
Universidad de San Carlos de Guatemala

Facultad de Ingeniería

Escuela de Ingeniería en Ciencias y Sistemas

DISEÑO DE UNA ARQUITECTURA HÍBRIDA ADAPTANDO MICROSERVICIOS Y

SERVERLESS PARA SUPERAR LAS LIMITACIONES DE LA ARQUITECTURA

MONOLITICA DEL SOFTWARE MAGENTO PARA MEJORAR LA ESCALABILIDAD

José Marcos García Olmino

Asesorado por Mtro. Ing. Juan Pablo Ruiz Guerra

Guatemala, noviembre de 2024

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA

FACULTAD DE INGENIERÍA

DISEÑO DE INVESTIGACIÓN DE UNA ARQUITECTURA HÍBRIDA ADAPTANDO

MICROSERVICIOS Y SERVERLESS PARA SUPERAR LAS LIMITACIONES DE LA

ARQUITECTURA MONOLITICA DEL SOFTWARE MAGENTO PARA MEJORAR LA

ESCALABILIDAD

TRABAJO DE GRADUACIÓN

PRESENTADO A LA JUNTA DIRECTIVA DE LA

FACULTAD DE INGENIERÍA

POR

JOSÉ MARCOS GARCÍA OLMINO

ASESORADO POR MTRO. ING. JUAN PABLO RUIZ GUERRA

AL CONFERÍRSELE EL TÍTULO DE

INGENIERO EN CIENCIAS Y SISTEMAS

GUATEMALA, NOVIEMBRE DE 2024

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA

FACULTAD DE INGENIERÍA

NÓMINA DE JUNTA DIRECTIVA

DECANO Ing. José Fernando Gómez Rivera (a.i.)

VOCAL II Ing. Mario Renato Escobedo Martinez

VOCAL III Ing. José Milton de León Bran

VOCAL IV Ing. Kevin Vladimir Cruz Lorente

VOCAL V Ing. Fernando José Paz González

SECRETARIO Ing. Hugo Humberto Rivera Pérez

TRIBUNAL QUE PRACTICÓ EL EXAMEN GENERAL PRIVADO

DECANO Ing. José Francisco Gómez Rivera (a.i.)

EXAMINADOR Ing. Pedro Pablo Hernández Ramírez

EXAMINADOR Ing. Oscar Alejandro Paz Campos

EXAMINADOR Ing. Carlos Alfredo Azurdia Morales

SECRETARIO Ing. Hugo Huberto Rivera Pérez

HONORABLE TRIBUNAL EXAMINADOR

En cumplimiento con los preceptos que establece la ley de la Universidad de San

Carlos de Guatemala, presento a su consideración mi trabajo de graduación

titulado:

DISEÑO DE UNA ARQUITECTURA HÍBRIDA ADAPTANDO MICROSERVICIOS Y

SERVERLESS PARA SUPERAR LAS LIMITACIONES DE LA ARQUITECTURA

MONOLITICA DEL SOFTWARE MAGENTO PARA MEJORAR LA ESCALABILIDAD

Tema que me fuera asignado por la Dirección de la Escuela de Ingeniería en

Ciencias y Sistemas, con fecha 21 de septiembre de 2024.

José Marcos García Olmino

https://v3.camscanner.com/user/download

EEP-EICS-5032-2024

El Director de la Escuela De Ingenieria En Sistemas de la Facultad de Ingeniería de la
Universidad de San Carlos de Guatemala, luego de conocer el dictamen del Asesor, el visto
bueno del Coordinador y Director de la Escuela de Estudios de Postgrado, del Diseño de
Investigación en la modalidad Estudios de Pregrado y Postgrado titulado: DISEÑO DE
UNA ARQUITECTURA HÍBRIDA ADAPTANDO MICROSERVICIOS Y SERVERLESS
PARA SUPERAR LAS LIMITACIONES DE LA ARQUITECTURA MONOLITICA DEL
SOFTWARE MAGENTO PARA MEJORAR LA ESCALABILIDAD , presentado por el
estudiante universitario José Marcos García Olmino, procedo con el Aval del mismo, ya
que cumple con los requisitos normados por la Facultad de Ingeniería en esta modalidad.

ID Y ENSEÑAD A TODOS

Mtro. Carlos Gustavo Alonzo
Director

Escuela De Ingenieria En Sistemas

Guatemala, septiembre de 2024

Decanato
Facultad e Ingeniería

24189101- 24189102

LNG.DECANATO.OIE.775.2024

El Decano de la Facultad de Ingeniería de la Universidad de San

Carlos de Guatemala, luego de conocer la aprobación por parte del

Director de la Escuela de Ingeniería en Ciencias y Sistemas, al Trabajo

de Graduación titulado: DISEÑO DE UNA ARQUITECTURA HÍBRIDA

ADAPTANDO MICROSERVICIOS Y SERVERLESS PARA

SUPERAR LAS LIMITACIONES DE LA ARQUITECTURA

MONOLITICA DEL SOFTWARE MAGENTO PARA MEJORAR LA

ESCALABILIDAD , presentado por: José Marcos García Olmino

después de haber culminado las revisiones previas bajo la

responsabilidad de las instancias correspondientes, autoriza la

impresión del mismo.

IMPRÍMASE:

Escuelas: Ingeniería Civil, Ingeniería Mecánica Industrial, Ingeniería Química, Ingeniería Mecánica Eléctrica, - Escuela de Ciencias, Regional de Ingeniería Sanitaria y Recursos
Hidráulicos (ERIS). Postgrado Maestría en Sistemas Mención Ingeniería Vial. Carreras: Ingeniería Mecánica, Ingeniería Electrónica, Ingeniería en Ciencias y Sistemas. Licenciatura
en Matemática. Licenciatura en Física. Centro de Estudios Superiores de Energía y Minas (CESEM). Guatemala, Ciudad

Ing. José Francisco Gómez Rivera
Decano a.i.

Guatemala, noviembre de 2024

Tipo de documento: Correlativo para orden de impresión Año: 2024 Correlativo: 775 CUI: 3004263640101

Para verificar validez de documento ingrese a https://www.ingenieria.usac.edu.gt/firma-electronica/consultar-documento

ACTO QUE DEDICO A:

Dios

Mis padres

Mi hermano

Mis amigos

Porque siempre estoy agradecido por las

oportunidades que me ha permitido tener

Por el apoyo incondicional que me han brindado,

sin ellos este logro no lo hubiera podido alcanzar

Porque estuvo presente cuando quería algún

consejo y necesite apoyo

Porque empezamos como compañeros de clase,

pero terminamos con una amistad sincera

apoyándonos a lo largo de la carrera

AGRADECIMIENTOS A:

Universidad de San

Carlos de Guatemala

M.A Ing. Juan Pablo

Ruiz Guerra

Por ser la casa de estudios que facilita el acceso

a la educación superior

Por brindarme su tiempo y conocimiento durante

esta investigación

I

ÍNDICE GENERAL

ÍNDICE DE ILUSTRACIONES .. V

1. INTRODUCCIÓN ... 1

2. ANTECEDENTES .. 3

3. PLANTEAMIENTO DEL PROBLEMA .. 7

3.1. Planteamiento del problema .. 7

3.1.1. Pregunta central ... 8

3.1.2. Preguntas Auxiliares ... 8

4. JUSTIFICACIÓN .. 9

5. OBJETIVOS ... 11

5.1. General .. 11

5.2. Específicos .. 11

6. NECESIDADES A CUBRIR Y ESQUEMA DE SOLUCIÓN 13

7. ALCANCES .. 17

7.1. Alcances de investigación ... 17

7.2. Alcances técnicos .. 17

7.3. Alcances de resultados.. 18

II

8. MARCO TEÓRICO ... 21

8.1. Arquitecturas de software ... 21

8.1.1. Arquitecturas monolíticas .. 21

8.1.1.1. Características de las arquitecturas

monolíticas ... 22

8.1.1.2. Ventajas y desventajas en el contexto

empresarial ... 23

8.1.2. Arquitecturas basadas en microservicios 25

8.1.2.1. Fundamentos teóricos de los

microservicios 25

8.1.2.2. Patrones de diseño en microservicios .. 27

8.1.2.2.1. Patrones de orquestación

y coordinación 27

8.1.2.2.2. Patrones de

Descubrimiento de

Servicios........................ 28

8.1.2.2.3. Patrones de

almacenamiento de

datos en

microservicios 30

8.1.3. Arquitecturas serverless .. 31

8.1.3.1. Fundamentos teóricos de serverless 32

8.1.3.2. Comparación entre arquitecturas

serverless y tradicionales 33

8.1.3.3. Beneficios de serverless para

aplicaciones dinámicas y de alto tráfico 35

8.2. Computación en la nube .. 36

8.2.1. Conceptos básicos de la computación en la

nube .. 39

III

8.2.2. Ventajas de la nube para el escalado y manejo de

aplicaciones empresariales 40

8.2.3. Amazon Web Services ... 41

8.2.3.1. Servicios enfocados en Microservicios 42

8.2.3.1.1. Amazon Elastic Container

Service 42

8.2.3.2. Servicios Serverless 43

8.2.3.2.1. Amazon Lambda 43

8.3. Integración de Microservicios y Serverless 44

8.3.1. Integración y Gestión .. 45

8.3.2. Estrategias de Migración .. 46

8.4. Introducción a Magento ... 48

8.4.1. Descripción general de la plataforma Magento....... 49

8.4.2. Arquitectura modular .. 50

9. PROPUESTA DE ÍNDICE DE CONTENIDOS 53

10. METODOLOGÍA ... 57

10.1. Tipo de estudio .. 57

10.2. Diseño de la investigación ... 57

10.3. Alcance de la investigación ... 58

10.4. Variables e indicadores ... 59

10.5. Fases del estudio .. 59

10.5.1. Fase 1: revisión de literatura y estructuración del

proyecto .. 60

10.5.2. Fase 2: revisión y análisis de la arquitectura

actual .. 60

10.5.3. Fase 3: selección y diseño de la arquitectura

híbrida .. 60

IV

10.5.4. Fase 4: desarrollo del prototipo 61

10.5.5. Fase 5: pruebas y evaluación 61

10.5.6. Fase 6: análisis de resultados y optimización 61

10.5.7. Fase 7: documentación y presentación de

resultados ... 62

10.6. Técnicas de recolección de datos .. 62

11. TÉCNICAS DE ANÁLISIS DE LA INFORMACIÓN 63

12. CRONOGRAMA ... 65

13. FACTIBILIDAD DEL ESTUDIO ... 67

13.1. Factibilidad Técnica.. 67

13.2. Factibilidad Financiera ... 68

REFERENCIAS ... 69

V

ÍNDICE DE ILUSTRACIONES

FIGURAS

Figura 1. Arquitectura híbrida con serverless y microservicios 14

Figura 2. Arquitectura monolítica .. 22

Figura 3. Ejemplo de una descomposición ... 26

Figura 4. Patrón de arquitectura Api Gateway .. 28

Figura 5. Patrón de descubrimiento del lado del cliente 30

Figura 6. Arquitectura Serverless .. 32

Figura 7. Arquitectura en la nube .. 37

Figura 8. Descripción general de los pasos de migración del prototipo 48

Figura 9. Representación de la arquitectura de Magento en su

versión 2.0 ... 51

TABLAS

Tabla 1. Definición de las variables ... 59

Tabla 2. Cronograma de actividades para cada fase de la investigación .. 65

Tabla 3. Costos del estudio ... 68

VI

1

1. INTRODUCCIÓN

En la era digital, la necesidad de que las aplicaciones sean altamente

escalables, eficientes y adaptables ha impulsado la evolución de las arquitecturas

de software. Las arquitecturas monolíticas, que alguna vez fueron la solución

dominante en el desarrollo de aplicaciones empresariales, están mostrando sus

limitaciones frente a la demanda de mayor flexibilidad y capacidad de respuesta

en entornos cambiantes. Esto ha llevado a la adopción de enfoques más

modernos, como los microservicios y las tecnologías serverless, que permiten

una mayor escalabilidad, optimización de recursos y reducción de costos

operacionales.

En este contexto, Magento 2.0, una plataforma líder en comercio

electrónico sigue utilizando en gran medida una arquitectura monolítica que

presenta desafíos en términos de escalabilidad y flexibilidad operativa. Este

estudio tiene como objetivo desarrollar un prototipo que permita migrar la

arquitectura monolítica de Magento hacia una arquitectura híbrida que combine

microservicios y tecnologías serverless. La arquitectura híbrida se basa en

descomponer aplicaciones complejas en componentes independientes que

pueden escalarse de manera autónoma, y aprovechar tecnologías serverless

para gestionar funciones que solo consumen recursos cuando es necesario.

