
Universidad de San Carlos de Guatemala

Facultad de Ingeniería

Escuela de Ciencias y Sistemas

DISEÑO DE LA INVESTIGACIÓN DE SEGURIDAD EN LA INFORMACIÓN AL UTILIZAR

APIS IMPLEMENTADAS MEDIANTE EL PROTOCOLO ODATA PARA SERVICIOS DE

INTEGRACIÓN EN UNA EMPRESA COMERCIALIZADORA DE CALZADO

Julio Antonio Gordiano Carranza

Asesorado por M.A. Ing. Mario Enrique López Herrarte

Guatemala, noviembre 2024

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA

FACULTAD DE INGENIERÍA

DISEÑO DE LA INVESTIGACIÓN DE SEGURIDAD EN LA INFORMACIÓN AL UTILIZAR

APIS IMPLEMENTADAS MEDIANTE EL PROTOCOLO ODATA PARA SERVICIOS DE

INTEGRACIÓN EN UNA EMPRESA COMERCIALIZADORA DE CALZADO

TRABAJO DE GRADUACIÓN

PRESENTADO A LA JUNTA DIRECTIVA

DE LA FACULTAD DE INGENIERÍA

POR

JULIO ANTONIO GORDIANO CARRANZA

ASESORADO POR M.A. ING. MARIO ENRIQUE LÓPEZ HERRARTE

AL CONFERÍRSELE EL TÍTULO DE

INGENIERO EN CIENCIAS Y SISTEMAS

GUATEMALA, NOVIEMBRE 2024

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA

FACULTAD DE INGENIERÍA

NÓMINA DE JUNTA DIRECTIVA

DECANO Ing. José Francisco Gómez Rivera (a. i.)

VOCAL II Ing. Mario Renato Escobedo Martinez

VOCAL III Ing. José Milton De León Bran

VOCAL IV Ing. Kevin Vladimir Cruz Lorente

VOCAL V Ing. Fernando José Paz González

SECRETARIO Ing. Hugo Humberto Rivera Pérez

TRIBUNAL QUE PRACTICÓ EL EXAMEN GENERAL PRIVADO

DECANO Ing. Murphy Olympo Paiz Recinos

EXAMINADOR Ing. César Rolando Batz Saquimux

EXAMINADOR Ing. Oscar Alejandro Paz Campos

EXAMINADOR Ing. Pedro Pablo Hernández Ramírez

SECRETARIO Ing. Hugo Humberto Rivera Pérez

HONORABLE TRIBUNAL EXAMINADOR

En cumplimiento con los preceptos que establece la ley de la Universidad de San

Carlos de Guatemala, presento a su consideración mi trabajo de graduación

titulado:

DISEÑO DE LA INVESTIGACIÓN DE SEGURIDAD EN LA INFORMACIÓN AL UTILIZAR

APIS IMPLEMENTADAS MEDIANTE EL PROTOCOLO ODATA PARA SERVICIOS DE

INTEGRACIÓN EN UNA EMPRESA COMERCIALIZADORA DE CALZADO

Tema que me fuera asignado por la Dirección de la Escuela de Estudios de

Posgrado, con fecha 28 de septiembre 2024.

Julio Antonio Gordiano Carranza

EEPFI-PP-5176-2024

Guatemala, 28 de septiembre de 2024

Director
Carlos Gustavo Alonzo
Escuela De Ingenieria En Sistemas
Presente.

Estimado Carlos Gustavo Alonzo

Reciba un cordial saludo de la Escuela de Estudios de Postgrado de la Facultad de Ingeniería.

