Universidad de San Carlos de Guatemala
Facultad de Ingenieria
Escuela de Ingenieria en Ciencias y Sistemas

Firmado electrénicamente por: José Francisco
Goémez Rivera

Motivo: Autorizacién electrénica de trabajo de
graduacién

Fecha: 25/11/2024 19:03:03

Lugar: Facultad de Ingenieria, USAC.

DISENO DE UNA ARQUITECTURA HiBRIDA ADAPTANDO MICROSERVICIOS Y
SERVERLESS PARA SUPERAR LAS LIMITACIONES DE LA ARQUITECTURA
MONOLITICA DEL SOFTWARE MAGENTO PARA MEJORAR LA ESCALABILIDAD

José Marcos Garcia Olmino
Asesorado por Mtro. Ing. Juan Pablo Ruiz Guerra

Guatemala, noviembre de 2024

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA

FACULTAD DE INGENIERIA

DISENO DE INVESTIGACION DE UNA ARQUITECTURA HIiBRIDA ADAPTANDO
MICROSERVICIOS Y SERVERLESS PARA SUPERAR LAS LIMITACIONES DE LA
ARQUITECTURA MONOLITICA DEL SOFTWARE MAGENTO PARA MEJORAR LA

ESCALABILIDAD

TRABAJO DE GRADUACION
PRESENTADO A LA JUNTA DIRECTIVA DE LA
FACULTAD DE INGENIERIA

POR

JOSE MARCOS GARCIA OLMINO
ASESORADO POR MTRO. ING. JUAN PABLO RUIZ GUERRA

AL CONFERIRSELE EL TiTULO DE

INGENIERO EN CIENCIAS Y SISTEMAS

GUATEMALA, NOVIEMBRE DE 2024

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA
FACULTAD DE INGENIERIA

NOMINA DE JUNTA DIRECTIVA

DECANO Ing. José Fernando Gomez Rivera (a.i.)
VOCAL Il Ing. Mario Renato Escobedo Martinez
VOCAL Il Ing. José Milton de Le6n Bran

VOCAL IV Ing. Kevin Vladimir Cruz Lorente
VOCAL V Ing. Fernando José Paz Gonzalez

SECRETARIO Ing. Hugo Humberto Rivera Pérez

TRIBUNAL QUE PRACTICO EL EXAMEN GENERAL PRIVADO

DECANO Ing. José Francisco Gémez Rivera (a.i.)
EXAMINADOR Ing. Pedro Pablo Hernandez Ramirez
EXAMINADOR Ing. Oscar Alejandro Paz Campos
EXAMINADOR Ing. Carlos Alfredo Azurdia Morales
SECRETARIO Ing. Hugo Huberto Rivera Pérez

HONORABLE TRIBUNAL EXAMINADOR

En cumplimiento con los preceptos que establece la ley de la Universidad de San
Carlos de Guatemala, presento a su consideracion mi trabajo de graduacion

titulado:

DISENO DE UNA ARQUITECTURA HiBRIDA ADAPTANDO MICROSERVICIOS Y
SERVERLESS PARA SUPERAR LAS LIMITACIONES DE LA ARQUITECTURA
MONOLITICA DEL SOFTWARE MAGENTO PARA MEJORAR LA ESCALABILIDAD

Tema que me fuera asignado por la Direccidén de la Escuela de Ingenieria en
Ciencias y Sistemas, con fecha 21 de septiembre de 2024.

José Marcos Garcia Olmino

ESCUELA DE ESTUDIOS OE

POSTGRADO

—————emmeeee FACULTAD DE INGENIERIA

EEPFI-PP-5170-2024
Guatemala, 28 de septiembre de 2024

Director

Carlos Gustavo Alonzo

Escuela De Ingenieria En Sistemas
Presente.

Estimado Carlos Gustavo Alonzo

Reciba un cordial saludo de la Escuela de Estudios de Postgrado de la Facultad de Ingenieria.

El propésito de la presente es para informarle que se ha revisado y aprobado el Disefio de Investigacion titulado:
DISENO DE UNA ARQUITECTURA HIBRIDA ADAPTANDO MICROSERVICIOS Y SERVERLESS PARA
SUPERAR LAS LIMITACIONES DE LA ARQUITECTURA MONOLITICA DEL SOFTWARE MAGENTO PARA
MEJORAR LA ESCALABILIDAD , el cual se enmarca en la linea de investigacién: Area de Investigacién -
Sistemas para impulsar la integracién de sistemas de informacién, presentado por el estudiante José
Marcos Garcia Olmino carné nimero 201903895, quien opté por la modalidad del "PROCESO DE
GRADUACION DE LOS ESTUDIANTES DE LA FACULTAD DE INGENIERIA OPCION ESTUDIOS DE
POSTGRADO". Previo a culminar sus estudios en la Maestria en Artes en Tecnologias De La Inf. Y La
Comunicacion.

Y habiendo cumplido y aprobado con los requisitos establecidos en el normativo de este Proceso de Graduacion

~en el Punto 6.2, aprobado por la Junta Directiva de la Facultad de Ingenieria en el Punto Décimo, Inciso 10.2 del
Acta 28-2011 de fecha 19 de septiembre de 2011, firmo y sello la presente para el tramite correspondiente de
graduacion de Pregrado.

Atentamente,

*j;/)“ Wa 5 90@

Juan Pablo Ruiz Guerra

INGENIERO EN CIENCIAS Y SISTENAS
COLEGIADO No. 18,545

Mtra. Aurelia Anabela Cordova Estrada
Directora
Escuela de Estudios de Postgrado
Facultad de Ingenieria

e T R R A O PRI |

@ hitps//bit ly/EEP-OficinaVirtual = solicitudeep@ingenieria.usac.edu.gt

https://v3.camscanner.com/user/download

UNIVERSIDAD DE SAN CARLOS
DE GUATEMALA

o
FACULTAD DE INGENIERIA

EEP-EICS-5032-2024

El Director de la Escuela De Ingenieria En Sistemas de la Facultad de Ingenieria de la
Universidad de San Carlos de Guatemala, luego de conocer el dictamen del Asesor, el visto
bueno del Coordinador y Director de la Escuela de Estudios de Postgrado, del Disefo de
Investigacion en la modalidad Estudios de Pregrado y Postgrado titulado: DISENO DE
UNA ARQUITECTURA HIBRIDA ADAPTANDO MICROSERVICIOS Y SERVERLESS
PARA SUPERAR LAS LIMITACIONES DE LA ARQUITECTURA MONOLITICA DEL
SOFTWARE MAGENTO PARA MEJORAR LA ESCALABILIDAD , presentado por el
estudiante universitario José Marcos Garcia Olmino, procedo con el Aval del mismo, ya
que cumple con los requisitos normados por la Facultad de Ingenieria en esta modalidad.

ID Y ENSENAD A TODOS

Mtro. Carlos Gusta\/o Alonzo
Director
Escuela De Ingenieria En Sistemas

Guatemala, septiembre de 2024

Ingenieria Civil, Inpenieria AMecinica Indnzirial, Inzenieria Quimica, Ingenieria Mecinica Eléetrica, -Fzenela de Ciencias, Rezional de Ingenieria Sanitaria ¥ Recurzoz Hidraulicas (ERIS),
Maastria en Siztemaz Mencidn conztruccion 3 Mancion Ingenieria Vial. Carreras: Ingenieria Mecanica, Ingenieria Electrinica, Ingenieria en Ciencias y Sistemas, Licenciatora en Matematica,
Licenciatura en Fizica, Cantros: de Estudios Superiores de Energia y Minaz (CESEM). Guatemala, Cindad Universitaria, Zona 12, Guatemala, Centroamérica,

¥/ TRICENTENARIA

TS Universidad de San Carlos de Guabemala
Decanato
Facultad e Ingenieria

24189101- 24189102
LNG.DECANATO.OIE.775.2024

El Decano de la Facultad de Ingenieria de la Universidad de San
Carlos de Guatemala, luego de conocer la aprobacion por parte del
Director de la Escuela de Ingenieria en Ciencias y Sistemas, al Trabajo
de Graduacion titulado: DISENO DE UNA ARQUITECTURA HiBRIDA
ADAPTANDO @ MICROSERVICIOS Y SERVERLESS PARA
SUPERAR LAS LIMITACIONES DE LA ARQUITECTURA
MONOLITICA DEL SOFTWARE MAGENTO PARA MEJORAR LA
ESCALABILIDAD , presentado por: José Marcos Garcia Olmino
después de haber culminado las revisiones previas bajo la
responsabilidad ~de las instancias correspondientes, autoriza la
impresion del mismo.

IMPRIMASE:

Firmado electrénicamente por: José Francisco
Gémez Rivera

Motivo: Informe final PREGRADOPOSTGRADO
Fecha: 25/11/2024 19:01:29

Lugar: Facultad de Ingenieria, USAC.

7

O

Ing. José Francisco Gomez Rivera
Decano a.i.

~5DESAN CARLOS pg o0
47~£

K
. DECANOa.i. %
'/ Facultad de Ingenieria
*

Guatemala, noviembre de 2024

Para verificar validez de documento ingrese a https://www.ingenieria.usac.edu.gt/firma-electronica/consultar-documento
Tipo de documento: Correlativo para orden de impresion Afo: 2024 Correlativo: 775 CUI: 3004263640101

Escuelas: Ingenieria Civil, Ingenieria Mecanica Industrial, Ingenieria Quimica, Ingenieria Mecanica Eléctrica, - Escuela de Ciencias, Regional de Ingenieria Sanitaria y Recursos
Hidraulicos (ERIS). Postgrado Maestria en Sistemas Mencién Ingenieria Vial. Carreras: Ingenieria Mecanica, Ingenieria Electrénica, Ingenieria en Ciencias y Sistemas. Licenciatura
en Matematica. Licenciatura en Fisica. Centro de Estudios Superiores de Energia y Minas (CESEM). Guatemala, Ciudad

ACTO QUE DEDICO A:

Dios Porque siempre estoy agradecido por las
oportunidades que me ha permitido tener

Mis padres Por el apoyo incondicional que me han brindado,
sin ellos este logro no lo hubiera podido alcanzar

Mi hermano Porque estuvo presente cuando queria algun

consejo y necesite apoyo

Mis amigos Porque empezamos como comparieros de clase,
pero terminamos con una amistad sincera

apoyandonos a lo largo de la carrera

Universidad de
Carlos de Guatemala

M.A Ing. Juan Pablo
Ruiz Guerra

AGRADECIMIENTOS A:

San

Por ser la casa de estudios que facilita el acceso

a la educacion superior

Por brindarme su tiempo y conocimiento durante

esta investigacion

iINDICE GENERAL

INDICE DE ILUSTRACIONEScooiiieeeeeeeeee e Vv
1. INTRODUGCCION ...t n s s s s en e 1
2. ANTECEDENTES ... 3
3. PLANTEAMIENTO DEL PROBLEMA ... 7
3.1. Planteamiento del problema ... 7

3.1.1. Pregunta central ... 8

3.1.2. Preguntas AuXiliares...........cccocuueeuemmimmmmiieiiiiiiinnnns 8

4. JUSTIFICACIONoomiiiiieinieeineseieesetees et 9
5. OBUETIVOS ...ttt e e e e e e e 11
5.1. GENEIAL. ... 11

5.2. ESPECITICOS ... 11

6. NECESIDADES A CUBRIR Y ESQUEMA DE SOLUCION.................... 13
7. ALCANGES ...t e e e e e 17
7.1. Alcances de investigacion ... 17

7.2. AlCANCES tECNICOS .. uveeeeeeiiiiieeeeeiee e e e eteee e e e e e e e e e e e sneeeeas 17

7.3. Alcances de resUadOS. ...c..ven e 18

8.

MARCO TEORICO ..ottt 21
8.1. Arquitecturas de SOftWAre..............coouuiiiiiiiiiieiiie e 21
8.1.1. Arquitecturas monoliticasccccuveeeeeeiieieiiiiee. 21
8.1.1.1. Caracteristicas de las arquitecturas
MONOITICAS ...evveeiiiii s 22
8.1.1.2. Ventajas y desventajas en el contexto
empresarial.......cccccveiiiiiiiiiiiiiii 23
8.1.2. Arquitecturas basadas en microservicios 25
8.1.2.1. Fundamentos tedricos de los
MICIOSEIVICIOS....uuuuuunnnnniiiiiieiiinenenanannees 25

8.1.2.2. Patrones de diseno en microservicios..27

8.1.2.2.1. Patrones de orquestacién
y coordinacion............... 27
8.1.2.2.2. Patrones de
Descubrimiento de
Servicios......ccccvveveeeeeenn. 28
8.1.2.2.3. Patrones de
almacenamiento de
datos en
MICrOSEervicios 30
8.1.3. Arquitecturas serverless............uuuuueeeeeeeeeeeeeeeeeennnnnn. 31

8.1.3.1. Fundamentos tedricos de serverless....32
8.1.3.2. Comparacién entre arquitecturas
serverless y tradicionales 33
8.1.3.3. Beneficios de serverless para
aplicaciones dinamicas y de alto trafico35
8.2. Computacion en 1a NUDEc.eeeviiiiiiiieeeceee e 36
8.2.1. Conceptos basicos de la computacion en la

10.