Para lograr estos objetivos, se seleccionarán módulos clave de Magento

que serán migrados a una arquitectura híbrida. Estos módulos se analizarán en

función de su impacto en el rendimiento del sistema y su capacidad para manejar

altos volúmenes de transacciones. Mediante pruebas exhaustivas de rendimiento

y escalabilidad, se evaluarán aspectos como tiempos de respuesta, latencia y

2

costos operacionales, comparando la arquitectura monolítica original con el

prototipo híbrido.

El estudio se estructurará en varios capítulos que cubrirán las diferentes

etapas del estudio. El primer capítulo abordará los antecedentes de la

arquitectura monolítica donde se habla acerca de migraciones de arquitecturas

monolíticas hacia microservicios o serverless y sobre la plataforma Magento. El

segundo capítulo se dedicará a la justificación del estudio, donde se argumentará

la importancia de migrar a una arquitectura híbrida, destacando los beneficios

esperados en términos de escalabilidad y eficiencia operativa.

En el tercer capítulo, se definirán los alcances del estudio, detallando los

alcances investigativos, técnicos y los resultados que se esperan obtener. Este

capítulo también establecerá los límites del estudio y las áreas que no serán

cubiertas. El cuarto capítulo presentará el marco teórico, proporcionando una

revisión exhaustiva de las arquitecturas monolíticas, microservicios y serverless,

y apoyándose en estudios previos que respaldan la viabilidad de esta migración.

El quinto capítulo, titulado Implementación del prototipo, se centrará en la

selección y codificación de los módulos de Magento que serán migrados,

detallando el diseño de la arquitectura del prototipo, las herramientas tecnologías

utilizadas y pruebas de integración del prototipo. En el sexto capítulo, se

expondrán los resultados de las pruebas de integración, pruebas de rendimiento

y la comparación entre la arquitectura monolítica y el prototipo. Finalmente, el

séptimo capítulo estará dedicado a la discusión de los resultados, donde se

interpretarán los datos obtenidos, se evaluarán los desafíos técnicos encontrados

y se destacarán las mejoras logradas en comparación con la arquitectura

monolítica original.

3

2. ANTECEDENTES

En el estudio realizado por Lin (2015) sobre Magento, se detalla cómo esta

plataforma de comercio electrónico basada en PHP y MySQL se caracteriza por

su arquitectura modular, la complejidad inherente de esta estructura sugiere

desafíos típicos de las arquitecturas monolíticas, especialmente en términos de

escalabilidad y mantenimiento. Adicionalmente, el documento identifica áreas

susceptibles de mejora, como la alta demanda de recursos del servidor. Estos

factores subrayan la necesidad de optimizaciones que puedan mejorar el

rendimiento y la usabilidad para mantener la competitividad de Magento en el

dinámico mercado de e-commerce.

El estudio llevado a cabo por Velepucha et al. (2018) examina

exhaustivamente las deficiencias de las arquitecturas monolíticas,

particularmente en contextos en los que la escalabilidad y la flexibilidad son

esenciales. Este estudio presenta el modelo MOMMIV, que se basa en el

principio de ocultación de información para facilitar la descomposición de

arquitecturas monolíticas en arquitecturas de microservicios. Este modelo aborda

los desafíos comunes de las arquitecturas monolíticas, como la dificultad en

extraer la lógica de negocio por su naturaleza integrada y los problemas

asociados con bases de datos relacionales que no soportan la escalabilidad

horizontal.

Además, Velepucha et al. (2018) destacan cómo la transición a

microservicios puede aumentar la complejidad en la integración y gestión de

servicios, pero con el adecuado diseño de descomposición, estas dificultades

pueden minimizarse significativamente. La metodología propuesta ofrece una

4

estructura que no solo supera las restricciones físicas y lógicas de las

arquitecturas monolíticas, sino que también aumenta la capacidad de las

empresas para adaptarse rápidamente a los cambios del mercado,

proporcionando actualizaciones más ágiles y menos disruptivas.

En el estudio realizado por Goli et al. (2020) se destaca cómo la adopción

de soluciones serverless puede mejorar significativamente el rendimiento y

optimizar los costos operativos en sectores como el FinTech. Este enfoque

elimina la necesidad de gestionar la infraestructura, permitiendo que los

desarrolladores se concentren en el código de la aplicación. Al hacerlo,

serverless no solo simplifica la gestión de recursos, sino que también acelera el

desarrollo y despliegue de nuevas funcionalidades, reduciendo el tiempo y el

costo asociados con las operaciones tradicionales.

Además de los beneficios ya mencionados de la adopción de soluciones

serverless por Goli et al. (2020), también resaltan cómo la implementación de

arquitecturas serverless en el sector FinTech no solo reduce los costos

operativos sino que también mejora significativamente la velocidad de

procesamiento de solicitudes. Usaron casos prácticos, como el de Yubl, para

demostrar cómo la adopción de un despliegue serverless puede acortar los

plazos de entrega de funciones y el tiempo de llegada al mercado. Adzic y

colaboradores (2017) quienes se pusieron en contacto con Yubl mencionan que

de hacer 4 a 6 despliegues productivos por mes pasaron a 80 o más por mes

contando siempre con el mismo equipo de ingenieros (6 ingenieros), lo cual

demuestra lo fundamental que es esta solución para mantener la competitividad

en el dinámico mercado tecnológico

Por otro lado, Allen (2023) aborda las ventajas de las arquitecturas de

microservicios sobre las arquitecturas monolíticas y menciona el uso de patrones

5

específicos como Event Sourcing y CQRS (Command Query Responsibility

Segregation) para optimizar las operaciones en arquitecturas de microservicios,

donde Event Sourcing asegura que todos los cambios en el estado de la

aplicación se almacenen como una secuencia de eventos que, no solo pueden

ser consultados, sino también usados para recrear estados pasados del sistema

y CQRS, por otro lado, separa las operaciones de lectura y escritura en modelos

distintos, lo que facilita la escalabilidad y la optimización del rendimiento al

permitir que estas operaciones se escalen de manera independiente.

Además, Allen (2023) profundiza en cómo las arquitecturas de

microservicios, a través de patrones como Event Sourcing y CQRS, no solo

mejoran la separación de responsabilidades y la gestión de datos, sino que

también permiten una implementación y escalamiento más dinámicos de los

servicios. Allen subraya que, en contraste con las arquitecturas monolíticas, los

microservicios permiten una reducción considerable en los tiempos de inactividad

durante las actualizaciones y una gestión de errores más eficaz.

Lima (2019) menciona que, en la exploración de la migración de sistemas

monolíticos a arquitecturas basadas en microservicios, tecnologías específicas

como Docker y Kubernetes desempeñan un papel fundamental en facilitar este

proceso. Docker permite encapsular aplicaciones en contenedores,

proporcionando un entorno de ejecución consistente que elimina muchos

problemas comunes de "funciona en mi máquina", mientras que Kubernetes

ofrece una plataforma robusta para la orquestación de estos contenedores,

asegurando que se gestionen eficientemente en producción.

El estudio de Lima (2019) también subraya que estas tecnologías no solo

simplifican el despliegue y la gestión de microservicios, sino que también mejoran

significativamente la capacidad de escalar y mantener sistemas complejos. Esta

6

transición resulta en una notable reducción en la complejidad operativa y los

costos, ya que las organizaciones pueden escalar servicios de manera

independiente y eficiente, adaptándose mejor a las demandas cambiantes sin la

necesidad de gestionar una arquitectura monolítica grande y rígida.

Finalmente, en el estudio de Hasan et al. (2023) en el contexto de la

transición de arquitecturas monolíticas a microservicios, destacan la importancia

de utilizar métricas estructurales para asegurar la calidad y mantenibilidad de la

arquitectura. El artículo propone métricas específicas como el acoplamiento, la

complejidad, y la cohesión, que son vitales para evaluar la mantenibilidad durante

la migración a entornos en la nube. Este enfoque metodológico no solo facilita la

medición de la calidad arquitectónica, sino que también guía a las organizaciones

para realizar transiciones más efectivas y sostenibles, minimizando la deuda

técnica y maximizando los beneficios de los microservicios.

Estas investigaciones acumulan hallazgos importantes que demuestran

claramente que la evolución hacia arquitecturas distribuidas no es solo una

mejora técnica, sino una necesidad estratégica para mantener la competitividad

en el panorama tecnológico en constante evolución. Al desglosar las aplicaciones

en estructuras más flexibles y resilientes, las empresas no solo optimizan sus

operaciones internas, sino que también mejoran su capacidad para adaptarse

rápidamente a cambios en el mercado y a las exigencias de los consumidores.

7

3. PLANTEAMIENTO DEL PROBLEMA

3.1. Planteamiento del problema

En la era digital actual, la elección de la arquitectura de software es

fundamental para el éxito empresarial a largo plazo. Las empresas se enfrentan

al desafío de desarrollar aplicaciones que no solo cumplan con los requisitos

funcionales actuales, sino que también sean ágiles y escalables para adaptarse

a las necesidades futuras. En este escenario, muchas organizaciones han optado

tradicionalmente por arquitecturas monolíticas debido a su aparente simplicidad

y coherencia en las etapas iniciales de desarrollo.

Las arquitecturas monolíticas enfrentan problemas significativos de

escalabilidad y costos operativos a medida que las aplicaciones crecen. Este tipo

de arquitectura, que concentra todas las funcionalidades en un solo proceso o

servicio, requiere que cada ajuste o mejora implique un despliegue completo de

la aplicación, incrementando el riesgo de errores y llevando a tiempos de

inactividad que afectan negativamente la experiencia del usuario y la

competitividad de la empresa.

Además, las arquitecturas monolíticas pueden llevar a una pérdida de

competitividad debido a su rigidez en la adaptación tecnológica. La inflexibilidad

para adoptar nuevas tecnologías o frameworks sin reescribir aplicaciones

completas limita la capacidad de las empresas para responder eficazmente a las

demandas cambiantes del mercado y aprovechar nuevas oportunidades de

negocio. Estos factores pueden desencadenar un estancamiento en el mercado,

donde las empresas no logran explotar plenamente el potencial de la innovación

8

debido a las limitaciones impuestas por una infraestructura de TI inflexible y

costosa.

Este enfoque tradicional subraya la necesidad crítica de evaluar

alternativas que permitan actualizaciones y mejoras continuas sin comprometer

la integridad del sistema en su totalidad, lo que es esencial para mantener y

mejorar la eficiencia operativa y la capacidad de innovación en un entorno

empresarial dinámico. En este sentido, es imperativo explorar arquitecturas de

software que no solo faciliten la integración de nuevas tecnologías y

metodologías, sino que también promuevan una mayor flexibilidad y modularidad.

3.1.1. Pregunta central

¿Cómo diseñar una arquitectura que combine serverless y microservicios

para aumentar la escalabilidad en comparación con la arquitectura monolítica

tradicional de Magento?

3.1.2. Preguntas Auxiliares

• ¿Cuáles son los indicadores clave que demuestran que las arquitecturas

de microservicios y serverless pueden mejorar la escalabilidad en

comparación con las arquitecturas monolíticas tradicionales?

• ¿Cuáles son los desafíos y limitaciones técnicas que enfrentan las

empresas al intentar integrar arquitecturas serverless y de microservicios

en sistemas existentes dominados por estructuras monolíticas?

• ¿De qué manera la inflexibilidad tecnológica de las arquitecturas

monolíticas afecta la capacidad de innovación y adaptación de las

empresas ante cambios en el mercado?

9

4. JUSTIFICACIÓN

En la búsqueda de métodos para impulsar la integración de sistemas de

información efectiva y eficiente, esta investigación se inscribe en la línea de

Sistemas para impulsar la integración de sistemas de información, un campo de

mayor relevancia en el ámbito tecnológico empresarial. La integración de

sistemas es fundamental para el aprovechamiento de datos y recursos

tecnológicos, y la elección de una arquitectura de software adecuada es crucial

para alcanzar este objetivo. En este contexto, se utilizará Magento, una

plataforma de comercio electrónico conocida por su amplia adopción y estructura

modular, como caso de estudio para explorar la transición de su arquitectura

monolítica tradicional hacia una más desacoplada mediante microservicios y

serverless.