El propósito de la presente es para informarle que se ha revisado y aprobado el Diseño de Investigación titulado:
DISEÑO DE LA INVESTIGACIÓN DE SEGURIDAD EN LA INFORMACIÓN AL UTILIZAR APIS
IMPLEMENTADAS MEDIANTE EL PROTOCOLO ODATA PARA SERVICIOS DE INTEGRACIÓN EN UNA
EMPRESA COMERCIALIZADORA DE CALZADO, el cual se enmarca en la línea de investigación: Área de
Innovación - Dispositivos y sistemas para incrementar la seguridad al utilizar tecnología de la información
y comunicaciones, presentado por el estudiante Julio Antonio Gordiano Carranza carné número 200312674,
quien optó por la modalidad del "PROCESO DE GRADUACIÓN DE LOS ESTUDIANTES DE LA FACULTAD DE
INGENIERÍA OPCIÓN ESTUDIOS DE POSTGRADO". Previo a culminar sus estudios en la Maestría en Artes en
Tecnologias De La Inf. Y La Comunicacion.

Y habiendo cumplido y aprobado con los requisitos establecidos en el normativo de este Proceso de Graduación
en el Punto 6.2, aprobado por la Junta Directiva de la Facultad de Ingeniería en el Punto Décimo, Inciso 10.2 del
Acta 28-2011 de fecha 19 de septiembre de 2011, firmo y sello la presente para el trámite correspondiente de
graduación de Pregrado.

Atentamente,

Mtro. Mario Enrique López Herrarte
Asesor(a)

Mtro. Marlon Antonio Perez Turk
Coordinador(a) de Maestría

Mtra. Aurelia Anabela Cordova Estrada
Directora

Escuela de Estudios de Postgrado
Facultad de Ingeniería

EEP-EICS-5038-2024

El Director de la Escuela De Ingenieria En Sistemas de la Facultad de Ingeniería de la
Universidad de San Carlos de Guatemala, luego de conocer el dictamen del Asesor, el visto
bueno del Coordinador y Director de la Escuela de Estudios de Postgrado, del Diseño de
Investigación en la modalidad Estudios de Pregrado y Postgrado titulado: DISEÑO DE LA
INVESTIGACIÓN DE SEGURIDAD EN LA INFORMACIÓN AL UTILIZAR APIS
IMPLEMENTADAS MEDIANTE EL PROTOCOLO ODATA PARA SERVICIOS DE
INTEGRACIÓN EN UNA EMPRESA COMERCIALIZADORA DE CALZADO, presentado
por el estudiante universitario Julio Antonio Gordiano Carranza, procedo con el Aval del
mismo, ya que cumple con los requisitos normados por la Facultad de Ingeniería en esta
modalidad.

ID Y ENSEÑAD A TODOS

Mtro. Carlos Gustavo Alonzo
Director

Escuela De Ingenieria En Sistemas

Guatemala, septiembre de 2024

Decanato
Facultad e Ingeniería

24189101- 24189102

LNG.DECANATO.OIE.758.2024

El Decano de la Facultad de Ingeniería de la Universidad de San

Carlos de Guatemala, luego de conocer la aprobación por parte del

Director de la Escuela de Ingeniería en Ciencias y Sistemas, al Trabajo

de Graduación titulado: DISEÑO DE LA INVESTIGACIÓN DE

SEGURIDAD EN LA INFORMACIÓN AL UTILIZAR APIS

IMPLEMENTADAS MEDIANTE EL PROTOCOLO ODATA PARA

SERVICIOS DE INTEGRACIÓN EN UNA EMPRESA

COMERCIALIZADORA DE CALZADO, presentado por: Julio

Antonio Gordiano Carranza después de haber culminado las

revisiones previas bajo la responsabilidad de las instancias

correspondientes, autoriza la impresión del mismo.

IMPRÍMASE:

Escuelas: Ingeniería Civil, Ingeniería Mecánica Industrial, Ingeniería Química, Ingeniería Mecánica Eléctrica, - Escuela de Ciencias, Regional de Ingeniería Sanitaria y Recursos
Hidráulicos (ERIS). Postgrado Maestría en Sistemas Mención Ingeniería Vial. Carreras: Ingeniería Mecánica, Ingeniería Electrónica, Ingeniería en Ciencias y Sistemas. Licenciatura
en Matemática. Licenciatura en Física. Centro de Estudios Superiores de Energía y Minas (CESEM). Guatemala, Ciudad

Ing. José Francisco Gómez Rivera
Decano a.i.

