67	0.0500	52.53	41.15				

Diagonal 2	L1.5"x1.5"x1/4"	12.85	0.0375	52.53	25.31
Montante	HSS5"x0.250"	12.02	0.0813	52.53	51.30
					127.67
	1	Se	cción 4		I
Miembro	Medida	Longitud	Área elemento	Presión (kg/m²)	Fuerza
		(m)	(m ² /m)		(kg)
Horizontal	L1.5"x1.5"x1/4"	4.44	0.0375	57.51	9.58
Diagonal 1	L2"x2"x1/4"	14.94	0.0500	57.51	42.96
Diagonal 2	L1.5"x1.5"x1/4"	11.91	0.0375	57.51	25.68
Montante	HSS5"x0.250"	12.02	0.0813	57.51	56.16
					134.39
	1	Se	cción 5	I	
Miembro	Medida	Longitud	Área elemento	Presión (kg/m²)	Fuerza
		(m)	(m ² /m)		(kg)
Horizontal	L1.5"x1.5"x1/4"	3.86	0.0375	62.48	9.04
Diagonal 1	L2"x2"x1/4"	14.27	0.0500	62.48	44.59
Diagonal 2	L1.5"x1.5"x1/4"	10.99	0.0375	62.48	25.75
Montante	HSS4"x0.313"	12.02	0.0650	62.48	48.82
Antena MMO		1.00	0.7853	62.48	49.07
					177.26
	1	Se	cción 6	1	
Miembro	Medida	Longitud	Área elemento	Presión (kg/m²)	Fuerza
		(m)	(m ² /m)		(kg)
Horizontal	L1.5"x1.5"x1/4"	3.27	0.0375	66.36	8.13
Diagonal 1	L2"x2"x1/4"	13.68	0.0500	66.36	45.37
Diagonal 2	L1.5"x1.5"x1/4"	10.10	0.0375	66.36	25.14
Montante	HSS4"x0.313"	12.02	0.0650	66.36	51.84
					130.49

		Se	cción 7		
Miembro	Medida	Longitud	Área elemento	Presión (kg/m²)	Fuerza
		(m)	(m ² /m)		(kg)
Horizontal	L1.5"x1.5"x1/4"	2.68	0.0375	69.40	6.98
Diagonal 1	L2"x2"x1/4"	13.15	0.0500	69.40	45.64
Diagonal 2	L1.5"x1.5"x1/4"	9.26	0.0375	69.40	24.09
Montante	HSS4"x0.313"	12.02	0.0650	69.40	54.22
					130.93
		Se	cción 8		.
Miembro	Medida	Longitud	Área elemento	Presión (kg/m²)	Fuerza
		(m)	(m ² /m)		(kg)
Horizontal	L1.5"x1.5"x1/4"	3.89	0.0375	72.44	10.58
Diagonal 1	L2"x2"x1/4"	12.81	0.0500	72.44	46.41
Diagonal 2	L1.5"x1.5"x1/4"	8.17	0.0375	72.44	22.19
Montante	HSS4"x0.250"	12.02	0.0650	72.44	56.60
					135.77
		Se	cción 9		•
Miembro	Medida	Longitud	Área elemento	Presión (kg/m²)	Fuerza
		(m)	(m ² /m)		(kg)
Horizontal	L1.5"x1.5"x1/4"	10.70	0.0375	75.48	30.29
Diagonal 1	L1.5"x1.5"x1/4"	22.71	0.0375	75.48	64.28
Montante	HSS 3.5"x0.313"	12.02	0.0569	75.48	51.60
					146.16
		Sec	ción 10		
Miembro	Medida	Longitud	Área elemento	Presión (kg/m²)	Fuerza
		(m)	(m ² /m)		(kg)
Horizontal	L1.5"x1.5"x1/4"	10.70	0.0375	78.52	31.51
Diagonal 1	L1.5"x1.5"x1/4"	22.71	0.0375	78.52	66.87
Montante	HSS 3.5"x0.188"	12.02	0.0569	78.52	53.68

Antenas RF		3.00	0.2000	78.52	47.11
					199.17
Fuerza total en cara de torre		1396.51	Kg		1
Fuerza total por eje de torre		698.26	Kg		

Fuente: elaboración propia.

Apéndice 6. Fuerzas producidas por viento, velocidad 80 km/h

Sección	Altura sobre	Cez	Cq	Qs	lc	qz (kg/m²)
	nivel de suelo					
	h (m)					
	0.00					0.00
S-1	6	0.67	3.2	30.72	1	65.86
S-2	12	0.84	3.2	30.72	1	82.58
S-3	18	0.95	3.2	30.72	1	93.39
S-4	24	1.04	3.2	30.72	1	102.24
S-5	30	1.13	3.2	30.72	1	111.08
S-6	36	1.2	3.2	30.72	1	117.96
S-7	42	1.255	3.2	30.72	1	123.37
S-8	48	1.31	3.2	30.72	1	128.78
S-9	54	1.365	3.2	30.72	1	134.18
S-10	60	1.42	3.2	30.72	1	139.59
,	Velocidad viento	80	km/h			
	qs	30.72	kg/m²			

Apéndice 7. Fuerzas de viento por sección de torre para velocidad de 80 km/h

		Secci	ón 1		
Miembro	Medida	Longitud	Área elemento	Presión	Fuerza
		(m)	(m ² /m)	(kg/m²)	(kg)
Horizontal	L1.5"x1.5"x1/4"	6.20	0.0375	65.86	15.30
Diagonal 1	L2"x2"x1/4"	17.27	0.0500	65.86	56.87
Diagonal 2	L1.5"x1.5"x1/4"	14.74	0.0375	65.86	36.39
Montante	HSS5"x0.250"	12.02	0.0813	65.86	64.32
					172.89
	1	Secci	ón 2	l	•
Miembro	Medida	Longitud	Área elemento	Presión	Fuerza
		(m)	(m ² /m)	(kg/m²)	(kg)
Horizontal	L1.5"x1.5"x1/4"	5.62	0.0375	82.58	17.40
Diagonal 1	L2"x2"x1/4"	16.45	0.0500	82.58	67.90
Diagonal 2	L1.5"x1.5"x1/4"	13.82	0.0375	82.58	42.81
Montante	HSS5"x0.250"	12.02	0.0813	82.58	80.65
					208.75
	1	Secci	ón 3	l	•
Miembro	Medida	Longitud	Área elemento	Presión	Fuerza
		(m)	(m ² /m)	(kg/m²)	(kg)
Horizontal	L1.5"x1.5"x1/4"	5.03	0.0375	93.39	17.62
Diagonal 1	L2"x2"x1/4"	15.67	0.0500	93.39	73.16
Diagonal 2	L1.5"x1.5"x1/4"	12.85	0.0375	93.39	44.99
Montante	HSS5"x0.250"	12.02	0.0813	93.39	91.21
					226.98
	•	Secci	ón 4	•	
Miembro	Medida	Longitud	Área elemento	Presión	Fuerza
		(m)	(m ² /m)	(kg/m²)	(kg)
Horizontal	L1.5"x1.5"x1/4"	4.44	0.0375	102.24	17.04
Diagonal 1	L2"x2"x1/4"	14.94	0.0500	102.24	76.37

Diagonal 2	L1.5"x1.5"x1/4"	11.91	0.0375	102.24	45.66
Montante	HSS5"x0.250"	12.02	0.0813	102.24	99.85
					238.91
		Secci	ón 5		
Miembro	Medida	Longitud	Área elemento	Presión	Fuerza
		(m)	(m ² /m)	(kg/m²)	(kg)
Horizontal	L1.5"x1.5"x1/4"	3.86	0.0375	111.08	16.06
Diagonal 1	L2"x2"x1/4"	14.27	0.0500	111.08	79.28
Diagonal 2	L1.5"x1.5"x1/4"	10.99	0.0375	111.08	45.77
Montante	HSS4"x0.313"	12.02	0.0650	111.08	86.79
Antena MMO		1.00	0.7853	111.08	87.23
					315.14
	1	Secci	ón 6		<u> </u>
Miembro	Medida	Longitud	Área elemento	Presión	Fuerza
		(m)	(m ² /m)	(kg/m2)	(kg)
Horizontal	L1.5"x1.5"x1/4"	3.27	0.0375	117.96	14.46
Diagonal 1	L2"x2"x1/4"	13.68	0.0500	117.96	80.66
Diagonal 2	L1.5"x1.5"x1/4"	10.10	0.0375	117.96	44.69
Montante	HSS4"x0.313"	12.02	0.0650	117.96	92.17
					231.97
		Secci	ón 7	•	•
Miembro	Medida	Longitud	Área elemento	Presión	Fuerza
		(m)	(m ² /m)	(kg/m²)	(kg)
Horizontal	L1.5"x1.5"x1/4"	2.68	0.0375	123.37	12.40
Diagonal 1	L2"x2"x1/4"	13.15	0.0500	123.37	81.15
Diagonal 2	L1.5"x1.5"x1/4"	9.26	0.0375	123.37	42.82
Montante	HSS4"x0.313"	12.02	0.0650	123.37	96.39
					232.76

		Secci	ón 8		
Miembro	Medida	Longitud	Área elemento	Presión	Fuerza
		(m)	(m ² /m)	(kg/m²)	(kg)
Horizontal	L1.5"x1.5"x1/4"	3.89	0.0375	128.78	18.80
Diagonal 1	L2"x2"x1/4"	12.81	0.0500	128.78	82.50
Diagonal 2	L1.5"x1.5"x1/4"	8.17	0.0375	128.78	39.45
Montante	HSS4"x0.250"	12.02	0.0650	128.78	100.61
					241.37
	1	Secci	ón 9		<u> </u>
Miembro	Medida	Longitud	Área elemento	Presión	Fuerza
		(m)	(m ² /m)	(kg/m²)	(kg)
Horizontal	L1.5"x1.5"x1/4"	10.70	0.0375	134.18	53.84
Diagonal 1	L1.5"x1.5"x1/4"	22.71	0.0375	134.18	114.27
Montante	HSS 3.5"x0.313"	12.02	0.0569	134.18	91.73
					259.85
	1	Secció	on 10		
Miembro	Medida	Longitud	Área elemento	Presión	Fuerza
		(m)	(m ² /m)	(kg/m²)	(kg)
Horizontal	L1.5"x1.5"x1/4"	10.70	0.0375	139.59	56.01
Diagonal 1	L1.5"x1.5"x1/4"	22.71	0.0375	139.59	118.88
Montante	HSS 3.5"x0.188"	12.02	0.0569	139.59	95.43
Antenas		3.00	0.2000	139.59	83.76
RF					
					354.07
Fuerza total	en cara de torre	2482.69	Kg		
Fuerza total	por eje de torre	1241.34	Kg		

Apéndice 8. Fuerzas producidas por viento a velocidad de 100 km/h

Sección	Altura sobre nivel de suelo h (m)	Cez	Cq	Qs	lc	qz (kg/m²)
	0.00					0.00
S-1	6	0.67	3.2	48	1	102.91
S-2	12	0.84	3.2	48	1	129.02
S-3	18	0.95	3.2	48	1	145.92
S-4	24	1.04	3.2	48	1	159.74
S-5	30	1.13	3.2	48	1	173.57
S-6	36	1.2	3.2	48	1	184.32
S-7	42	1.255	3.2	48	1	192.77
S-8	48	1.31	3.2	48	1	201.22
S-9	54	1.365	3.2	48	1	209.66
S-10	60	1.42	3.2	48	1	218.11
	Velocidad viento	100	km/h			
	qs	48	kg/m²			

Apéndice 9. Fuerzas de viento por sección de torre para velocidad de 100 km/h

	Sección 1									
Miembro	Medida	Longitud	Área elemento	Presión	Fuerza					
		(m)	(m ² /m)	(kg/m²)	(kg)					
Horizontal	L1.5"x1.5"x1/4"	6.20	0.0375	102.91	23.91					
Diagonal 1	L2"x2"x1/4"	17.27	0.0500	102.91	88.86					

Diagonal 2	L1.5"x1.5"x1/4"	14.74	0.0375	102.91	56.87
Montante	HSS5"x0.250"	12.02	0.0813	102.91	100.51
					270.15
		Sec	ción 2		
Miembro	Medida	Longitud	Área elemento	Presión	Fuerza
		(m)	(m²/m)	(kg/m²)	(kg)
Horizontal	L1.5"x1.5"x1/4"	5.62	0.0375	129.02	27.19
Diagonal 1	L2"x2"x1/4"	16.45	0.0500	129.02	106.10
Diagonal 2	L1.5"x1.5"x1/4"	13.82	0.0375	129.02	66.89
Montante	HSS5"x0.250"	12.02	0.0813	129.02	126.01
					326.17
		Sec	ción 3		I
Miembro	Medida	Longitud	Área elemento	Presión	Fuerza
		(m)	(m ² /m)	(kg/m²)	(kg)
Horizontal	L1.5"x1.5"x1/4"	5.03	0.0375	145.92	27.53
Diagonal 1	L2"x2"x1/4"	15.67	0.0500	145.92	114.31
Diagonal 2	L1.5"x1.5"x1/4"	12.85	0.0375	145.92	70.30
Montante	HSS5"x0.250"	12.02	0.0813	145.92	142.51
					354.65
		Sec	ción 4		I
Miembro	Medida	Longitud	Área elemento	Presión	Fuerza
		(m)	(m ² /m)	(kg/m²)	(kg)
Horizontal	L1.5"x1.5"x1/4"	4.44	0.0375	159.74	26.62
Diagonal 1	L2"x2"x1/4"	14.94	0.0500	159.74	119.33
Diagonal 2	L1.5"x1.5"x1/4"	11.91	0.0375	159.74	71.34
Montante	HSS5"x0.250"	12.02	0.0813	159.74	156.01
					373.30
	1	Sec	ción 5	1	l .
Miembro	Medida	Longitud	Área elemento	Presión	Fuerza
		(m)	(m ² /m)	(kg/m²)	(kg)
Horizontal	L1.5"x1.5"x1/4"	3.86	0.0375	173.57	25.10

Diagonal 1	L2"x2"x1/4"	14.27	0.0500	173.57	123.87
Diagonal 2	L1.5"x1.5"x1/4"	10.99	0.0375	173.57	71.52
Montante	HSS4"x0.313"	12.02	0.0650	173.57	135.61
Antena		1.00	0.7853	173.57	136.30
MMO					
					492.40
	1	Sec	ción 6		
Miembro	Medida	Longitud	Área elemento	Presión	Fuerza
		(m)	(m ² /m)	(kg/m²)	(kg)
Horizontal	L1.5"x1.5"x1/4"	3.27	0.0375	184.32	22.59
Diagonal 1	L2"x2"x1/4"	13.68	0.0500	184.32	126.03
Diagonal 2	L1.5"x1.5"x1/4"	10.10	0.0375	184.32	69.83
Montante	HSS4"x0.313"	12.02	0.0650	184.32	144.01
					362.46
		Sec	ción 7		
Miembro	Medida	Longitud	Área elemento	Presión	Fuerza
		(m)	(m ² /m)	(kg/m²)	(kg)
Horizontal	L1.5"x1.5"x1/4"	2.68	0.0375	192.77	19.38
Diagonal 1	L2"x2"x1/4"	13.15	0.0500	192.77	126.79
Diagonal 2	L1.5"x1.5"x1/4"	9.26	0.0375	192.77	66.91
Montante	HSS4"x0.313"	12.02	0.0650	192.77	150.61
					363.69
		Sec	ción 8		1
Miembro	Medida	Longitud	Área elemento	Presión	Fuerza
		(m)	(m ² /m)	(kg/m²)	(kg)
Horizontal	L1.5"x1.5"x1/4"	3.89	0.0375	201.22	29.38
Diagonal 1	L2"x2"x1/4"	12.81	0.0500	201.22	128.90
Diagonal 2	L1.5"x1.5"x1/4"	8.17	0.0375	201.22	61.64
Montante	HSS4"x0.250"	12.02	0.0650	201.22	157.21
					377.14

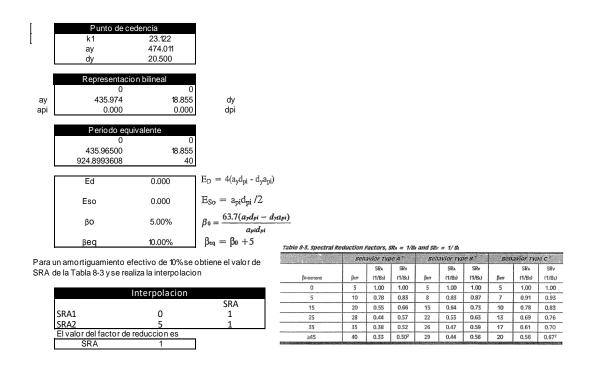
	Sección 9								
Miembro	Medida	Longitud	Área elemento	Presión	Fuerza				
		(m)	(m ² /m)	(kg/m²)	(kg)				
Horizontal	L1.5"x1.5"x1/4"	10.70	0.0375	209.66	84.13				
Diagonal 1	L1.5"x1.5"x1/4"	22.71	0.0375	209.66	178.55				
Montante	HSS 3.5"x0.313"	12.02	0.0569	209.66	143.33				
					406.01				
		Secc	ión 10						
Miembro	Medida	Longitud	Área elemento	Presión	Fuerza				
		(m)	(m ² /m)	(kg/m²)	(kg)				
Horizontal	L1.5"x1.5"x1/4"	10.70	0.0375	218.11	87.52				
Diagonal 1	L1.5"x1.5"x1/4"	22.71	0.0375	218.11	185.74				
Montante	HSS 3.5"x0.188"	12.02	0.0569	218.11	149.11				
Antenas RF		3.00	0.2000	218.11	130.87				
					553.24				
Fuerza total	en cara de torre	3879.20	Kg		•				
Fuerza total	por eje de torre	1939.60	Kg						