En el sector tecnológico actual, las empresas enfrentan desafíos

constantes para mantenerse competitivas y eficientes. En este contexto, la

elección de la arquitectura de software juega un papel crucial en la operatividad

y escalabilidad de las soluciones empresariales. Tradicionalmente, muchas

empresas han adoptado arquitecturas monolíticas por su simplicidad inicial y

coherencia operacional. Sin embargo, este tipo de arquitectura a menudo resulta

en ineficiencias significativas en costos operativos y limitaciones en la

escalabilidad, lo que puede obstaculizar la adaptabilidad y el crecimiento

empresarial a largo plazo.

Esta investigación se propone explorar cómo las arquitecturas que

combinan serverless y microservicios pueden ofrecer alternativas viables y

superiores en términos de costos operacionales y escalabilidad en comparación

10

con las arquitecturas monolíticas tradicionales. Al hacerlo, el estudio buscará

proporcionar una base sólida para la toma de decisiones en el desarrollo y gestión

de software, subrayando cómo las arquitecturas más modernas y flexibles

pueden contribuir significativamente a la eficiencia operativa y a la capacidad de

adaptación al cambio.

Asimismo, este estudio permitirá entender mejor las implicaciones

económicas y técnicas de las transiciones arquitectónicas en ambientes

empresariales, facilitando a las organizaciones la evaluación de sus

infraestructuras actuales y la planificación de mejoras futuras. Al proporcionar

esta comprensión, la investigación no solo ayudará a resolver conflictos

operativos y estratégicos actuales, sino que también establecerá un marco para

el aprovechamiento de tecnologías emergentes y la innovación continua.

Además, la transición hacia arquitecturas más modernas como

microservicios y serverless representa una evolución crítica en la forma en que

las organizaciones desarrollan y despliegan sus aplicaciones. Este cambio no

solo promete mejoras en la agilidad y la eficiencia, sino que también introduce

nuevas formas de gestionar la seguridad y la continuidad del servicio, aspectos

que son vitales en un entorno empresarial cada vez más dependiente de

tecnologías digitales robustas y seguras.

Explorar estas arquitecturas en profundidad proporcionará insights

valiosos sobre las mejores prácticas y estrategias para mitigar riesgos asociados

con la implementación y el mantenimiento de sistemas complejos en la nube. Al

entender estas dinámicas, las empresas podrán anticipar mejor los retos que

conlleva la modernización de su infraestructura tecnológica y estarán mejor

equipadas para gestionar el cambio de manera proactiva y efectiva.

11

5. OBJETIVOS

5.1. General

Diseñar una arquitectura que combine serverless y microservicios para

aumentar la escalabilidad de Magento, en comparación con su arquitectura

monolítica tradicional.

5.2. Específicos

• Identificar los indicadores clave que demuestran que las arquitecturas de

microservicios y serverless pueden mejorar la escalabilidad.

• Diseñar y evaluar una arquitectura que combine elementos de serverless

y microservicios, para identificar y superar los desafíos técnicos que

enfrentan las empresas al integrar estas tecnologías en sistemas

existentes.

• Implementar un prototipo de arquitectura combinando serverless y

microservicios para analizar cómo la flexibilidad de esta integración puede

mejorar la capacidad de innovación y adaptación en entornos

empresariales frente a las limitaciones de las arquitecturas monolíticas.

12

13

6. NECESIDADES A CUBRIR Y ESQUEMA DE SOLUCIÓN

Para enfrentar los desafíos asociados con la ineficiencia en costos y la

falta de escalabilidad de las arquitecturas monolíticas en aplicaciones

empresariales, se propone una arquitectura híbrida que integra serverless y

microservicios. Este enfoque se centra en superar las limitaciones de las

arquitecturas tradicionales, aprovechando la flexibilidad operacional y la

reducción de costos.

El desarrollo de esta arquitectura híbrida se basará en la combinación de

microservicios independientes y funciones serverless, lo cual permite una gestión

más eficiente y escalable de los recursos. Los microservicios se encargarán de

manejar las operaciones core de la aplicación, permitiendo una mejor distribución

de carga y facilitando actualizaciones más ágiles y menos disruptivas. Por otro

lado, las funciones serverless se utilizarán para tareas específicas que requieran

escalabilidad instantánea y gestión de alta demanda sin la necesidad de

mantener recursos constantemente activos.

14

Figura 1.

Arquitectura híbrida con serverless y microservicios

Nota. Este enfoque arquitectónico permite desplegar servicios tradicionales consumiendo

recursos mínimos en el sistema operativo que se alojan. Elaboración propia, realizado con

draw.io.

En la Figura 1, se presenta un diagrama con una representación visual

que ayuda a conceptualizar cómo estructurar una solución de este tipo, y una

representación inicial que puede adaptarse y refinarse según las necesidades del

entorno empresarial. Sirve como guía para el diseño preliminar y como punto de

partida para discusiones futuras y ajustes que podrían ser necesarios según

evoluciona el entendimiento de las demandas operativas y tecnológicas.

En la Figura 1 se muestra cómo las solicitudes desde un sitio web son

dirigidas inicialmente a AWS Lambda (servicio serverless), que actúa como un

procesador ligero y eficiente, ideal para ejecutar operaciones que no requieren

un estado persistente.

15

Lambda puede resolver la solicitud internamente o redirigirla a uno de los

microservicios para su procesamiento. Este enfoque modular asegura que las

operaciones intensivas en recursos sean manejadas por componentes

dedicados, optimizando así el rendimiento y la escalabilidad.

Los microservicios manejan funciones específicas dentro de la aplicación

de manera independiente, permitiendo que cada aspecto del sistema sea

escalable y fácil de mantener. Este modelo híbrido aprovecha la eficiencia de

AWS Lambda para reducir los costos operativos mientras utiliza la robustez y

escalabilidad de los microservicios para garantizar una gestión eficiente y efectiva

de las operaciones más críticas.

El diseño propuesto será evaluado a través de pruebas rigurosas para

validar su eficiencia operativa y escalabilidad, asegurando que la arquitectura no

solo es técnicamente viable, sino que también apoya eficazmente las

operaciones empresariales en un entorno real. Adoptando esta arquitectura, las

empresas no solo mantendrán su competitividad, sino que también liderarán en

innovación y eficiencia operacional.

16

17

7. ALCANCES

7.1. Alcances de investigación

Este proyecto de investigación se centrará en la descomposición de la

plataforma Magento en su versión 2.0, una herramienta líder en el ámbito del

comercio electrónico, examinando específicamente cómo su arquitectura

monolítica tradicional puede ser transformada utilizando enfoques basados en

microservicios y tecnologías serverless. El estudio se concentrará en la

descomposición de módulos clave, adaptándolos a arquitecturas de

microservicios y serverless para mejorar su escalabilidad y eficiencia operativa.

Este enfoque permitirá una evaluación detallada de cómo la implementación de

estas tecnologías modernas puede ofrecer beneficios tangibles en términos de

rendimiento, costos y capacidad de respuesta ante fluctuaciones del mercado.

Además, se llevará a cabo una comparación sistemática entre las

configuraciones monolíticas originales y las nuevas implementaciones,

proporcionando un análisis profundo de las mejoras en escalabilidad y eficiencia

que estos cambios arquitectónicos representan para Magento en un entorno

comercial dinámico.

7.2. Alcances técnicos

Este proyecto se centrará en desarrollar un prototipo funcional que

transformará ciertos componentes de la plataforma Magento de una

configuración monolítica a una arquitectura optimizada usando microservicios y

serverless. La selección de módulos para esta conversión se basará en un

18

análisis detallado que identificará aquellos elementos de la plataforma que más

se beneficiarían de esta modernización, teniendo en cuenta su impacto en la

escalabilidad y eficiencia operativa.

Se utilizarán las tecnologías adecuadas para el desarrollo de

microservicios y la implementación de soluciones serverless. Los microservicios

serán encapsulados utilizando Docker y AWS ECS. Paralelamente, las funciones

serverless se implementarán mediante AWS Lambda, lo que permitirá una

gestión eficiente del procesamiento de demandas sin la necesidad de recursos

de servidor permanentemente activos. Las tecnologías AWS Lambda y AWS

ECS son servicios de nube ofrecidos por la plataforma Amazon Web Services

Este enfoque de desarrollo está diseñado para confirmar los beneficios

potenciales de una arquitectura descompuesta, con un foco particular en la

mejora de la gestión de recursos. La meta es demostrar cómo la integración de

microservicios y serverless puede proporcionar una base más flexible y escalable

para operaciones de comercio como en el caso de Magento.

Se delimitará el alcance del prototipo a funcionalidades específicas de los

módulos seleccionados, y no se garantiza una cobertura completa de todas las

funcionalidades de Magento.

7.3. Alcances de resultados

• Prototipo funcional que implemente módulos seleccionados de Magento

en arquitecturas de microservicios y serverless.

19

• Reportes sobre las evaluaciones realizadas al prototipo y al software

original, incluyendo tiempos de respuesta, capacidad de manejo de cargas

y análisis de costos.

• Documentación completa y manuales de operación que describen en

detalle las modificaciones implementadas y cómo gestionarlas.

• Análisis de la viabilidad de esta migración, con recomendaciones

estratégicas basadas en los beneficios observados y los desafíos

enfrentados durante la implementación.

20

21

8. MARCO TEÓRICO

8.1. Arquitecturas de software

La arquitectura de software se refiere al marco organizacional empleado

para diseñar, desarrollar y desplegar aplicaciones de software. Estas se clasifican

generalmente en diferentes tipos, basados en cómo se estructuran y se integran

los componentes del sistema. Cada tipo de arquitectura ofrece distintos

beneficios y enfrenta diferentes desafíos, influenciados por factores como los

requisitos del negocio, la naturaleza del proyecto, la escalabilidad deseada, y las

preferencias tecnológicas.

8.1.1. Arquitecturas monolíticas

Las arquitecturas monolíticas representan uno de los enfoques de diseño

de software más antiguos y tradicionales. En estas arquitecturas, una aplicación

se construye como una entidad única e indivisible donde todos los componentes

de software están interconectados y dependientes entre sí (Elgheriani & Ahmed

2022). Estas arquitecturas centralizadas agrupan todas las funcionalidades en un

único proceso de ejecución, lo que simplifica las pruebas y el despliegue inicial,

pero puede dificultar la escalabilidad y el mantenimiento a medida que la

aplicación aumenta en tamaño y complejidad.

La figura 2 ilustra un ejemplo de arquitectura monolítica, donde múltiples

módulos funcionales como la gestión de viajes, reservas de hoteles,

procesamiento de pagos y autenticación de usuarios están integrados en una

22

única aplicación. En este tipo de arquitectura, los componentes están altamente

acoplados, compartiendo tanto la base de datos como el entorno de ejecución.

Figura 2.

Arquitectura monolítica

Nota. Explica cómo funciona la arquitectura monolítica con bloque. Adaptado de S. Elgheriani &

N. Ahmed. Microservices vs. Monolithic Architectures. International Journal of Applied Sciences

and Technology, 3(6), p. 508. https://www.minarjournal.com/dergi/microservices-vs-monolithic-

architectures-the-differential-structure-between-two-architectures20221202031410.pdf

8.1.1.1. Características de las arquitecturas

monolíticas

• Todos los componentes de la aplicación, incluyendo la lógica de negocio,

la interfaz de usuario, y la gestión de datos, están fuertemente acoplados

dentro de un único proceso ejecutable.

• Debido a que la aplicación es un único bloque construido, el despliegue

suele ser más directo, generalmente requiriendo la gestión de un solo

archivo o directorio.

https://www.minarjournal.com/dergi/microservices-vs-monolithic-architectures-the-differential-structure-between-two-architectures20221202031410.pdf
https://www.minarjournal.com/dergi/microservices-vs-monolithic-architectures-the-differential-structure-between-two-architectures20221202031410.pdf

23

• Las aplicaciones monolíticas típicamente escalan mediante el escalado

vertical, lo que significa aumentar la capacidad del servidor donde se aloja

la aplicación.

• Las arquitecturas monolíticas suelen estar limitadas por la tecnología en

la que se desarrollan inicialmente. Cualquier actualización o cambio

requiere una revisión de todo el sistema, lo que puede ser tanto arriesgado

como laborioso.

• Conforme la aplicación aumenta en tamaño y complejidad, gestionar,

actualizar y escalarla puede volverse progresivamente más complicado,

afectando potencialmente el funcionamiento de toda la plataforma.

8.1.1.2. Ventajas y desventajas en el contexto

empresarial

En el contexto empresarial, las arquitecturas monolíticas ofrecen tanto

beneficios claros como desafíos significativos (Elgheriani & Ahmed, 2022). A

continuación, se exploran las ventajas y desventajas más relevantes de adoptar

una arquitectura monolítica para aplicaciones empresariales.