Guatemala, noviembre de 2024

Tipo de documento: Correlativo para orden de impresión Año: 2024 Correlativo: 758 CUI: 1653433620101

Para verificar validez de documento ingrese a https://www.ingenieria.usac.edu.gt/firma-electronica/consultar-documento

ACTO QUE DEDICO A:

Dios

Mi esposa

Mis hijos

Mi mamá

Mi papá

Mi hermano

Mi familia

Mis amigos

Por ser mi guía y fortaleza, y por darme

sabiduría, fe y esperanza cada día.

Por su amor incondicional y apoyo constante,

que hacen cada día mejor.

Por ser mi mayor motivación y alegría,

inspirándome a seguir adelante.

Por su amor inagotable, enseñanzas y sacrificio,

siendo mi refugio y guía. (q. e. p. d.)

Por ser mi ejemplo de vida y valores, y por su

apoyo fundamental. (q. e. p. d.)

Por ser una fuente constante de ánimo, fortaleza

y apoyo toda la vida.

Por su amor, apoyo y motivación, siendo una

fuente de fuerza y estimación.

Por su amistad y compañía, motivándome a

seguir superándome en la vida.

AGRADECIMIENTOS A:

Dios

Mi esposa

Mis hijos

Mis padres

Por su guía, protección y fortaleza, que me han

ayudado a superar desafíos y alcanzar mis

metas.

Ingrid Reinoza por su amor, paciencia y apoyo

inquebrantable, siendo un pilar fundamental en

mi vida.

Sofía y Sebastián Gordiano Reinoza por ser una

fuente constante de alegría e inspiración,

impulsándome a ser mejor cada día.

Ramiro Gordiano y Ma. Del Carmen Carranza

por su amor, enseñanzas y apoyo incondicional,

y por ser un ejemplo de esfuerzo y dedicación.