8.2.2. Ventajas de la nube para el escalado y manejo de

aplicaciones empresarialescccccceeviiiiiiieeeennn. 40

8.2.3. Amazon Web ServiCescooovuiuiiieieiieeeeeeicee 41
8.2.3.1. Servicios enfocados en Microservicios 42

8.2.3.1.1. Amazon Elastic Container
ServiCeoevvveieiiiiinnnee 42
8.2.3.2. Servicios Serverless...........cccoouueeeeen.. 43
8.2.3.2.1. Amazon Lambda 43
8.3. Integracion de Microservicios y Serverless............ccccccueeeeee... 44
8.3.1. Integracion y Gestion.........ooovviiiiiiiieeee e 45
8.3.2. Estrategias de Migracionccccooeeeeeiieiiinnee. 46
8.4. Introduccion a Magentoueveeeeiiiiiiee e 48
8.4.1. Descripcidon general de la plataforma Magento....... 49
8.4.2. Arquitectura modular ... 50
PROPUESTA DE INDICE DE CONTENIDOScoiiieeieeeeeeeeeeeeenes 53
METODOLOGIA. ...ttt 57
10.1. TIPO de StUAIO ..o 57
10.2. Disefno de la investigacion ... 57
10.3. Alcance de 1a investigacion ... 58
10.4. Variables € iNdiCAOIESccoviiiiiiiiiiiiieeie e 59
10.5. Fases del eStudiocoooeiiiiiiiiiiiiie 59

10.5.1. Fase 1: revisién de literatura y estructuracién del
PrOYECIO. ..o 60
10.5.2. Fase 2: revision y andlisis de la arquitectura
= To3 (1 - | RSP 60
10.5.3. Fase 3: seleccién y diseno de la arquitectura
hibrida ... 60

10.5.4. Fase 4: desarrollo del prototipocoevvveievieeeeennn. 61
10.5.5. Fase 5: pruebas y evaluacion..........ccccccevvevveininnnnn. 61
10.5.6. Fase 6: andlisis de resultados y optimizacion 61

10.5.7. Fase 7: documentacién y presentacion de
FESURAAOS ..o 62
10.6. Técnicas de recoleccion de datoScevveveeeeeeeiiieeeeeeieeeas 62
11. TECNICAS DE ANALISIS DE LA INFORMACIONooveeeeeeeeeeeeen, 63
12, CRONOGRAMA ..ottt e e e e e e e e aeeeeeaen 65
13. FACTIBILIDAD DEL ESTUDIO ... 67
13.1. Factibilidad TeCNICa. ... ccueeeeeeee e, 67
13.2. Factibilidad FinanCieraoeeeeeeeeeeeeee e, 68
REFERENCIAS ..ottt 69

Figura 1.
Figura 2.
Figura 3.
Figura 4.
Figura 5.
Figura 6.
Figura 7.
Figura 8.
Figura 9.

Tabla 1.
Tabla 2.
Tabla 3.

INDICE DE ILUSTRACIONES

FIGURAS
Arquitectura hibrida con serverless y microservicios.................... 14
Arquitectura MoNOIItICAcevviiiiiiiieiee e 22
Ejemplo de una descomposIiCIONuueeeeiieeeiiiiiiiiieeeeeee e 26
Patrdn de arquitectura Api Gatewaycccceeeeiiiiiiiiiiieenieeeeee 28
Patrén de descubrimiento del lado del clienteccccceeeee 30
ArquiteCtura Serverless............oouuieiiiiiiiiieeee e 32
Arquitecturaen la nuUbe.............ueeeiiiiiiis 37
Descripcion general de los pasos de migracion del prototipo...... 48

Representacién de la arquitectura de Magento en su
VEISION 2.0 .ot 51

TABLAS
Definicidn de 1as variables ..., 59

Cronograma de actividades para cada fase de la investigacion .. 65
(@701 (o Fs3e [I =TS UL o TSR 68

Vi

1. INTRODUCCION

En la era digital, la necesidad de que las aplicaciones sean altamente
escalables, eficientes y adaptables ha impulsado la evolucion de las arquitecturas
de software. Las arquitecturas monoliticas, que alguna vez fueron la solucién
dominante en el desarrollo de aplicaciones empresariales, estan mostrando sus
limitaciones frente a la demanda de mayor flexibilidad y capacidad de respuesta
en entornos cambiantes. Esto ha llevado a la adopcién de enfoques mas
modernos, como los microservicios y las tecnologias serverless, que permiten
una mayor escalabilidad, optimizacién de recursos y reduccion de costos

operacionales.

En este contexto, Magento 2.0, una plataforma lider en comercio
electronico sigue utilizando en gran medida una arquitectura monolitica que
presenta desafios en términos de escalabilidad y flexibilidad operativa. Este
estudio tiene como objetivo desarrollar un prototipo que permita migrar la
arquitectura monolitica de Magento hacia una arquitectura hibrida que combine
microservicios y tecnologias serverless. La arquitectura hibrida se basa en
descomponer aplicaciones complejas en componentes independientes que
pueden escalarse de manera autbnoma, y aprovechar tecnologias serverless

para gestionar funciones que solo consumen recursos cuando es necesario.

Para lograr estos objetivos, se seleccionardn mdodulos clave de Magento
que seran migrados a una arquitectura hibrida. Estos médulos se analizaran en
funcién de su impacto en el rendimiento del sistema y su capacidad para manejar
altos volumenes de transacciones. Mediante pruebas exhaustivas de rendimiento

y escalabilidad, se evaluaran aspectos como tiempos de respuesta, latencia y

costos operacionales, comparando la arquitectura monolitica original con el

prototipo hibrido.

El estudio se estructurara en varios capitulos que cubriran las diferentes
etapas del estudio. El primer capitulo abordara los antecedentes de la
arquitectura monolitica donde se habla acerca de migraciones de arquitecturas
monoliticas hacia microservicios o serverless y sobre la plataforma Magento. El
segundo capitulo se dedicara a la justificacion del estudio, donde se argumentara
la importancia de migrar a una arquitectura hibrida, destacando los beneficios
esperados en términos de escalabilidad y eficiencia operativa.

En el tercer capitulo, se definiran los alcances del estudio, detallando los
alcances investigativos, técnicos y los resultados que se esperan obtener. Este
capitulo también establecera los limites del estudio y las areas que no seran
cubiertas. El cuarto capitulo presentara el marco teorico, proporcionando una
revisién exhaustiva de las arquitecturas monoliticas, microservicios y serverless,

y apoyandose en estudios previos que respaldan la viabilidad de esta migracion.

El quinto capitulo, titulado Implementacion del prototipo, se centrara en la
seleccion y codificacion de los modulos de Magento que seran migrados,
detallando el disefio de la arquitectura del prototipo, las herramientas tecnologias
utilizadas y pruebas de integracién del prototipo. En el sexto capitulo, se
expondran los resultados de las pruebas de integracion, pruebas de rendimiento
y la comparacién entre la arquitectura monolitica y el prototipo. Finalmente, el
séptimo capitulo estara dedicado a la discusiéon de los resultados, donde se
interpretaran los datos obtenidos, se evaluaran los desafios técnicos encontrados
y se destacaran las mejoras logradas en comparacion con la arquitectura
monolitica original.

2. ANTECEDENTES

En el estudio realizado por Lin (2015) sobre Magento, se detalla como esta
plataforma de comercio electrénico basada en PHP y MySQL se caracteriza por
su arquitectura modular, la complejidad inherente de esta estructura sugiere
desafios tipicos de las arquitecturas monoliticas, especialmente en términos de
escalabilidad y mantenimiento. Adicionalmente, el documento identifica areas
susceptibles de mejora, como la alta demanda de recursos del servidor. Estos
factores subrayan la necesidad de optimizaciones que puedan mejorar el
rendimiento y la usabilidad para mantener la competitividad de Magento en el

dindmico mercado de e-commerce.

El estudio llevado a cabo por Velepucha et al. (2018) examina
exhaustivamente las deficiencias de las arquitecturas monoliticas,
particularmente en contextos en los que la escalabilidad y la flexibilidad son
esenciales. Este estudio presenta el modelo MOMMIV, que se basa en el
principio de ocultacion de informacién para facilitar la descomposicién de
arquitecturas monoliticas en arquitecturas de microservicios. Este modelo aborda
los desafios comunes de las arquitecturas monoliticas, como la dificultad en
extraer la l6gica de negocio por su naturaleza integrada y los problemas
asociados con bases de datos relacionales que no soportan la escalabilidad

horizontal.

Ademas, Velepucha et al. (2018) destacan cémo la transicion a
microservicios puede aumentar la complejidad en la integracion y gestién de
servicios, pero con el adecuado disefio de descomposicidn, estas dificultades

pueden minimizarse significativamente. La metodologia propuesta ofrece una

estructura que no solo supera las restricciones fisicas y logicas de las
arquitecturas monoliticas, sino que también aumenta la capacidad de las
empresas para adaptarse rapidamente a los cambios del mercado,

proporcionando actualizaciones mas agiles y menos disruptivas.

En el estudio realizado por Goli et al. (2020) se destaca como la adopcion
de soluciones serverless puede mejorar significativamente el rendimiento y
optimizar los costos operativos en sectores como el FinTech. Este enfoque
elimina la necesidad de gestionar la infraestructura, permitiendo que los
desarrolladores se concentren en el codigo de la aplicacion. Al hacerlo,
serverless no solo simplifica la gestién de recursos, sino que también acelera el
desarrollo y despliegue de nuevas funcionalidades, reduciendo el tiempo vy el

costo asociados con las operaciones tradicionales.

Ademas de los beneficios ya mencionados de la adopcion de soluciones
serverless por Goli et al. (2020), también resaltan cémo la implementacién de
arquitecturas serverless en el sector FinTech no solo reduce los costos
operativos sino que también mejora significativamente la velocidad de
procesamiento de solicitudes. Usaron casos practicos, como el de Yubl, para
demostrar como la adopcién de un despliegue serverless puede acortar los
plazos de entrega de funciones y el tiempo de llegada al mercado. Adzic y
colaboradores (2017) quienes se pusieron en contacto con Yubl mencionan que
de hacer 4 a 6 despliegues productivos por mes pasaron a 80 o mas por mes
contando siempre con el mismo equipo de ingenieros (6 ingenieros), lo cual
demuestra lo fundamental que es esta solucién para mantener la competitividad

en el dinamico mercado tecnologico

Por otro lado, Allen (2023) aborda las ventajas de las arquitecturas de

microservicios sobre las arquitecturas monoliticas y menciona el uso de patrones

especificos como Event Sourcing y CQRS (Command Query Responsibility
Segregation) para optimizar las operaciones en arquitecturas de microservicios,
donde Event Sourcing asegura que todos los cambios en el estado de la
aplicacién se almacenen como una secuencia de eventos que, no solo pueden
ser consultados, sino también usados para recrear estados pasados del sistema
y CQRS, por otro lado, separa las operaciones de lectura y escritura en modelos
distintos, lo que facilita la escalabilidad y la optimizacién del rendimiento al

permitir que estas operaciones se escalen de manera independiente.

Ademas, Allen (2023) profundiza en cdmo las arquitecturas de
microservicios, a través de patrones como Event Sourcing y CQRS, no solo
mejoran la separacién de responsabilidades y la gestion de datos, sino que
también permiten una implementacion y escalamiento mas dinamicos de los
servicios. Allen subraya que, en contraste con las arquitecturas monoliticas, los
microservicios permiten una reduccidn considerable en los tiempos de inactividad

durante las actualizaciones y una gestion de errores mas eficaz.

Lima (2019) menciona que, en la exploracidén de la migracion de sistemas
monoliticos a arquitecturas basadas en microservicios, tecnologias especificas
como Docker y Kubernetes desempefian un papel fundamental en facilitar este
proceso. Docker permite encapsular aplicaciones en contenedores,
proporcionando un entorno de ejecucion consistente que elimina muchos
problemas comunes de "funciona en mi maquina", mientras que Kubernetes
ofrece una plataforma robusta para la orquestacion de estos contenedores,

asegurando que se gestionen eficientemente en produccion.

El estudio de Lima (2019) también subraya que estas tecnologias no solo
simplifican el despliegue y la gestién de microservicios, sino que también mejoran

significativamente la capacidad de escalar y mantener sistemas complejos. Esta

transicion resulta en una notable reduccion en la complejidad operativa y los
costos, ya que las organizaciones pueden escalar servicios de manera
independiente y eficiente, adaptandose mejor a las demandas cambiantes sin la
necesidad de gestionar una arquitectura monolitica grande y rigida.

Finalmente, en el estudio de Hasan et al. (2023) en el contexto de la
transicidén de arquitecturas monoliticas a microservicios, destacan la importancia
de utilizar métricas estructurales para asegurar la calidad y mantenibilidad de la
arquitectura. El articulo propone métricas especificas como el acoplamiento, la
complejidad, y la cohesion, que son vitales para evaluar la mantenibilidad durante
la migracién a entornos en la nube. Este enfoque metodoldgico no solo facilita la
medicion de la calidad arquitectonica, sino que también guia a las organizaciones
para realizar transiciones mas efectivas y sostenibles, minimizando la deuda

técnica y maximizando los beneficios de los microservicios.

Estas investigaciones acumulan hallazgos importantes que demuestran
claramente que la evolucién hacia arquitecturas distribuidas no es solo una
mejora técnica, sino una necesidad estratégica para mantener la competitividad
en el panorama tecnoldgico en constante evolucién. Al desglosar las aplicaciones
en estructuras mas flexibles y resilientes, las empresas no solo optimizan sus
operaciones internas, sino que también mejoran su capacidad para adaptarse

rapidamente a cambios en el mercado y a las exigencias de los consumidores.

3. PLANTEAMIENTO DEL PROBLEMA

3.1. Planteamiento del problema

En la era digital actual, la eleccion de la arquitectura de software es
fundamental para el éxito empresarial a largo plazo. Las empresas se enfrentan
al desafio de desarrollar aplicaciones que no solo cumplan con los requisitos
funcionales actuales, sino que también sean agiles y escalables para adaptarse
a las necesidades futuras. En este escenario, muchas organizaciones han optado
tradicionalmente por arquitecturas monoliticas debido a su aparente simplicidad
y coherencia en las etapas iniciales de desarrollo.

Las arquitecturas monoliticas enfrentan problemas significativos de
escalabilidad y costos operativos a medida que las aplicaciones crecen. Este tipo
de arquitectura, que concentra todas las funcionalidades en un solo proceso o
servicio, requiere que cada ajuste 0 mejora implique un despliegue completo de
la aplicacion, incrementando el riesgo de errores y llevando a tiempos de
inactividad que afectan negativamente la experiencia del usuario y la

competitividad de la empresa.