• Ventajas

o La arquitectura monolítica permite una mayor simplicidad en el

desarrollo y el despliegue debido a su estructura integrada. Esto

facilita la gestión ya que todas las operaciones se manejan dentro

de un único proceso, lo que puede ser particularmente beneficioso

para las empresas con infraestructuras menos complejas o con

menos recursos para gestionar sistemas distribuidos.

o Dado que todos los componentes de una aplicación monolítica se

ejecutan dentro de un mismo proceso, no se requieren

24

comunicaciones entre procesos, lo que puede resultar en menor

latencia y un rendimiento más rápido en comparación con

arquitecturas distribuidas, como los microservicios.

o Estas aplicaciones pueden facilitar las pruebas y la depuración,

dado que no requieren la configuración de múltiples servicios ni la

administración de su comunicación. Esta ventaja resulta

fundamental en las etapas de desarrollo y mantenimiento, ya que

disminuye los recursos requeridos y el tiempo para dichas

actividades.

• Desventajas

o La escalabilidad representa una limitación importante en las

arquitecturas monolíticas, ya que aumentar la capacidad de la

aplicación implica hacerlo a todo el sistema, lo cual puede ser

menos eficiente y más costoso que escalar componentes

individuales en una arquitectura de microservicios.

o Con el crecimiento de la aplicación, su mantenimiento y

actualización pueden tornarse más complicados y arriesgados.

Cualquier cambio en el sistema puede demandar un despliegue

completo, elevando el riesgo de fallos y de interrupciones en el

servicio.

o Las aplicaciones monolíticas suelen estar vinculadas a un único

stack tecnológico, lo que puede dificultar y encarecer la adopción

de nuevos frameworks o tecnologías. Esta rigidez puede impedir la

innovación y la adaptabilidad a nuevas tendencias del mercado.

25

Aunque existen ventajas, el modelo monolítico pierde por las limitaciones

de metodologías modernas de entrega de software. En un entorno empresarial

que exige agilidad y flexibilidad, las limitaciones en escalabilidad y dificultad para

adoptar nuevas tecnologías pueden representar desventajas significativas

(Elgheriani & Ahmed, 2022).

8.1.2. Arquitecturas basadas en microservicios

El enfoque de microservicios es una estrategia de diseño de aplicaciones

que divide el sistema en componentes independientes, con cada servicio

asignado a una función específica. Estos servicios operan en entornos

distribuidos, facilitando la escalabilidad y la adaptabilidad. Esta modularidad

permite actualizaciones individuales sin afectar al sistema global y apoya la

utilización de tecnologías diversas para cada servicio, optimizando así la

eficiencia y flexibilidad del desarrollo.

8.1.2.1. Fundamentos teóricos de los

microservicios

Los microservicios se fundamentan en el principio de descomposición de

aplicaciones grandes en unidades más pequeñas, independientes y manejables,

que se comunican entre sí mediante interfaces ligeras, comúnmente APIs

RESTful. Esta descomposición facilita la modularidad y mejora la mantenibilidad

del software. Esta característica permite desarrollar, probar, desplegar y escalar

cada servicio de forma independiente, lo cual es un cambio significativo respecto

a las monolíticas y SOA tradicionales.

En la figura 3 se puede observar cómo se puede descomponer un sistema

grande en varias unidades más pequeñas con funcionalidades diferentes.

26

Figura 3.

Ejemplo de una descomposición

Nota. Descomposición orientada a objetos. Adaptado de V. Velepucha y Flores (2023). A Survey

on Microservices Architecture: Principles, Patterns and Migration Challenges. IEEE Access, 11.

p. 88341. (https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10220070).

Los microservicios operan bajo la teoría de que cada servicio debe ser

autónomo, gestionando su propio ciclo de vida y dependencias. Esto minimiza

las dependencias complejas entre componentes y facilita la escalabilidad

horizontal de los sistemas. Esta autonomía es esencial para aplicaciones

empresariales que requieren alta disponibilidad y flexibilidad para adaptarse a

cambios rápidos en el mercado o en la tecnología (Garlan & Shaw 2020).

Los microservicios en lugar de seguir un modelo de gobernanza

centralizada típico de arquitecturas monolíticas, los microservicios adoptan un

enfoque descentralizado. Esto ofrece a los equipos de desarrollo la flexibilidad de

seleccionar las herramientas y tecnologías que mejor se ajusten a sus

necesidades, promoviendo la innovación y la capacidad de adaptación. Este

concepto es esencial para preservar la agilidad y eficacia en el desarrollo y

despliegue de nuevos servicios.

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10220070

27

8.1.2.2. Patrones de diseño en microservicios

Los patrones de diseño en microservicios son esenciales para abordar los

retos comunes en el desarrollo y la gestión de aplicaciones distribuidas. Estos

patrones proporcionan soluciones probadas para problemas específicos que

surgen al descomponer una aplicación en servicios más pequeños, gestionar su

interacción, y asegurar su despliegue y operación eficientes (Taibi et al., 2018).

8.1.2.2.1. Patrones de orquestación y

coordinación

Estos patrones juegan un papel clave en la interacción de los

componentes y el manejo de datos dentro de los sistemas basados en

microservicios Incluyen mecanismos para la coordinación y la orquestación de

servicios, esenciales para mantener la funcionalidad y eficiencia del sistema

(Taibi et al., 2018).

• Api gateway:

En este patrón, el api gateway actúa como un intermediario que maneja

las solicitudes de los clientes, dirigiéndose a los microservicios apropiados. Este

patrón es esencial para manejar la seguridad, la tasa de límites y las

transformaciones de protocolos necesarias en un entorno distribuido.

Puede encargarse de varias tareas como autenticación, monitoreo y

manejo de respuestas estáticas, simplificando así las interacciones y

aumentando el rendimiento del sistema al reducir el número de solicitudes que

cada cliente necesita realizar.

28

En la figura 4 se muestra un ejemplo típico de una arquitectura de

microservicios, donde un API Gateway actúa como un punto central de acceso

para los clientes que interactúan con varios servicios especializados. En este

esquema, el API Gateway maneja las solicitudes de los clientes y las enruta a los

microservicios correspondientes.

Figura 4.

Patrón de arquitectura Api Gateway

Nota. Catálogo de patrones. Obtenido de D. Taibi, Lenarduzzi, V. & C. Pahl. Architectural Patterns

for Microservices: A Systematic Mapping Study. 8th International Conference on Cloud Computing

and Services Science, p. 3. (10.5220/0006798302210232).

8.1.2.2.2. Patrones de Descubrimiento

de Servicios

Estos patrones son clave para manejar múltiples instancias de

microservicios que pueden correr en diferentes contenedores virtualizados o

VMs. La comunicación entre ellos necesita definirse dinámicamente, y los

http://dx.doi.org/10.5220/0006798302210232

29

clientes deben poder comunicarse eficientemente con la instancia apropiada del

microservicio que cambia dinámicamente. Estos patrones apoyan

dinámicamente la resolución de direcciones DNS en direcciones IP (Taibi et al,

2018).

• Patrón de Descubrimiento del lado del cliente

Los clientes consultan el Registro de Servicios, seleccionan una instancia

disponible y realizan una solicitud directamente. Este patrón implica que el cliente

es responsable de elegir una de las instancias de servicios disponibles y de sus

ubicaciones de red.

La principal ventaja de este patrón está conectada a la facilidad de

desarrollo, ya que los clientes son conscientes de las ubicaciones de las

instancias de servicio y, por lo tanto, pueden conectarse directamente a ellas sin

añadir la complejidad de desarrollo del descubrimiento del lado del servidor.

En la figura 5 se observa como los clientes consultan un Registro de

Servicios para obtener la dirección de las instancias disponibles de un servicio

específico, en este caso, un carrito de compras. Cada instancia de servicio se

registra en el Registro de Servicios al iniciarse, proporcionando su ubicación

actual. El cliente, que está "consciente del registro", consulta este registro para

determinar a cuál instancia conectarse, utilizando la API REST del servicio

correspondiente.

30

Figura 5.

Patrón de descubrimiento del lado del cliente

Nota. Varios artículos también identificaron desventajas de patrones. Adaptado de D. Taibi,

Lenarduzzi, V. & C. Pahl. Architectural Patterns for Microservices: A Systematic Mapping Study.

8th International Conference on Cloud Computing and Services Science, p. 5. Doi:

(10.5220/0006798302210232).

8.1.2.2.3. Patrones de almacenamiento

de datos en microservicios

En arquitecturas de microservicios, el almacenamiento de datos es un

aspecto crítico que debe ser gestionado cuidadosamente para mantener la

independencia y escalabilidad de los servicios. Estos patrones permiten diseñar

sistemas que pueden crecer y adaptarse eficientemente a los desafíos asociados

con la distribución y la gestión de datos (Taibi et al, 2018).

http://dx.doi.org/10.5220/0006798302210232

31

• Patrón de base de datos por servicio

En este patrón, cada microservicio dispone de una base de datos

separada e independiente. Este método es uno de los más simples y se adopta

frecuentemente al migrar sistemas monolíticos hacia una arquitectura de

microservicios. Al mantener bases de datos independientes para cada

microservicio, se logra una cohesión interna fuerte y se minimiza el acoplamiento

entre los servicios, lo que a su vez facilita la escalabilidad y el mantenimiento del

sistema. Este patrón es compatible tanto con bases de datos relacionales como

NoSQL.

• Patrón de Clúster de Bases de Datos

Este patrón propone almacenar los datos en un clúster de bases de datos,

lo que aumenta la escalabilidad y permite trasladar las bases de datos a hardware

especializado. En este enfoque, cada microservicio puede tener acceso a un

conjunto específico de tablas o a un esquema privado dentro de la base de datos.

Desde la perspectiva del microservicio, este patrón es similar al Servidor de Base

de Datos Compartido, dado que la interacción con la base de datos se efectúa

de la misma manera.

8.1.3. Arquitecturas serverless

Las arquitecturas serverless representan un enfoque moderno en la

construcción de aplicaciones, caracterizadas por la descomposición de sistemas

en múltiples funciones independientes que se ejecutan en la nube. En contraste

con las arquitecturas monolíticas o de microservicios, donde los componentes

están interconectados, en una arquitectura serverless cada función es

independiente, se dispara en respuesta a eventos específicos y ajusta su escala

32

automáticamente según las necesidades. Con esta metodología, se minimiza la

gestión de la infraestructura, dando a los desarrolladores la libertad de enfocarse

por completo en los procesos clave del negocio.

En la figura 6 se ejemplifica como una tienda en línea implementa una

arquitectura serverless, en donde se observa una función para buscar y otra para

realizar una compra.

Figura 6.

Arquitectura Serverless

Nota. Ejemplo de arquitectura sin servidor. Adaptado de O. Andel (2020). Architectural

Implications of Serverless and Function-as-a-Service. (https://www.diva-

portal.org/smash/get/diva2:1442437/FULLTEXT01.pdf), consultado el 15 de agosto de 2024.

Reservado derechos de autor.

8.1.3.1. Fundamentos teóricos de serverless

Serverless o Function-as-a-Service (FaaS) ha aparecido como una

innovación en la computación en la nube, situándose entre los modelos Platform-

https://www.diva-portal.org/smash/get/diva2:1442437/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:1442437/FULLTEXT01.pdf

33

as-a-Service (PaaS) y Software-as-a-Service (SaaS) en términos del control que

los desarrolladores tienen sobre la plataforma. A pesar del nombre, las funciones

serverless siguen ejecutándose en servidores; sin embargo, la administración

tanto de la infraestructura como de los servidores está totalmente bajo la

responsabilidad de un proveedor de la nube. Este modelo facilita que los

desarrolladores se concentren exclusivamente en los procesos del negocio,

mientras el proveedor se ocupa del aprovisionamiento, escalado y gestión de los

recursos. (Andell, 2020).

La arquitectura serverless se caracteriza por la descomposición de

aplicaciones en funciones autónomas y sin estado, que se activan en respuesta

a eventos específicos, como solicitudes HTTP o cambios en la base de datos.

Esto ofrece ventajas significativas, como la capacidad de escalado automático,

la reducción de costos de infraestructura al pagar solo por el uso real, y la

eliminación de la necesidad de gestionar servidores.