I

ÍNDICE GENERAL

ÍNDICE DE ILUSTRACIONES ... V

INTRODUCCIÓN .. VII

ANTECEDENTES .. IX

PLANTEAMIENTO DEL PROBLEMA ... XIII

1. JUSTIFICACIÓN .. 1

2. OBJETIVOS ... 5

2.1. General ... 5

2.2. Específicos .. 5

3. NECESIDADES POR CUBRIR Y ESQUEMA DE SOLUCIÓN 7

4. ALCANCES .. 11

4.1. Alcance investigativo .. 11

4.2. Alcance técnico ... 11

4.3. Resultados esperados .. 12

5. MARCO TEÓRICO .. 13

5.1. Servicios de Transferencia de Estado Representacional

(REST) .. 13

5.1.1. Protocolo OData en arquitecturas orientadas a

servicios ... 17

5.2. Diseño y arquitectura de sistemas de autenticación y

autorización ... 18

II

5.2.1. Gestión de identidad y acceso para servicios web

 ... 21

5.2.2. OAuth2 en la autorización de servicios web en la

nube ... 22

5.3. Comprobación y pruebas de las propiedades de los servicios

REST ... 24

5.3.1. Pruebas automatizadas de caja blanca a servicios

RESTful.. 25

5.3.2. Pruebas de caja negra a servicios RESTful 27

6. PROPUESTA DE ÍNDICE DE CONTENIDOS .. 29

7. METODOLOGÍA .. 33

7.1. Características del estudio ... 33

7.2. Variables ... 34

7.3. Fases de estudio ... 36

8. TÉCNICAS DE ANÁLISIS DE LA INFORMACIÓN 39

9. CRONOGRAMA .. 41

10. FACTIBILIDAD DEL ESTUDIO ... 45

10.1. Factibilidad temporal ... 45

10.2. Factibilidad técnica ... 47

10.2.1. Recursos Humanos ... 47

10.2.2. Recursos Tecnológicos ... 48

10.2.3. Acceso a información y permisos 48

10.3. Factibilidad financiera ... 49

III

REFERENCIAS .. 55

IV

V

ÍNDICE DE ILUSTRACIONES

FIGURAS

Figura 1. Esquema de solución .. 7

Figura 2. Ilustración de REST Chart .. 15

Figura 3. Arquitectura de capas de REST Chart 16

Figura 4. Esquema de autenticación.. 19

Figura 5. Esquema de autorización ... 20

Figura 6. Modelo gestión de identidades y acceso 22

Figura 7. Flujo general de OAuth 2 .. 23

Figura 8. Diagrama de Gantt del estudio ... 41

TABLAS

Tabla 1. Variables en estudio ... 35

Tabla 2. Fases del estudio .. 42

Tabla 3. Factibilidad financiera del estudio ... 52

VI

VII

INTRODUCCIÓN

En la era digital, la seguridad de la información se ha convertido en un

factor crítico para las empresas, especialmente aquellas que dependen del uso

intensivo de servicios web para sus operaciones diarias. El creciente uso de

protocolos como OData, diseñados para facilitar la manipulación de datos a

través de interfaces RESTful, ha conseguido desarrollar nuevas oportunidades

para optimizar procesos, pero también nuevos desafíos en cuanto a la protección

de la información.

En este contexto, el riesgo asociado a las vulnerabilidades inherentes de

OData adquiere particular relevancia para la empresa comercializadora de

calzado que es objeto de este estudio. El presente trabajo aborda las principales

problemáticas de seguridad que enfrenta la empresa al implementar servicios

basados en OData, y busca proponer soluciones orientadas a mejorar la

protección de la información sensible. La capacidad de asegurar la integridad,

confidencialidad y disponibilidad de los datos resulta esencial para asegurar la

continuidad del negocio y mantener su competitividad en el mercado.

En el capítulo 1 se abordan los antecedentes del estudio, presentando

investigaciones y trabajos previos que presenta desafíos significativos en la

implementación de seguridad de las APIs REST y servicios OData. A

continuación, en el capítulo 2, se justifica la importancia del proyecto, detallando

las razones que sustentan su ejecución y destacando la línea de investigación

relacionada con el área de estudio.

VIII

El capítulo 3 detalla los alcances investigativos y técnicos, así como los

resultados esperados del proyecto, brindando una visión clara de los logros que

se esperan obtener.

En el capítulo 4, se presenta el marco teórico, proporcionando una base

sobre la seguridad del protocolo OData. En primer lugar, se abordan los

conceptos fundamentales sobre OData, su arquitectura y su relevancia en la

interoperabilidad de servicios y sistemas empresariales. Se exploran los

principios del intercambio de datos mediante RESTful APIs y cómo OData se ha

convertido en un estándar clave para integrar aplicaciones. Este marco

proporciona una comprensión integral de las bases tecnológicas y de seguridad

que son críticas para garantizar la integridad y la confidencialidad.

En el capítulo 5 se describen los resultados del desarrollo del prototipo de

servicios OData, desde el diseño del flujo de los servicios RESTful y la

implementación de autenticación multifactor, hasta la configuración de un API

gateway con Azure y la integración con herramientas de seguridad como Azure

Active Directory. Se abordan la monitorización, pruebas automatizadas y una

evaluación de seguridad con simulaciones de ataques. El capítulo finaliza con

una síntesis de los resultados y una comparativa de rendimiento del prototipo en

entornos controlados.

El capítulo 6 discute los resultados obtenidos en la arquitectura basada en

servicios OData, con énfasis en el rendimiento de la autenticación multifactor y el

control de acceso. Se evalúa el impacto de las herramientas de Azure en la

optimización del sistema, se identifican mejores prácticas para la implementación

segura de servicios RESTful con OData, y se exploran posibles mejoras, como

la escalabilidad y la incorporación de nuevas funcionalidades basadas en

inteligencia artificial.