Ademas, las arquitecturas monoliticas pueden llevar a una pérdida de
competitividad debido a su rigidez en la adaptacién tecnolégica. La inflexibilidad
para adoptar nuevas tecnologias o frameworks sin reescribir aplicaciones
completas limita la capacidad de las empresas para responder eficazmente a las
demandas cambiantes del mercado y aprovechar nuevas oportunidades de
negocio. Estos factores pueden desencadenar un estancamiento en el mercado,

donde las empresas no logran explotar plenamente el potencial de la innovacion

debido a las limitaciones impuestas por una infraestructura de TI inflexible y
costosa.

Este enfoque tradicional subraya la necesidad critica de evaluar
alternativas que permitan actualizaciones y mejoras continuas sin comprometer
la integridad del sistema en su totalidad, o que es esencial para mantener y
mejorar la eficiencia operativa y la capacidad de innovacion en un entorno
empresarial dinamico. En este sentido, es imperativo explorar arquitecturas de
software que no solo faciliten la integracion de nuevas tecnologias vy
metodologias, sino que también promuevan una mayor flexibilidad y modularidad.

3.1.1. Pregunta central

¢ Cdmo disenar una arquitectura que combine serverless y microservicios
para aumentar la escalabilidad en comparacién con la arquitectura monolitica

tradicional de Magento?

3.1.2. Preguntas Auxiliares

° ¢, Cudles son los indicadores clave que demuestran que las arquitecturas
de microservicios y serverless pueden mejorar la escalabilidad en
comparacién con las arquitecturas monoliticas tradicionales?

o ¢, Cudles son los desafios y limitaciones técnicas que enfrentan las
empresas al intentar integrar arquitecturas serverless y de microservicios
en sistemas existentes dominados por estructuras monoliticas?

. ¢,De qué manera la inflexibilidad tecnolégica de las arquitecturas
monoliticas afecta la capacidad de innovacién y adaptacion de las

empresas ante cambios en el mercado?

4. JUSTIFICACION

En la busqueda de métodos para impulsar la integracion de sistemas de
informacion efectiva y eficiente, esta investigacion se inscribe en la linea de
Sistemas para impulsar la integracion de sistemas de informacion, un campo de
mayor relevancia en el ambito tecnolégico empresarial. La integracion de
sistemas es fundamental para el aprovechamiento de datos y recursos
tecnoldgicos, y la eleccion de una arquitectura de software adecuada es crucial
para alcanzar este objetivo. En este contexto, se utilizard& Magento, una
plataforma de comercio electrénico conocida por su amplia adopcién y estructura
modular, como caso de estudio para explorar la transicidon de su arquitectura
monolitica tradicional hacia una mas desacoplada mediante microservicios y

serverless.

En el sector tecnolégico actual, las empresas enfrentan desafios
constantes para mantenerse competitivas y eficientes. En este contexto, la
eleccion de la arquitectura de software juega un papel crucial en la operatividad
y escalabilidad de las soluciones empresariales. Tradicionalmente, muchas
empresas han adoptado arquitecturas monoliticas por su simplicidad inicial y
coherencia operacional. Sin embargo, este tipo de arquitectura a menudo resulta
en ineficiencias significativas en costos operativos y limitaciones en la
escalabilidad, lo que puede obstaculizar la adaptabilidad y el crecimiento
empresarial a largo plazo.

Esta investigacion se propone explorar como las arquitecturas que
combinan serverless y microservicios pueden ofrecer alternativas viables y

superiores en términos de costos operacionales y escalabilidad en comparacion

con las arquitecturas monoliticas tradicionales. Al hacerlo, el estudio buscara
proporcionar una base solida para la toma de decisiones en el desarrollo y gestidn
de software, subrayando cdmo las arquitecturas mas modernas y flexibles
pueden contribuir significativamente a la eficiencia operativa y a la capacidad de

adaptacién al cambio.

Asimismo, este estudio permitira entender mejor las implicaciones
econémicas y técnicas de las transiciones arquitecténicas en ambientes
empresariales, facilitando a las organizaciones la evaluacion de sus
infraestructuras actuales y la planificacion de mejoras futuras. Al proporcionar
esta comprension, la investigacibn no solo ayudara a resolver conflictos
operativos y estratégicos actuales, sino que también establecera un marco para

el aprovechamiento de tecnologias emergentes y la innovacién continua.

Ademas, la transicion hacia arquitecturas mas modernas como
microservicios y serverless representa una evolucion critica en la forma en que
las organizaciones desarrollan y despliegan sus aplicaciones. Este cambio no
solo promete mejoras en la agilidad y la eficiencia, sino que también introduce
nuevas formas de gestionar la seguridad y la continuidad del servicio, aspectos
que son vitales en un entorno empresarial cada vez mas dependiente de

tecnologias digitales robustas y seguras.

Explorar estas arquitecturas en profundidad proporcionara insights
valiosos sobre las mejores practicas y estrategias para mitigar riesgos asociados
con la implementacién y el mantenimiento de sistemas complejos en la nube. Al
entender estas dinamicas, las empresas podran anticipar mejor los retos que
conlleva la modernizaciéon de su infraestructura tecnolégica y estaran mejor
equipadas para gestionar el cambio de manera proactiva y efectiva.

10

5.1.

5. OBJETIVOS

General

Disefar una arquitectura que combine serverless y microservicios para

aumentar la escalabilidad de Magento, en comparacién con su arquitectura

monolitica tradicional.

5.2.

Especificos

Identificar los indicadores clave que demuestran que las arquitecturas de
microservicios y serverless pueden mejorar la escalabilidad.

Disefar y evaluar una arquitectura que combine elementos de serverless
y microservicios, para identificar y superar los desafios técnicos que
enfrentan las empresas al integrar estas tecnologias en sistemas

existentes.

Implementar un prototipo de arquitectura combinando serverless y
microservicios para analizar como la flexibilidad de esta integracién puede
mejorar la capacidad de innovacion y adaptacion en entornos

empresariales frente a las limitaciones de las arquitecturas monoliticas.

11

12

6. NECESIDADES A CUBRIR Y ESQUEMA DE SOLUCION

Para enfrentar los desafios asociados con la ineficiencia en costos y la
falta de escalabilidad de las arquitecturas monoliticas en aplicaciones
empresariales, se propone una arquitectura hibrida que integra serverless y
microservicios. Este enfoque se centra en superar las limitaciones de las
arquitecturas tradicionales, aprovechando la flexibilidad operacional y la
reduccién de costos.

El desarrollo de esta arquitectura hibrida se basara en la combinacion de
microservicios independientes y funciones serverless, lo cual permite una gestion
mas eficiente y escalable de los recursos. Los microservicios se encargaran de
manejar las operaciones core de la aplicacion, permitiendo una mejor distribuciéon
de carga y facilitando actualizaciones mas agiles y menos disruptivas. Por otro
lado, las funciones serverless se utilizaran para tareas especificas que requieran
escalabilidad instantanea y gestion de alta demanda sin la necesidad de

mantener recursos constantemente activos.

13

Figura 1.

Arquitectura hibrida con serverless y microservicios

—I®

= » Sitio web Microservicio 1
Cliente AWS Lambda
—>

Microservicio 2

Nota. Este enfoque arquitectdnico permite desplegar servicios tradicionales consumiendo
recursos minimos en el sistema operativo que se alojan. Elaboracién propia, realizado con
draw.io.

En la Figura 1, se presenta un diagrama con una representacién visual
que ayuda a conceptualizar cémo estructurar una solucién de este tipo, y una
representacion inicial que puede adaptarse y refinarse segun las necesidades del
entorno empresarial. Sirve como guia para el disefio preliminar y como punto de
partida para discusiones futuras y ajustes que podrian ser necesarios segun
evoluciona el entendimiento de las demandas operativas y tecnoldgicas.

En la Figura 1 se muestra como las solicitudes desde un sitio web son
dirigidas inicialmente a AWS Lambda (servicio serverless), que actia como un
procesador ligero y eficiente, ideal para ejecutar operaciones que no requieren
un estado persistente.

14

Lambda puede resolver la solicitud internamente o redirigirla a uno de los
microservicios para su procesamiento. Este enfoque modular asegura que las
operaciones intensivas en recursos sean manejadas por componentes

dedicados, optimizando asi el rendimiento y la escalabilidad.

Los microservicios manejan funciones especificas dentro de la aplicacion
de manera independiente, permitiendo que cada aspecto del sistema sea
escalable y facil de mantener. Este modelo hibrido aprovecha la eficiencia de
AWS Lambda para reducir los costos operativos mientras utiliza la robustez y
escalabilidad de los microservicios para garantizar una gestion eficiente y efectiva

de las operaciones mas criticas.

El disefio propuesto serd evaluado a través de pruebas rigurosas para
validar su eficiencia operativa y escalabilidad, asegurando que la arquitectura no
solo es técnicamente viable, sino que también apoya eficazmente las
operaciones empresariales en un entorno real. Adoptando esta arquitectura, las
empresas no solo mantendran su competitividad, sino que también lideraran en

innovacion y eficiencia operacional.

15

16

7. ALCANCES

7.1. Alcances de investigacion

Este proyecto de investigacion se centrara en la descomposicién de la
plataforma Magento en su version 2.0, una herramienta lider en el ambito del
comercio electrénico, examinando especificamente cdmo su arquitectura
monolitica tradicional puede ser transformada utilizando enfoques basados en
microservicios y tecnologias serverless. El estudio se concentrard en la
descomposicion de mddulos clave, adaptandolos a arquitecturas de
microservicios y serverless para mejorar su escalabilidad y eficiencia operativa.
Este enfoque permitira una evaluacion detallada de como la implementacién de
estas tecnologias modernas puede ofrecer beneficios tangibles en términos de
rendimiento, costos y capacidad de respuesta ante fluctuaciones del mercado.

Ademas, se llevard a cabo una comparacién sistematica entre las
configuraciones monoliticas originales y las nuevas implementaciones,
proporcionando un analisis profundo de las mejoras en escalabilidad y eficiencia
que estos cambios arquitectdnicos representan para Magento en un entorno

comercial dinamico.

7.2. Alcances técnicos

Este proyecto se centrard en desarrollar un prototipo funcional que
transformara ciertos componentes de la plataforma Magento de una
configuracion monolitica a una arquitectura optimizada usando microservicios y

serverless. La seleccion de médulos para esta conversion se basara en un

17

analisis detallado que identificara aquellos elementos de la plataforma que mas
se beneficiarian de esta modernizacion, teniendo en cuenta su impacto en la

escalabilidad y eficiencia operativa.

Se utilizaran las tecnologias adecuadas para el desarrollo de
microservicios y la implementacion de soluciones serverless. Los microservicios
seran encapsulados utilizando Docker y AWS ECS. Paralelamente, las funciones
serverless se implementardn mediante AWS Lambda, lo que permitira una
gestion eficiente del procesamiento de demandas sin la necesidad de recursos
de servidor permanentemente activos. Las tecnologias AWS Lambda y AWS
ECS son servicios de nube ofrecidos por la plataforma Amazon Web Services

Este enfoque de desarrollo esta disefiado para confirmar los beneficios
potenciales de una arquitectura descompuesta, con un foco particular en la
mejora de la gestidén de recursos. La meta es demostrar cémo la integracion de
microservicios y serverless puede proporcionar una base mas flexible y escalable

para operaciones de comercio como en el caso de Magento.
Se delimitara el alcance del prototipo a funcionalidades especificas de los
méddulos seleccionados, y no se garantiza una cobertura completa de todas las

funcionalidades de Magento.

7.3. Alcances de resultados

o Prototipo funcional que implemente modulos seleccionados de Magento
en arquitecturas de microservicios y serverless.

18

Reportes sobre las evaluaciones realizadas al prototipo y al software
original, incluyendo tiempos de respuesta, capacidad de manejo de cargas

y analisis de costos.

Documentacion completa y manuales de operacién que describen en
detalle las modificaciones implementadas y cémo gestionarlas.

Andlisis de la viabilidad de esta migracién, con recomendaciones

estratégicas basadas en los beneficios observados y los desafios

enfrentados durante la implementacion.

19

20

8. MARCO TEORICO

8.1. Arquitecturas de software

La arquitectura de software se refiere al marco organizacional empleado
para disefar, desarrollar y desplegar aplicaciones de software. Estas se clasifican
generalmente en diferentes tipos, basados en cdmo se estructuran y se integran
los componentes del sistema. Cada tipo de arquitectura ofrece distintos
beneficios y enfrenta diferentes desafios, influenciados por factores como los
requisitos del negocio, la naturaleza del proyecto, la escalabilidad deseada, y las
preferencias tecnoldgicas.

8.1.1. Arquitecturas monoliticas

Las arquitecturas monoliticas representan uno de los enfoques de diseno
de software mas antiguos y tradicionales. En estas arquitecturas, una aplicacion
se construye como una entidad Unica e indivisible donde todos los componentes
de software estan interconectados y dependientes entre si (Elgheriani & Ahmed
2022). Estas arquitecturas centralizadas agrupan todas las funcionalidades en un
unico proceso de ejecucién, lo que simplifica las pruebas y el despliegue inicial,
pero puede dificultar la escalabilidad y el mantenimiento a medida que la

aplicacion aumenta en tamario y complejidad.
La figura 2 ilustra un ejemplo de arquitectura monolitica, donde multiples

médulos funcionales como la gestion de viajes, reservas de hoteles,

procesamiento de pagos y autenticacion de usuarios estan integrados en una

21

unica aplicacion. En este tipo de arquitectura, los componentes estan altamente

acoplados, compartiendo tanto la base de datos como el entorno de ejecucion.

Figura 2.