No obstante, este enfoque también conlleva desafíos, como la

dependencia del proveedor de la nube, lo que puede llevar a un problema de

vendor lock-in, y la complejidad añadida por los cold starts, que pueden aumentar

la latencia cuando una función no se ha ejecutado recientemente. A pesar de sus

limitaciones, la arquitectura serverless sigue siendo una opción viable y atractiva

para desarrollar aplicaciones escalables y rentables, especialmente en

escenarios con demandas de recursos impredecibles.

8.1.3.2. Comparación entre arquitecturas serverless

y tradicionales

Las arquitecturas serverless se diferencian significativamente de las

arquitecturas tradicionales, como las monolíticas y las basadas en microservicios,

34

en varios aspectos clave. En una arquitectura monolítica convencional, toda la

lógica de la aplicación está integrada en un solo y amplio bloque de código, lo

que facilita las fases iniciales de desarrollo e implementación, pero complica la

escalabilidad y el mantenimiento a medida que el sistema crece. En contraste,

las arquitecturas basadas en microservicios separan la aplicación en servicios

autónomos más pequeños, que se pueden escalar y desplegar de forma

independiente. Esto soluciona varios problemas de las arquitecturas monolíticas,

pero introduce una mayor complejidad en la administración de múltiples servicios

y sus interrelaciones. (Andell, 2020).

Las arquitecturas serverless van un paso más allá en esta

descomposición, dividiendo la aplicación en funciones aún más pequeñas y

autónomas que se activan en respuesta a eventos concretos. No solo se reduce

el costo y la dificultad en la gestión de la infraestructura, que es completamente

administrada por el proveedor del servicio, sino que también se habilita un

escalado automático más preciso y eficiente.

En cuanto al rendimiento, las arquitecturas tradicionales tienden a ser más

predecibles y estables en términos de latencia, especialmente en sistemas donde

la latencia baja y consistente es crítica. En contraste, las arquitecturas serverless

pueden sufrir de latencias más altas e impredecibles debido a los cold starts, lo

que las hace menos adecuadas para aplicaciones que requieren respuestas

instantáneas. Además, aunque las arquitecturas serverless prometen reducir los

costes operacionales al facturar solo por el uso real, la gestión y optimización de

costes puede ser más compleja en comparación con los modelos de precios más

predecibles de las arquitecturas tradicionales.

35

8.1.3.3. Beneficios de serverless para aplicaciones

dinámicas y de alto tráfico

Las arquitecturas serverless son particularmente beneficiosas para

aplicaciones dinámicas y de alto tráfico debido a su capacidad inherente de

escalar automáticamente en respuesta a la demanda. A diferencia de las

arquitecturas tradicionales, donde es necesario prever el número de servidores

necesarios y gestionarlos manualmente, serverless permite que los recursos se

ajusten de manera automática y granular en función de las necesidades en

tiempo real, lo que garantiza que la aplicación pueda manejar picos de tráfico sin

intervención manual y sin incurrir en costos adicionales significativos cuando el

tráfico es bajo (Andell, 2020).

Este enfoque también es ventajoso en términos de costos operacionales.

Las aplicaciones serverless solo generan costos cuando están activas, ya que la

infraestructura es gestionada por los proveedores de nube, quienes desactivan

automáticamente las funciones cuando no están en uso. Esto contrasta con las

arquitecturas tradicionales, donde se pagan costos fijos por servidores que

pueden estar infrautilizados durante periodos de baja demanda.

Además, la naturaleza sin estado de las funciones serverless permite que

múltiples instancias de una función se ejecuten en paralelo sin conflictos,

optimizando aún más la capacidad de la aplicación para manejar altos volúmenes

de tráfico. Esto es crucial para aplicaciones que experimentan patrones de uso

altamente variables, ya que la arquitectura puede adaptarse de manera eficiente

a estos cambios sin necesidad de una planificación extensa o intervención

administrativa.

36

8.2. Computación en la nube

La computación en la nube se ha establecido como una de las tecnologías

más innovadoras y revolucionarias dentro del campo de la tecnología de la

información. Con esta tecnología, las organizaciones pueden acceder y usar

recursos de TI, tales como almacenamiento, bases de datos y capacidad de

procesamiento, por medio de Internet, evitando así la necesidad de adquirir y

mantener una infraestructura física que resulta costosa y compleja. Ha pasado

de ser un concepto básico de almacenamiento remoto a convertirse en un

sistema sofisticado que respalda aplicaciones empresariales críticas y procesos

clave de negocio (Qian et al., 2009).

En la figura 7 se proporciona una visión clara de cómo las diferentes capas

y componentes interactúan en una arquitectura de computación en la nube. Cada

capa tiene un rol específico, desde la gestión de los recursos físicos hasta la

entrega de aplicaciones finales a los usuarios. Para que un entorno en la nube

sea exitoso, es fundamental la integración y administración eficiente de cada una

de sus capas y elementos. Esta arquitectura escalonada facilita la flexibilidad,

escalabilidad y eficiencia operativa, permitiendo que las empresas ajusten sus

recursos y capacidades según las demandas cambiantes.

37

Figura 7.

Arquitectura en la nube

Nota. Arquitectura de computación en la nube. Adaptado de L. Qian, Z. Luo, Y. Du & L. Guo.

Cloud Computing: An Overview. Cloud Computing, First International Conference, CloudCom

2009, Beijing, China, p. 628.

https://www.researchgate.net/publication/221276709_Cloud_Computing_An_Overview

• Recursos físicos: esta es la capa más básica, que incluye los componentes

físicos como servidores, almacenamiento y redes. Estos son los elementos

tangibles que proporcionan la base para todos los servicios en la nube.

• Recursos virtualizados: por encima de los recursos físicos, la virtualización

permite que estos recursos físicos se dividan en múltiples instancias

virtuales. La virtualización del servidor, almacenamiento y red permite que

https://www.researchgate.net/publication/221276709_Cloud_Computing_An_Overview

38

estos recursos se utilicen de manera más eficiente y sean escalables. Los

recursos virtualizados son fundamentales para proporcionar servicios en

la nube de manera flexible y dinámica.

• Marcos de trabajo computacionales: esta capa incluye los frameworks de

procesamiento que soportan las operaciones de la nube. Ejemplos

incluyen el procesamiento transaccional y el análisis y programación de

tareas. Estos marcos permiten la ejecución eficiente de tareas que pueden

ser de naturaleza transaccional o analítica.

• Componentes de capacidad de aplicación: en esta subcapa, se

encuentran componentes como servidores web, servidores de

aplicaciones, bases de datos, sistemas de colas de mensajes (MsqQ), y

otras herramientas esenciales para la construcción de aplicaciones. Estos

componentes son cruciales para brindar servicios específicos a las

aplicaciones que operan en la nube.

• Aplicaciones: en esta capa se encuentran las aplicaciones que realizan

funciones específicas como análisis, transacciones, interacción y

navegación. Estas aplicaciones son las que los usuarios finales utilizan y

se benefician de los servicios y capacidades proporcionados por las capas

inferiores. Cada tipo de aplicación puede requerir diferentes capacidades

de la infraestructura subyacente.

• Operación, administración y mantenimiento: en el lateral izquierdo de la

figura, se detalla un conjunto de funciones relacionadas con la operación,

administración y mantenimiento de la infraestructura de la nube. Esto

incluye la implementación, configuración, programación, monitoreo,

gestión del rendimiento, y facturación, entre otros. Estas funciones son

39

esenciales para asegurar que todos los recursos y aplicaciones en la nube

operen de manera eficiente, segura y dentro de los costos previstos.

8.2.1. Conceptos básicos de la computación en la nube

La nube se refiere a la provisión de diferentes servicios informáticos, como

servidores, almacenamiento, bases de datos, redes y software, así como

herramientas de análisis, todo a través de Internet. Este modelo de servicio

permite a las organizaciones alquilar recursos informáticos en lugar de adquirir y

mantener su propia infraestructura física, lo que se traduce en una mayor

flexibilidad y eficiencia en costos.

Existen diferentes enfoques para implementar soluciones en la nube. El

más elemental es la Infraestructura como Servicio (IaaS), que ofrece a los

usuarios acceso a recursos informáticos virtualizados. Las organizaciones

pueden alquilar estos recursos según sus necesidades, escalando vertical u

horizontalmente de acuerdo con la demanda. Ejemplos populares de este

enfoque incluyen Amazon Web Services (AWS) y Microsoft Azure (Qian et al.,

2009).

El modelo Plataforma como Servicio (PaaS) proporciona una plataforma

sobre la cual los desarrolladores pueden crear, desplegar y administrar

aplicaciones sin preocuparse por la infraestructura que está detrás. Este modelo

abarca tanto el hardware requerido como las herramientas de desarrollo y el

middleware, que simplifican el proceso de creación de software. Google App

Engine y Microsoft Azure son ejemplos de servicios PaaS (Rashid & Chaturvedi,

2019).

40

El modelo Software como Servicio (SaaS) ofrece aplicaciones completas

a los usuarios finales mediante Internet. Al estar alojadas en la nube, estas

aplicaciones pueden ser utilizadas desde distintos dispositivos con conexión a la

red. SaaS elimina la necesidad de instalar y ejecutar aplicaciones en los

ordenadores de los usuarios, lo que simplifica el mantenimiento y el soporte

técnico. Ejemplos de SaaS incluyen Google Workspace y Salesforce.

La computación en la nube también se caracteriza por cinco atributos

esenciales: autoservicio bajo demanda, acceso amplio a la red, agrupación de

recursos, elasticidad rápida y servicio medido. Estos atributos garantizan que las

organizaciones puedan gestionar y utilizar los recursos de manera eficiente y

adaptarse rápidamente a los cambios en las demandas del mercado.

8.2.2. Ventajas de la nube para el escalado y manejo de

aplicaciones empresariales

La computación en la nube proporciona múltiples beneficios para el

escalado y la gestión de aplicaciones empresariales, cambiando la forma en que

las empresas operan y administran sus recursos tecnológicos.

• La habilidad de escalar recursos automáticamente según las necesidades.

Las aplicaciones empresariales que enfrentan variaciones en la carga de

trabajo, como aumentos de tráfico durante promociones o eventos

especiales, pueden aprovechar considerablemente la habilidad de la nube

para ajustar los recursos de manera dinámica. (Qian et al., 2009).

• En lugar de invertir en infraestructura costosa y subutilizada, las

organizaciones solo pagan por los recursos que realmente utilizan. Esto

es particularmente beneficioso para las aplicaciones que tienen patrones

41

de uso variables, como las que se ejecutan de manera intensiva durante

ciertas horas del día o en temporadas específicas (Rashid & Chaturvedi,

2019).

• Proporciona alta disponibilidad y redundancia incorporada, lo que es

importante para aplicaciones empresariales críticas. Los proveedores de

estos servicios implementan infraestructuras robustas con múltiples

centros de datos distribuidos geográficamente, permitiendo que las

aplicaciones permanezcan operativas incluso en caso de fallos en uno o

más servidores.

• La nube ofrece una flexibilidad sin precedentes para el manejo de

aplicaciones empresariales. Las empresas pueden implementar nuevas

aplicaciones o servicios en la nube de manera rápida y sencilla, lo que les

permite adaptarse a las necesidades cambiantes del mercado y responder

a las oportunidades con mayor agilidad.

8.2.3. Amazon Web Services

Es una de las plataformas de servicios en la nube más adoptadas del

mundo, ofreciendo servicios para desarrollar, implementar y gestionar

aplicaciones con muchas herramientas. AWS proporciona infraestructura bajo

demanda, lo que quiere decir que las empresas pueden acceder a diferentes

recursos en función de sus necesidades, pagando únicamente lo necesario, sin

realizar inversiones iniciales significativas en hardware (Kewate et al., 2022).

Soporta una amplia gama de servicios que incluyen cómputo,

almacenamiento, bases de datos, análisis, redes, movilidad, herramientas para

desarrolladores, administración, IoT, seguridad, y aplicaciones empresariales.

42

8.2.3.1. Servicios enfocados en Microservicios

AWS ofrece una amplia gama de servicios diseñados específicamente

para apoyar arquitecturas basadas en microservicios. Estos servicios permiten a

las organizaciones desarrollar, desplegar y escalar aplicaciones compuestas por

microservicios de manera eficiente y flexible. Por ejemplo, Amazon Elastic

Container Service (ECS) es un servicio altamente escalable que permite ejecutar

y gestionar contenedores Docker en un clúster.

8.2.3.1.1. Amazon Elastic Container

Service

Se trata de un servicio completamente administrado por AWS que permite

desplegar y gestionar contenedores Docker a gran escala. ECS facilita la

implementación de aplicaciones que siguen una arquitectura de microservicios,

donde cada microservicio se ejecuta en un contenedor independiente,

permitiendo una mayor modularidad, escalabilidad y resiliencia.