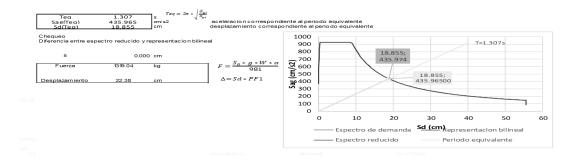
Apéndice 10. Fuerzas producidas por el viento a velocidad de 120 km/h

Fuerza p	Fuerza producida por viento a diferentes alturas para velocidad de 120 km/h							
Sección	Altura sobre	Cez Cq qs lc qz (kg/m²)						
	nivei de sueio n							
	(m)							
	0.00					0.00		
S-1	6	0.67	3.2	69.12	1	148.19		
S-2	12	0.84	3.2	69.12	1	185.79		
S-3	18	0.95	3.2	69.12	1	210.12		

S-4	24	1.04	3.2	69.12	1	230.03
S-5	30	1.13	3.2	69.12	1	249.94
S-6	36	1.2	3.2	69.12	1	265.42
S-7	42	1.255	3.2	69.12	1	277.59
S-8	48	1.31	3.2	69.12	1	289.75
S-9	54	1.365	3.2	69.12	1	301.92
S-10	60	1.42	3.2	69.12	1	314.08
	Velocidad viento	120	km/h			
	qs	69.12	kg/m²			

Apéndice 11. Fuerzas de viento por sección de torre para velocidad de 120 km/h


	Sección 1									
Miembro	Medida	Longitud	Área elemento	Presión	Fuerza					
		(m)	(m²/m)	(kg/m²)	(kg)					
Horizontal	L1.5"x1.5"x1/4"	6.20	0.0375	148.19	34.43					
Diagonal 1	L2"x2"x1/4"	17.27	0.0500	148.19	127.96					
Diagonal 2	L1.5"x1.5"x1/4"	14.74	0.0375	148.19	81.89					
Montante	HSS5"x0.250"	12.02	0.0813	148.19	144.73					
					389.01					
		S	ección 2	•						
Miembro	Medida	Longitud	Área elemento	Presión	Fuerza					
		(m)	(m²/m)	(kg/m²)	(kg)					
Horizontal	L1.5"x1.5"x1/4"	5.62	0.0375	185.79	39.15					
Diagonal 1	L2"x2"x1/4"	16.45	0.0500	185.79	152.78					


Diagonal 2	L1.5"x1.5"x1/4"	13.82	0.0375	185.79	96.31
Montante	HSS5"x0.250"	12.02	0.0813	185.79	181.45
					469.69
	1	S	ección 3	•	I
Miembro	Medida	Longitud	Área elemento	Presión	Fuerza
		(m)	(m²/m)	(kg/m²)	(kg)
Horizontal	L1.5"x1.5"x1/4"	5.03	0.0375	210.12	39.65
Diagonal 1	L2"x2"x1/4"	15.67	0.0500	210.12	164.60
Diagonal 2	L1.5"x1.5"x1/4"	12.85	0.0375	210.12	101.23
Montante	HSS5"x0.250"	12.02	0.0813	210.12	205.21
					510.69
	1	S	ección 4	1	L
Miembro	Medida	Longitud	Área elemento	Presión	Fuerza
		(m)	(m²/m)	(kg/m²)	(kg)
Horizontal	L1.5"x1.5"x1/4"	4.44	0.0375	230.03	38.33
Diagonal 1	L2"x2"x1/4"	14.94	0.0500	230.03	171.84
Diagonal 2	L1.5"x1.5"x1/4"	11.91	0.0375	230.03	102.72
Montante	HSS5"x0.250"	12.02	0.0813	230.03	224.65
					537.55
	1	S	ección 5	1	L
Miembro	Medida	Longitud	Área elemento	Presión	Fuerza
		(m)	(m²/m)	(kg/m²)	(kg)
Horizontal	L1.5"x1.5"x1/4"	3.86	0.0375	249.94	36.14
Diagonal 1	L2"x2"x1/4"	14.27	0.0500	249.94	178.37
Diagonal 2	L1.5"x1.5"x1/4"	10.99	0.0375	249.94	102.99
Montante	HSS4"x0.313"	12.02	0.0650	249.94	195.28
Antena		1.00	0.7853	249.94	196.28
MMO					
					709.06

		S	ección 6		
Miembro	Medida	Longitud	Área elemento	Presión	Fuerza
		(m)	(m ^{2/} m)	(kg/m²)	(kg)
Horizontal	L1.5"x1.5"x1/4"	3.27	0.0375	265.42	32.54
Diagonal 1	L2"x2"x1/4"	13.68	0.0500	265.42	181.48
Diagonal 2	L1.5"x1.5"x1/4"	10.10	0.0375	265.42	100.55
Montante	HSS4"x0.313"	12.02	0.0650	265.42	207.37
					521.94
	1	S	ección 7		
Miembro	Medida	Longitud	Área elemento	Presión	Fuerza
		(m)	(m²/m)	(kg/m²)	(kg)
Horizontal	L1.5"x1.5"x1/4"	2.68	0.0375	277.59	27.91
Diagonal 1	L2"x2"x1/4"	13.15	0.0500	277.59	182.58
Diagonal 2	L1.5"x1.5"x1/4"	9.26	0.0375	277.59	96.34
Montante	HSS4"x0.313"	12.02	0.0650	277.59	216.88
					523.71
		S	ección 8	l	
Miembro	Medida	Longitud	Área elemento	Presión	Fuerza
		(m)	(m²/m)	(kg/m²)	(kg)
Horizontal	L1.5"x1.5"x1/4"	3.89	0.0375	289.75	42.31
Diagonal 1	L2"x2"x1/4"	12.81	0.0500	289.75	185.62
Diagonal 2	L1.5"x1.5"x1/4"	8.17	0.0375	289.75	88.77
Montante	HSS4"x0.250"	12.02	0.0650	289.75	226.38
					543.08
		S	ección 9	•	
Miembro	Medida	Longitud	Área elemento	Presión	Fuerza
		(m)	(m²/m)	(kg/m2)	(kg)
Horizontal	L1.5"x1.5"x1/4"	10.70	0.0375	301.92	121.14
Diagonal 1	L1.5"x1.5"x1/4"	22.71	0.0375	301.92	257.11
Montante	HSS 3.5"x0.313"	12.02	0.0569	301.92	206.40
					584.66

Sección 10									
Miembro	Medida	Longitud	Área elemento	Presión	Fuerza				
		(m)	(m²/m)	(kg/m²)	(kg)				
Horizontal	L1.5"x1.5"x1/4"	10.70	0.0375	314.08	126.03				
Diagonal 1	L1.5"x1.5"x1/4"	22.71	0.0375	314.08	267.47				
Montante	HSS 3.5"x0.188"	12.02	0.0569	314.08	214.72				
					796.66				
Fuerza total	en cara de torre	5586.05	Kg						
Fuerza total	por eje de torre	2793.03	Kg						

Apéndice 12. Hoja electrónica cálculo punto de desempeño Kd=0.66 procedimiento manual

Espectro	o elástico	Espectro de	e demanda	Espectro rec	lucido		spectro de capa	cidad
·		Sa*g	aomanaa	Sa*g/Sra-Srv	labiao		opoono do capa	orada
T (s)	Sa (T) g	(cm/s2)	Sdi (cm)	(cm/s2)	Sdi (cm)	Sa (g)	Sa*g (cm/s2)	Sd (cm)
0.000	0.378	370.347	0.000	370.34712	0.000	0.000	0.00	0.000
0.025	0.493	483.187	0.008	483.1872581	0.008	0.130	127.34	5.509
0.050	0.608	596.027	0.038	596.0273963	0.038	0.260	254.68	11.018
0.075	0.723	708.868	0.101	708.8675344	0.101	0.389	382.01	16.527
0.100	0.838	821.708	0.208	821.7076725	0.208	0.437	428.50	18.532
0.125	0.944	925.868	0.366	925.8678	0.366	0.513	503.57	28.320
0.150	0.944	925.868	0.528	925.8678	0.528	0.544	533.72	33.829
0.175	0.944	925.868	0.718	925.8678	0.718	0.568	557.11	39.337
0.200	0.944	925.868	0.938	925.8678	0.938	0.591	579.41	44.846
0.225	0.944	925.868	1.187	925.8678	1.187	0.613	601.70	50.355
0.250	0.944	925.868	1.466	925.8678	1.466	0.634	622.08	55.856
0.275	0.944	925.868	1.774	925.8678	1.774	0.654	641.55	61.365
0.300	0.944	925.868	2.111	925.8678	2.111	0.659	646.55	63.033
0.325	0.944	925.868	2.477	925.8678	2.477	0.000	0.00	68.542
0.350	0.944	925.868	2.873	925.8678	2.873	0.000	0.00	0.000
0.375	0.944	925.868	3.298	925.8678	3.298	0.000	0.00	0.000
0.400	0.944	925.868	3.752	925.8678	3.752			
0.425	0.944	925.868	4.236	925.8678	4.236			
0.450	0.944	925.868	4.749	925.8678	4.749			
0.475	0.944	925.868	5.291	925.8678	5.291			
0.500	0.944	925.868	5.863	925.8678	5.863			
0.525	0.944	925.868	6.464	925.8678	6.464			
0.550	0.944	925.868	7.094	925.8678	7.094			
0.575	0.944	925.868	7.754	925.8678	7.754			
0.600	0.944	925.868	8.443	925.8678	8.443			
0.625	0.929	911.624	9.020	911.62368	9.020			
0.650	0.894	876.561	9.381	876.5612308	9.381			
0.675	0.860	844.096	9.742	844.096	9.742			
0.700	0.830	813.950	10.103	813.9497143	10.103			
0.725	0.801	785.882	10.463	785.8824828	10.463			
0.750	0.774	759.686	10.824	759.6864	10.824			
0.775	0.749	735.180	11.185	735.1803871	11.185			
0.800	0.726	712.206	11.546	712.206	11.546			
0.825	0.704	690.624	11.907	690.624	11.907			
0.850	0.683	670.312	12.267	670.3115294	12.267			
0.875	0.664	651.160	12.628	651.1597714	12.628			
0.900	0.645	633.072	12.989	633.072	12.989			
0.925	0.628	615.962	13.350	615.9619459	13.350			
0.950	0.611	599.752	13.711	599.7524211	13.711			
0.975	0.596	584.374	14.072	584.3741538	14.072			
1.000	0.581	569.765	14.432	569.7648	14.432			
1.025	0.567	555.868	14.793	555.8680976	14.793			
1.050	0.553	542.633	15.154	542.6331429	15.154	-		

1.075	0.540	530.014	15.515	530.0137674	15.515
1.100	0.528	517.968	15.876	517.968	15.876
1.125	0.516	506.458	16.236	506.4576	16.236
1.150	0.505	495.448	16.597	495.4476522	16.597
1.175	0.494	484.906	16.958	484.9062128	16.958
1.200	0.484	474.804	17.319	474.804	17.319
1.225	0.474	465.114	17.680	465.1141224	17.680
1.250	0.465	455.812	18.040	455.81184	18.040
1.275	0.456	446.874	18.401	446.8743529	18.401
1.300	0.447	438.281	18.762	438.2806154	18.762
1.325	0.438	430.011	19.123	430.0111698	19.123
1.350	0.430	422.048	19.484	422.048	19.484
1.375	0.422	414.374	19.844	414.3744	19.844
1.400	0.415	406.975	20.205	406.9748571	20.205
1.425	0.408	399.835	20.566	399.8349474	20.566
1.450	0.401	392.941	20.927	392.9412414	20.927
1.475	0.394	386.281	21.288	386.2812203	21.288
1.500	0.387	379.843	21.648	379.8432	21.648
1.525	0.381	373.616	22.009	373.6162623	22.009
1.550	0.375	367.590	22.370	367.5901935	22.370
1.575	0.369	361.755	22.731	361.7554286	22.731
1.600	0.363	356.103	23.092	356.103	23.092
1.625	0.357	350.624	23.453	350.6244923	23.453
1.650	0.352	345.312	23.813	345.312	23.813
1.675	0.347	340.158	24.174	340.1580896	24.174
1.700	0.342	335.156	24.535	335.1557647	24.535
1.725	0.337	330.298	24.896	330.2984348	24.896
1.750	0.332	325.580	25.257	325.5798857	25.257
1.775	0.327	320.994	25.617	320.9942535	25.617
1.800	0.323	316.536	25.978	316.536	25.978
1.825	0.318	312.200	26.339	312.1998904	26.339
1.850	0.314	307.981	26.700	307.980973	26.700
1.875	0.310	303.875	27.061	303.87456	27.061
1.900	0.306	299.876	27.421	299.8762105	27.421
1.925	0.302	295.982	27.782	295.9817143	27.782
1.950	0.298	292.187	28.143	292.1870769	28.143
1.975	0.294	288.489	28.504	288.4885063	28.504
2.000	0.290	284.882	28.865	284.8824	28.865
2.025	0.287	281.365	29.225	281.3653333	29.225
2.050	0.283	277.934	29.586	277.9340488	29.586
2.075	0.280	274.585	29.947	274.5854458	29.947
2.100	0.277	271.317	30.308	271.3165714	30.308
2.125	0.273	268.125	30.669	268.1246118	30.669
2.150	0.270	265.007	31.029	265.0068837	31.029
2.175	0.267	261.961	31.390	261.9608276	31.390
2.200	0.264	258.984	31.751	258.984	31.751
2.225	0.261	256.074	32.112	256.0740674	32.112
2.250	0.258	253.229	32.473	253.2288	32.473
2.275	0.255	250.446	32.834	250.4460659	32.834
2.300	0.253	247.724	33.194	247.7238261	33.194
2.325	0.250	245.060	33.555	245.060129	33.555
2.350	0.247	242.453	33.916	242.4531064	33.916
2.375	0.245	239.901	34.277	239.9009684	34.277
2.400	0.242	237.402	34.638	237.402	34.638
2.425	0.240	234.955	34.998	234.9545567	34.998
2.450	0.237	232.557	35.359	232.5570612	35.359
2.475	0.235	230.208	35.720	230.208	35.720
2.500	0.232	227.906	36.081	227.90592	36.081
2.525	0.230	225.649	36.442	225.6494257	36.442
2.550	0.228	223.437	36.802	223.4371765	36.802
2.575	0.226	221.268	37.163	221.2678835	37.163
2.600	0.223	219.140	37.524	219.1403077	37.524
2.625	0.221	217.053	37.885	217.0532571	37.885
2.650	0.219	215.006	38.246	215.0055849	38.246

Continuación de apéndice 12.

2.675	0.217	212.996	38.606	212.9961869	38.606
2.700	0.215	211.024	38.967	211.024	38.967
2.725	0.213	209.088	39.328	209.088	39.328
2.750	0.211	207.187	39.689	207.1872	39.689
2.775	0.209	205.321	40.050	205.3206486	40.050
2.800	0.207	203.487	40.410	203.4874286	40.410
2.825	0.206	201.687	40.771	201.6866549	40.771
2.850	0.204	199.917	41.132	199.9174737	41.132
2.875	0.202	198.179	41.493	198.1790609	41.493
2.900	0.200	196.471	41.854	196.4706207	41.854
2.925	0.199	194.791	42.215	194.7913846	42.215
2.950	0.197	193.141	42.575	193.1406102	42.575
2.975	0.195	191.518	42.936	191.5175798	42.936
3.000	0.194	189.922	43.297	189.9216	43.297
3.025	0.192	188.352	43.658	188.352	43.658
3.050	0.190	186.808	44.019	186.8081311	44.019
3.075	0.189	185.289	44.379	185.2893659	44.379
3.100	0.187	183.795	44.740	183.7950968	44.740
3.125	0.186	182.325	45.101	182.324736	45.101
3.150	0.184	180.878	45.462	180.8777143	45.462
3.175	0.183	179.453	45.823	179.4534803	45.823
3.200	0.182	178.052	46.183	178.0515	46.183
3.225	0.182				
3.250		176.671	46.544	176.6712558	46.544
	0.179	175.312	46.905	175.3122462	46.905
3.275	0.177	173.974	47.266	173.9739847	47.266
3.300	0.176	172.656	47.627	172.656	47.627
3.325	0.175	171.358	47.987	171.3578346	47.987
3.350	0.173	170.079	48.348	170.0790448	48.348
3.375	0.172	168.819	48.709	168.8192	48.709
3.400	0.171	167.578	49.070	167.5778824	49.070
3.425	0.170	166.355	49.431	166.3546861	49.431
3.450	0.168	165.149	49.791	165.1492174	49.791
3.475	0.167	163.961	50.152	163.9610935	50.152
3.500	0.166	162.790	50.513	162.7899429	50.513
3.525	0.165	161.635	50.874	161.6354043	50.874
3.550	0.164	160.497	51.235	160.4971268	51.235
3.575	0.162	159.375	51.596	159.3747692	51.596
3.600	0.161	158.268	51.956	158.268	51.956
3.625	0.160	157.176	52.317	157.1764966	52.317
3.650	0.159	156.100	52.678	156.0999452	52.678
3.675	0.158	155.038	53.039	155.0380408	53.039
3.700	0.157	153.990	53.400	153.9904865	53.400
3.725	0.156	152.957	53.760	152.9569933	53.760
3.750	0.155	151.937	54.121	151.93728	54.121
3.775	0.154	150.931	54.482	150.9310728	54.482
3.800	0.153	149.938	54.843	149.9381053	54.843
3.825	0.152	148.958	55.204	148.9581176	55.204
3.850	0.151	147.991	55.564	147.9908571	55.564
3.875	0.149	146.087	55.564	146.0874576	55.564
3.900	0.147	144.221	55.564	144.2205444	55.564
3.925	0.145	142.389	55.564	142.389191	55.564
3.950	0.143	140.592	55.564	140.5924999	55.564
3.975	0.142	138.830	55.564	138.829602	55.564
4.000	0.140	137.100	55.564	137.099655	55.564

Apéndice 13. Hoja electrónica cálculo punto de desempeño Kd=0.80 procedimiento manual