Arquitectura monolitica

Travel

m - — 2
Payment —-—

Browser Database

Nota. Explica como funciona la arquitectura monolitica con bloque. Adaptado de S. Elgheriani &
N. Ahmed. Microservices vs. Monolithic Architectures. International Journal of Applied Sciences
and Technology, 3(6), p. 508. https://www.minarjournal.com/dergi/microservices-vs-monolithic-

architectures-the-differential-structure-between-two-architectures20221202031410.pdf

8.1.1.1. Caracteristicas de las arquitecturas
monoliticas
o Todos los componentes de la aplicacién, incluyendo la légica de negocio,

la interfaz de usuario, y la gestion de datos, estan fuertemente acoplados
dentro de un Unico proceso ejecutable.

o Debido a que la aplicacién es un Unico bloque construido, el despliegue
suele ser mas directo, generalmente requiriendo la gestion de un solo

archivo o directorio.

22

https://www.minarjournal.com/dergi/microservices-vs-monolithic-architectures-the-differential-structure-between-two-architectures20221202031410.pdf
https://www.minarjournal.com/dergi/microservices-vs-monolithic-architectures-the-differential-structure-between-two-architectures20221202031410.pdf

o Las aplicaciones monoliticas tipicamente escalan mediante el escalado
vertical, lo que significa aumentar la capacidad del servidor donde se aloja
la aplicacion.

o Las arquitecturas monoliticas suelen estar limitadas por la tecnologia en
la que se desarrollan inicialmente. Cualquier actualizacion o cambio
requiere una revision de todo el sistema, lo que puede ser tanto arriesgado
como laborioso.

. Conforme la aplicacion aumenta en tamafio y complejidad, gestionar,
actualizar y escalarla puede volverse progresivamente mas complicado,
afectando potencialmente el funcionamiento de toda la plataforma.

8.1.1.2. Ventajas y desventajas en el contexto
empresarial

En el contexto empresarial, las arquitecturas monoliticas ofrecen tanto
beneficios claros como desafios significativos (Elgheriani & Ahmed, 2022). A
continuacién, se exploran las ventajas y desventajas mas relevantes de adoptar

una arquitectura monolitica para aplicaciones empresariales.

o Ventajas
o La arquitectura monolitica permite una mayor simplicidad en el
desarrollo y el despliegue debido a su estructura integrada. Esto
facilita la gestidén ya que todas las operaciones se manejan dentro
de un unico proceso, lo que puede ser particularmente beneficioso
para las empresas con infraestructuras menos complejas o con
menos recursos para gestionar sistemas distribuidos.

o Dado que todos los componentes de una aplicacidn monolitica se

ejecutan dentro de un mismo proceso, no se requieren

23

comunicaciones entre procesos, lo que puede resultar en menor
latencia y un rendimiento mas rapido en comparacion con

arquitecturas distribuidas, como los microservicios.

o Estas aplicaciones pueden facilitar las pruebas y la depuracion,
dado que no requieren la configuracion de multiples servicios ni la
administracion de su comunicacion. Esta ventaja resulta
fundamental en las etapas de desarrollo y mantenimiento, ya que

disminuye los recursos requeridos y el tiempo para dichas

actividades.
Desventajas
o La escalabilidad representa una limitacibn importante en las

arquitecturas monoliticas, ya que aumentar la capacidad de la
aplicacion implica hacerlo a todo el sistema, lo cual puede ser
menos eficiente y mas costoso que escalar componentes

individuales en una arquitectura de microservicios.

o Con el crecimiento de la aplicacion, su mantenimiento vy
actualizacion pueden tornarse mas complicados y arriesgados.
Cualquier cambio en el sistema puede demandar un despliegue
completo, elevando el riesgo de fallos y de interrupciones en el

servicio.

o Las aplicaciones monoliticas suelen estar vinculadas a un unico
stack tecnolégico, lo que puede dificultar y encarecer la adopcion
de nuevos frameworks o tecnologias. Esta rigidez puede impedir la
innovacion y la adaptabilidad a nuevas tendencias del mercado.

24

Aunque existen ventajas, el modelo monolitico pierde por las limitaciones
de metodologias modernas de entrega de software. En un entorno empresarial
que exige agilidad y flexibilidad, las limitaciones en escalabilidad y dificultad para
adoptar nuevas tecnologias pueden representar desventajas significativas
(Elgheriani & Ahmed, 2022).

8.1.2. Arquitecturas basadas en microservicios

El enfoque de microservicios es una estrategia de disefio de aplicaciones
que divide el sistema en componentes independientes, con cada servicio
asignado a una funcion especifica. Estos servicios operan en entornos
distribuidos, facilitando la escalabilidad y la adaptabilidad. Esta modularidad
permite actualizaciones individuales sin afectar al sistema global y apoya la
utilizacion de tecnologias diversas para cada servicio, optimizando asi la

eficiencia y flexibilidad del desarrollo.

8.1.2.1. Fundamentos teoricos de los
microservicios

Los microservicios se fundamentan en el principio de descomposicién de
aplicaciones grandes en unidades mas pequefias, independientes y manejables,
que se comunican entre si mediante interfaces ligeras, comunmente APIs
RESTful. Esta descomposicidn facilita la modularidad y mejora la mantenibilidad
del software. Esta caracteristica permite desarrollar, probar, desplegar y escalar
cada servicio de forma independiente, lo cual es un cambio significativo respecto

a las monoliticas y SOA tradicionales.

En la figura 3 se puede observar cémo se puede descomponer un sistema

grande en varias unidades mas pequefias con funcionalidades diferentes.

25

Figura 3.
Ejemplo de una descomposicion

Validate and Authenticate Music File !—P‘ul File on Storage
! = |)
Get 5|:|.'1.3 to Play | Uph:,ad Song
‘ "‘ L
Get File Informat
Login ‘ Play Song | et File ;urr'na ion
! I 5
I File
Restrictions

Nota. Descomposicion orientada a objetos. Adaptado de V. Velepucha y Flores (2023). A Survey
on Microservices Architecture: Principles, Patterns and Migration Challenges. IEEE Access, 11.
p. 88341. (https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10220070).

Los microservicios operan bajo la teoria de que cada servicio debe ser
autdbnomo, gestionando su propio ciclo de vida y dependencias. Esto minimiza
las dependencias complejas entre componentes y facilita la escalabilidad
horizontal de los sistemas. Esta autonomia es esencial para aplicaciones
empresariales que requieren alta disponibilidad y flexibilidad para adaptarse a
cambios rapidos en el mercado o en la tecnologia (Garlan & Shaw 2020).

Los microservicios en lugar de seguir un modelo de gobernanza
centralizada tipico de arquitecturas monoliticas, los microservicios adoptan un
enfoque descentralizado. Esto ofrece a los equipos de desarrollo la flexibilidad de
seleccionar las herramientas y tecnologias que mejor se ajusten a sus
necesidades, promoviendo la innovacién y la capacidad de adaptacién. Este
concepto es esencial para preservar la agilidad y eficacia en el desarrollo y

despliegue de nuevos servicios.

26

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10220070

8.1.2.2. Patrones de disefio en microservicios

Los patrones de disefio en microservicios son esenciales para abordar los
retos comunes en el desarrollo y la gestién de aplicaciones distribuidas. Estos
patrones proporcionan soluciones probadas para problemas especificos que
surgen al descomponer una aplicacion en servicios mas pequefios, gestionar su

interaccién, y asegurar su despliegue y operacién eficientes (Taibi et al., 2018).

8.1.2.2.1. Patrones de orquestacion y
coordinacion

Estos patrones juegan un papel clave en la interaccion de los
componentes y el manejo de datos dentro de los sistemas basados en
microservicios Incluyen mecanismos para la coordinacion y la orquestacion de
servicios, esenciales para mantener la funcionalidad y eficiencia del sistema
(Taibi et al., 2018).

o Api gateway:

En este patrdn, el api gateway actia como un intermediario que maneja
las solicitudes de los clientes, dirigiéndose a los microservicios apropiados. Este
patrén es esencial para manejar la seguridad, la tasa de limites y las

transformaciones de protocolos necesarias en un entorno distribuido.

Puede encargarse de varias tareas como autenticacidon, monitoreo y
manejo de respuestas estaticas, simplificando asi las interacciones vy
aumentando el rendimiento del sistema al reducir el numero de solicitudes que

cada cliente necesita realizar.

27

En la figura 4 se muestra un ejemplo tipico de una arquitectura de
microservicios, donde un APl Gateway actia como un punto central de acceso
para los clientes que interactian con varios servicios especializados. En este
esquema, el APl Gateway maneja las solicitudes de los clientes y las enruta a los

microservicios correspondientes.

Figura 4.
Patrén de arquitectura Api Gateway

Specific
w
Gatweay
D / Protocol

Shopping
Cart

API Product
Catalog

A

Recommender
System

Translation

Nota. Catalogo de patrones. Obtenido de D. Taibi, Lenarduzzi, V. & C. Pahl. Architectural Patterns
for Microservices: A Systematic Mapping Study. 8th International Conference on Cloud Computing
and Services Science, p. 3. (10.5220/0006798302210232).

8.1.2.2.2. Patrones de Descubrimiento
de Servicios

Estos patrones son clave para manejar mdltiples instancias de

microservicios que pueden correr en diferentes contenedores virtualizados o

VMs. La comunicacion entre ellos necesita definirse dinamicamente, y los

28

http://dx.doi.org/10.5220/0006798302210232

clientes deben poder comunicarse eficientemente con la instancia apropiada del
microservicio que cambia dindmicamente. Estos patrones apoyan
dinamicamente la resolucién de direcciones DNS en direcciones IP (Taibi et al,
2018).

. Patron de Descubrimiento del lado del cliente

Los clientes consultan el Registro de Servicios, seleccionan una instancia
disponible y realizan una solicitud directamente. Este patrén implica que el cliente
es responsable de elegir una de las instancias de servicios disponibles y de sus

ubicaciones de red.

La principal ventaja de este patron estd conectada a la facilidad de
desarrollo, ya que los clientes son conscientes de las ubicaciones de las
instancias de servicio y, por lo tanto, pueden conectarse directamente a ellas sin

anadir la complejidad de desarrollo del descubrimiento del lado del servidor.

En la figura 5 se observa como los clientes consultan un Registro de
Servicios para obtener la direccion de las instancias disponibles de un servicio
especifico, en este caso, un carrito de compras. Cada instancia de servicio se
registra en el Registro de Servicios al iniciarse, proporcionando su ubicacién
actual. El cliente, que esta "consciente del registro”, consulta este registro para
determinar a cual instancia conectarse, utilizando la APl REST del servicio

correspondiente.

29

Figura 5.

Patrdn de descubrimiento del lado del cliente

Registry|
/ (‘ﬁen!
Shop. Cart
Service 1
Instance 1

Registry- REST
aware APl
client

Registry
Client.

Shop. Cart
Instance 2

REST _/

API

b Registry Ay

Client

Shop. Cart
Instance 3

REST J
API

Nota. Varios articulos también identificaron desventajas de patrones. Adaptado de D. Taibi,
Lenarduzzi, V. & C. Pahl. Architectural Patterns for Microservices: A Systematic Mapping Study.
8th International Conference on Cloud Computing and Services Science, p. 5. Doi:
(10.5220/0006798302210232).

8.1.2.2.3. Patrones de almacenamiento

de datos en microservicios

En arquitecturas de microservicios, el almacenamiento de datos es un
aspecto critico que debe ser gestionado cuidadosamente para mantener la
independencia y escalabilidad de los servicios. Estos patrones permiten disefar
sistemas que pueden crecer y adaptarse eficientemente a los desafios asociados
con la distribucion y la gestion de datos (Taibi et al, 2018).

30

http://dx.doi.org/10.5220/0006798302210232

o Patron de base de datos por servicio

En este patrén, cada microservicio dispone de una base de datos
separada e independiente. Este método es uno de los mas simples y se adopta
frecuentemente al migrar sistemas monoliticos hacia una arquitectura de
microservicios. Al mantener bases de datos independientes para cada
microservicio, se logra una cohesién interna fuerte y se minimiza el acoplamiento
entre los servicios, lo que a su vez facilita la escalabilidad y el mantenimiento del
sistema. Este patrén es compatible tanto con bases de datos relacionales como
NoSQL.

. Patréon de Cluster de Bases de Datos

Este patron propone almacenar los datos en un cluster de bases de datos,
lo que aumenta la escalabilidad y permite trasladar las bases de datos a hardware
especializado. En este enfoque, cada microservicio puede tener acceso a un
conjunto especifico de tablas 0 a un esquema privado dentro de la base de datos.
Desde la perspectiva del microservicio, este patron es similar al Servidor de Base
de Datos Compartido, dado que la interaccidén con la base de datos se efectua

de la misma manera.

8.1.3. Arquitecturas serverless

Las arquitecturas serverless representan un enfoque moderno en la
construccién de aplicaciones, caracterizadas por la descomposicion de sistemas
en multiples funciones independientes que se ejecutan en la nube. En contraste
con las arquitecturas monoliticas o de microservicios, donde los componentes
estan interconectados, en una arquitectura serverless cada funcién es
independiente, se dispara en respuesta a eventos especificos y ajusta su escala

31

automaticamente segun las necesidades. Con esta metodologia, se minimiza la
gestion de la infraestructura, dando a los desarrolladores la libertad de enfocarse
por completo en los procesos clave del negocio.

En la figura 6 se ejemplifica como una tienda en linea implementa una
arquitectura serverless, en donde se observa una funcion para buscar y otra para

realizar una compra.

Figura 6.

Arquitectura Serverless

Authentication
Service

Purchase Function

—
=l —
=
& Search Function
Browser Frontend API Gateway E

Webapp
Product database

Purchase database

Nota. Ejemplo de arquitectura sin servidor. Adaptado de O. Andel (2020). Architectural
Implications of Serverless and Function-as-a-Service. (https://www.diva-
portal.org/smash/get/diva2:1442437/FULLTEXTO1.pdf), consultado el 15 de agosto de 2024.

Reservado derechos de autor.