IX

ANTECEDENTES

En el contexto de la seguridad de las APIs REST utilizadas en servicios en

la nube y web, según Atlidakis y colaboradores (2020), se destaca la falta de

herramientas maduras para probar automáticamente la seguridad, así como la

escasez de orientación sobre su uso seguro. Para abordar este vacío, se

presentan reglas de seguridad que describen propiedades deseables de las APIs

REST y los servicios asociados. Para probar y detectar violaciones de estas

reglas, se propone ejecutar fuzzing o enviar datos aleatorios, inválidos y no

esperados mediante los formularios de entrada de una aplicación buscando

alguna vulnerabilidad en una API REST con verificadores de propiedades activas.

Sin embargo, se reconoce la necesidad de expandir estas pruebas a más

servicios y verificar más propiedades para detectar una variedad más amplia de

vulnerabilidades. La contribución de este trabajo radica en proporcionar un marco

inicial para evaluar la seguridad de las APIs REST y promover buenas prácticas

en su diseño y uso. Este enfoque también aumenta la confianza en la

infraestructura digital en general al abordar los riesgos asociados con la

programación de forma remota y automatizada a través de APIs REST.

Los servicios basados en protocolo OData ayudan a satisfacer la

necesidad de integrar y compartir información de manera eficiente. Facilita la

publicación y consumo de servicios en línea orientados a datos mediante APIs

RESTful y un lenguaje de consulta basado en URL. OData es popular por su

madurez y simplicidad de uso. Ed-Douibi y colaboradores (2018), proponen un

enfoque basado en modelos para semiautomatizar la representación de datos,

transformación de solicitudes en sentencias SQL y deserialización de mensajes,

X

utilizando diagramas de clases UML (Unified Modeling Language) para generar

los artefactos para un servicio OData sobre una base de datos relacional.

Es importante mencionar que, como trabajo futuro, se sugiere extender el

enfoque generativo para agregar soporte predefinido para características básicas

en cualquier infraestructura web, como seguridad (es decir, autenticación y

encriptación). La autenticación multifactor, la prevención de inyección de

consultas y el cifrado de datos son algunas de las estrategias que pueden

fortalecer la seguridad de los servicios basados en OData.

Los servicios web RESTful proporcionan datos a través de APIs usando

HTTP, lo que plantea desafíos para las pruebas debido a las secuencias de

solicitudes y respuestas HTTP. La mayoría de los enfoques existentes realizan

pruebas de caja negra como menciona Laranjeiro y colaboradores (2021). En

este caso se realizan pruebas basadas únicamente en la información mínima

expresada en las descripciones de sus interfaces. Se evaluaron un conjunto

heterogéneo de 52 servicios REST que comprenden 1,351 operaciones y se

ajustan a distintas categorías (por ejemplo, públicas, privadas, internas). Se

revelaron diferentes tipos de problemas, incluidos la fiabilidad y también algunas

vulnerabilidades de seguridad.

Sin embargo, Arcuri (2017), propone un enfoque de pruebas de caja

blanca totalmente automatizado, generando casos de prueba mediante un

algoritmo evolutivo. Plantea un enfoque para maximizar la cobertura de código y

encontrar fallos utilizando los estados de retorno HTTP. Permite una evaluación

exhaustiva de la lógica interna y la estructura del código, identificando errores

que podrían no ser detectados por métodos de caja negra. Al tener acceso al

código fuente, las pruebas pueden ser diseñadas para cubrir todas las rutas

posibles, mejorando la eficacia de las pruebas.

XI

Ambos enfoques, son complementarios y pueden ser utilizados en

conjunto para una evaluación más exhaustiva de los servicios REST. Mientras

que el enfoque de caja blanca permite una prueba detallada y orientada a la

lógica del código, el enfoque de caja negra ofrece una evaluación práctica y

centrada en la robustez y seguridad del servicio en escenarios reales.