Pun	Punto de cedencia					
k1	23.122					
ay	474.011					
dy	20.500					

	Representacion bilineal					
	0.000					
ay	474.011	20.500	dy			
api	477.134	21.270	dpi			

Periodo e	quivalente
0.000	0.000
477.323	21.278

Ed	1203.823
Eso	5074.325
βο	1.89%
βeq	6.89%

$$E_D = 4(a_y d_{pi} - d_y a_{pi})$$

$$E_{So} = a_{pi} d_{pi} / 2$$

$$\beta_0 = \frac{63.7(a_y d_{pi} - d_y a_{pi})}{1}$$

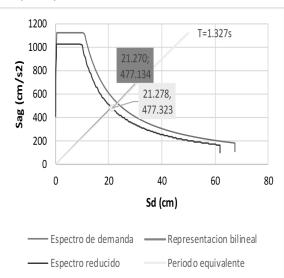
0 . 7

Para un amortiguamiento efectivo de 6.89% se obtiene el valor de SRA de la Tabla 8-3 y se realiza la interpolacion

	Interpolacion	
		SRA
SRA1	5	1
SRA2	10	0.78
El valor del factor d	e reduccion es:	
SRA	0.917	

Table 8-3. Spe	ectral Reduc	ction Factor	's, SR4 = 1	1/Bs and SRv	= 1/Bt

	Behavior Type A 1		Belt.	Behavior Type B 1		Beltavior Type C '			
		SRA	SRv		SRA	SRv		SRA	SRv
β0 (percent)	Berr	(1/Bs)	(1/B ₁)	βerr	(1/Bs)	(1/B _L)	Berr	(1/Bs)	(1/B ₁)
0	5	1.00	1.00	5	1.00	1.00	5	1.00	1.00
5	10	0.78	0.83	8	0.83	0.87	7	0.91	0.93
15	20	0.55	0.66	15	0.64	0.73	10	0.78	0.83
25	28	0.44	0.57	22	0.53	0.63	13	0.69	0.76
35	35	0.38	0.52	26	0.47	0.59	17	0.61	0.70
≥45	40	0.33	0.502	29	0.44	0.56	20	0.56	0.672


alente
quivalente

Chequeo

Diferencia entre espectro reducido y representacion bilineal

δ 0.008 cm

Fuerza	1443.57	kg	$F = \frac{S_a * g * W * \alpha}{981}$
Desplazamiento	25.25	cm	$\Delta = Sd * PF1$

Espectro	elástico	Espectro de demanda		Espectro reducido		Espectro de capacidad		
	Sa (T)	Lapcon o de	acmanaa	Sa*q/Sra-Srv	auciuo	ЕЗРСС	Sa*q	Cidad
T (s)	g	Sa*g (cm/s2)	Sdi (cm)	(cm/s2)	Sdi (cm)	Sa (g)	(cm/s2)	Sd (cm)
0.000	0.458	448.906	0.000	411.5941934	0.000	0.000	0.00	0.000
0.025	0.597	585.682	0.009	537.0017992	0.009	0.130	127.34	5.509
0.050	0.736	722.457	0.046	662.409405	0.042	0.260	254.68	11.018
0.075	0.876	859.233	0.122	787.8170108	0.112	0.389	382.01	16.527
0.100	1.015	996.009	0.252	913.2246166	0.231	0.437	428.50	18.532
0.125	1.144	1122.264	0.444	1028.985483	0.407	0.513	503.57	28.320
0.150	1.144	1122.264	0.640	1028.985483	0.586	0.544	533.72	33.829
0.175	1.144	1122.264	0.871	1028.985483	0.798	0.568	557.11	39.337
0.200	1.144	1122.264	1.137	1028.985483	1.043	0.591	579.41	44.846
0.225	1.144	1122.264	1.439	1028.985483	1.320	0.613	601.70	50.355
0.250	1.144	1122.264	1.777	1028.985483	1.629	0.634	622.08	55.856
0.275	1.144	1122.264	2.150	1028.985483	1.971	0.654	641.55	61.365
0.300	1.144	1122.264	2.558	1028.985483	2.346	0.659	646.55	63.033
0.325	1.144	1122.264	3.003	1028.985483	2.753	0.000	0.00	68.542
0.350	1.144	1122.264	3.482	1028.985483	3.193			
0.375	1.144	1122.264	3.998	1028.985483	3.665			
0.400	1.144	1122.264	4.548	1028.985483	4.170			
0.425	1.144	1122.264	5.135	1028.985483	4.708			
0.450	1.144	1122.264	5.757	1028.985483	5.278			
0.475	1.144	1122.264	6.414	1028.985483	5.881			
0.500	1.144	1122.264	7.107	1028.985483	6.516			
0.525	1.144	1122.264	7.835	1028.985483	7.184			
0.550	1.144	1122.264	8.599	1028.985483	7.885			
0.575	1.144	1122.264	9.399	1028.985483	8.618			
0.600	1.144	1122.264	10.234	1028.985483	9.383			
0.625	1.126	1104.998	10.934	1013.154938	10.025			
0.650	1.083	1062.498	11.371	974.18744	10.426			
0.675	1.043	1023.147	11.808	938.1064237	10.827			
0.700	1.006	986.606	12.246	904.6026228	11.228			
0.725	0.971	952.585	12.683	873.4094289	11.629			
0.750	0.939	920.832	13.120	844.2957813	12.030			
0.775	0.908	891.128	13.558	817.0604335	12.431			
0.800	0.880	863.280	13.995	791.527295	12.832			
0.825 0.850	0.853 0.828	837.120	14.432	767.5416194	13.233			
		812.499	14.870	744.9668659	13.634			
0.875	0.805	789.285	15.307	723.6820983	14.035			
0.900 0.925	0.782 0.761	767.360 746.621	15.744 16.182	703.5798178 684.564147	14.436 14.837			
0.950	0.741		16.619	666.549301	15.238			
0.930	0.741	726.973 708.332	17.056	649.4582933	15.236			
1.000	0.722	690.624	17.036	633.221836	16.040			
1.025	0.704	673.780	17.494	617.777401	16.441			
1.050	0.670	657.737	18.368	603.0684152	16.842			
1.030	0.655	642.441	18.806	589.0435683	17.243			
1.100	0.640	627.840	19.243	575.6562145	17.243			
1.125	0.626	613.888	19.243	562.8638542	18.045			
1.150	0.612	600.543	20.118	550.6276835	18.446			
1.175	0.599	587.765	20.118	538.9122008	18.847			
1.200	0.587	575.520	20.992	527.6848633	19.248			
1.225	0.575	563.775	21.430	516.9157845	19.649			
1.220	0.575	303.773	21.700	510.5101040	13.043			

1.250	0.563	552.499	21.867	506.5774688	20.050
1.275	0.552	541.666	22.304	496.6445772	20.451
1.300	0.542	531.249	22.742	487.09372	20.852
1.325	0.531	521.226	23.179	477.9032724	21.253
1.350	0.521	511.573	23.617	469.0532118	21.654
1.375	0.512	502.272	24.054	460.5249716	22.055
1.400	0.503	493.303	24.491	452.3013114	22.456
1.425	0.494	484.648	24.929	444.3662007	22.450
1.450	0.486	476.292	25.366	436.7047145	23.258
1.475	0.477	468.220	25.803	429.3029396	23.659
1.500	0.469	460.416	26.241	422.1478907	24.060
1.525	0.462	452.868	26.678	415.2274334	24.461
1.550	0.454	445.564	27.115	408.5302168	24.862
1.575	0.447	438.491	27.553	402.0456101	25.263
1.625	0.433	424.999	28.427	389.674976	26.065
1.650	0.427	418.560	28.865	383.7708097	26.465
1.675	0.420	412.313	29.302	378.0428871	26.866
1.700	0.414	406.249	29.739	372.4834329	27.267
1.725	0.408	400.362	30.177	367.0851223	27.668
1.750	0.402	394.642	30.614	361.8410491	28.069
1.775	0.397	389.084	31.051	356.7446963	28.470
1.800	0.391	383.680	31.489	351.7899089	28.871
1.825	0.386	378.424	31.926	346.970869	29.272
1.850	0.381	373.310	32.363	342.2820735	29.673
1.875	0.375	368.333	32.801	337.7183125	30.074
1.900	0.371	363.486	33.238	333.2746505	30.475
1.925	0.366	358.766	33.675	328.9464083	30.473
1.950	0.361	354.166	34.113	324.7291467	31.277
1.975	0.356	349.683			
			34.550	320.6186511	31.678
2.000	0.352	345.312	34.987	316.610918	32.079
2.025	0.348	341.049	35.425	312.7021412	32.480
2.050	0.343	336.890	35.862	308.8887005	32.881
2.075	0.339	332.831	36.299	305.1671499	33.282
2.100	0.335	328.869	36.737	301.5342076	33.683
2.125	0.331	325.000	37.174	297.9867463	34.084
2.150	0.327	321.220	37.611	294.5217842	34.485
2.175	0.324	317.528	38.049	291.1364763	34.886
2.200	0.320	313.920	38.486	287.8281073	35.287
2.225	0.316	310.393	38.924	284.5940836	35.688
2.250	0.313	306.944	39.361	281.4319271	36.089
2.275	0.309	303.571	39.798	278.3392686	36.490
2.300	0.306	300.271	40.236	275.3138417	36.891
2.325	0.303	297.043	40.673	272.3534778	37.292
2.350	0.300	293.883	41.110	269.4561004	37.693
2.375	0.296	290.789	41.548	266.6197204	38.094
2.400	0.293	287.760	41.985	263.8424317	38.495
2.425	0.290	284.793	42.422	261.1224066	38.896
2.450	0.287	281.887	42.860	258.4578922	39.297
2.475	0.284	279.040	43.297	255.8472065	39.698
2.500	0.282	276.250	43.734	253.2887344	40.099
2.525	0.279	273.514	44.172	250.7809251	40.500
2.550	0.276	270.833	44.609	248.3222886	40.901
2.575	0.273	268.203	45.046	245.9113926	41.302
2.600	0.271	265.625	45.484	243.54686	41.703
2.625	0.268	263.095	45.921	241.2273661	42.104
2.650	0.266	260.613	46.358	238.9516362	42.505
2.675	0.263	258.177	46.796	236.7184434	42.906
2.700	0.261	255.787	47.233	234.5266059	43.307
2.725	0.258	253.440	47.670	232.3749857	43.708
2.750	0.256	251.136	48.108	230.2624858	44.109
2.775	0.254				
2.113	0.204	248.874	48.545	228.188049	44.510

2.800	0.251	246.651	48.982	226.1506557	44.911
2.825	0.249	244.469	49.420	224.1493225	45.312
2.850	0.247	242.324	49.857	222.1831003	45.713
2.875	0.245	240.217	50.294	220.2510734	46.114
2.900	0.243	238.146	50.732	218.3523572	46.515
2.925	0.241	236.111	51.169	216.4860978	46.916
2.950	0.239	234.110	51.606	214.6514698	47.317
2.975	0.237	232.143	52.044	212.847676	47.718
3.000	0.235	230.208	52.481	211.0739453	48.119
3.025	0.233	228.305	52.918	209.3295326	48.520
3.050	0.231	226.434	53.356	207.6137167	48.921
3.075	0.229	224.593	53.793	205.9258003	49.322
3.100	0.227	222.782	54.231	204.2651084	49.723
3.125	0.225	221.000	54.668	202.6309875	50.124
3.150	0.223	219.246	55.105	201.0228051	50.525
3.175	0.222	217.519	55.543	199.4399483	50.926
3.200	0.220	215.820	55.980	197.8818237	51.327
3.225	0.218	214.147	56.417	196.3478561	51.728
3.250	0.217	212.500	56.855	194.837488	52.129
3.275	0.215	210.878	57.292	193.3501789	52.530
3.300	0.213	209.280	57.729	191.8854048	52.931
3.325	0.212	207.706	58.167	190.4426574	53.332
3.350	0.210	206.156	58.604	189.0214436	53.733
3.375	0.209	204.629	59.041	187.6212847	54.134
3.400	0.207	203.125	59.479	186.2417165	54.535
3.425	0.206	201.642	59.916	184.8822879	54.936
3.450	0.204	200.181	60.353	183.5425612	55.337
3.475	0.203	198.741	60.791	182.2221111	55.738
3.500	0.201	197.321	61.228	180.9205246	56.139
3.525	0.200	195.922	61.665	179.6374003	56.540
3.550	0.198	194.542	62.103	178.3723482	56.941
3.575	0.197	193.182	62.540	177.1249891	57.342
3.600	0.196	191.840	62.977	175.8949544	57.743
3.625	0.194	190.517	63.415	174.6818858	58.144
3.650	0.193	189.212	63.852	173.4854345	58.545
3.675	0.192	187.925	64.289	172.3052615	58.946
3.700	0.190	186.655	64.727	171.1410368	59.347
3.725	0.189	185.402	65.164	169.9924392	59.748
3.750	0.188	184.166	65.601	168.8591563	60.149
3.775	0.186	182.947	66.039	167.7408837	60.550
3.800	0.185	181.743	66.476	166.6373253	60.951
3.825	0.184	180.555	66.913	165.5481924	61.352
3.850	0.183	179.383	67.351	164.4732041	61.753
3.875	0.181	177.076	67.351	162.3578152	61.753
3.900	0.178	174.813	67.351	160.2829762	61.753
3.925	0.176	172.593	67.351	158.2476575	61.753
3.950	0.174	170.415	67.351	156.2508616	61.753
3.975	0.172	168.278	67.351	154.2916225	61.753
4.000	0.169	166.181	67.351	152.3690043	61.753

Apéndice 14. Hoja electrónica cálculo punto de desempeño Kd=1.00 procedimiento manual

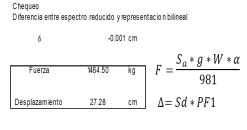
Punto de cedencia						
k1	23.122					
ay	474.011					
dy	20.500					

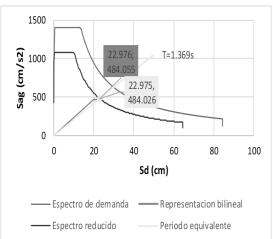
	Representacion bilineal				
	0.000	0.000			
ay	474.011	20.500	dy		
api	484.055	22.976	dpi		

Periodo equivalente

484.026	22.975		
Ed	3870.996		
Eso	5560.823		
βο	5.54%		
βeq	10.54%		

$$\begin{split} E_D &= 4(a_y d_{pi} - d_y a_{pi}) \\ E_{So} &= a_{pi} d_{pi} / 2 \\ \beta_0 &= \frac{63.7 (a_y d_{pi} - d_y a_{pi})}{a_{pi} d_{pi}} \\ \beta_{eq} &= \beta_0 + 5 \end{split}$$

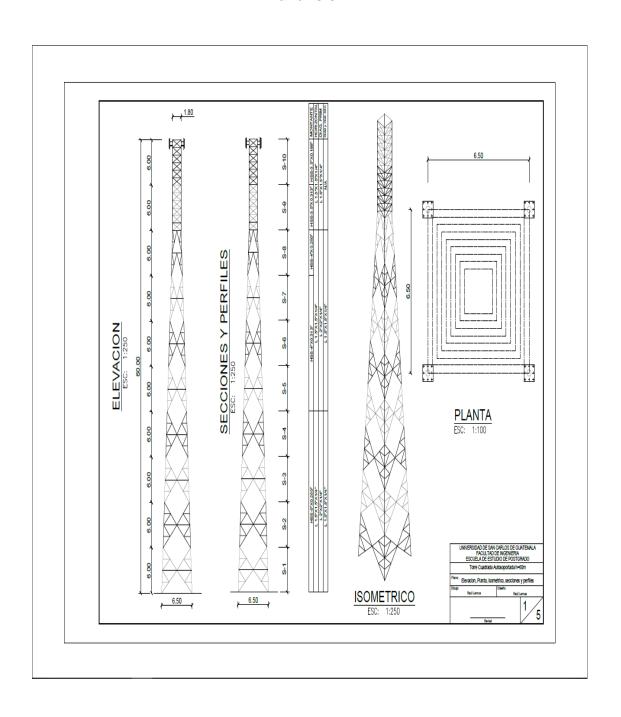

Para un amortiguamiento efectivo de 10.54% se obtiene el valor de SRA de la Tabla 8-3 y se realiza la interpolacion

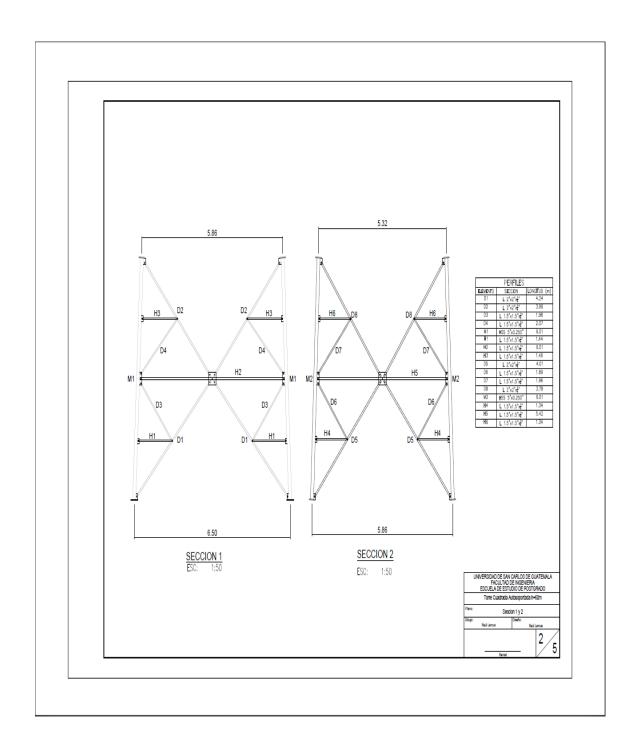

	Interpo lacio n	
		SRA
SRA1	10	0.78
SRA2	20	0.55
El valor del factor d	le reduccion es:	
SRA	0.768	