8.1.3.1. Fundamentos teoricos de serverless

Serverless o Function-as-a-Service (FaaS) ha aparecido como una

innovacion en la computacion en la nube, situandose entre los modelos Platform-

32

https://www.diva-portal.org/smash/get/diva2:1442437/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:1442437/FULLTEXT01.pdf

as-a-Service (PaaS) y Software-as-a-Service (SaaS) en términos del control que
los desarrolladores tienen sobre la plataforma. A pesar del nombre, las funciones
serverless siguen ejecutandose en servidores; sin embargo, la administraciéon
tanto de la infraestructura como de los servidores esta totalmente bajo la
responsabilidad de un proveedor de la nube. Este modelo facilita que los
desarrolladores se concentren exclusivamente en los procesos del negocio,
mientras el proveedor se ocupa del aprovisionamiento, escalado y gestién de los
recursos. (Andell, 2020).

La arquitectura serverless se caracteriza por la descomposicion de
aplicaciones en funciones auténomas y sin estado, que se activan en respuesta
a eventos especificos, como solicitudes HTTP o cambios en la base de datos.
Esto ofrece ventajas significativas, como la capacidad de escalado automatico,
la reduccion de costos de infraestructura al pagar solo por el uso real, y la
eliminacién de la necesidad de gestionar servidores.

No obstante, este enfoque también conlleva desafios, como la
dependencia del proveedor de la nube, lo que puede llevar a un problema de
vendor lock-in, y la complejidad anadida por los cold starts, que pueden aumentar
la latencia cuando una funcién no se ha ejecutado recientemente. A pesar de sus
limitaciones, la arquitectura serverless sigue siendo una opcion viable y atractiva
para desarrollar aplicaciones escalables y rentables, especialmente en

escenarios con demandas de recursos impredecibles.

8.1.3.2. Comparacion entre arquitecturas serverless
y tradicionales

Las arquitecturas serverless se diferencian significativamente de las

arquitecturas tradicionales, como las monoliticas y las basadas en microservicios,

33

en varios aspectos clave. En una arquitectura monolitica convencional, toda la
l6gica de la aplicacion esta integrada en un solo y amplio bloque de cddigo, lo
que facilita las fases iniciales de desarrollo e implementacién, pero complica la
escalabilidad y el mantenimiento a medida que el sistema crece. En contraste,
las arquitecturas basadas en microservicios separan la aplicacion en servicios
autbnomos mas pequefnos, que se pueden escalar y desplegar de forma
independiente. Esto soluciona varios problemas de las arquitecturas monoliticas,
pero introduce una mayor complejidad en la administracion de multiples servicios

y sus interrelaciones. (Andell, 2020).

Las arquitecturas serverless van un paso mas alld en esta
descomposicion, dividiendo la aplicacion en funciones aun mas pequenas y
autbnomas que se activan en respuesta a eventos concretos. No solo se reduce
el costo y la dificultad en la gestion de la infraestructura, que es completamente
administrada por el proveedor del servicio, sino que también se habilita un
escalado automatico mas preciso y eficiente.

En cuanto al rendimiento, las arquitecturas tradicionales tienden a ser mas
predecibles y estables en términos de latencia, especialmente en sistemas donde
la latencia baja y consistente es critica. En contraste, las arquitecturas serverless
pueden sufrir de latencias mas altas e impredecibles debido a los cold starts, lo
que las hace menos adecuadas para aplicaciones que requieren respuestas
instantaneas. Ademas, aunque las arquitecturas serverless prometen reducir los
costes operacionales al facturar solo por el uso real, la gestién y optimizacion de
costes puede ser mas compleja en comparacion con los modelos de precios mas

predecibles de las arquitecturas tradicionales.

34

8.1.3.3. Beneficios de serverless para aplicaciones
dinamicas y de alto trafico

Las arquitecturas serverless son particularmente beneficiosas para
aplicaciones dinamicas y de alto trafico debido a su capacidad inherente de
escalar automaticamente en respuesta a la demanda. A diferencia de las
arquitecturas tradicionales, donde es necesario prever el nimero de servidores
necesarios y gestionarlos manualmente, serverless permite que los recursos se
ajusten de manera automatica y granular en funcion de las necesidades en
tiempo real, lo que garantiza que la aplicacion pueda manejar picos de trafico sin
intervencién manual y sin incurrir en costos adicionales significativos cuando el
trafico es bajo (Andell, 2020).

Este enfoque también es ventajoso en términos de costos operacionales.
Las aplicaciones serverless solo generan costos cuando estan activas, ya que la
infraestructura es gestionada por los proveedores de nube, quienes desactivan
automaticamente las funciones cuando no estan en uso. Esto contrasta con las
arquitecturas tradicionales, donde se pagan costos fijos por servidores que
pueden estar infrautilizados durante periodos de baja demanda.

Ademas, la naturaleza sin estado de las funciones serverless permite que
multiples instancias de una funcidn se ejecuten en paralelo sin conflictos,
optimizando aun mas la capacidad de la aplicacién para manejar altos volimenes
de trafico. Esto es crucial para aplicaciones que experimentan patrones de uso
altamente variables, ya que la arquitectura puede adaptarse de manera eficiente
a estos cambios sin necesidad de una planificacion extensa o intervencién

administrativa.

35

8.2. Computacion en la nube

La computacion en la nube se ha establecido como una de las tecnologias
mas innovadoras y revolucionarias dentro del campo de la tecnologia de la
informacion. Con esta tecnologia, las organizaciones pueden acceder y usar
recursos de TI, tales como almacenamiento, bases de datos y capacidad de
procesamiento, por medio de Internet, evitando asi la necesidad de adquirir y
mantener una infraestructura fisica que resulta costosa y compleja. Ha pasado
de ser un concepto basico de almacenamiento remoto a convertirse en un
sistema sofisticado que respalda aplicaciones empresariales criticas y procesos
clave de negocio (Qian et al., 2009).

En la figura 7 se proporciona una vision clara de como las diferentes capas
y componentes interactuan en una arquitectura de computacién en la nube. Cada
capa tiene un rol especifico, desde la gestion de los recursos fisicos hasta la
entrega de aplicaciones finales a los usuarios. Para que un entorno en la nube
sea exitoso, es fundamental la integracién y administracidn eficiente de cada una
de sus capas y elementos. Esta arquitectura escalonada facilita la flexibilidad,
escalabilidad y eficiencia operativa, permitiendo que las empresas ajusten sus
recursos y capacidades segun las demandas cambiantes.

36

Figura 7.
Arquitectura en la nube

OA &M I) Application i .
I C Analytical) CTmLsactionﬂl-}C Interactive } .(Browsing) %
{ Deployment) I
I_f Configuration -/I" I Application Capability Components ™
I i\WebSen-‘er;l (AppSen‘er) CRepoﬂing | i\ESB }. -
(i) : 2
Scheduling il ~ N T A > L=
LS = { | | | ¥
I k. Cache D MsqQ Pl Database/] L DW) 2 ;%
(Performance b l =
I Computing Frameworks
[/ Tra.nsactional.-"Dispatching) i Analytical/Scheduling j
—— 1|C C
onitor |
b A l
I/_Faulr& Iogg:ing) | Virtualized Resource
O W :
I 7 Server Storage Network ™ o
P e — _ Virtualization / _ Virtualization / _Virtualization / 2
(_ Bime)] =
I s S]
l (Server /J < Storage) (Network) o
l Physical Resource

Nota. Arquitectura de computacién en la nube. Adaptado de L. Qian, Z. Luo, Y. Du & L. Guo.
Cloud Computing: An Overview. Cloud Computing, First International Conference, CloudCom
2009, Beijing, China, p. 628.
https://www.researchgate.net/publication/221276709 Cloud Computing An Overview

o Recursos fisicos: esta es la capa més basica, que incluye los componentes
fisicos como servidores, almacenamiento y redes. Estos son los elementos

tangibles que proporcionan la base para todos los servicios en la nube.

o Recursos virtualizados: por encima de los recursos fisicos, la virtualizacién
permite que estos recursos fisicos se dividan en mudltiples instancias
virtuales. La virtualizacién del servidor, almacenamiento y red permite que

37

https://www.researchgate.net/publication/221276709_Cloud_Computing_An_Overview

estos recursos se utilicen de manera mas eficiente y sean escalables. Los
recursos virtualizados son fundamentales para proporcionar servicios en

la nube de manera flexible y dinamica.

Marcos de trabajo computacionales: esta capa incluye los frameworks de
procesamiento que soportan las operaciones de la nube. Ejemplos
incluyen el procesamiento transaccional y el analisis y programacion de
tareas. Estos marcos permiten la ejecucidn eficiente de tareas que pueden

ser de naturaleza transaccional o analitica.

Componentes de capacidad de aplicaciébn: en esta subcapa, se
encuentran componentes como servidores web, servidores de
aplicaciones, bases de datos, sistemas de colas de mensajes (MsgQ), y
otras herramientas esenciales para la construccion de aplicaciones. Estos
componentes son cruciales para brindar servicios especificos a las

aplicaciones que operan en la nube.

Aplicaciones: en esta capa se encuentran las aplicaciones que realizan
funciones especificas como andlisis, transacciones, interaccion y
navegacion. Estas aplicaciones son las que los usuarios finales utilizan y
se benefician de los servicios y capacidades proporcionados por las capas
inferiores. Cada tipo de aplicacién puede requerir diferentes capacidades
de la infraestructura subyacente.

Operacion, administracién y mantenimiento: en el lateral izquierdo de la
figura, se detalla un conjunto de funciones relacionadas con la operacion,
administracion y mantenimiento de la infraestructura de la nube. Esto
incluye la implementacién, configuracion, programacién, monitoreo,

gestion del rendimiento, y facturaciéon, entre otros. Estas funciones son

38

esenciales para asegurar que todos los recursos y aplicaciones en la nube
operen de manera eficiente, segura y dentro de los costos previstos.

8.2.1. Conceptos basicos de la computacion en la nube

La nube se refiere a la provision de diferentes servicios informaticos, como
servidores, almacenamiento, bases de datos, redes y software, asi como
herramientas de analisis, todo a través de Internet. Este modelo de servicio
permite a las organizaciones alquilar recursos informaticos en lugar de adquirir y
mantener su propia infraestructura fisica, lo que se traduce en una mayor

flexibilidad y eficiencia en costos.

Existen diferentes enfoques para implementar soluciones en la nube. El
mas elemental es la Infraestructura como Servicio (laaS), que ofrece a los
usuarios acceso a recursos informaticos virtualizados. Las organizaciones
pueden alquilar estos recursos segun sus necesidades, escalando vertical u
horizontalmente de acuerdo con la demanda. Ejemplos populares de este
enfoque incluyen Amazon Web Services (AWS) y Microsoft Azure (Qian et al.,
2009).

El modelo Plataforma como Servicio (PaaS) proporciona una plataforma
sobre la cual los desarrolladores pueden crear, desplegar y administrar
aplicaciones sin preocuparse por la infraestructura que esta detras. Este modelo
abarca tanto el hardware requerido como las herramientas de desarrollo y el
middleware, que simplifican el proceso de creacion de software. Google App
Engine y Microsoft Azure son ejemplos de servicios PaaS (Rashid & Chaturvedi,
2019).

39

El modelo Software como Servicio (SaaS) ofrece aplicaciones completas
a los usuarios finales mediante Internet. Al estar alojadas en la nube, estas
aplicaciones pueden ser utilizadas desde distintos dispositivos con conexién a la
red. SaaS elimina la necesidad de instalar y ejecutar aplicaciones en los
ordenadores de los usuarios, lo que simplifica el mantenimiento y el soporte
técnico. Ejemplos de SaaS incluyen Google Workspace y Salesforce.

La computacion en la nube también se caracteriza por cinco atributos
esenciales: autoservicio bajo demanda, acceso amplio a la red, agrupacion de
recursos, elasticidad rapida y servicio medido. Estos atributos garantizan que las
organizaciones puedan gestionar y utilizar los recursos de manera eficiente y

adaptarse rapidamente a los cambios en las demandas del mercado.

8.2.2. Ventajas de la nube para el escalado y manejo de

aplicaciones empresariales

La computacién en la nube proporciona multiples beneficios para el
escalado y la gestion de aplicaciones empresariales, cambiando la forma en que

las empresas operan y administran sus recursos tecnoldgicos.

o La habilidad de escalar recursos automaticamente segun las necesidades.
Las aplicaciones empresariales que enfrentan variaciones en la carga de
trabajo, como aumentos de trafico durante promociones o eventos
especiales, pueden aprovechar considerablemente la habilidad de la nube

para ajustar los recursos de manera dinamica. (Qian et al., 2009).
. En lugar de invertir en infraestructura costosa y subutilizada, las
organizaciones solo pagan por los recursos que realmente utilizan. Esto

es particularmente beneficioso para las aplicaciones que tienen patrones

40

de uso variables, como las que se ejecutan de manera intensiva durante
ciertas horas del dia o en temporadas especificas (Rashid & Chaturvedi,
2019).

o Proporciona alta disponibilidad y redundancia incorporada, lo que es
importante para aplicaciones empresariales criticas. Los proveedores de
estos servicios implementan infraestructuras robustas con multiples
centros de datos distribuidos geograficamente, permitiendo que las
aplicaciones permanezcan operativas incluso en caso de fallos en uno o

mas servidores.

o La nube ofrece una flexibilidad sin precedentes para el manejo de
aplicaciones empresariales. Las empresas pueden implementar nuevas
aplicaciones o servicios en la nube de manera rapida y sencilla, lo que les
permite adaptarse a las necesidades cambiantes del mercado y responder
a las oportunidades con mayor agilidad.

8.2.3. Amazon Web Services

Es una de las plataformas de servicios en la nube mas adoptadas del
mundo, ofreciendo servicios para desarrollar, implementar y gestionar
aplicaciones con muchas herramientas. AWS proporciona infraestructura bajo
demanda, lo que quiere decir que las empresas pueden acceder a diferentes
recursos en funcion de sus necesidades, pagando Unicamente lo necesario, sin
realizar inversiones iniciales significativas en hardware (Kewate et al., 2022).