Los servicios web RESTful se utilizan hoy en día de manera extensa para

facilitar la comunicación en múltiples escenarios. Según Agnelo (2020), este tipo

de sistema está especialmente expuesto a problemas de robustez (por ejemplo,

falta o debilidad en la verificación de entradas) dado su diseño con restricciones

relajadas y la falta de estándares. Los resultados de su trabajo muestran la

capacidad de herramientas basadas en pruebas de caja negra para evaluar

diferentes tipos de servicios y revelar problemas de robustez, así como de

seguridad en casi la mitad de los servicios probados.

En conclusión, la seguridad de las APIs REST presenta desafíos

significativos debido a la falta de herramientas maduras y directrices claras para

su uso seguro. Atlidakis et al. (2020) destacan la importancia de las pruebas

automáticas mediante fuzzing para detectar vulnerabilidades, mientras que Ed-

Douibi et al. (2018) promueve la integración de características de seguridad en

servicios OData. Los enfoques de pruebas de caja negra y caja blanca,

propuestos por Laranjeiro et al. (2021), Agnelo (2020) y Arcuri (2017), se

complementan y son necesarios para una evaluación efectiva de estos servicios.

La adopción de buenas prácticas y herramientas efectivas no solo mejora la

seguridad de los servicios web, sino que también aumenta la confianza en la

infraestructura digital en general.

XII

XIII

PLANTEAMIENTO DEL PROBLEMA

• Contexto general

La seguridad de la información es un pilar fundamental en el mundo digital

actual. Con la creciente adopción de servicios web y la necesidad de compartir

datos de manera eficiente, protocolos como OData (Open Data Protocol) han

ganado popularidad por su capacidad para facilitar el acceso y la manipulación

de datos a través de interfaces RESTful. Sin embargo, la implementación de

servicios mediante OData presenta deficiencias importantes de seguridad que

comprometen la integridad, confidencialidad y disponibilidad de la información,

poniendo en riesgo tanto la seguridad de los datos como la eficiencia operativa.

Este problema se vuelve crítico en el contexto de una empresa comercializadora

de calzado, donde la protección de la información sobre clientes, proveedores y

transacciones es vital para mantener la confianza y la competitividad en el

mercado.

• Descripción del problema

El protocolo OData, aunque potente y flexible, tiene vulnerabilidades

inherentes que pueden ser explotadas si no se implementan adecuadamente

medidas de seguridad. Una de las principales deficiencias es la falta de

mecanismos robustos de autenticación y autorización. En muchos casos, las

implementaciones de OData no utilizan autenticación multifactor, lo que deja las

puertas abiertas para que actores malintencionados accedan a información

sensible con relativa facilidad. La autenticación básica no es suficiente para

XIV

proteger datos críticos en un entorno donde las amenazas cibernéticas son cada

vez más sofisticadas.

Además, la transmisión de datos sin un cifrado adecuado incrementa el

problema de seguridad. Aunque el cifrado de datos en tránsito es una práctica

comúnmente recomendada, la realidad es que muchas implementaciones utilizan

algoritmos débiles o desactualizados que no ofrecen la protección necesaria.

Esto permite que los datos sean interceptados y leídos por terceros durante su

transmisión, comprometiendo así la confidencialidad de la información. Estas

vulnerabilidades técnicas se ven aumentadas por deficiencias en la

implementación de medidas de seguridad en los servicios basados en OData.

Muchas organizaciones desconocen las buenas prácticas de seguridad o

no siguen estándares reconocidos. Esto se traduce en configuraciones por

defecto que no son seguras y en políticas de acceso mal configuradas, lo que

facilita los accesos no autorizados y la manipulación indebida de los datos. La

falta de una cultura de seguridad sólida y la ausencia de formación adecuada en

seguridad informática contribuyen a que estas deficiencias persistan.