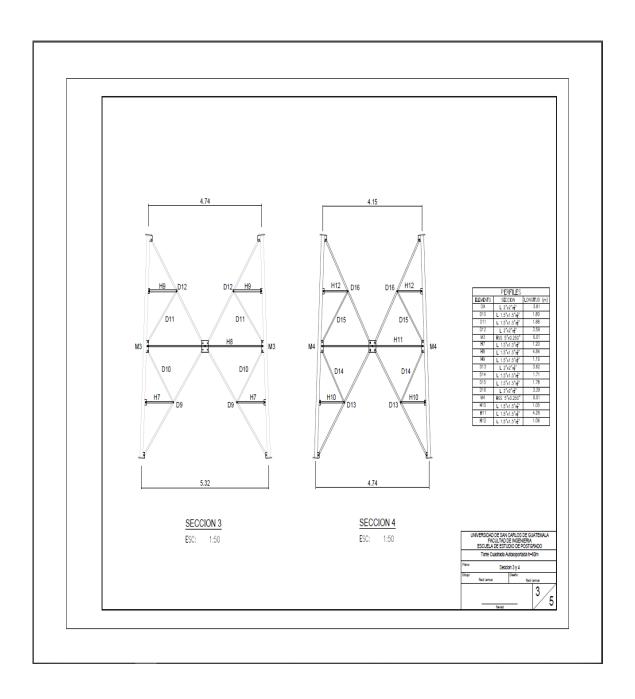
	Behavior Type A 1		Beh.	Behavior Type B 1			Behavior Type C1		
0		SRA	SRv		SRA	SRv		SRA	SRv
β0 (percent)	Berr	(1/Bs)	(1/B ₁)	Berr	(1/Bs)	(1/B _t)	Berr	(1/Bs)	(1/B _J)
0	5	1.00	1.00	5	1.00	1.00	5	1.00	1.00
5	10	0.78	0.83	8	0.83	0.87	7	0.91	0.93
15	20	0.55	0.66	15	0.64	0.73	10	0.78	0.83
25	28	0.44	0.57	22	0.53	0.63	13	0.69	0.76
35	35	0.38	0.52	26	0.47	0.59	17	0.61	0.70
≥45	40	0.33	0.50 ²	29	0.44	0.56	20	0.56	0.672

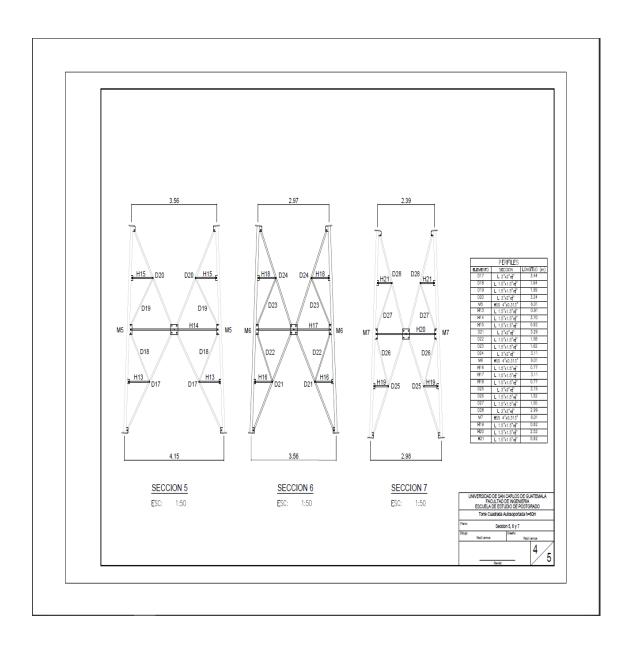
Table 8-3. Spectral Reduction Factors, SRA = 1/Bs and SRv = 1/BL

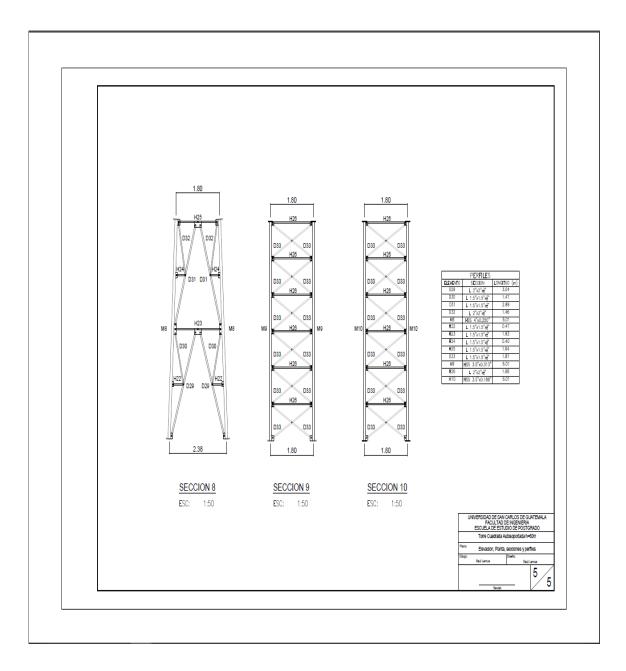
Teq	1369	S $Teq=2\pi*\sqrt{rac{d_{pi}}{a_{pi}}}$
Sag(Teq)	484.026	cm/s2 aceleracion correspondiente al periodo equivalente
Sd(Teq)	22.975	cm desplazamiento correspondiente al periodo equivalente




Espectre	pectro elástico Espectro de demanda		le demanda	Espectro re	Espectro de capacidad			
	Sa*n		e demanda	Sa*g/Sra-Srv		Sa*g		
T (s)	Sa (T) g	(cm/s2)	Sdi (cm)	(cm/s2)	Sdi (cm)	Sa (g)	(cm/s2)	Sd (cm)
0.000	0.572	561.132	0.000	430.676932	0.000	0.000	0.00	0.000
0.025	0.746	732.102	0.012	561.8988097	0.009	0.130	127.34	5.509
0.050	0.921	903.072	0.057	693.1206874	0.044	0.260	254.68	11.018
0.075	1.095	1074.042	0.153	824.3425651	0.117	0.389	382.01	16.527
0.100	1.269	1245.012	0.315	955.5644428	0.242	0.437	428.50	18.532
0.125	1.430	1402.830	0.555	1076.69233	0.426	0.513	503.57	28.320
0.150	1.430	1402.830	0.800	1076.69233	0.614	0.544	533.72	33.829
0.175	1.430	1402.830	1.088	1076.69233	0.835	0.568	557.11	39.337
0.200	1.430	1402.830	1.421	1076.69233	1.091	0.591	579.41	44.846
0.225	1.430	1402.830	1.799	1076.69233	1.381	0.613	601.70	50.355
0.250	1.430	1402.830	2.221	1076.69233	1.705	0.634	622.08	55.856
0.275	1.430	1402.830	2.687	1076.69233	2.063	0.654	641.55	61.365
0.300	1.430	1402.830	3.198	1076.69233	2.455	0.659	646.55	63.033
0.325	1.430	1402.830	3.753	1076.69233	2.881	0.000	0.00	68.542
0.350	1.430	1402.830	4.353	1076.69233	3.341	0.000	0.00	0.000
0.375	1.430	1402.830	4.997	1076.69233	3.835	0.000	0.00	0.000
0.400	1.430	1402.830	5.685	1076.69233	4.364			
0.425	1.430	1402.830	6.418	1076.69233	4.926			
0.450	1.430	1402.830	7.196	1076.69233	5.523			
0.475	1.430	1402.830	8.017	1076.69233	6.153			
0.500	1.430	1402.830	8.884	1076.69233	6.818			
0.525	1.430	1402.830	9.794	1076.69233	7.517			
0.550	1.430	1402.830	10.749	1076.69233	8.250			
0.575 0.600	1.430 1.430	1402.830	11.748 12.792	1076.69233	9.017 9.818			
0.600	1.430	1402.830	13.667	1076.69233	10.490			
0.650	1.354	1381.248 1328.123	14.214	1060.127833 1019.353685	10.490			
0.675	1.304	1278.933	14.760	981.5998449	11.329			
0.700	1.257	1233.257	15.307	946.5427076	11.748			
0.725	1.214	1190.731	15.854	913.9033039	12.168			
0.750	1.173	1151.040	16.400	883.4398604	12.588			
0.775	1.135	1113.910	16.947	854.9418004	13.007			
0.800	1.100	1079.100	17.494	828.2248692	13.427			
0.825	1.067	1046.400	18.040	803.1271459	13.846			
0.850	1.035	1015.624	18.587	779.5057592	14.266			
0.875	1.006	986.606	19.134	757.2341661	14.685			
0.900	0.978	959.200	19.680	736.1998837	15.105			
0.925	0.951	933.276	20.227	716.3025895	15.525			
0.950	0.926	908.716	20.774	697.4525214	15.944			
0.975	0.903	885.415	21.320	679.5691234	16.364			
1.000	0.880	863.280	21.867	662.5798953	16.783			
1.025	0.859	842.224	22.414	646.4194101	17.203			
1.050	0.838	822.171	22.960	631.0284717	17.623			
1.075	0.819	803.051	23.507	616.353391	18.042			
1.100	0.800	784.800	24.054	602.3453594	18.462			
1.125 1.150	0.782 0.765	767.360 750.678	24.601 25.147	588.959907 576.1564307	18.881 19.301			
1.175	0.765	750.678 734.706	25.147 25.694	563.8977833	19.301			
1.173	0.749	719.400	26.241	552.1499128	20.140			
1.225	0.733	704.718	26.787	540.8815472	20.140			
1.250	0.704	690.624	27.334	530.0639163	20.979			
00	5.7 0 1	000.0 <u>L</u> 1		333.3300100	_0.0.0			


1.625	0.542	531.249	35.534	407.741474	27.273
1.650	0.533	523.200	36.081	401.5635729	27.693
1.675	0.525	515.391	36.627	395.5700868	28.112
1.700	0.518	507.812	37.174	389.7528796	28.532
1.725	0.510	500.452	37.721	384.1042871	28.951
1.750	0.503	493.303	38.267	378.617083	29.371
1.775	0.496	486.355	38.814	373.2844481	29.790
1.800	0.489	479.600	39.361	368.0999419	30.210
1.825	0.482	473.030	39.908	363.0574769	30.630
1.850	0.476	466.638	40.454	358.1512948	31.049
1.875	0.469	460.416	41.001	353.3759442	31.469
1.900	0.463	454.358	41.548	348.7262607	31.888
1.925	0.457	448.457	42.094	344.1973482	32.308
1.950	0.451	442.708	42.641	339.7845617	32.728
1.975	0.446	437.104	43.188	335.4834913	33.147
2.000	0.440	431.640	43.734	331.2899477	33.567
2.025	0.435	426.311	44.281	327.1999483	33.986
2.050	0.429	421.112	44.828	323.209705	34.406
2.075	0.424	416.039	45.374	319.3156122	34.825
2.100	0.419	411.086	45.921	315.5142359	35.245
2.125	0.414	406.249	46.468	311.8023037	35.665
2.150	0.409	401.526	47.014	308.1766955	36.084
2.175	0.405	396.910	47.561	304.6344346	36.504
2.200	0.400	392.400	48.108	301.1726797	36.923
2.225	0.396	387.991	48.654	297.788717	37.343
2.250	0.391	383.680	49.201	294.4799535	37.763
2.275	0.387	379.464	49.748	291.24391	38.182
2.300	0.383	375.339	50.294	288.0782154	38.602
2.325	0.378	371.303	50.841	284.9806001	39.021
2.350	0.374	367.353	51.388	281.9488916	39.441
2.375	0.371	363.486	51.934	278.9810086	39.860
2.400	0.367	359.700	52.481	276.0749564	40.280
2.425	0.363	355.992	53.028	273.2288228	40.700
2.450	0.359	352.359	53.574	270.4407736	41.119
2.475	0.356	348.800	54.121	267.7090486	41.539
2.500	0.352	345.312	54.668	265.0319581	41.958
2.525	0.349	341.893	55.215	262.4078793	42.378
2.550	0.345	338.541	55.761	259.8352531	42.798
2.575	0.342	335.254	56.308	257.3125807	43.217
2.600	0.338	332.031	56.855	254.8384213	43.637
2.625	0.335	328.869	57.401	252.4113887	44.056
2.650	0.332	325.766	57.948	250.0301492	44.476
2.675	0.329	322.721	58.495	247.6934188	44.895
2.700	0.326	319.733	59.041	245.3999612	45.315
2.725	0.323	316.800	59.588	243.1485854	45.735
2.750	0.320	313.920	60.135	240.9381438	46.154
2.775	0.317	311.092	60.681	238.7675298	46.574
2.800	0.314		61.228	236.6356769	46.993
		308.314			
2.825	0.312	305.586	61.775	234.5415559	47.413
2.850	0.309	302.905	62.321	232.4841738	47.833
2.875	0.306	300.271	62.868	230.4625723	48.252
2.900	0.303	297.683	63.415	228.475826	48.672
2.925	0.301	295.138	63.961	226.5230411	49.091
2.950	0.298	292.637	64.508	224.6033543	49.511
2.975	0.296	290.178	65.055	222.7159312	49.930
3.000	0.293	287.760	65.601	220.8599651	50.350
3.025	0.291	285.382	66.148	219.0346761	50.770
3.050	0.289	283.043	66.695	217.2393099	51.189
3.075	0.286	280.741	67.241	215.4731367	51.609
3.100	0.284	278.477	67.788	213.7354501	52.028
3.125	0.282	276.250	68.335	212.0255665	52.448
3.150	0.279	274.057	68.881	210.3428239	52.868
3.175	0.277	271.899	69.428	208.6865812	53.287
3.200				007.0500170	E0 707
0.200	0.275	269.775	69.975	207.0562173	53.707
3.225	0.275 0.273	269.775 267.684	69.975 70.522	207.0562173 205.4511303	53.707 54.126


 3.275	0.269	263.597	71.615	202.3144719	54.965
3.300	0.267	261.600	72.162	200.7817865	55.385
3.325	0.265	259.633	72.708	199.272149	55.805
3.350	0.263	257.696	73.255	197.7850434	56.224
3.375	0.261	255.787	73.802	196.319969	56.644
3.400	0.259	253.906	74.348	194.8764398	57.063
3.425	0.257	252.053	74.895	193.453984	57.483
3.450	0.255	250.226	75.442	192.0521436	57.903
3.475	0.253	248.426	75.988	190.6704735	58.322
3.500	0.251	246.651	76.535	189.3085415	58.742
3.525	0.250	244.902	77.082	187.9659278	59.161
3.550	0.248	243.177	77.628	186.642224	59.581
3.575	0.246	241.477	78.175	185.3370337	60.000
3.600	0.244	239.800	78.722	184.0499709	60.420
3.625	0.243	238.146	79.268	182.7806608	60.840
3.650	0.241	236.515	79.815	181.5287384	61.259
3.675	0.239	234.906	80.362	180.2938491	61.679
3.700	0.238	233.319	80.908	179.0756474	62.098
3.725	0.236	231.753	81.455	177.8737974	62.518
3.750	0.235	230.208	82.002	176.6879721	62.938
3.775	0.233	228.683	82.548	175.5178531	63.357
3.800	0.232	227.179	83.095	174.3631304	63.777
3.825	0.230	225.694	83.642	173.223502	64.196
3.850	0.229	224.229	84.188	172.0986741	64.616
3.875	0.226	221.345	84.188	169.8852094	64.616
3.900	0.223	218.516	84.188	167.7141747	64.616
3.925	0.220	215.741	84.188	165.5844925	64.616
3.950	0.217	213.019	84.188	163.4951192	64.616
3.975	0.214	210.348	84.188	161.4450439	64.616
4.000	0.212	207.727	84.188	159.4332873	64.616


Apéndice 15. **Detalle de la torre autosoportada de 60 metros, en análisis**

Fuente: elaboración propia, empleando AutoCAD 2019.