Soporta una amplia gama de servicios que incluyen cémputo,
almacenamiento, bases de datos, analisis, redes, movilidad, herramientas para

desarrolladores, administracién, loT, seguridad, y aplicaciones empresariales.

41

8.2.3.1. Servicios enfocados en Microservicios

AWS ofrece una amplia gama de servicios disefiados especificamente
para apoyar arquitecturas basadas en microservicios. Estos servicios permiten a
las organizaciones desarrollar, desplegar y escalar aplicaciones compuestas por
microservicios de manera eficiente y flexible. Por ejemplo, Amazon Elastic
Container Service (ECS) es un servicio altamente escalable que permite ejecutar

y gestionar contenedores Docker en un cluster.

8.2.3.1.1. Amazon Elastic Container

Service

Se trata de un servicio completamente administrado por AWS que permite
desplegar y gestionar contenedores Docker a gran escala. ECS facilita la
implementacion de aplicaciones que siguen una arquitectura de microservicios,
donde cada microservicio se ejecuta en un contenedor independiente,

permitiendo una mayor modularidad, escalabilidad y resiliencia.

ECS funciona al crear un cluster de recursos que pueden distribuirse entre
diferentes centros de datos. Estos clusteres pueden llenarse con instancias de
EC2 que actuan como la infraestructura subyacente para los contenedores. Cada
instancia de EC2 en el cluster ejecuta un agente ECS, que registra la instancia
en el cluster y gestiona la comunicacién entre los contenedores y la

infraestructura subyacente (Salah et al., 2022).
Es un buen servicio a considerar para la gestién de aplicaciones basadas

en microservicios, gracias a su integracion profunda con la infraestructura de
AWS y sus capacidades avanzadas de gestion y escalado automatizado.

42

8.2.3.2. Servicios Serverless

Los servicios serverless han transformado la forma en que se desarrollan
y despliegan las aplicaciones, al eliminar la necesidad de que el usuario final
gestione la infraestructura. Con este enfoque, los desarrolladores pueden
concentrarse unicamente en los procesos operativos del negocio, mientras que
el proveedor de soluciones en la nube se encarga del aprovisionamiento,
escalado y gestion de los servidores. En el contexto de AWS, uno de los servicios
serverless mas destacados es AWS Lambda, que fue lanzado en 2015 como la
primera plataforma comercial de Function-as-a-Service (FaaS) (Andell, 2020).

8.2.3.2.1. Amazon Lambda

Lambda ofrece a los desarrolladores la posibilidad de ejecutar cédigo en
reaccion a eventos, eliminando la necesidad de gestionar servidores. Esto se
logra mediante la divisibn de aplicaciones en pequefas funciones
independientes, que se activan automaticamente en respuesta a eventos como
solicitudes HTTP, cambios en bases de datos, 0 mensajes de servicios de colas.
Este enfoque elimina la carga de aprovisionar y mantener infraestructura,
permitiendo que las aplicaciones escalen automaticamente segun la demanda
(Andell, 2020).

Entre las caracteristicas mas destacadas de AWS Lambda se encuentra
su capacidad para escalar automaticamente, ajustando el nimero de instancias
de la funcidbn segun la carga de trabajo. Esto es particularmente util en
aplicaciones con patrones de trafico impredecibles, ya que permite que las
aplicaciones manejen picos de tréafico sin intervencion manual. Ademas, Lambda
ofrece un modelo de precios basado en el uso real, cobrando solo por el tiempo

de ejecucidén de las funciones, lo que reduce significativamente los costos

43

operacionales en comparacion con arquitecturas tradicionales que requieren

servidores siempre encendidos.

Este servicio es compatible con una amplia variedad de lenguajes de
programacioén, lo que ofrece a los desarrolladores una gran flexibilidad para
utilizar el lenguaje que mejor se adapte a sus necesidades. Entre los lenguajes
soportados se incluyen Node.js, Python, Java, Ruby, C# (.NET Core), Go, y
PowerShell. Ademas, AWS Lambda permite ejecutar funciones en otros
lenguajes a través del uso de contenedores personalizados, lo que amplia la
flexibilidad de la plataforma para soportar casi cualquier entorno de ejecucion.
Esta capacidad multilenguaje hace que Lambda sea una opcién ideal para
equipos de desarrollo que trabajan con diferentes tecnologias y necesitan un

entorno que soporte sus herramientas y flujos de trabajo preferidos.

8.3. Integracion de Microservicios y Serverless

La integracidén de microservicios con arquitecturas serverless es un
enfoque que combina lo mejor de ambos mundos: la modularidad y la
independencia de los microservicios con la eficiencia y la escalabilidad
automatica de las plataformas serverless. Estas dos arquitecturas estan
disenadas para abordar los desafios de las aplicaciones modernas, donde la
demanda de agilidad, escalabilidad y reduccién de costos operacionales es

crucial.

La arquitectura serverless permite ejecutar microservicios de manera que
solo se utilizan los recursos computacionales cuando es necesario, eliminando la
necesidad de mantener servidores activos constantemente. Esto se logra
mediante el uso de servicios como AWS Lambda, que ejecuta funciones en

respuesta a eventos y se escala automaticamente segun la demanda. La

44

combinacién de microservicios y serverless también facilita la implementacion de
aplicaciones altamente escalables y resilientes, ya que cada microservicio puede
desplegarse, gestionarse y escalarse de manera independiente (Sadek vy
colaboradores, 2022) (Andell, 2018).

8.3.1. Integracion y Gestion

Integrar microservicios en una arquitectura serverless requiere estrategias
de gestidn especificas para abordar la complejidad y garantizar un rendimiento
optimo. Una estrategia crucial es la implementacién de un APl Gateway para
centralizar la gestion de las solicitudes que se envian a los microservicios. API
Gateway actua como un punto de entrada que enruta las solicitudes a los
microservicios correspondientes, aplica politicas de seguridad, y maneja el trafico
de manera eficiente. Ademas de facilitar la comunicacién entre microservicios,

también mejora la seguridad y la capacidad de escalar la aplicacion.

Otra estrategia efectiva es utilizar patrones de orquestacion mediante
servicios como AWS Step Functions, que permiten coordinar multiples
microservicios y funciones serverless en flujos de trabajo automatizados. Este
enfoque es esencial para manejar dependencias complejas entre microservicios
y garantizar que las tareas se ejecuten en el orden correcto. Ademas, la
implementaciéon de servicios de colas y mensajerias que permiten una
comunicacién asincrona y desacoplada entre los microservicios, lo que mejora la

resiliencia y la escalabilidad del sistema (Heikkinen, 2023).
Para manejar la complejidad de estas arquitecturas, es crucial disponer de

herramientas de monitoreo y registro que ofrezcan visibilidad. En AWS existen
servicios que apoyan a esta causa, tales como Cloudwatch y Cloudtrail.

45

8.3.2. Estrategias de Migracion

Pasar de un sistema monolitico a una combinaciéon de microservicios y
serverless puede presentar desafios, pero con la estrategia correcta, se pueden
minimizar los riesgos y aprovechar al maximo sus ventajas. Un enfoque comun
es la migracion gradual, donde partes del sistema monolitico se van
desacoplando y migrando a microservicios, que luego pueden integrarse con
funciones serverless. Este enfoque ofrece a los equipos de desarrollo la
posibilidad de probar la nueva arquitectura en pequenas partes del sistema antes
de comprometerse por completo con la migracion. (Heikkinen, 2023).

Otro enfoque efectivo es el uso de contenedores para encapsular partes
del sistema que aun no se pueden convertir completamente en microservicios o
funciones serverless. Al utilizar plataformas como AWS ECS, es posible ejecutar
estos contenedores de manera serverless, lo que facilita la integraciéon con los
componentes ya migrados y reduce la complejidad de la infraestructura (Sadek
et al., 2022).

Ademas, es crucial realizar un andlisis profundo de las dependencias del
sistema antes de comenzar la migracion. Identificar los componentes que tienen
muchas interdependencias con otras partes del sistema puede ayudar a planificar
mejor la secuencia de la migracién, priorizando el desacoplamiento de estas

partes para reducir el riesgo de fallos durante la transicién (Heikkinen, 2023).

Identificar qué servicios son los mas adecuados para extraer en una
arquitectura monolitica es una parte muy importante, una estrategia es extraer
aquellos que se encuentran en las hojas del arbol de dependencias de servicios,
obtenidos al analizar la base de codigo. Estos servicios no dependen de otros y

46

generalmente tienen contextos delimitados de manera mas clara, lo que evita

complicaciones comunes (Brula, 2023).

Aunque algunos servicios son mas faciles de extraer que otros, como regla
general, se recomienda extraer primero un servicio que tenga una necesidad
urgente de funcionar de manera independiente del monolito y que cuente con
contextos bien definidos. Si se selecciona un servicio de esta manera, el esfuerzo
de refactorizacion, mejora y migracion eventualmente dara frutos. Las razones
pueden ser variadas, desde la perspectiva organizacional, la mantenibilidad, el
rendimiento, la disponibilidad, entre otras. Migrar y mantener microservicios sin

un proposito claro puede resultar costoso tanto en tiempo como en dinero.

La figura 8 ilustra la evolucién de un prototipo de sistema monolitico hacia
una arquitectura serverless y finalmente hacia un sistema completamente
descompuesto y migrado que incorpora microservicios junto con la arquitectura

serverless.

47

Figura 8.

Descripcion general de los pasos de migracion del prototipo

Current System Serverless System Decomposed & Migrated Serverless System

Sarvme A

Menolith Monolith Menolith ‘ l_) I
5 |

Database A *

Migration Evolution

Nota. Implementacion del prototipo. Adaptado de M. Brula (2023). From Monolith to Serverless
Microservices Migration. (https://epub.technikum-wien.at/obvftwhsmmig/download/pdf/9746870),

consultado el 16 de septiembre de 2024. Derechos reservados del autor.

8.4. Introduccion a Magento

Magento, una plataforma de comercio electrénico que ofrece una version
de paga y otra de cédigo abierto, destaca por su notable flexibilidad y opciones
avanzadas de personalizacion. Desarrollada originalmente por Varien Inc. y
lanzada en 2008, Magento ha crecido hasta convertirse en una de las plataformas
mas reconocidas del mercado, especialmente entre pequenas y medianas
empresas. Magento permite a los desarrolladores crear tiendas en linea
altamente personalizables, ofreciendo una amplia gama de funcionalidades,
desde la gestion de productos y categorias hasta la integracion de multiples
métodos de pago y la optimizacién para motores de busqueda (Lin, 2015).

48

https://epub.technikum-wien.at/obvftwhsmmig/download/pdf/9746870

La versidbn 2.0 (lanzada en noviembre de 2015), ha experimentado
cambios en términos de estructura y patrones de desarrollo, y actualmente se
encuentra en su segunda version principal, Magento 2. (Morizur, 2019).

8.4.1. Descripcion general de la plataforma Magento

Magento se distingue por su capacidad de personalizacién. Los usuarios
pueden adaptar casi todos los aspectos de su tienda, desde el disefio del frontend
hasta las funciones de backend, mediante la instalacion de modulos y temas
personalizados. Esto facilita que las empresas ofrezcan experiencias de compra
exclusivas y adaptadas a las necesidades de su audiencia. Sin embargo, esta
flexibilidad viene con una complejidad inherente, lo que puede requerir un

conocimiento técnico considerable para su implementacién y mantenimiento.

Magento se basa en el lenguaje de programacién PHP, lo que le permite
aprovechar la robustez y la amplia comunidad de desarrolladores de PHP. Esta
eleccion de lenguaje tambiéen facilita la integracion con diversas herramientas y
servicios web, lo que es crucial para crear experiencias de compra en linea

personalizadas y eficientes.

Las principales caracteristicas de Magento incluyen la gestion avanzada
de catalogos de productos, diversas opciones de pago y envio, y la capacidad de
gestionar multiples sitios web desde una sola instalacién. Ademas, la plataforma
cuenta con una robusta interfaz de administracién que facilita la gestion eficiente
de las tiendas, soporte para motores de busqueda, multiples monedas e idiomas,
y una amplia variedad de extensiones de terceros para ampliar la funcionalidad
de la tienda.

49

8.4.2. Arquitectura modular

Uno de los principales puntos fuertes de Magento es su arquitectura
modular, que ofrece a los desarrolladores la capacidad de crear y gestionar
funcionalidades particulares de forma independiente dentro de la misma
aplicaciéon. Cada modulo en Magento encapsula una funcionalidad particular,
como la gestion de productos, el sistema de pagos, o el manejo de usuarios.
Estos mddulos estan disefiados para ser independientes entre si, lo que significa
que se pueden anadir, modificar o eliminar sin afectar la estabilidad del resto del

sistema.

Los modulos en Magento pueden interactuar entre si mediante relaciones
especificas que son cuidadosamente gestionadas para asegurar la coherencia y
estabilidad del sistema. Por ejemplo, un modulo puede utilizar otro médulo,
reaccionar a eventos generados por otro modulo, o incluso personalizar y
extender la funcionalidad de otro médulo sin necesidad de modificar el nacleo del
sistema. Esto se consigue mediante una mezcla de dependencias estrictas y
flexibles, las cuales estan claramente especificadas en la configuracién de cada

modulo.

Ademads, Magento permite la instalacion y gestion de modulos de forma
sencilla utilizando Composer, un gestor de dependencias para PHP. Esto facilita
la adicion de nuevas funcionalidades a una instalacién existente de Magento, asi
como la actualizacién y mantenimiento de modulos sin interferir con otros
componentes del sistema. La capacidad de Magento para gestionar médulos de
forma efectiva es una de las principales razones de su flexibilidad y adaptabilidad,
permitiendo a las empresas ajustar su experiencia de comercio electrénico sin

comprometer la estabilidad del sistema.