No contar con suficientes herramientas maduras para realizar pruebas de

seguridad y evaluaciones de penetración añade otra capa de vulnerabilidad. Las

pruebas de seguridad son esenciales para identificar y corregir fallos antes de

que sean explotados por atacantes. Para la empresa comercializadora de

calzado, esto significa que las vulnerabilidades pueden permanecer ocultas hasta

que sean explotadas, causando daños que podrían haber sido evitados. Sin

embargo, no cuentan con el personal especializado ni con las herramientas

necesarias para realizar estas evaluaciones de manera efectiva. Esto deja a los

sistemas expuestos y sin una defensa adecuada contra posibles ataques.

XV

En el ámbito operativo, los problemas de seguridad pueden resultar en

una reducción significativa de la productividad. Los incidentes de seguridad

requieren tiempo y recursos para ser gestionados y solucionados, lo que desvía

la atención de las actividades productivas. Las interrupciones en el servicio

debido a ataques o fallos de seguridad pueden causar tiempos de inactividad

prolongados, afectando la continuidad del negocio y aumentando los costos

operativos. Estos costos incluyen no solo la reparación y mitigación de los daños,

sino también la implementación de medidas adicionales de seguridad para

prevenir futuros incidentes.

• Formulación del problema

La seguridad de la información al utilizar servicios implementados

mediante el protocolo OData es un problema complejo y que se puede abordar

desde diferentes puntos de vista. Es vital que la empresa comercializadora de

calzado adopte un enfoque proactivo en la implementación de medidas de

seguridad robustas, incluidas autenticación multifactor, prevención de inyección

de consultas y cifrado adecuado de datos en tránsito. Además, es esencial

fomentar una cultura de seguridad, seguir estándares reconocidos y utilizar

herramientas de pruebas de seguridad para identificar y corregir vulnerabilidades.

Solo a través de un esfuerzo coordinado y continuo se puede garantizar la

seguridad de la información y la eficiencia operativa en el uso de servicios

basados en OData.

• Pregunta central

¿Cómo mejorar la seguridad de la información utilizando servicios

implementados mediante el protocolo OData para proteger la integridad,

XVI

confidencialidad y disponibilidad de los datos en una empresa comercializadora

de calzado?

• Preguntas Auxiliares

o ¿Qué medidas de autenticación y autorización son más efectivas

para proteger los servicios OData contra accesos no autorizados?

o ¿Qué herramienta se puede implementar para realizar

evaluaciones de seguridad automatizadas en el ciclo de desarrollo

de servicios OData?

o ¿Qué tecnologías y arquitecturas pueden ser adoptadas para

mitigar los riesgos de interrupciones y disponibilidad en los servicios

OData?

1

1. JUSTIFICACIÓN

La creciente digitalización en el sector comercial ha incrementado la

necesidad de integrar y compartir información de manera eficiente y segura.

En este contexto, el protocolo OData se ha convertido en una herramienta muy

utilizada para implementar servicios de integración gracias a su flexibilidad y

facilidad de uso. Sin embargo, esta popularidad no está exenta de riesgos, y

la falta de medidas de seguridad adecuadas en las implementaciones de

OData puede tener consecuencias graves para las organizaciones.

En este marco, la línea de investigación se enfoca en dispositivos y

sistemas para incrementar la seguridad al utilizar tecnologías de la información

y comunicaciones. Por esta razón, es necesario asegurar la información en

una empresa comercializadora de calzado, donde la confidencialidad,

integridad y disponibilidad de los datos son fundamentales. La seguridad de la

información no solo protege los datos sensibles de la organización, sino que

también es crucial para mantener la confianza y la competitividad en el

mercado.

La empresa enfrenta varias vulnerabilidades al utilizar APIs basadas en

OData, entre las que se incluyen la falta de mecanismos robustos de

autenticación y autorización, la susceptibilidad a la inyección de consultas, y

la transmisión de datos sin cifrado adecuado. Estas deficiencias no solo

exponen la información a accesos no autorizados y posibles manipulaciones,

sino que también pueden llevar a interrupciones operativas significativas y a

pérdidas financieras.