ANEXOS

Anexo 1. Listado de amenaza sísmica y velocidad básica del viento por municipio

Tabla A-1 – Listado de amenaza sísmica y velocidad básica del viento por municipio para la República de Guatemala

				Su	elo Tip	οA	Su	elo Tip	οВ	Su	elo Tip	o C	Su	elo Tip	o D	Su	elo Tip	o E	Velocidad básica del
No.	Municipio	Departamento	l _o	Ser	S _{1r}	TL	Ser	S _{1r}	TL	Scr	S _{1r}	TL	Ser	Sır	TL	Ser	Sir	TL	viento (Km/h)
1	Acatenango	Chimaltenango	4.1	1.48	0.47	2.57	1.48	0.52	2.57	1.61	0.68	2.67	1.61	0.84	3.27	1.40	1.39	3.88	100
2	Agua Blanca	Jutiapa	4.1	1.57	0.43	2.50	1.75	0.53	2.41	2.15	0.88	2.21	1.79	1.27	2.78	1.37	1.74	3.00	100
3	Aguacatán	Huehuetenango	4.1	1.46	0.43	4.51	1.63	0.54	4.45	2.09	0.90	3.69	1.82	1.28	4.27	1.43	1.90	4.43	100
4	Almolonga	Quetzaltenango	4.1	1.49	0.47	2.57	1.49	0.52	2.57	1.62	0.68	2.67	1.62	0.84	3.25	1.39	1.39	3.89	100
5	Alotenango	Sacatepéquez	4.1	1.50	0.47	2.56	1.50	0.52	2.56	1.63	0.68	2.67	1.63	0.85	3.25	1.43	1.52	3.47	100
6	Amatitlán	Guatemala	4.1	1.39	0.47	2.58	1.43	0.52	2.54	1.78	0.68	2.69	1.55	1.08	3.27	1.35	1.82	3.51	100
7	Antigua Guatemala	Sacatepéquez	4.1	1.38	0.47	2.55	1.43	0.52	2.51	1.79	0.68	2.69	1.56	1.08	3.27	1.32	1.82	3.51	100
8	Asunción Mita	Jutiapa	4.1	1.49	0.43	2.47	1.69	0.53	2.43	1.76	0.88	2.27	1.76	1.27	2.78	1.37	1.65	3.00	100
9	Atescatempa	Jutiapa	4.1	1.36	0.47	2.52	1.43	0.52	2.49	1.53	0.68	2.55	1.52	0.79	3.24	1.30	1.40	3.45	100
10	Ayutla	San Marcos	4.2	1.49	0.51	3.26	1.57	0.57	2.87	1.68	0.78	3.06	1.67	1.14	3.79	1.48	1.90	4.09	110
11	Barberena	Santa Rosa	4.1	1.49	0.47	2.63	1.49	0.52	2.57	1.74	0.68	2.69	1.64	1.08	3.27	1.47	1.82	3.51	100
12	Cabañas	Zacapa	4.1	1.14	0.43	3.53	1.38	0.48	3.43	1.76	0.71	2.90	1.57	1.19	3.48	1.30	1.65	3.75	100
13	Cabricán	Quetzaltenango	4.1	1.32	0.47	2.48	1.43	0.52	2.53	1.53	0.68	2.85	1.49	0.79	4.25	1.28	1.44	4.28	100
14	Cajola	Quetzaltenango	4.1	1.28	0.47	2.43	1.43	0.52	2.47	1.53	0.68	2.65	1.43	0.79	3.08	1.28	1.19	3.70	100
15	Camotán	Chiquimula	4.1	1.11	0.43	2.93	1.28	0.48	2.85	1.74	0.62	2.46	1.52	1.01	3.06	1.27	1.65	3.28	100
16	Canillá	Quiché	4.1	1.13	0.43	4.51	1.34	0.48	4.44	1.57	0.78	3.68	1.57	1.22	4.27	1.30	1.65	4.48	100
17	Cantel	Quetzaltenango	4.1	1.45	0.47	2.58	1.45	0.52	2.58	1.58	0.68	2.66	1.60	0.83	3.27	1.38	1.37	3.87	100
18	Casillas	Santa Rosa	4.1	1.32	0.47	2.52	1.43	0.52	2.47	1.53	0.68	2.64	1.50	0.85	3.25	1.30	1.62	3.48	100
19	Catarina	San Marcos	4.2	1.68	0.51	3.63	1.68	0.57	2.99	1.80	0.74	3.00	1.77	1.11	3.81	1.59	1.84	4.14	100
20	Chahal	Alta Verapaz	3	0.94	0.37	4.10	1.05	0.41	4.02	1.12	0.57	3.42	1.15	0.79	3.97	1.08	1.50	4.09	110
21	Chajul	Quiché	4.1	1.18	0.37	4.51	1.40	0.48	3.95	1.62	0.81	3.68	1.62	1.16	4.27	1.32	1.55	4.47	100
22	Champerico	Retalhuleu	4.2	1.91	0.51	3.46	1.99	0.59	3.52	2.02	0.96	3.65	2.02	1.41	4.60	1.74	1.98	4.72	110
23	Chiantla	Huehuetenango	4.1	1.46	0.43	4.51	1.63	0.54	4.21	1.94	0.90	3.66	1.75	1.28	4.27	1.43	1.65	4.43	100
24	Chicacao	Suchitepéquez	4.2	1.66	0.51	3.62	1.66	0.57	2.98	1.78	0.74	3.04	1.75	1.12	3.82	1.59	1.86	4.14	100

(Continuación) Tabla A-1 – Listado de amenaza sísmica y velocidad básica del viento por municipio para la República de Guatemala

	republica de G			Su	elo Tip	οА	Su	elo Tip	οВ	Su	elo Tip	o C	Su	elo Tip	o D	Su	elo Tip	o E	Velocidad
No.	Municipio	Departamento	l _o	Ser	٠.	To	-		_	-	-	_	-	-	_				básica del viento
				Ser	Sır	"	Sar	Sir	TL	Scr	Sır	TL	Scr	Sir	T _L	Ser	Sır	TL	(Km/h)
25	Chicamán	Quiché	4.1	1.32	0.43	4.51	1.54	0.53	4.45	2.09	0.90	3.69	1.82	1.28	4.27	1.43	1.90	4.43	100
26	Chiché	Quiché	4.1	1.28	0.47	2.77	1.43	0.52	2.97	1.76	0.71	2.90	1.57	1.19	3.48	1.30	1.82	3.75	100
27	Chichicastenango	Quiché	4.1	1.28	0.47	2.69	1.43	0.52	2.88	1.86	0.71	2.90	1.62	1.19	3.48	1.31	1.82	3.75	100
28	Chimaltenango	Chimaltenango	4.1	1.31	0.47	2.49	1.43	0.52	2.51	1.53	0.68	2.55	1.49	0.79	3.24	1.28	1.38	3.44	100
29	Chinautla	Guatemala	4.1	1.28	0.47	2.49	1.43	0.52	2.75	1.53	0.68	2.89	1.43	0.89	3.48	1.28	1.70	3.72	100
30	Chinique	Quiché	4.1	1.11	0.43	2.72	1.24	0.48	3.04	1.44	0.62	3.05	1.39	0.95	3.48	1.22	1.65	3.73	100
31	Chiquimula	Chiquimula	4.1	1.34	0.43	2.59	1.53	0.48	2.47	1.62	0.78	2.21	1.62	1.14	2.77	1.32	1.65	3.00	100
32	Chiquimulilla	Santa Rosa	4.2	1.68	0.51	3.56	1.68	0.57	3.05	1.80	0.80	3.09	1.78	1.19	3.86	1.58	1.97	4.17	110
33	Chisec	Alta Verapaz	3	0.77	0.30	3.24	0.93	0.33	3.51	1.13	0.50	3.19	1.13	0.63	3.22	1.05	1.16	3.58	100
34	Chuarrancho	Guatemala	4.1	1.16	0.43	3.09	1.38	0.48	3.43	1.87	0.71	2.90	1.63	1.19	3.48	1.31	1.65	3.75	100
35	Ciudad Vieja	Sacatepéquez	4.1	1.43	0.47	2.58	1.43	0.52	2.56	1.55	0.68	2.69	1.56	0.95	3.26	1.35	1.75	3.50	100
36	Coatepeque	Quetzaltenango	4.2	1.49	0.51	3.28	1.57	0.57	2.87	1.68	0.78	3.06	1.66	1.14	3.71	1.47	1.89	4.07	110
37	Cobán	Alta Verapaz	4.1	1.31	0.38	4.51	1.54	0.53	3.72	1.75	0.90	3.66	1.65	1.16	4.27	1.43	1.55	4.43	100
38	Colomba	Quetzaltenango	4.2	1.67	0.51	3.64	1.67	0.57	3.00	1.79	0.74	2.98	1.77	1.11	3.80	1.59	1.84	4.15	100
39	Colotenango	Huehuetenango	4.1	1.32	0.43	4.51	1.54	0.53	4.45	2.09	0.90	3.69	1.82	1.28	4.27	1.43	1.90	4.43	100
40	Comapa	Jutiapa	4.1	1.48	0.47	2.57	1.48	0.52	2.57	1.80	0.68	2.69	1.61	1.08	3.27	1.43	1.82	3.51	100
41	Comitancillo	San Marcos	4.1	1.34	0.47	2.53	1.43	0.52	2.78	1.53	0.68	3.07	1.51	0.82	4.25	1.31	1.59	4.32	100
42	Concepción	Sololá	4.1	1.36	0.47	2.50	1.43	0.52	2.51	1.53	0.68	2.66	1.52	0.79	3.47	1.28	1.50	3.69	100
43	Concepción Chiquirichapa	Quetzaltenango	4.1	1.28	0.47	2.43	1.43	0.52	2.50	1.53	0.68	2.67	1.46	0.79	3.17	1.30	1.19	3.49	100
44	Concepción Huista	Huehuetenango	4.1	1.40	0.43	3.64	1.63	0.54	3.54	1.94	0.89	3.00	1.69	1.28	3.45	1.34	1.65	3.68	100
45	Concepción Las Minas	Chiquimula	4.1	1.19	0.43	2.50	1.36	0.48	2.50	1.46	0.68	2.46	1.46	1.01	2.76	1.26	1.65	2.97	100
46	Concepción Tutuapa	San Marcos	4.1	1.31	0.47	3.97	1.54	0.53	3.88	1.78	0.90	3.69	1.75	1.40	4.27	1.43	1.82	4.43	100
47	Conguaco	Jutiapa	4.2	1.62	0.51	3.14	1.62	0.57	2.79	1.74	0.74	2.77	1.72	1.07	3.27	1.54	1.96	3.51	100
48	Cubulco	Baja Verapaz	4.1	1.11	0.43	4.38	1.31	0.48	4.01	1.55	0.76	3.68	1.55	1.20	4.27	1.29	1.65	4.47	100
49	Cuilapa	Santa Rosa	4.1	1.49	0.47	2.57	1.49	0.52	2.57	1.80	0.68	2.69	1.62	1.08	3.27	1.44	1.82	3.51	100

(Continuación) Tabla A-1 – Listado de amenaza sísmica y velocidad básica del viento por municipio para la República de Guatemala

				Su	elo Tip	οА	Su	elo Tip	οВ	Su	elo Tip	o C	Su	elo Tip	o D	Su	elo Tip	o E	Velocidad básica del
No.	Municipio	Departamento	l _o	Ser	Sır	TL	Ser	Sır	TL	Scr	Sır	TL	Scr	Sır	TL	Ser	Sır	TL	viento (Km/h)
50	Cuilco	Huehuetenango	4.1	1.32	0.43	4.51	1.54	0.53	4.45	2.09	0.90	3.69	1.82	1.28	4.27	1.43	1.90	4.43	100
51	Cunén	Quiché	4.1	1.32	0.43	4.51	1.54	0.53	4.45	2.09	0.90	3.69	1.82	1.28	4.27	1.43	1.90	4.43	100
52	Cuyotenango	Suchitepéquez	4.2	1.67	0.51	3.56	1.67	0.57	3.05	1.79	0.81	3.26	1.78	1.20	3.87	1.57	1.98	4.20	110
53	Dolores	Petén	2	0.43	0.17	4.04	0.48	0.19	4.19	0.57	0.32	4.49	0.76	0.43	4.20	1.19	0.63	4.34	110
54	El Adelanto	Jutiapa	4.1	1.38	0.47	2.54	1.43	0.52	2.53	1.53	0.68	2.64	1.54	0.87	3.26	1.31	1.64	3.48	100
55	El Asintal	Retalhuleu	4.2	1.67	0.51	3.56	1.67	0.57	3.05	1.79	0.80	3.29	1.78	1.19	3.86	1.58	1.97	4.17	110
56	El Chal	Petén	2	0.43	0.17	3.79	0.48	0.19	3.93	0.57	0.32	4.35	0.76	0.43	4.11	1.19	0.63	3.80	100
57	El Estor	Izabal	4.1	1.26	0.43	4.15	1.49	0.50	4.07	2.02	0.84	3.39	1.75	1.28	3.99	1.35	1.72	4.26	110
58	El Jícaro	El Progreso	4.1	1.16	0.43	3.53	1.38	0.48	3.43	1.87	0.71	2.90	1.63	1.19	3.48	1.31	1.65	3.75	100
59	El Palmar	Quetzaltenango	4.2	1.64	0.51	3.43	1.64	0.57	3.04	1.76	0.74	2.88	1.74	1.01	3.74	1.56	1.69	4.20	100
60	El Progreso	Jutiapa	4.1	1.30	0.43	2.48	1.44	0.48	2.43	1.43	0.62	2.48	1.42	0.72	3.17	1.22	1.18	3.53	100
61	El Quetzal	San Marcos	4.2	1.67	0.51	3.64	1.67	0.57	3.00	1.79	0.74	2.96	1.76	1.11	3.80	1.58	1.83	4.15	100
62	El Rodeo	San Marcos	4.2	1.64	0.51	3.48	1.64	0.57	3.07	1.76	0.74	2.88	1.75	1.03	3.75	1.56	1.72	4.20	100
63	El Tejar	Chimaltenango	4.1	1.31	0.47	2.48	1.43	0.52	2.51	1.53	0.68	2.59	1.49	0.80	3.25	1.28	1.52	3.47	100
64	El Tumbador	San Marcos	4.2	1.66	0.51	3.59	1.66	0.57	3.04	1.78	0.74	2.86	1.75	1.08	3.77	1.57	1.79	4.18	100
65	Escuintla	Escuintla	4.2	1.63	0.51	3.61	1.63	0.57	3.03	1.75	0.74	2.88	1.74	1.09	3.64	1.58	1.80	3.38	100
66	Esquipulas	Chiquimula	4.1	1.11	0.43	2.57	1.24	0.48	2.57	1.33	0.62	2.47	1.28	0.79	3.05	1.15	1.49	3.25	100
67	Esquipulas Palo Gordo	San Marcos	4.2	1.56	0.51	2.62	1.57	0.57	2.56	1.68	0.74	2.71	1.67	0.87	3.65	1.47	1.42	3.93	100
68	Estanzuela	Zacapa	4.1	1.16	0.43	3.53	1.38	0.48	3.43	1.87	0.71	2.90	1.63	1.19	3.48	1.31	1.65	3.75	100
69	Flores	Petén	2	0.46	0.17	4.81	0.59	0.19	5.00	0.71	0.32	4.75	0.76	0.43	4.44	1.19	0.63	4.53	100
70	Flores Costa Cuca	Quetzaltenango	4.2	1.50	0.51	3.33	1.57	0.57	2.87	1.68	0.74	3.08	1.67	1.11	3.64	1.50	1.84	3.96	110
71	Fraijanes	Guatemala	4.1	1.35	0.47	2.55	1.50	0.52	2.50	1.79	0.68	2.69	1.56	1.08	3.27	1.32	1.82	3.51	100
72	Fray Bartolomé de las Casas	Alta Verapaz	3	0.92	0.30	2.56	1.14	0.33	2.42	1.34	0.53	2.28	1.31	0.80	2.79	1.14	1.37	2.95	110
73	Génova	Quetzaltenango	4.2	1.48	0.51	3.29	1.57	0.57	2.86	1.68	0.78	3.06	1.66	1.13	3.70	1.47	1.89	4.05	110
74	Granados	Baja Verapaz	4.1	1.16	0.43	3.14	1.38	0.48	3.43	1.87	0.71	2.90	1.63	1.19	3.48	1.31	1.65	3.75	100
75	Gualán	Zacapa	4.1	1.16	0.43	3.53	1.38	0.48	3.43	1.87	0.71	2.90	1.63	1.19	3.48	1.31	1.65	3.75	100

(Continuación) Tabla A-1 – Listado de amenaza sísmica y velocidad básica del viento por municipio para la República de Guatemala

				Su	elo Tip	οА	Su	elo Tip	οВ	Su	elo Tip	o C	Su	elo Tip	o D	Su	elo Tip	o E	Velocidad básica del
No.	Municipio	Departamento	l _o	Ser	Sır	TL	Ser	Sır	TL	Scr	Sır	TL	Ser	Sır	TL	Ser	Sır	TL	viento (Km/h)
76	Guanagazapa	Escuintla	4.2	1.68	0.51	3.58	1.68	0.57	3.06	1.80	0.74	3.09	1.77	1.16	3.84	1.59	1.92	3.90	110
77	Guastatoya	El Progreso	4.1	1.16	0.43	3.48	1.38	0.48	3.43	1.87	0.71	2.90	1.63	1.19	3.48	1.31	1.65	3.75	100
78	Guatemala	Guatemala	4.1	1.28	0.47	2.48	1.43	0.52	2.43	1.53	0.68	2.69	1.43	0.88	3.26	1.28	1.66	3.49	100
79	Guazacapán	Santa Rosa	4.2	1.68	0.51	3.57	1.68	0.57	3.06	1.80	0.75	3.09	1.78	1.16	3.85	1.59	1.94	4.04	110
80	Huehuetenango	Huehuetenango	4.1	1.31	0.43	4.51	1.54	0.53	4.45	2.04	0.90	3.69	1.78	1.28	4.27	1.43	1.85	4.43	100
81	Huitán	Quetzaltenango	4.1	1.36	0.47	2.50	1.43	0.52	2.51	1.53	0.68	2.56	1.52	0.79	3.48	1.28	1.23	3.95	100
82	Huité	Zacapa	4.1	1.12	0.43	3.53	1.35	0.48	3.43	1.81	0.70	2.90	1.58	1.16	3.49	1.30	1.65	3.75	100
83	Ipala	Chiquimula	4.1	1.51	0.43	2.51	1.69	0.53	2.41	2.06	0.88	2.21	1.76	1.27	2.78	1.37	1.68	3.00	100
84	lxcán	Quiché	4.1	1.21	0.35	4.51	1.35	0.49	4.45	1.80	0.79	3.69	1.62	1.00	4.27	1.33	1.62	4.46	100
85	Ixchiguan	San Marcos	4.1	1.38	0.47	2.56	1.43	0.52	2.96	1.53	0.68	3.26	1.54	0.85	4.26	1.33	1.67	4.33	100
86	Iztapa	Escuintla	4.2	1.61	0.51	3.54	1.61	0.57	3.04	1.74	0.83	3.25	1.75	1.22	3.92	1.56	1.98	4.25	110
87	Jacaltenango	Huehuetenango	4.1	1.40	0.43	3.64	1.63	0.54	3.54	1.94	0.89	3.00	1.69	1.28	3.45	1.34	1.65	3.68	100
88	Jalapa	Jalapa	4.1	1.11	0.43	2.49	1.24	0.48	2.59	1.36	0.62	2.81	1.36	0.87	3.47	1.19	1.61	3.57	100
89	Jalpatagua	Jutiapa	4.1	1.51	0.47	2.73	1.51	0.52	2.58	1.80	0.68	2.69	1.66	1.08	3.27	1.49	1.82	3.51	100
90	Jerez	Jutiapa	4.1	1.45	0.47	2.57	1.45	0.52	2.57	1.61	0.68	2.69	1.58	0.98	3.26	1.37	1.79	3.50	100
91	Jocotán	Chiquimula	4.1	1.11	0.43	2.93	1.28	0.48	2.85	1.74	0.62	2.45	1.52	1.01	3.06	1.27	1.65	3.28	100
92	Jocotenango	Sacatepéquez	4.1	1.36	0.47	2.50	1.43	0.52	2.49	1.70	0.68	2.69	1.52	0.99	3.26	1.28	1.81	3.50	100
93	Joyabaj	Quiché	4.1	1.28	0.47	2.75	1.43	0.52	2.84	1.53	0.68	2.98	1.43	0.80	3.01	1.28	1.48	3.37	100
94	Jutiapa	Jutiapa	4.1	1.31	0.47	2.55	1.43	0.52	2.47	1.53	0.68	2.69	1.49	1.03	3.26	1.32	1.82	3.51	100
95	La Blanca	San Marcos	4.2	1.66	0.51	3.09	1.66	0.57	3.07	1.84	0.82	3.10	1.75	1.20	4.29	1.58	1.98	4.34	110
96	La Democracia	Escuintla	4.2	1.66	0.51	3.54	1.66	0.57	3.04	1.78	0.83	3.28	1.77	1.22	3.94	1.56	1.98	4.25	110
97	La Democracia	Huehuetenango	4.1	1.22	0.43	3.26	1.48	0.48	3.12	1.51	0.81	3.13	1.51	1.13	3.44	1.28	1.65	3.70	100
98	La Esperanza	Quetzaltenango	4.1	1.48	0.47	2.57	1.48	0.52	2.57	1.60	0.68	2.66	1.61	0.84	3.25	1.38	1.39	3.88	100
99	La Gomera	Escuintla	4.2	1.55	0.51	3.39	1.57	0.57	3.08	1.76	0.84	3.25	1.72	1.28	4.36	1.59	1.98	4.46	110
100	La Libertad	Huehuetenango	4.1	1.15	0.43	4.03	1.36	0.48	3.84	1.59	0.79	3.68	1.59	1.25	4.27	1.31	1.65	4.48	100
101	La Libertad	Petén	2	0.46	0.17	3.82	0.59	0.19	3.97	0.71	0.32	4.42	0.76	0.43	4.43	1.19	0.63	4.41	100
102	La Reforma	San Marcos	4.2	1.64	0.51	3.60	1.64	0.57	3.03	1.76	0.74	2.87	1.75	1.08	3.77	1.57	1.79	4.18	100
103	La Unión	Zacapa	4.1	1.11	0.43	3.38	1.24	0.48	3.24	1.38	0.62	2.75	1.38	0.89	3.40	1.20	1.65	3.48	100
104	Languín	Alta Verapaz	3	0.94	0.37	4.46	1.05	0.41	4.39	1.20	0.57	3.71	1.20	0.89	4.26	1.13	1.55	4.35	100