50

La estructura de Magento se divide en dos partes clave: el back-end, que
abarca la base de datos, MySQL, y las interfaces de modelo, datos y servicio.
Estas partes estan directamente conectadas y se utilizan en los Bloques, Disenos
y Plantillas de Magento, que constituyen el front-end de la aplicacion. La figura 9
muestra la arquitectura general de Magento, que estad estructurada en varias
capas, cada una con funciones especificas que permiten la flexibilidad y
extensibilidad de la plataforma (Morizur, 2019).

Figura 9.
Representacion de la arquitectura de Magento en su version 2.0

Prosentation
Layer

Web API
-

ey - 1k
Layer

Domain
Layer

Persistence
-

11

(LESS, JS, etc.)

Magento libraries

1

Magento
PHP code

|
PHP/
Standards

Nota. Capas de Magento. Adaptado de D. Morizur, (2019). Enhancing Magento Frontend
Performance With Reactjs and Comparing It To Knockout.
(https://www.theseus.fi/bitstream/handle/10024/161745/Thesis.pdf?sequence=2), consultado el
16 de septiembre de 2024. Derechos reservados del Autor.

51

https://www.theseus.fi/bitstream/handle/10024/161745/Thesis.pdf?sequence=2

52

9.

PROPUESTA DE iNDICE DE CONTENIDOS

INDICE DE ILUSTRACIONES
iINDICE DE TABLAS

LISTA DE SIMBOLOS
GLOSARIO

RESUMEN
PLANTEAMIENTO DEL PROBLEMA

OBJETIVOS

MARCO METODOLOGICO
INTRODUCCION

1.

MARCO TEORICO

1.1.

Arquitecturas de software

1.1.1.

Arquitecturas monoliticas
1.1.1.1. Ventajas y desventajas en el contexto
empresarial
Arquitecturas basadas en microservicios
1.1.2.1. Fundamentos tedricos de los
microservicios
1.1.2.2. Patrones de disefio en microservicios
1.1.2.2.1. Patrones de orquestacién
y coordinacién
1.1.2.2.2. Patrones de
descubrimiento de

servicios

53

1.2.

1.3.

1.4.

1.1.3.

1.1.2.2.3. Patrones de
almacenamiento de datos
en microservicios
Arquitecturas serverless
1.1.3.1. Fundamentos tedricos de serverless
1.1.3.2. Comparacion entre arquitecturas
serverless y tradicionales
1.1.3.8. Beneficios de serverless para

aplicaciones dindmicas y de alto trafico

Computacion en la nube

1.2.1.
1.2.2.

1.2.3.

Conceptos basicos de la computacién en la nube
Ventajas de la nube para el escalado y manejo de
aplicaciones empresariales

Amazon Web Services

1.2.3.1. Servicios enfocados en microservicios
1.2.3.1.1. Amazon Elastic Container
Service
1.2.3.2. Servicios serverless

1.2.3.2.1. Amazon Lambda

Integracién de microservicios y serverless

1.3.1.
1.3.2.

Integracién y gestion
Estrategias de migracion

Introduccién a Magento

1.4.1.
1.4.2.

Integracion de microservicios y serverless

Arquitectura modular

IMPLEMENTACION DEL PROTOTIPO

2.1.

Seleccién de médulos

2.1.1.

Analisis de médulos clave

54

2.1.2. Criterios de selecciéon de moédulos

2.1.3. Médulos seleccionados
2.1.4. Desafios en médulos seleccionados
2.2. Codificacién
2.2.1. Disefo de la arquitectura del prototipo
2.2.2. Herramientas y tecnologias utilizadas
2.2.3. Desarrollo de los microservicios
2.2.4. Desarrollo de las funciones serverless
2.2.5. Integracién de bases de datos
2.3. Pruebas de integracién
2.3.1. Pruebas de comunicacién entre microservicios
2.3.2. Pruebas de integracién entre microservicios y

funciones serverless
2.3.3. Validacién de la l6gica del sistema
2.3.4. Registro y resolucion de errores

PRESENTACION DE RESULTADOS

3.1. Comparacién entre la arquitectura monolitica y la arquitectura
hibrida
3.1.1. Evaluacion de escalabilidad
3.1.2. Eficiencia Operativa
3.1.3. Tiempos de respuesta
3.1.4. Pruebas de rendimiento
3.2. Andlisis de resultados
3.3. Analisis de costos

DISCUSION DE RESULTADOS
4.1. Implicaciones para futuras migraciones
4.2. Desafios técnicos

55

4.3. Limitaciones del estudio
4.4. Viabilidad del Prototipo

CONCLUSIONES
RECOMENDACIONES
REFERENCIAS
ANEXOS

56

10. METODOLOGIA

10.1. Tipo de estudio

El presente estudio se enmarca en un enfoque mixto, combinando
métodos cuantitativos y cualitativos. EI componente cuantitativo del estudio se
enfocara en la medicién y analisis de indicadores clave relacionados con la
escalabilidad y el rendimiento, proporcionando datos objetivos que permitan

comparar de manera precisa las arquitecturas hibridas con las tradicionales.

Simultaneamente, el enfoque cualitativo se utilizar4 para explorar en
profundidad los desafios técnicos y las experiencias durante la implementacién
de la arquitectura hibrida. Al combinar ambos enfoques, el estudio proporcionara
una vision integral apoyada en datos cuantitativos para evaluar la escalabilidad y
también en cuenta las perspectivas practicas y los desafios técnicos de las
empresas al migrar de arquitecturas monoliticas a arquitecturas mas modernas y

escalables.

10.2. Diseno de la investigacion

El estudio adopta un disefo de investigacion experimental. Este disefio es
adecuado para abordar el objetivo de disefiar una arquitectura hibrida que
combine microservicios y tecnologias serverless para mejorar la escalabilidad en
comparacién con las arquitecturas monoliticas tradicionales, especificamente en
la plataforma Magento 2.0. Ademas, este enfoque permite la identificacion de los
mébdulos especificos de Magento que son viables para la migracién y que se
beneficiarian de ella, realizando una seleccién informada y estratégica de

57

aquellos componentes que optimizaran la eficiencia operativa y la capacidad de
respuesta del sistema.

10.3. Alcance de la investigacion

El presente estudio tiene un alcance explicativo, centrado en analizar y
comprender las causas y efectos de la transformacion de la arquitectura
monolitica de Magento 2.0 en una arquitectura hibrida basada en microservicios
y serverless. Este enfoque permite explorar en profundidad cémo la migracién de
mddulos clave impacta en la escalabilidad y eficiencia operativa del sistema,
estableciendo una relacion causal entre el tipo de arquitectura implementada y

los beneficios en términos de rendimiento y costos operacionales.

A través del desarrollo y evaluacion de un prototipo experimental, la
investigacion busca no solo describir las mejoras observadas, sino también
explicar los mecanismos que conducen a estas mejoras. Este alcance explicativo
también permite la generacion de conocimientos predictivos, orientados a
anticipar como otras plataformas monoliticas podrian beneficiarse de una

transicion similar.

o Crear un prototipo 0 modelo que permita observar y medir el impacto de la

migracién a una arquitectura hibrida.
o Comparar los resultados obtenidos de diferentes configuraciones o
estados, como comparar el rendimiento de la arquitectura monolitica

original con la nueva arquitectura hibrida.

. Realizar pruebas para determinar la escalabilidad y rendimiento

operacional.

58

o Ofrecer recomendaciones para la implementacién de la arquitectura

hibrida en otros contextos 0 empresas.

10.4. Variables e indicadores

En la tabla 1 se muestran las variables y los indicadores que se tomaran

en cuenta para la investigacion.

Tabla 1.
Definicion de las variables

Variable Definicidn técnica Definicion operativa
Escalabilidad Capacidad del sistema para manejar un Tiempo de respuesta en
aumento en la carga de trabajo sin segundos o0 milisegundos
comprometer el rendimiento. ante ajuste de recursos
adicionales ante un pico de
carga
Eficiencia Capacidad del sistema para operar Porcentaje de utilizacién de
Operativa utilizando los menores recursos posibles recursos (CPU, Memoria) y
manteniendo un rendimiento éptimo. costos totales
Modulos Componentes especificos de Magento Numero total de modulos
Migrados seleccionados para la migracion a migrados
microservicios y serverless.
Nuamero de Cantidad de problemas técnicos surgidos Recuento y clasificacién de
Desafios durante la migracion de la arquitectura. los problemas técnicos
Técnicos encontrados durante el
Identificados proceso de migracion.
Tiempos de Tiempo promedio de procesamiento en Tiempo promedio de
respuesta milisegundos o segundos. funciones clave que hayan

sido afectadas por las
modificaciones en la
arquitectura

Nota. Variables independientes. Elaboracién propia, realizado con Excel.

10.5. Fases del estudio

A continuacién, se describen las fases que realizaran para el estudio.

59

10.5.1. Fase 1: revision de literatura y estructuracion del
proyecto

En esta fase inicial, se llevara a cabo una investigacion exhaustiva de la
literatura existente, incluyendo articulos académicos, estudios de caso, y otras
fuentes relevantes que traten sobre la migracién de arquitecturas monoliticas a
microservicios y serverless. El objetivo es fundamentar la investigacién en el
conocimiento existente, identificar lagunas en la literatura que tu estudio pueda
abordar, y establecer un contexto claro sobre la importancia del problema a
investigar. También se desarrollara la planificacidén y estructuracion del proyecto,
que abarcara la seleccion del tipo de estudio, el alcance del proyecto, la
metodologia a emplear en las siguientes fases, y la definicién de los pasos clave

a segquir.

10.5.2. Fase 2: revisidn y analisis de la arquitectura actual

Se realizara una revisién exhaustiva de la arquitectura monolitica actual
de Magento 2.0, incluyendo la identificacion de los modulos clave, la evaluacion
de su interdependencia, y la documentacion del estado actual del sistema en
términos de rendimiento, escalabilidad y costos operativos. Esta fase tiene como
objetivo establecer una linea base que servird para comparar los resultados
después de la implementacion de la nueva arquitectura.

10.5.3. Fase 3: seleccién y diseno de la arquitectura hibrida
En esta fase, se seleccionaran los mddulos de Magento que son
candidatos para la migracion a microservicios y tecnologias serverless, y se

disenara la arquitectura hibrida, definiendo como se dividiran los médulos y qué

servicios se transformaran en microservicios y serverless. El objetivo es crear un

60

plan detallado de la nueva arquitectura, asegurando que cada componente esté
optimizado para la escalabilidad y eficiencia.

10.5.4. Fase 4: desarrollo del prototipo

Se implementara la nueva arquitectura hibrida basada en el disefo
desarrollado en la fase anterior, utilizando tecnologias como Docker, AWS ECS
y AWS Lambda para crear un prototipo funcional. Esta fase tiene como objetivo
desarrollar un prototipo operativo que permita realizar pruebas de rendimiento y
escalabilidad.

10.5.5. Fase 5: pruebas y evaluacion

Se llevardn a cabo pruebas exhaustivas del prototipo para medir su
rendimiento en comparacién con la arquitectura monolitica original, incluyendo la
evaluacion de la escalabilidad, latencia, tiempos de respuesta, y costos
operacionales. El objetivo de esta fase es validar la efectividad de la arquitectura
hibrida, identificar cualquier desafio técnico adicional, y comparar los resultados
con la linea base establecida en la fase 2.

10.5.6. Fase 6: analisis de resultados y optimizacion

Se realizara un analisis detallado de los datos recopilados durante las
pruebas y se efectuaran ajustes y optimizaciones en el prototipo basado en los
resultados obtenidos. Esta fase también incluye la evaluacion de la viabilidad
economica y técnica de una implementacion a gran escala, con el objetivo de
refinar la arquitectura hibrida y proporcionar recomendaciones basadas en datos
para futuras implementaciones.

61

10.5.7. Fase 7: documentacion y presentacion de resultados

Se elaborard una documentacion completa del proceso de migracion,

incluyendo manuales de operacion, reportes de evaluacion, analisis de costos y

recomendaciones estratégicas. Finalmente, se presentaran los resultados de la

investigacion, destacando los beneficios y desafios de la nueva arquitectura, con

el objetivo de entregar un informe final que detalle el proceso, resultados, y

conclusiones del estudio.

10.6.

Técnicas de recoleccion de datos

Andlisis de textos: se revisara la documentacion y los estudios de casos
sobre migraciones similares de arquitecturas monoliticas a microservicios
y serverless. Esta revisidn permitira identificar mejores practicas, posibles

desafios y estrategias de mitigacion que pueden ser aplicables al proyecto.

Observacion directa: se llevara a cabo una observacién directa del proceso
de migracion y de la operacion del sistema en el entorno de prueba,
documentando cualquier incidente, ajuste o decision técnica relevante. El
objetivo es capturar informacion en tiempo real sobre la implementacion y
funcionamiento del prototipo, identificando problemas y soluciones

emergentes.

Pruebas de rendimiento y escalabilidad: se realizaran pruebas controladas
en el prototipo de la arquitectura hibrida para medir su rendimiento y
escalabilidad, incluyendo pruebas de carga y estrés que simulen
condiciones de alto trafico y demanda. El propdsito es obtener datos
cuantitativos sobre la capacidad del sistema para manejar diferentes
volumenes de carga y su tiempo de respuesta bajo condiciones variables.

62

11. TECNICAS DE ANALISIS DE LA INFORMACION

El analisis descriptivo tiene como objetivo resumir y organizar los datos
obtenidos de las pruebas de rendimiento, escalabilidad, costos operacionales,
latencia, y tiempo de respuesta. Esto permite presentar de manera clara y concisa
las caracteristicas principales de los datos recolectados antes y después de la
implementacién de la nueva arquitectura hibrida. A través de esta técnica, se
podran identificar patrones generales y tendencias en el comportamiento del

sistema, lo que facilitara una vision preliminar del impacto de la migracion.

Para este analisis se utilizardn medidas de tendencia central, como la
media y la mediana, asi como medidas de dispersibn como la desviacién
estandar. Estas herramientas estadisticas ayudaran a describir de manera mas
precisa la variabilidad de los datos.