ECS funciona al crear un clúster de recursos que pueden distribuirse entre

diferentes centros de datos. Estos clústeres pueden llenarse con instancias de

EC2 que actúan como la infraestructura subyacente para los contenedores. Cada

instancia de EC2 en el clúster ejecuta un agente ECS, que registra la instancia

en el clúster y gestiona la comunicación entre los contenedores y la

infraestructura subyacente (Salah et al., 2022).

Es un buen servicio a considerar para la gestión de aplicaciones basadas

en microservicios, gracias a su integración profunda con la infraestructura de

AWS y sus capacidades avanzadas de gestión y escalado automatizado.

43

8.2.3.2. Servicios Serverless

Los servicios serverless han transformado la forma en que se desarrollan

y despliegan las aplicaciones, al eliminar la necesidad de que el usuario final

gestione la infraestructura. Con este enfoque, los desarrolladores pueden

concentrarse únicamente en los procesos operativos del negocio, mientras que

el proveedor de soluciones en la nube se encarga del aprovisionamiento,

escalado y gestión de los servidores. En el contexto de AWS, uno de los servicios

serverless más destacados es AWS Lambda, que fue lanzado en 2015 como la

primera plataforma comercial de Function-as-a-Service (FaaS) (Andell, 2020).

8.2.3.2.1. Amazon Lambda

Lambda ofrece a los desarrolladores la posibilidad de ejecutar código en

reacción a eventos, eliminando la necesidad de gestionar servidores. Esto se

logra mediante la división de aplicaciones en pequeñas funciones

independientes, que se activan automáticamente en respuesta a eventos como

solicitudes HTTP, cambios en bases de datos, o mensajes de servicios de colas.

Este enfoque elimina la carga de aprovisionar y mantener infraestructura,

permitiendo que las aplicaciones escalen automáticamente según la demanda

(Andell, 2020).

Entre las características más destacadas de AWS Lambda se encuentra

su capacidad para escalar automáticamente, ajustando el número de instancias

de la función según la carga de trabajo. Esto es particularmente útil en

aplicaciones con patrones de tráfico impredecibles, ya que permite que las

aplicaciones manejen picos de tráfico sin intervención manual. Además, Lambda

ofrece un modelo de precios basado en el uso real, cobrando solo por el tiempo

de ejecución de las funciones, lo que reduce significativamente los costos

44

operacionales en comparación con arquitecturas tradicionales que requieren

servidores siempre encendidos.

Este servicio es compatible con una amplia variedad de lenguajes de

programación, lo que ofrece a los desarrolladores una gran flexibilidad para

utilizar el lenguaje que mejor se adapte a sus necesidades. Entre los lenguajes

soportados se incluyen Node.js, Python, Java, Ruby, C# (.NET Core), Go, y

PowerShell. Además, AWS Lambda permite ejecutar funciones en otros

lenguajes a través del uso de contenedores personalizados, lo que amplía la

flexibilidad de la plataforma para soportar casi cualquier entorno de ejecución.

Esta capacidad multilenguaje hace que Lambda sea una opción ideal para

equipos de desarrollo que trabajan con diferentes tecnologías y necesitan un

entorno que soporte sus herramientas y flujos de trabajo preferidos.

8.3. Integración de Microservicios y Serverless

La integración de microservicios con arquitecturas serverless es un

enfoque que combina lo mejor de ambos mundos: la modularidad y la

independencia de los microservicios con la eficiencia y la escalabilidad

automática de las plataformas serverless. Estas dos arquitecturas están

diseñadas para abordar los desafíos de las aplicaciones modernas, donde la

demanda de agilidad, escalabilidad y reducción de costos operacionales es

crucial.

La arquitectura serverless permite ejecutar microservicios de manera que

solo se utilizan los recursos computacionales cuando es necesario, eliminando la

necesidad de mantener servidores activos constantemente. Esto se logra

mediante el uso de servicios como AWS Lambda, que ejecuta funciones en

respuesta a eventos y se escala automáticamente según la demanda. La

45

combinación de microservicios y serverless también facilita la implementación de

aplicaciones altamente escalables y resilientes, ya que cada microservicio puede

desplegarse, gestionarse y escalarse de manera independiente (Sadek y

colaboradores, 2022) (Andell, 2018).

8.3.1. Integración y Gestión

Integrar microservicios en una arquitectura serverless requiere estrategias

de gestión específicas para abordar la complejidad y garantizar un rendimiento

óptimo. Una estrategia crucial es la implementación de un API Gateway para

centralizar la gestión de las solicitudes que se envían a los microservicios. API

Gateway actúa como un punto de entrada que enruta las solicitudes a los

microservicios correspondientes, aplica políticas de seguridad, y maneja el tráfico

de manera eficiente. Además de facilitar la comunicación entre microservicios,

también mejora la seguridad y la capacidad de escalar la aplicación.

Otra estrategia efectiva es utilizar patrones de orquestación mediante

servicios como AWS Step Functions, que permiten coordinar múltiples

microservicios y funciones serverless en flujos de trabajo automatizados. Este

enfoque es esencial para manejar dependencias complejas entre microservicios

y garantizar que las tareas se ejecuten en el orden correcto. Además, la

implementación de servicios de colas y mensajerías que permiten una

comunicación asíncrona y desacoplada entre los microservicios, lo que mejora la

resiliencia y la escalabilidad del sistema (Heikkinen, 2023).

Para manejar la complejidad de estas arquitecturas, es crucial disponer de

herramientas de monitoreo y registro que ofrezcan visibilidad. En AWS existen

servicios que apoyan a esta causa, tales como Cloudwatch y Cloudtrail.

46

8.3.2. Estrategias de Migración

Pasar de un sistema monolítico a una combinación de microservicios y

serverless puede presentar desafíos, pero con la estrategia correcta, se pueden

minimizar los riesgos y aprovechar al máximo sus ventajas. Un enfoque común

es la migración gradual, donde partes del sistema monolítico se van

desacoplando y migrando a microservicios, que luego pueden integrarse con

funciones serverless. Este enfoque ofrece a los equipos de desarrollo la

posibilidad de probar la nueva arquitectura en pequeñas partes del sistema antes

de comprometerse por completo con la migración. (Heikkinen, 2023).

Otro enfoque efectivo es el uso de contenedores para encapsular partes

del sistema que aún no se pueden convertir completamente en microservicios o

funciones serverless. Al utilizar plataformas como AWS ECS, es posible ejecutar

estos contenedores de manera serverless, lo que facilita la integración con los

componentes ya migrados y reduce la complejidad de la infraestructura (Sadek

et al., 2022).

Además, es crucial realizar un análisis profundo de las dependencias del

sistema antes de comenzar la migración. Identificar los componentes que tienen

muchas interdependencias con otras partes del sistema puede ayudar a planificar

mejor la secuencia de la migración, priorizando el desacoplamiento de estas

partes para reducir el riesgo de fallos durante la transición (Heikkinen, 2023).

Identificar qué servicios son los más adecuados para extraer en una

arquitectura monolítica es una parte muy importante, una estrategia es extraer

aquellos que se encuentran en las hojas del árbol de dependencias de servicios,

obtenidos al analizar la base de código. Estos servicios no dependen de otros y

47

generalmente tienen contextos delimitados de manera más clara, lo que evita

complicaciones comunes (Brula, 2023).

Aunque algunos servicios son más fáciles de extraer que otros, como regla

general, se recomienda extraer primero un servicio que tenga una necesidad

urgente de funcionar de manera independiente del monolito y que cuente con

contextos bien definidos. Si se selecciona un servicio de esta manera, el esfuerzo

de refactorización, mejora y migración eventualmente dará frutos. Las razones

pueden ser variadas, desde la perspectiva organizacional, la mantenibilidad, el

rendimiento, la disponibilidad, entre otras. Migrar y mantener microservicios sin

un propósito claro puede resultar costoso tanto en tiempo como en dinero.

La figura 8 ilustra la evolución de un prototipo de sistema monolítico hacia

una arquitectura serverless y finalmente hacia un sistema completamente

descompuesto y migrado que incorpora microservicios junto con la arquitectura

serverless.

48

Figura 8.

Descripción general de los pasos de migración del prototipo

Nota. Implementación del prototipo. Adaptado de M. Brula (2023). From Monolith to Serverless

Microservices Migration. (https://epub.technikum-wien.at/obvftwhsmmig/download/pdf/9746870),

consultado el 16 de septiembre de 2024. Derechos reservados del autor.

8.4. Introducción a Magento

Magento, una plataforma de comercio electrónico que ofrece una versión

de paga y otra de código abierto, destaca por su notable flexibilidad y opciones

avanzadas de personalización. Desarrollada originalmente por Varien Inc. y

lanzada en 2008, Magento ha crecido hasta convertirse en una de las plataformas

más reconocidas del mercado, especialmente entre pequeñas y medianas

empresas. Magento permite a los desarrolladores crear tiendas en línea

altamente personalizables, ofreciendo una amplia gama de funcionalidades,

desde la gestión de productos y categorías hasta la integración de múltiples

métodos de pago y la optimización para motores de búsqueda (Lin, 2015).

https://epub.technikum-wien.at/obvftwhsmmig/download/pdf/9746870

49

La versión 2.0 (lanzada en noviembre de 2015), ha experimentado

cambios en términos de estructura y patrones de desarrollo, y actualmente se

encuentra en su segunda versión principal, Magento 2. (Morizur, 2019).

8.4.1. Descripción general de la plataforma Magento

Magento se distingue por su capacidad de personalización. Los usuarios

pueden adaptar casi todos los aspectos de su tienda, desde el diseño del frontend

hasta las funciones de backend, mediante la instalación de módulos y temas

personalizados. Esto facilita que las empresas ofrezcan experiencias de compra

exclusivas y adaptadas a las necesidades de su audiencia. Sin embargo, esta

flexibilidad viene con una complejidad inherente, lo que puede requerir un

conocimiento técnico considerable para su implementación y mantenimiento.

Magento se basa en el lenguaje de programación PHP, lo que le permite

aprovechar la robustez y la amplia comunidad de desarrolladores de PHP. Esta

elección de lenguaje también facilita la integración con diversas herramientas y

servicios web, lo que es crucial para crear experiencias de compra en línea

personalizadas y eficientes.

Las principales características de Magento incluyen la gestión avanzada

de catálogos de productos, diversas opciones de pago y envío, y la capacidad de

gestionar múltiples sitios web desde una sola instalación. Además, la plataforma

cuenta con una robusta interfaz de administración que facilita la gestión eficiente

de las tiendas, soporte para motores de búsqueda, múltiples monedas e idiomas,

y una amplia variedad de extensiones de terceros para ampliar la funcionalidad

de la tienda.

50

8.4.2. Arquitectura modular

Uno de los principales puntos fuertes de Magento es su arquitectura

modular, que ofrece a los desarrolladores la capacidad de crear y gestionar

funcionalidades particulares de forma independiente dentro de la misma

aplicación. Cada módulo en Magento encapsula una funcionalidad particular,

como la gestión de productos, el sistema de pagos, o el manejo de usuarios.

Estos módulos están diseñados para ser independientes entre sí, lo que significa

que se pueden añadir, modificar o eliminar sin afectar la estabilidad del resto del

sistema.

Los módulos en Magento pueden interactuar entre sí mediante relaciones

específicas que son cuidadosamente gestionadas para asegurar la coherencia y

estabilidad del sistema. Por ejemplo, un módulo puede utilizar otro módulo,

reaccionar a eventos generados por otro módulo, o incluso personalizar y

extender la funcionalidad de otro módulo sin necesidad de modificar el núcleo del

sistema. Esto se consigue mediante una mezcla de dependencias estrictas y

flexibles, las cuales están claramente especificadas en la configuración de cada

módulo.

Además, Magento permite la instalación y gestión de módulos de forma

sencilla utilizando Composer, un gestor de dependencias para PHP. Esto facilita

la adición de nuevas funcionalidades a una instalación existente de Magento, así

como la actualización y mantenimiento de módulos sin interferir con otros

componentes del sistema. La capacidad de Magento para gestionar módulos de

forma efectiva es una de las principales razones de su flexibilidad y adaptabilidad,

permitiendo a las empresas ajustar su experiencia de comercio electrónico sin

comprometer la estabilidad del sistema.

51

La estructura de Magento se divide en dos partes clave: el back-end, que

abarca la base de datos, MySQL, y las interfaces de modelo, datos y servicio.