(Continuación) Tabla A-1 – Listado de amenaza sísmica y velocidad básica del viento por municipio para la República de Guatemala

	tepubliou de ot			Su	elo Tip	οA	Su	elo Tip	о В	Su	elo Tip	o C	Su	elo Tip	o D	Su	elo Tip	o E	Velocidad básica del
No.	Municipio	Departamento	l _o	Ser	Sır	TL	Scr	Sır	TL	Scr	Sır	TL	Ser	Sır	TL	Sar	Sır	TL	viento (Km/h)
105	Las Cruces	Petén	2	0.60	0.23	3.48	0.67	0.26	3.61	0.80	0.41	4.18	0.93	0.49	4.33	1.13	0.78	4.25	100
106	Livingston	Izabal	4.1	1.28	0.47	4.92	1.43	0.52	3.91	1.58	0.71	3.91	1.58	1.21	4.27	1.30	1.82	4.31	120
107	Los Amates	Izabal	4.1	1.31	0.47	4.51	1.54	0.53	4.45	2.08	0.90	3.69	1.80	1.40	4.28	1.41	1.88	4.44	110
108	Magdalena Milpas Altas	Sacatepéquez	4.1	1.36	0.47	2.51	1.43	0.52	2.54	1.80	0.68	2.69	1.56	1.08	3.27	1.29	1.82	3.51	100
109	Malacatán	San Marcos	4.2	1.66	0.51	3.64	1.66	0.57	2.99	1.78	0.74	2.98	1.75	1.11	3.81	1.59	1.84	4.15	100
110	Malacatancito	Huehuetenango	4.1	1.28	0.43	4.06	1.51	0.52	3.72	1.72	0.88	3.67	1.72	1.28	4.27	1.39	1.65	4.44	100
111	Masagua	Escuintla	4.2	1.67	0.51	3.57	1.67	0.57	3.04	1.79	0.82	3.28	1.78	1.21	3.88	1.57	1.98	4.22	110
112	Mataquescuintla	Jalapa	4.1	1.28	0.47	2.48	1.43	0.52	2.44	1.53	0.68	2.47	1.43	0.79	3.03	1.28	1.28	3.43	100
113	Mazatenango	Suchitepéquez	4.2	1.68	0.51	3.60	1.68	0.57	3.07	1.80	0.74	3.11	1.78	1.15	3.83	1.59	1.90	4.17	100
114	Melchor de Mencos	Petén	2	0.46	0.17	4.88	0.59	0.19	5.07	0.71	0.32	4.78	0.76	0.43	4.46	1.19	0.63	4.55	110
115	Mixco	Guatemala	4.1	1.28	0.47	2.47	1.43	0.52	2.56	1.53	0.68	2.69	1.47	1.02	3.26	1.28	1.82	3.51	100
116	Momostenango	Totonicapán	4.1	1.28	0.47	2.89	1.43	0.52	3.51	1.53	0.68	3.71	1.43	0.92	4.26	1.28	1.81	4.37	100
117	Monjas	Jalapa	4.1	1.18	0.43	2.50	1.31	0.48	2.46	1.35	0.62	2.48	1.33	0.72	3.04	1.14	1.29	3.23	100
118	Morales	Izabal	4.1	1.42	0.47	4.90	1.64	0.62	4.85	2.15	1.04	4.21	1.88	1.40	4.74	1.62	2.21	4.63	110
119	Morazán	El Progreso	4.1	1.14	0.43	3.45	1.38	0.48	3.43	1.74	0.71	2.90	1.57	1.19	3.48	1.30	1.65	3.75	100
120	Moyuta	Jutiapa	4.2	1.68	0.51	2.92	1.68	0.57	2.75	1.80	0.74	3.04	1.78	0.97	3.29	1.42	1.66	3.54	110
121	Nahualá	Sololá	4.1	1.48	0.47	2.81	1.48	0.52	2.60	1.67	0.68	2.67	1.67	0.92	3.67	1.50	1.50	3.88	100
122	Nebaj	Quiché	4.1	1.14	0.37	2.86	1.38	0.42	3.09	1.73	0.71	2.90	1.57	1.16	3.48	1.30	1.55	3.75	100
123	Nentón	Huehuetenango	4.1	1.38	0.37	3.64	1.61	0.53	2.98	1.62	0.88	3.00	1.62	1.16	3.45	1.32	1.55	3.68	100
124	Nueva Concepción	Escuintla	4.2	1.82	0.51	3.40	1.90	0.58	3.45	2.00	0.94	3.56	2.00	1.39	4.55	1.73	1.98	4.65	110
125	Nueva Santa Rosa	Santa Rosa	4.1	1.37	0.47	2.55	1.43	0.52	2.50	1.62	0.68	2.69	1.53	1.08	3.27	1.32	1.82	3.51	100
126	Nuevo Progreso	San Marcos	4.2	1.67	0.51	3.34	1.67	0.57	2.88	1.79	0.74	2.91	1.76	1.06	3.59	1.51	1.77	3.99	100
127	Nuevo San Carlos	Retalhuleu	4.2	1.68	0.51	3.61	1.68	0.57	3.02	1.80	0.74	3.09	1.78	1.13	3.83	1.59	1.88	4.17	100
128	Ocós	San Marcos	4.2	1.58	0.51	3.12	1.58	0.57	2.94	1.76	0.80	3.06	1.71	1.19	4.21	1.56	1.97	4.28	110
129	Olintepeque	Quetzaltenango	4.1	1.43	0.47	2.57	1.43	0.52	2.56	1.55	0.68	2.64	1.57	0.83	3.28	1.34	1.37	3.86	100
130	Olopa	Chiquimula	4.1	1.11	0.43	2.66	1.24	0.48	2.77	1.52	0.62	2.46	1.42	0.95	3.06	1.22	1.65	3.28	100

(Continuación) Tabla A-1 – Listado de amenaza sísmica y velocidad básica del viento por municipio para la República de Guatemala

				Su	elo Tip	o A	Su	elo Tip	οВ	Su	elo Tip	o C	Su	elo Tip	o D	Su	elo Tip	o E	Velocidad básica del
No.	Municipio	Departamento	l _o	Ser	Sir	TL	Ser	Sir	TL	Ser	Sir	TL	Ser	Sır	TL	Ser	Sir	TL	viento (Km/h)
131	Oratorio	Santa Rosa	4.2	1.57	0.51	3.24	1.57	0.57	2.87	1.70	0.74	2.73	1.70	1.08	3.27	1.55	1.98	3.51	100
132	Pachalum	Quiché	4.1	1.30	0.47	4.51	1.55	0.52	3.87	1.57	0.85	3.63	1.57	1.20	4.27	1.30	1.82	4.43	100
133	Pajapita	San Marcos	4.1	1.50	0.51	3.32	1.57	0.57	2.86	1.68	0.77	3.08	1.67	1.13	3.69	1.48	1.88	4.03	110
134	Palencia	Guatemala	4.1	1.28	0.47	2.49	1.50	0.52	2.46	1.53	0.68	2.65	1.43	0.79	3.47	1.28	1.45	3.68	100
135	Palestina de Los Altos	Quetzaltenango	4.1	1.46	0.47	2.57	1.46	0.52	2.57	1.60	0.68	2.66	1.60	0.84	3.25	1.38	1.39	3.87	100
136	Palín	Escuintla	4.2	1.51	0.51	2.56	1.57	0.57	2.56	1.68	0.74	2.68	1.64	0.87	3.28	1.44	1.45	3.29	100
137	Panajachel	Sololá	4.1	1.38	0.47	2.53	1.43	0.52	2.52	1.53	0.68	2.58	1.54	0.79	3.20	1.30	1.34	3.67	100
138	Panzós	Alta Verapaz	4.1	1.31	0.43	4.51	1.54	0.53	4.45	1.99	0.90	3.69	1.75	1.28	4.27	1.43	1.81	4.43	100
139	Parramos	Chimaltenango	4.1	1.38	0.47	2.55	1.43	0.52	2.52	1.53	0.68	2.58	1.54	0.81	3.24	1.32	1.40	3.45	100
140	Pasaco	Jutiapa	4.2	1.68	0.51	3.56	1.68	0.57	3.05	1.80	0.78	3.09	1.78	1.18	3.86	1.58	1.96	4.17	110
141	Pastores	Sacatepéquez	4.1	1.36	0.47	2.51	1.43	0.52	2.50	1.53	0.68	2.64	1.52	0.84	3.25	1.29	1.60	3.48	100
142	Patulul	Suchitepéquez	4.2	1.68	0.51	3.59	1.68	0.57	3.07	1.80	0.74	3.09	1.77	1.15	3.84	1.59	1.90	4.16	100
143	Patzicía	Chimaltenango	4.1	1.38	0.47	2.57	1.43	0.52	2.52	1.53	0.68	2.59	1.54	0.82	3.27	1.33	1.35	3.75	100
144	Patzité	Quiché	4.1	1.28	0.47	3.04	1.43	0.52	3.37	1.87	0.71	2.90	1.63	1.19	3.48	1.31	1.82	3.75	100
145	Patzún	Chimaltenango	4.1	1.40	0.47	2.57	1.43	0.52	2.55	1.54	0.68	2.62	1.56	0.83	3.27	1.36	1.37	3.85	100
146	Petatán	Huehuetenango	4.1	1.40	0.43	3.64	1.63	0.54	3.54	1.94	0.89	3.00	1.69	1.28	3.45	1.34	1.65	3.68	100
147	Pochuta	Chimaltenango	4.1	1.56	0.47	2.74	1.56	0.52	2.58	1.68	0.68	2.71	1.67	0.91	3.66	1.49	1.49	3.93	100
148	Poptún	Petén	2	0.60	0.23	3.64	0.67	0.26	3.77	0.80	0.41	3.35	0.93	0.49	3.33	1.13	0.78	3.47	110
149	Pueblo Nuevo	Suchitepéquez	4.2	1.64	0.51	3.10	1.64	0.57	2.75	1.76	0.74	2.81	1.74	0.93	3.70	1.54	1.53	4.13	100
150	Pueblo Nuevo Viñas	Santa Rosa	4.2	1.61	0.51	3.12	1.61	0.57	2.77	1.73	0.74	2.75	1.71	0.93	3.25	1.54	1.66	3.48	100
151	Puerto Barrios	Izabal	4.1	1.42	0.47	4.91	1.64	0.62	4.87	1.94	1.04	4.21	1.86	1.40	4.74	1.62	1.97	4.63	120
152	Purulhá	Baja Verapaz	4.1	1.31	0.43	4.51	1.54	0.53	4.45	1.88	0.90	3.69	1.75	1.28	4.27	1.43	1.70	4.43	100
153	Quesada	Jutiapa	4.1	1.37	0.47	2.55	1.43	0.52	2.51	1.53	0.68	2.69	1.53	1.05	3.27	1.32	1.82	3.51	100
154	Quetzaltenango	Quetzaltenango	4.1	1.51	0.47	2.59	1.51	0.52	2.56	1.64	0.68	2.68	1.64	0.85	3.65	1.46	1.39	3.90	100
155	Quetzaltepeque	Chiquimula	4.1	1.33	0.43	2.54	1.52	0.48	2.54	1.60	0.77	2.44	1.60	1.13	2.77	1.32	1.65	3.02	100

(Continuación) Tabla A-1 – Listado de amenaza sísmica y velocidad básica del viento por municipio para la República de Guatemala

	republica de G	uatemaia																	Velocidad
				Su	elo Tip	οA	Su	elo Tip	οВ	Su	elo Tip	o C	Su	elo Tip	o D	Su	elo Tip	οE	Velocidad básica del
No.	Municipio	Departamento	I ₀	Ser	S _{1r}	TL	Ser	S _{1r}	TL	Scr	Sır	TL	Scr	S _{1r}	TL	Ser	Sır	TL	viento (Km/h)
156	Rabinal	Baja Verapaz	4.1	1.11	0.43	3.94	1.24	0.48	3.73	1.33	0.63	3.70	1.33	0.99	4.26	1.20	1.65	4.40	100
157	Raxruhá	Alta Verapaz	3	0.92	0.30	3.17	1.14	0.33	2.98	1.31	0.53	2.39	1.31	0.80	2.51	1.14	1.37	2.78	100
158	Retalhuleu	Retalhuleu	4.2	1.69	0.51	3.39	1.77	0.57	3.45	1.90	0.90	3.54	1.90	1.33	4.51	1.67	1.98	4.59	110
159	Río Blanco	San Marcos	4.1	1.37	0.47	2.54	1.43	0.52	2.51	1.53	0.68	2.58	1.53	0.79	3.23	1.31	1.27	3.80	100
160	Río Bravo	Suchitepéquez	4.2	1.67	0.51	3.57	1.67	0.57	3.06	1.80	0.76	3.21	1.78	1.17	3.85	1.59	1.94	4.16	100
161	Río Hondo	Zacapa	4.1	1.14	0.43	3.53	1.38	0.48	3.43	1.76	0.71	2.90	1.57	1.19	3.48	1.30	1.65	3.75	100
162	Sacapulas	Quiché	4.1	1.24	0.43	2.53	1.24	0.48	2.78	1.49	0.62	2.89	1.42	0.96	3.48	1.22	1.65	3.73	100
163	Salamá	Baja Verapaz	4.1	1.31	0.43	4.51	1.54	0.53	3.72	1.75	0.90	3.66	1.75	1.28	4.27	1.43	1.65	4.43	100
164	Salcajá	Quetzaltenango	4.1	1.40	0.47	2.56	1.43	0.52	2.54	1.53	0.68	2.62	1.55	0.82	3.27	1.32	1.33	3.85	100
165	Samayac	Suchitepéquez	4.2	1.67	0.51	3.44	1.67	0.57	3.04	1.79	0.74	2.90	1.76	1.02	3.74	1.56	1.69	4.20	100
166	San Agustín Acasaguastlán	El Progreso	4.1	1.14	0.43	3.92	1.38	0.48	3.43	1.58	0.71	3.22	1.57	1.19	3.74	1.30	1.65	3.86	100
167	San Andrés	Chimaltenango	4.1	1.38	0.47	2.56	1.43	0.52	2.52	1.53	0.68	2.59	1.54	0.82	3.24	1.33	1.44	3.45	100
168	San Andrés	Petén	2	0.43	0.17	4.47	0.48	0.19	4.64	0.57	0.32	4.64	0.76	0.43	4.34	1.19	0.63	4.45	100
169	San Andrés Sajcabajá	Quiché	4.1	1.31	0.43	4.51	1.54	0.53	4.45	2.03	0.90	3.69	1.77	1.28	4.27	1.43	1.84	4.43	100
170	San Andrés Semetabaj	Sololá	4.1	1.37	0.47	2.54	1.43	0.52	2.50	1.53	0.68	2.58	1.53	0.79	3.47	1.31	1.50	3.69	100
171	San Andrés Villa Seca	Retalhuleu	4.2	1.73	0.51	3.40	1.81	0.57	3.45	1.94	0.92	3.55	1.94	1.36	4.51	1.70	1.98	4.60	110
172	San Andrés Xecul	Totonicapán	4.1	1.39	0.47	2.55	1.43	0.52	2.53	1.53	0.68	2.61	1.55	0.79	3.25	1.32	1.30	3.85	100
173	San Antonio Aguas Calientes	Sacatepéquez	4.1	1.38	0.47	2.54	1.43	0.52	2.53	1.54	0.68	2.64	1.54	0.89	3.26	1.31	1.67	3.49	100
174	San Antonio Huista	Huehuetenango	4.1	1.40	0.43	3.62	1.63	0.54	3.55	1.80	0.89	3.00	1.63	1.28	3.45	1.33	1.65	3.68	100
175	San Antonio Ilotenango	Quiché	4.1	1.31	0.47	4.51	1.54	0.53	4.45	1.87	0.90	3.69	1.75	1.40	4.27	1.43	1.82	4.43	100