El andlisis inferencial se centrard en determinar si las diferencias
observadas entre la arquitectura monolitica y la arquitectura hibrida son
estadisticamente significativas. Esta técnica es esencial para evaluar de manera
precisa la efectividad de la nueva arquitectura en términos de mejora de
escalabilidad y reduccién de costos operacionales. Al aplicar pruebas
estadisticas de inferencia, se podra verificar si los cambios observados se deben

realmente a la migracion o si podrian ser producto del azar.

El andlisis de contenido se empleara para evaluar los desafios técnicos
identificados durante la implementacion de la nueva arquitectura hibrida. Esta
técnica cualitativa permitira identificar patrones y temas recurrentes en los

problemas y observaciones encontradas durante la fase de migracién. El analisis

63

de contenido ayudara a categorizar y organizar estos desafios, proporcionando
una mejor comprension de las dificultades que podrian surgir y las posibles

soluciones que se podrian aplicar.

La visualizacion de datos tras las pruebas realizadas facilitara la
interpretacion y comunicacion de los resultados del estudio. Al presentar los
datos mediante graficos y diagramas, se podran observar de manera clara las
comparaciones entre el rendimiento de la arquitectura monolitica y la hibrida, asi
como las relaciones entre variables clave como costos, latencia y tiempo de

respuesta.

64

Tabla 2.

Cronograma de actividades para cada fase de la investigacion

12. CRONOGRAMA

2024

2025

Tareas

FechaFinal [Noviembre| Dicemb Enero

Febrero

Marzo

Abril

Mayo

Junio

Julio

Fase 1:re de literatura y estructuracion del proyecto

Revisian bibliogrifica exhaustiva sobre arquitecturas
monoliticas, microservicios yserverless

01/11/2024 |21/11/2024

Planificacion y estructuracion del proyecto

14/11/2024 |28/11/2024

Fase 2: Revision y andlisis de la arquite ctura actual

Revisién dela arquitectura monolitica actual de Magento 2.0y
documentacion de los madulos clave

29/11/2024 |22/12/2024

Evaluacion de la interdependencia entre los madulos yandlisis
del estado actual del rendimiento, escalabilidad y costos
operativos

25/12/2024 |20/01/2025

Fase 3: Seleccidony disefio de la arguitectura hibrida

Seleccion de los modulos de Magento que serdn migrados a

microsenicios y serverless

21/02/2025 | 24/02/2025

Diseno de la arguitectura hibrida, estableciendo como se
dividiran los médulos y qué servicios seimplementardn en

microsenvicios o serverless

27/02/2025 |21/03/2025

Fase 4: Desarrollo del prototipo

Implementacion de microservicios utilizando Dockery AWS ECS
para los modulos seleccionados

24/03/2025 |21/04/2025

Implementacién defunciones serverless utilizando AWS
Lambda

24/04/2024 |11/05/2025

Pruebas iniciales para verificar la operatividad bésica del
prototipo

14/05/2025 |21/05/2025

Fase 5:Pruebas y evaluacion

Pruebas de rendimientoy escalabilidad del prototipo bajo
condiciones dealta demanda

22/05/2025 |09/06/2025

Andlisis comparativo del rendimiento entre la arquitectura
monolitica original y la arguitectura hibrida

10/06/2025 |20/06/2025

Fase 6: Anilisis de resultados y optimizacién

Andlisis de los resultados obtenidos en las pruebas para
identificar dreas de mejora en la arquitectura

21/06/2025 |05/07/2025

Evaluacion de la viabilidad econémica ytécnica dela
arguitectura optimizada para una implementacién a gran escala

06/07/2025 |15/07/2025

Fase 7: Documentacion y presentacion de resultados

Redaccion de la documentacion técnica, incluyendo manuales
de operacion yreportes de evaluacion

06/07/2025 |31/07/2025

Anilisis de costos y elaboracion de uninforme con

recomendaciones estratégicas

20/07/2025 |31/07/2025

Nota. Diagrama de Gantt. Elaboracion

65

propia, realizado con Microsoft Excel.

66

13. FACTIBILIDAD DEL ESTUDIO

13.1. Factibilidad Técnica

El presente estudio es técnicamente factible, ya que se cuenta con los

recursos necesarios para su desarrollo siendo estos los siguientes:

o Recursos tecnoldgicos: se tiene acceso a plataformas y servicios clave
como AWS (Amazon Web Services) para la implementacién de los
microservicios y serverless, incluyendo tecnologias como AWS Lambda y
AWS ECS. Ademas, se utilizaran Docker para los microservicios y
Magento 2.0 como el sistema a modificar. También se contempla el uso
de Amazon EC2 para simular la arquitectura monolitica de Magento 2.0.

o Acceso a informacion: Existe acceso completo a la documentacidn técnica

de Magento 2.0 y a estudios previos sobre migraciones similares.

o Software de cddigo abierto: se trabajara con la versién 2.0 de Magento en
su modalidad de cédigo abierto, que sera la base sobre la cual se
desarrollara el prototipo de la nueva arquitectura hibrida. Magento 2.0 es
una plataforma de comercio electronico altamente flexible, que ofrece un

entorno robusto y personalizable.

. Infraestructura y equipos: el estudio se realizara con recursos en la nube
para simular diferentes escenarios de carga y realizar pruebas de
escalabilidad. Se trabajarda con equipo personal para la parte de
codificacion y microservicios de los médulos.

67

13.2. Factibilidad Financiera

En la tabla 2 se muestra a detalle el costo total estimado del proyecto que
es de Q45,904.00.

Tabla 3.
Costos del estudio

Recurso Descripcion Costo mensual Costo total
AWS Servicio serverless para QO0.00 (capa gratuita Q 0.00
Lambda ejecutar funciones de codigo de 1 millén de

solicitudes
mensuales)
AWS ECS Servicio para alojar los Q584.00 (por 4 Q 3,504.00

microservicios con base en contenedores por
los mbdulos seleccionados 8h/dia)
AWS EC2 Servicio de cédmputo para Q400.00 (8h/dia) Q 2,400.00
levantar servidor donde ira
alojada Magento en su
versién monolitica

Equipo de Equipo utilizado durante el Q5,000.00 (pago Q 5,000.00

computo desarrollo de la investigacion Unico)

Salario Salario de la persona que Q5,000.00 Q 35,000.00
desarrollara el estudio

Total Q 45,904.00

Nota. Detalle de los costos del estudio. Elaboracion propia, realizado con Excel.

68

REFERENCIAS

Allen, C. (2023). Microservices vs Serverless Functions: A Comparison of
Performance and Price. [Tesis de maestria, Tampere University]. Archivo
digital.
https://trepo.tuni.fi/bitstream/handle/10024/151886/AllenChristopher.pdf;js
essionid=C1BF2CC8654AB55269352F072B6329397sequence=2

Andell, O. (2020). Architectural Implications of Serverless and Function-as-a-
Service. [Tesis de maestria, Linképing University]. Archivo digital.
https://www.diva-portal.org/smash/get/diva2:1442437/FULLTEXTO1.pdf

Brula, M. (2023). From Monolith to Serverless Microservices Migration. [Tesis de
maestria, University of Applied Sciences Technikum Wien]. Archivo digital.
https://epub.technikum-wien.at/obvftwhsmmig/download/pdf/9746870

ElGheriani, N. & Ahmed, N. (2022). Microservices vs. Monolithic Architectures:
The Differential Structure Between Two Architectures. International
Journal of Applied Sciences and Technology, 3(6), 485-498.
https://doi.org/10.47832/2717-8234.12.47.

Garlan, D. & Shaw, M. (2020). Software Architecture. Phi.

69

https://trepo.tuni.fi/bitstream/handle/10024/151886/AllenChristopher.pdf;jsessionid=C1BF2CC8654AB55269352F072B632939?sequence=2
https://trepo.tuni.fi/bitstream/handle/10024/151886/AllenChristopher.pdf;jsessionid=C1BF2CC8654AB55269352F072B632939?sequence=2
https://www.diva-portal.org/smash/get/diva2:1442437/FULLTEXT01.pdf
https://epub.technikum-wien.at/obvftwhsmmig/download/pdf/9746870
https://doi.org/10.47832/2717-8234.12.47

Goli, A., Hajihassani, O., Khazaei, H., Ardakanian, O., Rashidi, M., & Dauphinee,
T. (2020). Migrating from Monolithic to Serverless: A FinTech Case Study.
Migrating from Monolithic to Serverless: A FinTech Case Study. In
ACM/SPEC International Conference on Performance Engineering
Companion (ICPE 20 Companion), 20-24.
https://doi.org/10.1145/3375555.3384380

Hasan, M., Osman, M., Admodisastro, N. & Muhammad, M. (2023). From
monolith to microservice: Measuring architecture maintainability.
International Journal of Advanced Computer Science and Applications,
14(5), 857-866.
https://www.researchgate.net/publication/371174225 From Monolith to

Microservice Measuring Architecture Maintainability

Heikkinen, J. (2023). Serverless and Microservice Architecture in Modern
Software Development. [Tesis de maestria, Jyvaskyla University of Applied
Sciences]. Archivo digital.
https://www.theseus.fi/bitstream/handle/10024/795181/masters thesis ju
ssi_heikkinen.pdf;jsessionid=EF5E48691477EE20149A22C107BD7F1E?

sequence=2

Kewate, N., Raut, A., Dubekar, M., Raut, Y. & Patil, A. (2022). A Review on AWS
- Cloud Computing Technology. International Journal for Research in
Applied Science & Engineering Technology (IJRASET), 10(1), 258-263.
https://doi.org/10.22214/ijraset.2022.39802.

Lima, P. (2019). Migracion de aplicaciones monoliticas a arquitecturas basadas
en microservicios. [Trabajo de Fin de Grado, Universidad de La Laguna].
Archivo digital. https://riull.ull.es/xmlui/handle/915/15475

70

https://doi.org/10.1145/3375555.3384380
https://www.researchgate.net/publication/371174225_From_Monolith_to_Microservice_Measuring_Architecture_Maintainability
https://www.researchgate.net/publication/371174225_From_Monolith_to_Microservice_Measuring_Architecture_Maintainability
https://www.theseus.fi/bitstream/handle/10024/795181/masters_thesis_jussi_heikkinen.pdf;jsessionid=EF5E48691477EE20149A22C107BD7F1E?sequence=2
https://www.theseus.fi/bitstream/handle/10024/795181/masters_thesis_jussi_heikkinen.pdf;jsessionid=EF5E48691477EE20149A22C107BD7F1E?sequence=2
https://www.theseus.fi/bitstream/handle/10024/795181/masters_thesis_jussi_heikkinen.pdf;jsessionid=EF5E48691477EE20149A22C107BD7F1E?sequence=2
https://doi.org/10.22214/ijraset.2022.39802
https://riull.ull.es/xmlui/handle/915/15475

Lin, Y. (2015). Online store based on Magento E-Commerce. [Tesis de
licenciatura, University of Applied Sciences]. Archivo digital.
https://www.theseus.fi/bitstream/handle/10024/90976/ThesisYuLin.pdf?se

quence=1

Morizur, D. (2019). Enhancing Magento Frontend Performance with ReactJS and

Comparing It to Knockout. [Tesis de licenciatura, University of Applied

Sciences]. Archivo digital.
https://www.theseus.fi/bitstream/handle/10024/161745/Thesis.pdf?seque
nce=2

Qian, L., Luo, Z., Du, Y. & Guo, L. Cloud Computing: An Overview. Cloud
Computing, First International Conference, CloudCom 2009, Beijing,
China,
https://www.researchgate.net/publication/221276709 Cloud Computing

An Qverview

Rashid, A., & Chaturvedi, A. (2019). Cloud Computing Characteristics and
Services: A Brief Review. International Journal of Computer Sciences and
Engineering, 7(2), 421-426. https://doi.org/10.26438/ijcse/v7i2.421426.

Sadek, J., Craig, D., & Trenell, M. (2022). Design and Implementation of Medical
Searching System Based on Microservices and Serverless Architectures.
Procedia Computer Science, 196, 615-622.
https://doi.org/10.1016/j.procs.2021.12.056.

71

https://www.theseus.fi/bitstream/handle/10024/90976/ThesisYuLin.pdf?sequence=1
https://www.theseus.fi/bitstream/handle/10024/90976/ThesisYuLin.pdf?sequence=1
https://www.theseus.fi/bitstream/handle/10024/161745/Thesis.pdf?sequence=2
https://www.theseus.fi/bitstream/handle/10024/161745/Thesis.pdf?sequence=2
https://www.researchgate.net/publication/221276709_Cloud_Computing_An_Overview
https://www.researchgate.net/publication/221276709_Cloud_Computing_An_Overview
https://doi.org/10.26438/ijcse/v7i2.421426
https://doi.org/10.1016/j.procs.2021.12.056

Salah, T., Zemerly, M. J., Yeun, C. Y., Al-Qutayri, M., & Al-Hammadi, Y. (2017).
Performance Comparison Between Container-based and VM-based
Services. IEEE 5th International Conference on Future Internet of Things
and Cloud (FiCloud), 185-190. https://doi.org/10.1109/FiCloud.2017.33.

Taibi, D., Lenarduzzi, V., & Pahl, C. (2018). Architectural Patterns for
Microservices: A Systematic Mapping Study. Proceedings of the 8th
International Conference on Cloud Computing and Services Science
(CLOSER 2018), 221-232. https://doi.org/10.5220/0006798302210232.

Velepucha, V. y Flores (2023). A Survey on Microservices Architecture:
Principles, Patterns and Migration Challenges. IEEE Access, 11. 88341.

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10220070

72

https://doi.org/10.1109/FiCloud.2017.33
https://doi.org/10.5220/0006798302210232
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10220070

		2024-11-26T01:01:29+0000
	José Francisco Gómez Rivera

		2024-11-26T01:03:03+0000
	José Francisco Gómez Rivera