Estas partes están directamente conectadas y se utilizan en los Bloques, Diseños

y Plantillas de Magento, que constituyen el front-end de la aplicación. La figura 9

muestra la arquitectura general de Magento, que está estructurada en varias

capas, cada una con funciones específicas que permiten la flexibilidad y

extensibilidad de la plataforma (Morizur, 2019).

Figura 9.

Representación de la arquitectura de Magento en su versión 2.0

Nota. Capas de Magento. Adaptado de D. Morizur, (2019). Enhancing Magento Frontend

Performance With Reactjs and Comparing It To Knockout.

(https://www.theseus.fi/bitstream/handle/10024/161745/Thesis.pdf?sequence=2), consultado el

16 de septiembre de 2024. Derechos reservados del Autor.

https://www.theseus.fi/bitstream/handle/10024/161745/Thesis.pdf?sequence=2

52

53

9. PROPUESTA DE ÍNDICE DE CONTENIDOS

ÍNDICE DE ILUSTRACIONES

ÍNDICE DE TABLAS

LISTA DE SÍMBOLOS

GLOSARIO

RESUMEN

PLANTEAMIENTO DEL PROBLEMA

OBJETIVOS

MARCO METODOLÓGICO

INTRODUCCIÓN

1. MARCO TEÓRICO

1.1. Arquitecturas de software

1.1.1. Arquitecturas monolíticas

1.1.1.1. Ventajas y desventajas en el contexto

empresarial

1.1.2. Arquitecturas basadas en microservicios

1.1.2.1. Fundamentos teóricos de los

microservicios

1.1.2.2. Patrones de diseño en microservicios

1.1.2.2.1. Patrones de orquestación

y coordinación

1.1.2.2.2. Patrones de

descubrimiento de

servicios

54

1.1.2.2.3. Patrones de

almacenamiento de datos

en microservicios

1.1.3. Arquitecturas serverless

1.1.3.1. Fundamentos teóricos de serverless

1.1.3.2. Comparación entre arquitecturas

serverless y tradicionales

1.1.3.3. Beneficios de serverless para

aplicaciones dinámicas y de alto trafico

1.2. Computación en la nube

1.2.1. Conceptos básicos de la computación en la nube

1.2.2. Ventajas de la nube para el escalado y manejo de

aplicaciones empresariales

1.2.3. Amazon Web Services

1.2.3.1. Servicios enfocados en microservicios

1.2.3.1.1. Amazon Elastic Container

Service

1.2.3.2. Servicios serverless

1.2.3.2.1. Amazon Lambda

1.3. Integración de microservicios y serverless

1.3.1. Integración y gestión

1.3.2. Estrategias de migración

1.4. Introducción a Magento

1.4.1. Integración de microservicios y serverless

1.4.2. Arquitectura modular

2. IMPLEMENTACIÓN DEL PROTOTIPO

2.1. Selección de módulos

2.1.1. Análisis de módulos clave

55

2.1.2. Criterios de selección de módulos

2.1.3. Módulos seleccionados

2.1.4. Desafíos en módulos seleccionados

2.2. Codificación

2.2.1. Diseño de la arquitectura del prototipo

2.2.2. Herramientas y tecnologías utilizadas

2.2.3. Desarrollo de los microservicios

2.2.4. Desarrollo de las funciones serverless

2.2.5. Integración de bases de datos

2.3. Pruebas de integración

2.3.1. Pruebas de comunicación entre microservicios

2.3.2. Pruebas de integración entre microservicios y

funciones serverless

2.3.3. Validación de la lógica del sistema

2.3.4. Registro y resolución de errores

3. PRESENTACIÓN DE RESULTADOS

3.1. Comparación entre la arquitectura monolítica y la arquitectura

híbrida

3.1.1. Evaluación de escalabilidad

3.1.2. Eficiencia Operativa

3.1.3. Tiempos de respuesta

3.1.4. Pruebas de rendimiento

3.2. Análisis de resultados

3.3. Análisis de costos

4. DISCUSIÓN DE RESULTADOS

4.1. Implicaciones para futuras migraciones

4.2. Desafíos técnicos

56

4.3. Limitaciones del estudio

4.4. Viabilidad del Prototipo

CONCLUSIONES

RECOMENDACIONES

REFERENCIAS

ANEXOS

57

10. METODOLOGÍA

10.1. Tipo de estudio

El presente estudio se enmarca en un enfoque mixto, combinando

métodos cuantitativos y cualitativos. El componente cuantitativo del estudio se

enfocará en la medición y análisis de indicadores clave relacionados con la

escalabilidad y el rendimiento, proporcionando datos objetivos que permitan

comparar de manera precisa las arquitecturas híbridas con las tradicionales.

Simultáneamente, el enfoque cualitativo se utilizará para explorar en

profundidad los desafíos técnicos y las experiencias durante la implementación

de la arquitectura híbrida. Al combinar ambos enfoques, el estudio proporcionará

una visión integral apoyada en datos cuantitativos para evaluar la escalabilidad y

también en cuenta las perspectivas prácticas y los desafíos técnicos de las

empresas al migrar de arquitecturas monolíticas a arquitecturas más modernas y

escalables.

10.2. Diseño de la investigación

El estudio adopta un diseño de investigación experimental. Este diseño es

adecuado para abordar el objetivo de diseñar una arquitectura híbrida que

combine microservicios y tecnologías serverless para mejorar la escalabilidad en

comparación con las arquitecturas monolíticas tradicionales, específicamente en

la plataforma Magento 2.0. Además, este enfoque permite la identificación de los

módulos específicos de Magento que son viables para la migración y que se

beneficiarían de ella, realizando una selección informada y estratégica de

58

aquellos componentes que optimizarán la eficiencia operativa y la capacidad de

respuesta del sistema.

10.3. Alcance de la investigación

El presente estudio tiene un alcance explicativo, centrado en analizar y

comprender las causas y efectos de la transformación de la arquitectura

monolítica de Magento 2.0 en una arquitectura híbrida basada en microservicios

y serverless. Este enfoque permite explorar en profundidad cómo la migración de

módulos clave impacta en la escalabilidad y eficiencia operativa del sistema,

estableciendo una relación causal entre el tipo de arquitectura implementada y

los beneficios en términos de rendimiento y costos operacionales.

A través del desarrollo y evaluación de un prototipo experimental, la

investigación busca no solo describir las mejoras observadas, sino también

explicar los mecanismos que conducen a estas mejoras. Este alcance explicativo

también permite la generación de conocimientos predictivos, orientados a

anticipar cómo otras plataformas monolíticas podrían beneficiarse de una

transición similar.

• Crear un prototipo o modelo que permita observar y medir el impacto de la

migración a una arquitectura híbrida.

• Comparar los resultados obtenidos de diferentes configuraciones o

estados, como comparar el rendimiento de la arquitectura monolítica

original con la nueva arquitectura híbrida.

• Realizar pruebas para determinar la escalabilidad y rendimiento

operacional.

59

• Ofrecer recomendaciones para la implementación de la arquitectura

híbrida en otros contextos o empresas.

10.4. Variables e indicadores

En la tabla 1 se muestran las variables y los indicadores que se tomarán

en cuenta para la investigación.

Tabla 1.

Definición de las variables

Variable Definición técnica Definición operativa
 Escalabilidad Capacidad del sistema para manejar un

aumento en la carga de trabajo sin
comprometer el rendimiento.

Tiempo de respuesta en
segundos o milisegundos
ante ajuste de recursos
adicionales ante un pico de
carga

Eficiencia
Operativa

Capacidad del sistema para operar
utilizando los menores recursos posibles
manteniendo un rendimiento óptimo.

Porcentaje de utilización de
recursos (CPU, Memoria) y
costos totales

Módulos
Migrados

Componentes específicos de Magento
seleccionados para la migración a
microservicios y serverless.

Número total de módulos
migrados

Número de
Desafíos
Técnicos
Identificados

Cantidad de problemas técnicos surgidos
durante la migración de la arquitectura.

Recuento y clasificación de
los problemas técnicos
encontrados durante el
proceso de migración.

Tiempos de
respuesta

Tiempo promedio de procesamiento en
milisegundos o segundos.

Tiempo promedio de
funciones clave que hayan
sido afectadas por las
modificaciones en la
arquitectura

Nota. Variables independientes. Elaboración propia, realizado con Excel.

10.5. Fases del estudio

A continuación, se describen las fases que realizaran para el estudio.

60

10.5.1. Fase 1: revisión de literatura y estructuración del

proyecto

En esta fase inicial, se llevará a cabo una investigación exhaustiva de la

literatura existente, incluyendo artículos académicos, estudios de caso, y otras

fuentes relevantes que traten sobre la migración de arquitecturas monolíticas a

microservicios y serverless. El objetivo es fundamentar la investigación en el

conocimiento existente, identificar lagunas en la literatura que tu estudio pueda

abordar, y establecer un contexto claro sobre la importancia del problema a

investigar. También se desarrollará la planificación y estructuración del proyecto,

que abarcará la selección del tipo de estudio, el alcance del proyecto, la

metodología a emplear en las siguientes fases, y la definición de los pasos clave

a seguir.

10.5.2. Fase 2: revisión y análisis de la arquitectura actual

Se realizará una revisión exhaustiva de la arquitectura monolítica actual

de Magento 2.0, incluyendo la identificación de los módulos clave, la evaluación

de su interdependencia, y la documentación del estado actual del sistema en

términos de rendimiento, escalabilidad y costos operativos. Esta fase tiene como

objetivo establecer una línea base que servirá para comparar los resultados

después de la implementación de la nueva arquitectura.

10.5.3. Fase 3: selección y diseño de la arquitectura híbrida

En esta fase, se seleccionarán los módulos de Magento que son

candidatos para la migración a microservicios y tecnologías serverless, y se

diseñará la arquitectura híbrida, definiendo cómo se dividirán los módulos y qué

servicios se transformarán en microservicios y serverless. El objetivo es crear un

61

plan detallado de la nueva arquitectura, asegurando que cada componente esté

optimizado para la escalabilidad y eficiencia.

10.5.4. Fase 4: desarrollo del prototipo

Se implementará la nueva arquitectura híbrida basada en el diseño

desarrollado en la fase anterior, utilizando tecnologías como Docker, AWS ECS

y AWS Lambda para crear un prototipo funcional. Esta fase tiene como objetivo

desarrollar un prototipo operativo que permita realizar pruebas de rendimiento y

escalabilidad.

10.5.5. Fase 5: pruebas y evaluación

Se llevarán a cabo pruebas exhaustivas del prototipo para medir su

rendimiento en comparación con la arquitectura monolítica original, incluyendo la

evaluación de la escalabilidad, latencia, tiempos de respuesta, y costos

operacionales. El objetivo de esta fase es validar la efectividad de la arquitectura

híbrida, identificar cualquier desafío técnico adicional, y comparar los resultados

con la línea base establecida en la fase 2.

10.5.6. Fase 6: análisis de resultados y optimización

Se realizará un análisis detallado de los datos recopilados durante las

pruebas y se efectuarán ajustes y optimizaciones en el prototipo basado en los

resultados obtenidos. Esta fase también incluye la evaluación de la viabilidad

económica y técnica de una implementación a gran escala, con el objetivo de

refinar la arquitectura híbrida y proporcionar recomendaciones basadas en datos

para futuras implementaciones.

62

10.5.7. Fase 7: documentación y presentación de resultados

Se elaborará una documentación completa del proceso de migración,

incluyendo manuales de operación, reportes de evaluación, análisis de costos y

recomendaciones estratégicas. Finalmente, se presentarán los resultados de la

investigación, destacando los beneficios y desafíos de la nueva arquitectura, con

el objetivo de entregar un informe final que detalle el proceso, resultados, y

conclusiones del estudio.

10.6. Técnicas de recolección de datos

• Análisis de textos: se revisará la documentación y los estudios de casos

sobre migraciones similares de arquitecturas monolíticas a microservicios

y serverless. Esta revisión permitirá identificar mejores prácticas, posibles

desafíos y estrategias de mitigación que pueden ser aplicables al proyecto.

• Observación directa: se llevará a cabo una observación directa del proceso

de migración y de la operación del sistema en el entorno de prueba,

documentando cualquier incidente, ajuste o decisión técnica relevante. El

objetivo es capturar información en tiempo real sobre la implementación y

funcionamiento del prototipo, identificando problemas y soluciones

emergentes.