(Continuación) Tabla A-1 – Listado de amenaza sísmica y velocidad básica del viento por municipio para la República de Guatemala

г	republica de G	uatemala																	
				Su	elo Tip	οA	Su	elo Tip	о В	Su	elo Tip	o C	Su	elo Tip	o D	Su	elo Tip	o E	Velocidad básica del
No.	Municipio	Departamento	l _o	Sor	S _{1r}	TL	Sor	S _{1r}	TL	Scr	S _{1r}	TL	Scr	Sır	TL	Sar	Sir	TL	viento (Km/h)
176	San Antonio La Paz	El Progreso	4.1	1.11	0.43	2.51	1.43	0.48	2.76	1.44	0.62	2.89	1.35	0.83	3.47	1.20	1.59	3.70	100
177	San Antonio Palopó	Sololá	4.1	1.43	0.47	2.57	1.43	0.52	2.56	1.56	0.68	2.64	1.57	0.84	3.25	1.36	1.38	3.86	100
178	San Antonio Sacatepéquez	San Marcos	4.1	1.45	0.47	2.57	1.45	0.52	2.57	1.57	0.68	2.66	1.58	0.84	3.25	1.38	1.39	3.86	100
179	San Antonio Suchitepéquez	Suchitepéquez	4.2	1.67	0.51	3.63	1.67	0.57	3.01	1.79	0.74	2.95	1.77	1.10	3.79	1.58	1.83	4.16	100
180	San Bartolo	Totonicapán	4.1	1.28	0.47	2.60	1.43	0.52	3.34	1.53	0.68	3.57	1.43	0.86	4.26	1.28	1.68	4.34	100
181	San Bartolomé Jocotenango	Quiché	4.1	1.18	0.43	2.49	1.24	0.48	2.83	1.34	0.62	3.11	1.38	0.85	3.52	1.17	1.62	3.71	100
182	San Bartolomé Milpas Altas	Sacatepéquez	4.1	1.33	0.47	2.48	1.43	0.52	2.60	1.76	0.68	2.69	1.54	1.08	3.27	1.28	1.82	3.51	100
183	San Benito	Petén	2	0.43	0.17	4.06	0.55	0.19	4.29	0.68	0.32	4.50	0.76	0.43	4.20	1.19	0.63	4.35	100
184	San Bernardino	Suchitepéquez	4.2	1.68	0.51	3.60	1.68	0.57	3.04	1.80	0.74	2.97	1.77	1.08	3.77	1.57	1.79	4.18	100
185	San Carlos Alzatate	Jalapa	4.1	1.22	0.43	2.48	1.24	0.48	2.49	1.38	0.62	2.52	1.41	0.72	3.36	1.20	1.09	3.47	100
186	San Carlos Sija	Quetzaltenango	4.1	1.31	0.47	3.20	1.43	0.52	3.48	1.53	0.68	3.70	1.51	1.03	4.26	1.33	1.82	4.42	100
187	San Cristóbal Acasaguastlán	El Progreso	4.1	1.14	0.43	3.53	1.38	0.48	3.43	1.79	0.71	2.90	1.57	1.19	3.48	1.30	1.65	3.75	100
188	San Cristóbal Cucho	San Marcos	4.1	1.56	0.47	2.59	1.56	0.52	2.55	1.68	0.68	2.71	1.67	0.85	3.63	1.46	1.39	3.93	100
189	San Cristóbal Totonicapán	Totonicapán	4.1	1.37	0.47	2.53	1.43	0.52	2.51	1.53	0.68	2.58	1.53	0.79	3.18	1.30	1.22	3.85	100
190	San Cristóbal Verapaz	Alta Verapaz	4.1	1.31	0.43	4.51	1.54	0.53	4.45	2.06	0.90	3.69	1.79	1.35	4.27	1.43	1.87	4.43	100

(Continuación) Tabla A-1 – Listado de amenaza sísmica y velocidad básica del viento por municipio para la República de Guatemala

- 1	republica de G	uatemala																	
				Su	elo Tip	οA	Su	elo Tip	οВ	Su	elo Tip	o C	Su	elo Tipo	D D	Su	elo Tip	οE	Velocidad básica del
No.	Municipio	Departamento	I _o	Scr	Sır	TL	Ser	Sir	TL	Scr	Sır	TL	Scr	Sir	TL	Sar	Sır	TL	viento (Km/h)
211	San José Ojetenam	San Marcos	4.1	1.28	0.47	3.87	1.43	0.52	3.74	1.53	0.71	3.69	1.46	1.11	4.27	1.28	1.82	4.45	100
212	San José Pinula	Guatemala	4.1	1.31	0.47	2.48	1.50	0.52	2.43	1.53	0.68	2.68	1.43	0.87	3.25	1.28	1.63	3.48	100
213	San José Poaquil	Chimaltenango	4.1	1.28	0.47	2.77	1.43	0.52	2.92	1.82	0.71	2.90	1.60	1.19	3.48	1.30	1.82	3.75	100
214	San Juan Atitán	Huehuetenango	4.1	1.31	0.43	4.51	1.54	0.53	4.45	1.98	0.90	3.69	1.75	1.28	4.27	1.43	1.80	4.43	100
215	San Juan Bautista	Suchitepéquez	4.2	1.67	0.51	3.56	1.67	0.57	3.05	1.79	0.74	2.90	1.76	1.06	3.76	1.57	1.77	4.19	100
216	San Juan Chamelco	Alta Verapaz	4.1	1.28	0.37	4.51	1.50	0.52	4.45	1.90	0.87	3.69	1.68	1.16	4.27	1.38	1.71	4.45	100
217	San Juan Comalapa	Chimaltenango	4.1	1.30	0.47	2.47	1.43	0.52	2.67	1.53	0.68	2.87	1.46	0.83	3.47	1.28	1.58	3.70	100
218	San Juan Cotzal	Quiché	4.1	1.09	0.37	4.21	1.30	0.44	4.25	1.57	0.76	3.68	1.54	1.16	4.27	1.29	1.55	4.47	100
219	San Juan Ermita	Chiquimula	4.1	1.11	0.43	2.81	1.28	0.48	2.85	1.74	0.63	2.44	1.52	1.01	2.95	1.27	1.65	3.18	100
220	San Juan Ixcoy	Huehuetenango	4.1	1.40	0.37	3.64	1.63	0.54	3.55	1.82	0.89	3.00	1.63	1.16	3.45	1.33	1.55	3.68	100
221	San Juan La Laguna	Sololá	4.1	1.55	0.47	2.56	1.55	0.52	2.55	1.67	0.68	2.70	1.66	0.85	3.59	1.46	1.39	3.92	100
222	San Juan Ostuncalco	Quetzaltenango	4.1	1.54	0.47	2.64	1.54	0.52	2.56	1.67	0.68	2.69	1.66	0.87	3.65	1.47	1.43	3.92	100
223	San Juan Sacatepéquez	Guatemala	4.1	1.28	0.47	2.76	1.43	0.52	2.88	1.56	0.70	2.90	1.56	1.17	3.49	1.29	1.82	3.75	100
224	San Juan Tecuaco	Santa Rosa	4.2	1.64	0.51	3.16	1.64	0.57	2.81	1.76	0.74	2.82	1.74	0.93	3.44	1.54	1.61	3.43	100
225	San Lorenzo	San Marcos	4.1	1.39	0.47	2.57	1.43	0.52	2.54	1.53	0.68	2.61	1.55	0.82	3.28	1.33	1.36	3.79	100
226	San Lorenzo	Suchitepéquez	4.2	1.76	0.51	3.40	1.84	0.57	3.45	1.96	0.93	3.56	1.96	1.38	4.52	1.71	1.98	4.61	110
227	San Lucas Sacatepéquez	Sacatepéquez	4.1	1.32	0.47	2.48	1.43	0.52	2.60	1.75	0.68	2.69	1.54	1.08	3.27	1.28	1.82	3.51	100
228	San Lucas Tolimán	Sololá	4.1	1.52	0.47	2.66	1.52	0.52	2.57	1.66	0.68	2.69	1.65	0.88	3.65	1.48	1.45	3.91	100
229	San Luis	Petén	2	0.77	0.30	4.73	0.86	0.33	4.90	0.94	0.50	3.98	1.03	0.57	3.86	1.03	0.88	3.95	110
230	San Luis Jilotepeque	Jalapa	4.1	1.33	0.43	2.52	1.51	0.48	2.74	1.78	0.75	2.44	1.58	1.11	2.77	1.31	1.65	3.06	100

(Continuación) Tabla A-1 — Listado de amenaza sísmica y velocidad básica del viento por municipio para la República de Guatemala

				Su	elo Tip	o A	Su	elo Tip	οВ	Su	elo Tip	o C	Su	elo Tip	o D	Su	elo Tip	o E	Velocidad básica del
No.	Municipio	Departamento	I _o	Scr	Sır	TL	Scr	Sir	TL	Scr	Sır	TL	Scr	Sır	TL	Sar	Sir	TL	viento (Km/h)
246	San Pablo	San Marcos	4.1	1.57	0.47	2.94	1.57	0.52	2.62	1.70	0.68	2.72	1.68	0.93	3.67	1.52	1.52	3.94	100
247	San Pablo Jocopilas	Suchitepéquez	4.2	1.66	0.51	3.15	1.66	0.57	2.80	1.78	0.74	2.83	1.75	0.93	3.70	1.54	1.54	4.17	100
248	San Pablo La Laguna	Sololá	4.1	1.46	0.47	2.58	1.46	0.52	2.58	1.58	0.68	2.66	1.60	0.84	3.25	1.36	1.38	3.87	100
249	San Pedro Ayampuc	Guatemala	4.1	1.28	0.47	2.80	1.43	0.52	2.88	1.58	0.69	2.90	1.53	1.13	3.48	1.28	1.82	3.75	100
250	San Pedro Carchá	Alta Verapaz	4.1	1.09	0.37	4.51	1.30	0.44	4.33	1.53	0.76	3.68	1.53	1.16	4.27	1.29	1.55	4.47	100
251	San Pedro Jocopilas	Quiché	4.1	1.11	0.43	3.79	1.26	0.48	3.71	1.50	0.73	3.69	1.50	1.15	4.27	1.27	1.65	4.46	100
252	San Pedro La Laguna	Sololá	4.1	1.55	0.47	2.57	1.55	0.52	2.55	1.67	0.68	2.70	1.66	0.85	3.60	1.46	1.39	3.92	100
253	San Pedro Necta	Huehuetenango	4.1	1.19	0.43	4.32	1.41	0.48	4.19	1.63	0.82	3.68	1.63	1.28	4.27	1.33	1.65	4.47	100
254	San Pedro Pinula	Jalapa	4.1	1.20	0.43	2.71	1.40	0.48	2.88	1.74	0.63	2.89	1.52	1.01	3.48	1.27	1.65	3.73	100
255	San Pedro Sacatepéquez	Guatemala	4.1	1.28	0.47	2.48	1.43	0.52	2.44	1.53	0.68	2.64	1.43	0.81	3.25	1.28	1.54	3.47	100
256	San Pedro Sacatepéquez	San Marcos	4.2	1.48	0.47	2.57	1.48	0.52	2.57	1.60	0.68	2.67	1.61	0.84	3.30	1.41	1.39	3.88	100
257	San Pedro Soloma	Huehuetenango	3	1.04	0.37	3.54	1.30	0.41	3.14	1.37	0.72	3.00	1.37	0.98	3.42	1.22	1.55	3.63	100
258	San Rafael La Independencia	Huehuetenango	4.1	1.18	0.37	3.64	1.43	0.46	3.55	1.56	0.79	3.00	1.48	1.09	3.44	1.27	1.55	3.65	100
259	San Rafael Las Flores	Santa Rosa	4.1	1.28	0.47	2.47	1.43	0.52	2.50	1.53	0.68	2.52	1.45	0.79	3.24	1.28	1.32	3.44	100
260	San Rafael Petzal	Huehuetenango	4.1	1.32	0.43	4.51	1.54	0.53	4.45	2.09	0.90	3.69	1.82	1.28	4.27	1.43	1.90	4.43	100

(Continuación) Tabla A-1 – Listado de amenaza sísmica y velocidad básica del viento por municipio para la República de Guatemala

	серивной ис о			Su	elo Tip	o A	Su	elo Tip	οВ	Su	elo Tip	o C	Su	elo Tip	o D	Su	elo Tip	οE	Velocidad
No.	Municipio	Departamento	l _o																básica del viento
				Scr	Sir	TL	Ser	Sir	TL	Scr	Sir	TL	Scr	Sir	TL	Ser	Sir	TL	(Km/h)
191	San Diego	Zacapa	4.1	1.11	0.43	2.86	1.24	0.48	2.89	1.46	0.62	2.81	1.39	0.91	3.47	1.21	1.65	3.57	100
192	San Felipe	Retalhuleu	4.2	1.67	0.51	3.62	1.67	0.57	3.02	1.79	0.74	2.95	1.77	1.09	3.79	1.58	1.81	4.17	100
193	San Francisco	Petén	3	0.43	0.17	3.90	0.48	0.19	4.06	0.57	0.32	4.44	0.76	0.43	4.15	1.19	0.63	4.30	100
194	San Francisco El Alto	Totonicapán	4.1	1.36	0.47	2.52	1.43	0.52	2.50	1.53	0.68	2.55	1.52	0.79	3.20	1.29	1.19	3.76	100
195	San Francisco La Unión	Quetzaltenango	4.1	1.39	0.47	2.56	1.43	0.52	2.54	1.53	0.68	2.62	1.55	0.81	3.27	1.32	1.33	3.85	100
196	San Francisco Zapotitlán	Suchitepéquez	4.2	1.67	0.51	3.42	1.67	0.57	3.03	1.79	0.74	2.88	1.76	1.01	3.74	1.56	1.68	4.20	100
197	San Gabriel	Suchitepéquez	4.2	1.68	0.51	3.63	1.68	0.57	2.99	1.80	0.74	3.12	1.78	1.11	3.81	1.59	1.85	4.14	100
198	San Gaspar Ixchil	Huehuetenango	4.1	1.32	0.43	4.49	1.54	0.53	4.45	2.09	0.90	3.69	1.82	1.28	4.27	1.43	1.90	4.43	100
199	San Ildefonso Ixtahuacán	Huehuetenango	4.1	1.32	0.43	4.48	1.54	0.53	4.45	2.09	0.90	3.69	1.82	1.28	4.27	1.43	1.90	4.43	100
200	San Jacinto	Chiquimula	4.1	1.39	0.43	2.52	1.56	0.48	2.42	1.93	0.78	2.21	1.65	1.14	2.77	1.33	1.65	3.00	100
201	San Jerónimo	Baja Verapaz	4.1	1.11	0.43	4.14	1.24	0.48	3.88	1.33	0.62	3.70	1.29	0.96	4.26	1.18	1.65	4.39	100
202	San Jorge	Zacapa	4.1	1.11	0.43	3.53	1.33	0.48	3.43	1.61	0.69	2.90	1.53	1.13	3.48	1.28	1.65	3.75	100
203	San José (Escuintla)	Escuintla	4.2	1.55	0.51	3.45	1.57	0.57	3.08	1.79	0.84	3.26	1.71	1.25	4.35	1.57	1.98	4.38	110
204	San José (Petén)	Petén	2	0.46	0.17	4.76	0.59	0.19	4.94	0.71	0.32	4.73	0.76	0.43	4.42	1.19	0.63	4.52	100
205	San José Acatempa	Jutiapa	4.1	1.39	0.47	2.57	1.43	0.52	2.54	1.75	0.68	2.69	1.55	1.08	3.27	1.34	1.82	3.51	100
206	San José Chacayá	Sololá	4.1	1.39	0.47	2.54	1.43	0.52	2.53	1.53	0.68	2.60	1.55	0.79	3.25	1.32	1.28	3.34	100
207	San José del Golfo	Guatemala	4.1	1.14	0.43	2.90	1.38	0.48	3.04	1.68	0.71	2.90	1.57	1.19	3.48	1.30	1.65	3.75	100
208	San José El Ídolo	Suchitepéquez	4.2	1.66	0.51	3.57	1.66	0.57	3.04	1.78	0.82	3.28	1.77	1.21	3.88	1.56	1.98	4.23	100
209	San José La Arada	Chiquimula	4.1	1.49	0.43	2.52	1.69	0.53	2.43	1.87	0.88	2.21	1.76	1.27	2.78	1.37	1.65	3.00	100
210	San José La Máquina	Suchitepéquez	4.2	1.70	0.51	3.39	1.78	0.57	3.45	1.91	0.90	3.55	1.91	1.34	4.51	1.68	1.98	4.59	110

(Continuación) Tabla A-1 — Listado de amenaza sísmica y velocidad básica del viento por municipio para la República de Guatemala

				Su	elo Tip	οA	Su	elo Tip	о В	Su	elo Tip	o C	Su	elo Tipo	o D	Su	elo Tip	o E	Velocidad básica del
No.	Municipio	Departamento	I _o	Sor	Sir	TL	Sor	Sır	TL	Scr	Sır	TL	Ser	Sır	TL	Ser	Sır	TL	viento (Km/h)
261	San Rafael Pie de la Cuesta	San Marcos	4.1	1.60	0.51	2.75	1.60	0.57	2.59	1.72	0.74	2.74	1.69	0.91	3.66	1.49	1.50	3.95	100
262	San Raymundo	Guatemala	4.1	1.28	0.47	2.77	1.43	0.52	2.88	1.60	0.71	2.90	1.57	1.19	3.48	1.30	1.82	3.75	100
263	San Sebastián	Retalhuleu	4.2	1.68	0.51	3.61	1.68	0.57	3.04	1.80	0.74	3.16	1.78	1.13	3.83	1.59	1.89	4.17	100
264	San Sebastián Coatán	Huehuetenango	4.1	1.10	0.37	3.64	1.36	0.43	3.56	1.42	0.75	3.00	1.42	1.03	3.43	1.24	1.55	3.64	100
265	San Sebastián Huehuetenango	Huehuetenango	4.1	1.32	0.43	4.51	1.54	0.53	4.45	2.09	0.90	3.69	1.82	1.28	4.27	1.43	1.90	4.43	100
266	San Vicente Pacaya	Escuintla	4.2	1.55	0.51	2.72	1.57	0.57	2.58	1.68	0.74	2.71	1.67	0.90	3.19	1.49	1.66	3.40	100
267	Sanarate	El Progreso	4.1	1.22	0.43	3.05	1.38	0.48	3.39	1.78	0.71	2.90	1.57	1.19	3.48	1.30	1.65	3.75	100
268	Sansare	El Progreso	4.1	1.11	0.43	2.71	1.24	0.48	2.88	1.42	0.62	2.89	1.39	0.94	3.48	1.21	1.65	3.73	100
269	Santa Ana	Petén	2	0.43	0.17	4.09	0.48	0.19	4.25	0.57	0.32	4.51	0.76	0.43	4.22	1.19	0.63	4.36	100
270	Santa Ana Huista	Huehuetenango	4.1	1.40	0.43	3.64	1.63	0.54	3.54	1.87	0.89	3.00	1.64	1.28	3.45	1.33	1.65	3.68	100
271	Santa Apolonia	Chimaltenango	4.1	1.28	0.47	2.65	1.43	0.52	2.88	1.62	0.68	2.90	1.48	1.06	3.48	1.28	1.82	3.74	100
272	Santa Bárbara	Huehuetenango	4.1	1.31	0.43	4.48	1.54	0.53	4.45	2.08	0.90	3.69	1.80	1.28	4.27	1.43	1.88	4.43	100
273	Santa Bárbara	Suchitepéquez	4.2	1.66	0.51	3.59	1.66	0.57	3.04	1.78	0.74	2.86	1.76	1.07	3.77	1.57	1.79	4.18	100
274	Santa Catalina La Tinta	Alta Verapaz	4.1	1.31	0.43	4.51	1.54	0.53	4.45	1.88	0.90	3.69	1.75	1.28	4.27	1.43	1.70	4.43	100
275	Santa Catarina Barahona	Sacatepéquez	4.1	1.39	0.47	2.55	1.43	0.52	2.53	1.53	0.68	2.61	1.55	0.83	3.25	1.32	1.56	3.47	100
276	Santa Catarina Ixtahuacán	Sololá	4.1	1.39	0.47	2.54	1.43	0.52	2.53	1.53	0.68	2.60	1.55	0.79	3.25	1.32	1.28	3.36	100
277	Santa Catarina Mita	Jutiapa	4.1	1.19	0.43	2.50	1.51	0.48	2.45	1.49	0.62	2.48	1.38	0.72	2.76	1.16	1.31	3.31	100
278	Santa Catarina Palopó	Sololá	4.1	1.48	0.47	2.57	1.48	0.52	2.57	1.60	0.68	2.66	1.61	0.84	3.25	1.39	1.39	3.88	100
279	Santa Catarina Pinula	Guatemala	4.1	1.28	0.47	2.48	1.43	0.52	2.44	1.54	0.68	2.69	1.46	0.89	3.26	1.28	1.67	3.49	100

(Continuación) Tabla A-1 – Listado de amenaza sísmica y velocidad básica del viento por municipio para la República de Guatemala

Republica de Guatemala																			
				Su	elo Tip	οA	Su	elo Tip	οВ	Su	elo Tip	o C	Su	elo Tip	o D	Su	elo Tip	Velocidad básica del	
No.	Municipio	Departamento	l _o	Sor	Sir	TL	Ser	Sir	TL	viento (Km/h)									
316	Tactic	Alta Verapaz	4.1	1.36	0.43	4.51	1.59	0.55	4.45	2.15	0.93	3.69	1.85	1.28	4.26	1.49	1.95	4.41	100
317	Tajumulco	San Marcos	4.1	1.49	0.47	2.57	1.49	0.52	2.57	1.62	0.68	2.67	1.62	0.85	3.49	1.44	1.39	3.80	100
318	Tamahú	Alta Verapaz	4.1	1.32	0.43	4.51	1.54	0.53	4.45	2.09	0.90	3.69	1.82	1.28	4.27	1.43	1.90	4.43	100
319	Taxisco	Santa Rosa	4.2	1.68	0.51	3.56	1.68	0.57	3.05	1.80	0.80	3.17	1.78	1.19	3.86	1.58	1.97	4.17	110
320	Tecpán Guatemala	Chimaltenango	4.1	1.30	0.47	2.69	1.43	0.52	2.88	1.57	0.71	2.90	1.57	1.19	3.48	1.30	1.82	3.75	100
321	Tectitán	Huehuetenango	4.1	1.31	0.43	4.51	1.54	0.53	4.45	1.91	0.90	3.69	1.75	1.28	4.27	1.43	1.72	4.43	100
322	Teculután	Zacapa	4.1	1.14	0.43	3.92	1.38	0.48	3.43	1.57	0.71	3.14	1.57	1.19	3.74	1.30	1.65	3.86	100
323	Tejutla	San Marcos	4.2	1.34	0.47	2.54	1.43	0.52	3.22	1.53	0.68	3.53	1.51	0.88	4.26	1.29	1.72	4.35	100
324	Tiquisate	Escuintla	4.2	1.81	0.51	3.40	1.89	0.58	3.45	1.99	0.94	3.56	1.99	1.39	4.54	1.72	1.98	4.64	110
325	Todos Santos Cuchumatanes	Huehuetenango	4.1	1.40	0.43	4.51	1.63	0.54	3.81	1.85	0.89	3.64	1.64	1.28	4.27	1.33	1.65	4.47	100
326	Totonicapán	Totonicapán	4.1	1.33	0.47	2.51	1.43	0.52	2.50	1.53	0.68	2.55	1.50	0.79	3.46	1.29	1.39	3.68	100
327	Tucurú	Alta Verapaz	4.1	1.36	0.43	4.51	1.59	0.55	4.45	2.15	0.93	3.69	1.85	1.28	4.26	1.49	1.95	4.41	100
328	Unión Cantinil	Huehuetenango	4.1	1.40	0.43	3.64	1.63	0.54	3.54	1.90	0.89	3.00	1.66	1.28	3.45	1.33	1.65	3.68	100
329	Uspantán	Quiché	4.1	1.31	0.43	4.51	1.54	0.53	4.44	1.75	0.90	3.67	1.75	1.28	4.27	1.43	1.65	4.43	100
330	Usumatlán	Zacapa	4.1	1.16	0.43	3.53	1.38	0.48	3.43	1.87	0.71	2.90	1.63	1.19	3.48	1.31	1.65	3.75	100
331	Villa Canales	Guatemala	4.1	1.44	0.47	2.56	1.44	0.52	2.56	1.72	0.68	2.69	1.62	1.08	3.27	1.44	1.82	3.51	100
332	Villa Nueva	Guatemala	4.1	1.34	0.47	2.51	1.43	0.52	2.54	1.80	0.68	2.69	1.56	1.08	3.27	1.29	1.82	3.51	100
333	Yepocapa	Chimaltenango	4.1	1.58	0.47	2.84	1.58	0.52	2.60	1.70	0.68	2.73	1.69	0.92	3.59	1.51	1.51	3.94	100
334	Yupiltepeque	Jutiapa	4.1	1.37	0.47	2.53	1.43	0.52	2.50	1.53	0.68	2.57	1.53	0.79	3.25	1.31	1.49	3.46	100
335	Zacapa	Zacapa	4.1	1.14	0.43	3.53	1.38	0.48	3.43	1.66	0.71	2.90	1.57	1.19	3.48	1.30	1.65	3.75	100
336	Zacualpa	Quiché	4.1	1.11	0.43	3.34	1.24	0.48	3.61	1.33	0.62	3.61	1.33	0.91	4.21	1.19	1.65	4.26	100
337	Zapotitlán	Jutiapa	4.1	1.43	0.47	2.57	1.43	0.52	2.56	1.56	0.68	2.69	1.57	1.00	3.26	1.38	1.82	3.50	100
338	Zaragoza	Chimaltenango	4.1	1.33	0.47	2.51	1.43	0.52	2.51	1.53	0.68	2.55	1.50	0.79	3.24	1.29	1.30	3.66	100
339	Zunil	Quetzaltenango	4.1	1.56	0.47	2.67	1.56	0.52	2.57	1.69	0.68	2.71	1.67	0.88	3.65	1.48	1.45	3.93	100
340	Zunilito	Suchitepéquez	4.2	1.64	0.51	3.20	1.64	0.57	2.84	1.76	0.74	2.83	1.75	0.94	3.71	1.54	1.56	4.18	100

(Continuación) Tabla A-1 – Listado de amenaza sísmica y velocidad básica del viento por municipio para la República de Guatemala

Republica de Guatemala																			
				Suelo Tipo A			Suelo Tipo B			Suelo Tipo C			Suelo Tipo D			Su	elo Tip	Velocidad básica del	
No.	Municipio	Departamento	I _o	Scr	Sır	TL	Ser	Sir	TL	Scr	Sır	TL	Scr	Sır	TL	Ser	Sır	TL	viento (Km/h)
296	Santa María de Jesús	Sacatepéquez	4.1	1.42	0.47	2.57	1.43	0.52	2.55	1.68	0.68	2.69	1.56	1.08	3.27	1.35	1.82	3.51	100
297	Santa María Ixhuatán	Santa Rosa	4.2	1.58	0.51	2.83	1.58	0.57	2.60	1.70	0.74	2.73	1.69	1.06	3.27	1.51	1.95	3.51	100
298	Santa María Visitación	Sololá	4.1	1.52	0.47	2.56	1.52	0.52	2.56	1.64	0.68	2.68	1.64	0.85	3.39	1.43	1.39	3.91	100
299	Santa Rosa de Lima	Santa Rosa	4.1	1.35	0.47	2.52	1.50	0.52	2.53	1.66	0.68	2.69	1.51	1.08	3.27	1.30	1.82	3.51	100
300	Santiago Atitlán	Sololá	4.1	1.56	0.47	2.70	1.56	0.52	2.58	1.68	0.68	2.71	1.67	0.89	3.66	1.49	1.47	3.93	100
301	Santiago Chimaltenango	Huehuetenango	4.1	1.28	0.43	4.51	1.50	0.52	4.45	1.74	0.88	3.68	1.72	1.28	4.27	1.38	1.65	4.44	100
302	Santiago Sacatepéquez	Sacatepéquez	4.1	1.30	0.47	2.47	1.43	0.52	2.56	1.58	0.68	2.69	1.48	1.04	3.26	1.28	1.82	3.51	100
303	Santo Domingo Suchitepéquez	Suchitepéquez	4.2	1.62	0.51	3.38	1.70	0.57	3.42	1.84	0.88	3.50	1.84	1.30	4.53	1.64	1.98	4.60	110
304	Santo Domingo Xenacoj	Sacatepéquez	4.1	1.31	0.47	2.47	1.43	0.52	2.46	1.53	0.68	2.64	1.47	0.85	3.25	1.28	1.62	3.48	100
305	Santo Tomás La Unión	Suchitepéquez	4.2	1.63	0.51	2.88	1.63	0.57	2.61	1.75	0.74	2.78	1.73	0.92	3.67	1.51	1.51	3.95	100
306	Sayaxché	Petén	2	0.60	0.23	3.37	0.67	0.26	3.49	0.80	0.41	4.01	0.93	0.49	3.80	1.13	0.78	3.71	100
307	Senahú	Alta Verapaz	4.1	1.31	0.38	4.51	1.54	0.53	4.45	1.94	0.90	3.69	1.72	1.16	4.27	1.43	1.75	4.43	100
308	Sibilia	Quetzaltenango	4.1	1.39	0.47	2.55	1.43	0.52	2.53	1.53	0.68	2.60	1.55	0.80	3.26	1.32	1.32	3.80	100
309	Sibinal	San Marcos	4.1	1.28	0.47	2.70	1.43	0.52	3.26	1.53	0.68	3.55	1.43	0.83	4.26	1.28	1.62	4.32	100
310	Sipacapa	San Marcos	4.1	1.28	0.47	3.31	1.43	0.52	3.54	1.53	0.68	3.70	1.43	0.99	4.26	1.28	1.82	4.40	100
311	Sipacate	Escuintla	4.2	1.87	0.51	3.39	1.87	0.57	3.45	2.04	0.89	3.54	1.89	1.33	4.51	1.67	1.98	4.59	110
312	Siquinalá	Escuintla	4.2	1.64	0.51	3.56	1.64	0.57	3.05	1.76	0.74	2.87	1.75	1.06	3.58	1.57	1.77	3.33	100
313	Sololá	Sololá	4.1	1.34	0.47	2.53	1.43	0.52	2.60	1.53	0.68	2.86	1.51	0.84	3.47	1.30	1.60	3.71	100
314	Sumpango	Sacatepéquez	4.1	1.28	0.47	2.48	1.43	0.52	2.44	1.53	0.68	2.64	1.45	0.82	3.25	1.28	1.56	3.47	100
315	Tacaná	San Marcos	4.1	1.31	0.47	4.51	1.53	0.53	4.18	1.74	0.90	3.68	1.74	1.40	4.27	1.42	1.82	4.43	100

(Continuación) Tabla A-1 – Listado de amenaza sísmica y velocidad básica del viento por municipio para la República de Guatemala

	to bubilou de Guatelliaia			Suelo Tipo A				Suelo Tipo B			Suelo Tipo C			elo Tipo	o D	Su	elo Tip	Velocidad básica del	
No.	Municipio	Departamento	I _o	Ser	Sır	TL	Sor	Sır	TL	Scr	Sır	TL	Ser	Sır	TL	Sar	Sir	TL	viento (Km/h)
280	Santa Clara La Laguna	Sololá	4.1	1.52	0.47	2.78	1.52	0.52	2.59	1.67	0.68	2.69	1.67	0.91	3.67	1.50	1.49	3.91	100
281	Santa Cruz Balanyá	Chimaltenango	4.1	1.34	0.47	2.50	1.43	0.52	2.52	1.53	0.68	2.56	1.51	0.79	3.34	1.28	1.29	3.66	100
282	Santa Cruz Barillas	Huehuetenango	3	0.94	0.37	2.69	1.14	0.41	2.39	1.49	0.57	2.27	1.35	0.80	2.68	1.19	1.48	2.85	100
283	Santa Cruz del Quiché	Quiché	4.1	1.28	0.47	2.77	1.43	0.52	2.88	1.57	0.71	2.90	1.57	1.19	3.48	1.30	1.82	3.75	100
284	Santa Cruz el Chol	Baja Verapaz	4.1	1.14	0.43	3.12	1.38	0.48	3.43	1.78	0.71	2.90	1.57	1.19	3.48	1.30	1.65	3.75	100
285	Santa Cruz La Laguna	Sololá	4.1	1.40	0.47	2.56	1.43	0.52	2.55	1.54	0.68	2.62	1.55	0.82	3.27	1.33	1.34	3.56	100
286	Santa Cruz Muluá	Retalhuleu	4.2	1.63	0.51	3.44	1.63	0.57	3.08	1.76	0.84	3.27	1.76	1.26	4.35	1.58	1.98	4.41	110
287	Santa Cruz Naranjo	Santa Rosa	4.1	1.38	0.47	2.55	1.43	0.52	2.53	1.80	0.68	2.69	1.56	1.08	3.27	1.32	1.82	3.51	100
288	Santa Cruz Verapaz	Alta Verapaz	4.1	1.36	0.43	4.51	1.59	0.55	4.45	2.15	0.93	3.69	1.85	1.28	4.26	1.49	1.95	4.41	100
289	Santa Eulalia	Huehuetenango	3	0.94	0.37	2.85	1.05	0.41	2.97	1.12	0.57	2.98	1.15	0.76	3.32	1.07	1.45	3.57	100
290	Santa Lucía Cotzumalguapa	Escuintla	4.2	1.68	0.51	3.57	1.68	0.57	3.06	1.80	0.77	3.10	1.78	1.17	3.85	1.58	1.95	4.16	100
291	Santa Lucía La Reforma	Totonicapán	4.1	1.28	0.47	3.39	1.43	0.52	3.68	1.53	0.68	3.71	1.43	0.95	4.26	1.28	1.82	4.38	100
292	Santa Lucía Milpas Altas	Sacatepéquez	4.1	1.34	0.47	2.50	1.43	0.52	2.57	1.80	0.68	2.69	1.56	1.08	3.27	1.29	1.82	3.51	100
293	Santa Lucía Utatlán	Sololá	4.1	1.39	0.47	2.57	1.43	0.52	2.54	1.53	0.68	2.62	1.55	0.83	3.27	1.33	1.36	3.62	100
294	Santa María Cahabón	Alta Verapaz	3	0.94	0.37	4.49	1.09	0.41	4.40	1.34	0.63	3.70	1.34	0.99	4.26	1.20	1.55	4.40	110
295	Santa María Chiquimula	Totonicapán	4.1	1.28	0.47	2.48	1.43	0.52	2.55	1.53	0.68	2.86	1.43	0.79	4.03	1.28	1.42	4.24	100

Fuente: AGIES. Listado de amenaza sísmica y velocidad básica del viento por municipios. Consultado el 7 de octubre de 2021. Recuperado de https://www.agies.org/wp-content/uploads/2018/08/NSE-2-2018-Edici%C3% B3n-Beta-Demandas-estructurales.pdf.