• Pruebas de rendimiento y escalabilidad: se realizarán pruebas controladas

en el prototipo de la arquitectura híbrida para medir su rendimiento y

escalabilidad, incluyendo pruebas de carga y estrés que simulen

condiciones de alto tráfico y demanda. El propósito es obtener datos

cuantitativos sobre la capacidad del sistema para manejar diferentes

volúmenes de carga y su tiempo de respuesta bajo condiciones variables.

63

11. TÉCNICAS DE ANÁLISIS DE LA INFORMACIÓN

El análisis descriptivo tiene como objetivo resumir y organizar los datos

obtenidos de las pruebas de rendimiento, escalabilidad, costos operacionales,

latencia, y tiempo de respuesta. Esto permite presentar de manera clara y concisa

las características principales de los datos recolectados antes y después de la

implementación de la nueva arquitectura híbrida. A través de esta técnica, se

podrán identificar patrones generales y tendencias en el comportamiento del

sistema, lo que facilitará una visión preliminar del impacto de la migración.

Para este análisis se utilizarán medidas de tendencia central, como la

media y la mediana, así como medidas de dispersión como la desviación

estándar. Estas herramientas estadísticas ayudarán a describir de manera más

precisa la variabilidad de los datos.

El análisis inferencial se centrará en determinar si las diferencias

observadas entre la arquitectura monolítica y la arquitectura híbrida son

estadísticamente significativas. Esta técnica es esencial para evaluar de manera

precisa la efectividad de la nueva arquitectura en términos de mejora de

escalabilidad y reducción de costos operacionales. Al aplicar pruebas

estadísticas de inferencia, se podrá verificar si los cambios observados se deben

realmente a la migración o si podrían ser producto del azar.

El análisis de contenido se empleará para evaluar los desafíos técnicos

identificados durante la implementación de la nueva arquitectura híbrida. Esta

técnica cualitativa permitirá identificar patrones y temas recurrentes en los

problemas y observaciones encontradas durante la fase de migración. El análisis

64

de contenido ayudará a categorizar y organizar estos desafíos, proporcionando

una mejor comprensión de las dificultades que podrían surgir y las posibles

soluciones que se podrían aplicar.

La visualización de datos tras las pruebas realizadas facilitará la

interpretación y comunicación de los resultados del estudio. Al presentar los

datos mediante gráficos y diagramas, se podrán observar de manera clara las

comparaciones entre el rendimiento de la arquitectura monolítica y la híbrida, así

como las relaciones entre variables clave como costos, latencia y tiempo de

respuesta.

65

12. CRONOGRAMA

Tabla 2.

Cronograma de actividades para cada fase de la investigación

Nota. Diagrama de Gantt. Elaboración propia, realizado con Microsoft Excel.

66

67

13. FACTIBILIDAD DEL ESTUDIO

13.1. Factibilidad Técnica

El presente estudio es técnicamente factible, ya que se cuenta con los

recursos necesarios para su desarrollo siendo estos los siguientes:

• Recursos tecnológicos: se tiene acceso a plataformas y servicios clave

como AWS (Amazon Web Services) para la implementación de los

microservicios y serverless, incluyendo tecnologías como AWS Lambda y

AWS ECS. Además, se utilizarán Docker para los microservicios y

Magento 2.0 como el sistema a modificar. También se contempla el uso

de Amazon EC2 para simular la arquitectura monolítica de Magento 2.0.

• Acceso a información: Existe acceso completo a la documentación técnica

de Magento 2.0 y a estudios previos sobre migraciones similares.

• Software de código abierto: se trabajará con la versión 2.0 de Magento en

su modalidad de código abierto, que será la base sobre la cual se

desarrollará el prototipo de la nueva arquitectura híbrida. Magento 2.0 es

una plataforma de comercio electrónico altamente flexible, que ofrece un

entorno robusto y personalizable.

• Infraestructura y equipos: el estudio se realizará con recursos en la nube

para simular diferentes escenarios de carga y realizar pruebas de

escalabilidad. Se trabajará con equipo personal para la parte de

codificación y microservicios de los módulos.

68

13.2. Factibilidad Financiera

En la tabla 2 se muestra a detalle el costo total estimado del proyecto que

es de Q45,904.00.

Tabla 3.

Costos del estudio

Recurso Descripción Costo mensual Costo total
AWS
Lambda

Servicio serverless para
ejecutar funciones de código

Q0.00 (capa gratuita
de 1 millón de
solicitudes
mensuales)

Q 0.00

AWS ECS Servicio para alojar los
microservicios con base en
los módulos seleccionados

Q584.00 (por 4
contenedores por
8h/día)

Q 3,504.00

AWS EC2 Servicio de cómputo para
levantar servidor donde ira
alojada Magento en su
versión monolítica

Q400.00 (8h/día) Q 2,400.00

Equipo de
cómputo

Equipo utilizado durante el
desarrollo de la investigación

Q5,000.00 (pago
único)

Q 5,000.00

Salario Salario de la persona que
desarrollara el estudio

Q5,000.00 Q 35,000.00

Total Q 45,904.00

Nota. Detalle de los costos del estudio. Elaboración propia, realizado con Excel.

69

REFERENCIAS

Allen, C. (2023). Microservices vs Serverless Functions: A Comparison of

Performance and Price. [Tesis de maestría, Tampere University]. Archivo

digital.

https://trepo.tuni.fi/bitstream/handle/10024/151886/AllenChristopher.pdf;js

essionid=C1BF2CC8654AB55269352F072B632939?sequence=2

Andell, O. (2020). Architectural Implications of Serverless and Function-as-a-

Service. [Tesis de maestría, Linköping University]. Archivo digital.

https://www.diva-portal.org/smash/get/diva2:1442437/FULLTEXT01.pdf

Brula, M. (2023). From Monolith to Serverless Microservices Migration. [Tesis de

maestría, University of Applied Sciences Technikum Wien]. Archivo digital.

https://epub.technikum-wien.at/obvftwhsmmig/download/pdf/9746870

ElGheriani, N. & Ahmed, N. (2022). Microservices vs. Monolithic Architectures:

The Differential Structure Between Two Architectures. International

Journal of Applied Sciences and Technology, 3(6), 485-498.

https://doi.org/10.47832/2717-8234.12.47.

Garlan, D. & Shaw, M. (2020). Software Architecture. Phi.

https://trepo.tuni.fi/bitstream/handle/10024/151886/AllenChristopher.pdf;jsessionid=C1BF2CC8654AB55269352F072B632939?sequence=2
https://trepo.tuni.fi/bitstream/handle/10024/151886/AllenChristopher.pdf;jsessionid=C1BF2CC8654AB55269352F072B632939?sequence=2
https://www.diva-portal.org/smash/get/diva2:1442437/FULLTEXT01.pdf
https://epub.technikum-wien.at/obvftwhsmmig/download/pdf/9746870
https://doi.org/10.47832/2717-8234.12.47

70

Goli, A., Hajihassani, O., Khazaei, H., Ardakanian, O., Rashidi, M., & Dauphinee,

T. (2020). Migrating from Monolithic to Serverless: A FinTech Case Study.

Migrating from Monolithic to Serverless: A FinTech Case Study. In

ACM/SPEC International Conference on Performance Engineering

Companion (ICPE '20 Companion), 20-24.

https://doi.org/10.1145/3375555.3384380

Hasan, M., Osman, M., Admodisastro, N. & Muhammad, M. (2023). From

monolith to microservice: Measuring architecture maintainability.

International Journal of Advanced Computer Science and Applications,

14(5), 857-866.

https://www.researchgate.net/publication/371174225_From_Monolith_to_

Microservice_Measuring_Architecture_Maintainability

Heikkinen, J. (2023). Serverless and Microservice Architecture in Modern

Software Development. [Tesis de maestría, Jyväskylä University of Applied

Sciences]. Archivo digital.

https://www.theseus.fi/bitstream/handle/10024/795181/masters_thesis_ju

ssi_heikkinen.pdf;jsessionid=EF5E48691477EE20149A22C107BD7F1E?

sequence=2

Kewate, N., Raut, A., Dubekar, M., Raut, Y. & Patil, A. (2022). A Review on AWS

- Cloud Computing Technology. International Journal for Research in

Applied Science & Engineering Technology (IJRASET), 10(1), 258-263.

https://doi.org/10.22214/ijraset.2022.39802.

Lima, P. (2019). Migración de aplicaciones monolíticas a arquitecturas basadas

en microservicios. [Trabajo de Fin de Grado, Universidad de La Laguna].

Archivo digital. https://riull.ull.es/xmlui/handle/915/15475

https://doi.org/10.1145/3375555.3384380
https://www.researchgate.net/publication/371174225_From_Monolith_to_Microservice_Measuring_Architecture_Maintainability
https://www.researchgate.net/publication/371174225_From_Monolith_to_Microservice_Measuring_Architecture_Maintainability
https://www.theseus.fi/bitstream/handle/10024/795181/masters_thesis_jussi_heikkinen.pdf;jsessionid=EF5E48691477EE20149A22C107BD7F1E?sequence=2
https://www.theseus.fi/bitstream/handle/10024/795181/masters_thesis_jussi_heikkinen.pdf;jsessionid=EF5E48691477EE20149A22C107BD7F1E?sequence=2
https://www.theseus.fi/bitstream/handle/10024/795181/masters_thesis_jussi_heikkinen.pdf;jsessionid=EF5E48691477EE20149A22C107BD7F1E?sequence=2
https://doi.org/10.22214/ijraset.2022.39802
https://riull.ull.es/xmlui/handle/915/15475

71

Lin, Y. (2015). Online store based on Magento E-Commerce. [Tesis de

licenciatura, University of Applied Sciences]. Archivo digital.

https://www.theseus.fi/bitstream/handle/10024/90976/ThesisYuLin.pdf?se

quence=1

Morizur, D. (2019). Enhancing Magento Frontend Performance with ReactJS and

Comparing It to Knockout. [Tesis de licenciatura, University of Applied

Sciences]. Archivo digital.

https://www.theseus.fi/bitstream/handle/10024/161745/Thesis.pdf?seque

nce=2

Qian, L., Luo, Z., Du, Y. & Guo, L. Cloud Computing: An Overview. Cloud

Computing, First International Conference, CloudCom 2009, Beijing,

China,

https://www.researchgate.net/publication/221276709_Cloud_Computing_

An_Overview

Rashid, A., & Chaturvedi, A. (2019). Cloud Computing Characteristics and

Services: A Brief Review. International Journal of Computer Sciences and

Engineering, 7(2), 421-426. https://doi.org/10.26438/ijcse/v7i2.421426.

Sadek, J., Craig, D., & Trenell, M. (2022). Design and Implementation of Medical

Searching System Based on Microservices and Serverless Architectures.

Procedia Computer Science, 196, 615–622.

https://doi.org/10.1016/j.procs.2021.12.056.

https://www.theseus.fi/bitstream/handle/10024/90976/ThesisYuLin.pdf?sequence=1
https://www.theseus.fi/bitstream/handle/10024/90976/ThesisYuLin.pdf?sequence=1
https://www.theseus.fi/bitstream/handle/10024/161745/Thesis.pdf?sequence=2
https://www.theseus.fi/bitstream/handle/10024/161745/Thesis.pdf?sequence=2
https://www.researchgate.net/publication/221276709_Cloud_Computing_An_Overview
https://www.researchgate.net/publication/221276709_Cloud_Computing_An_Overview
https://doi.org/10.26438/ijcse/v7i2.421426
https://doi.org/10.1016/j.procs.2021.12.056

72

Salah, T., Zemerly, M. J., Yeun, C. Y., Al-Qutayri, M., & Al-Hammadi, Y. (2017).

Performance Comparison Between Container-based and VM-based

Services. IEEE 5th International Conference on Future Internet of Things

and Cloud (FiCloud), 185-190. https://doi.org/10.1109/FiCloud.2017.33.

Taibi, D., Lenarduzzi, V., & Pahl, C. (2018). Architectural Patterns for

Microservices: A Systematic Mapping Study. Proceedings of the 8th

International Conference on Cloud Computing and Services Science

(CLOSER 2018), 221-232. https://doi.org/10.5220/0006798302210232.

Velepucha, V. y Flores (2023). A Survey on Microservices Architecture:

Principles, Patterns and Migration Challenges. IEEE Access, 11. 88341.

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10220070

https://doi.org/10.1109/FiCloud.2017.33
https://doi.org/10.5220/0006798302210232
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10220070

		2024-11-26T01:01:29+0000
	José Francisco Gómez Rivera

		2024-11-26T01:03:03+0000
	José Francisco Gómez Rivera