2

Las consecuencias del problema van más allá de la exposición de

información sensible y los riesgos financieros. Otras implicaciones de no

abordar adecuadamente las deficiencias de seguridad en las

implementaciones son los bloqueos en la cadena de suministro. Los ataques

a los sistemas de información pueden causar interrupciones en este proceso,

afectando la disponibilidad de productos y la capacidad de cumplir con los

pedidos de los clientes. Adicionalmente pueden causar demoras, pérdidas de

ventas y daños a las relaciones con los proveedores.

A través de esta investigación, se busca no solo identificar los riesgos

presentes en las implementaciones actuales de OData, sino también proponer

soluciones prácticas y efectivas que la empresa pueda adoptar. La seguridad

de la información es un desafío continuo que requiere un enfoque proactivo y

una mejora constante.

Este trabajo no solo identificará las debilidades actuales, sino que

también proporcionará un marco para la evaluación continua y la actualización

de las medidas de seguridad. Las mejores prácticas de seguridad serán

elementos clave para asegurar que las soluciones implementadas sean

sostenibles y efectivas a largo plazo.

Realizar evaluaciones continuas de seguridad y pruebas automatizadas

ayudarán a identificar y corregir vulnerabilidades antes de que puedan ser

explotadas, asegurando así que las medidas de seguridad se mantengan

efectivas y actualizadas frente a las nuevas amenazas. Por lo tanto, este

trabajo contribuirá significativamente a proteger los activos digitales de la

empresa, garantizar la continuidad del negocio y mantener la confianza de los

clientes y socios comerciales.

3

Implementar herramientas y técnicas para detectar y mitigar

inyecciones de consultas, tales como validaciones estrictas de entrada y el uso

de ORM (Object Relational Mapping), puede prevenir la ejecución de consultas

maliciosas, asegurando así la integridad y confidencialidad de los datos.

Abordar las deficiencias de seguridad en las implementaciones de OData no

solo es una necesidad técnica, sino una prioridad para asegurar la

operatividad, la continuidad y la competitividad de la empresa

comercializadora de calzado en el mundo digital actual, lo que tiene un impacto

directo en su sostenibilidad, crecimiento y éxito a largo plazo.

La implementación de MFA (Multi Factor Authentication) añade una

capa adicional de seguridad al requerir múltiples formas de verificación antes

de conceder acceso a los datos. Esto reduce significativamente el riesgo de

accesos no autorizados, ya que incluso si un atacante compromete una

credencial, aún necesitaría superar las barreras adicionales.

Proteger la información crítica asegura que la empresa pueda operar

de manera continua y eficiente, sin interrupciones causadas por incidentes de

seguridad. La empresa fortalecerá sus relaciones comerciales y podrá crecer

en el mercado como una entidad segura y confiable. Finalmente, las mejoras

en seguridad permitirán a la organización adaptarse rápidamente a cambios

en el entorno tecnológico y a nuevas amenazas, asegurando así su

competitividad y éxito en el futuro.

4

5

2. OBJETIVOS

2.1. General

Mejorar la seguridad de la información en una empresa

comercializadora de calzado utilizando servicios implementados mediante el

protocolo OData para proteger la integridad, confidencialidad y disponibilidad

de los datos.

2.2. Específicos

• Identificar y aplicar medidas de autenticación y autorización efectivas

para proteger los servicios OData contra accesos no autorizados.

• Implementar una herramienta de evaluación de seguridad automatizada

para garantizar la detección temprana de vulnerabilidades en el ciclo de

desarrollo de servicios OData.

• Adoptar tecnologías y arquitecturas para mitigar los riesgos de

interrupciones y garantizar la disponibilidad de los servicios OData.

6

7

3. NECESIDADES POR CUBRIR Y ESQUEMA DE

SOLUCIÓN

En la era de la digitalización y el acceso instantáneo a la información,

las aplicaciones web y móviles requieren de arquitecturas de servicios

robustas, escalables y seguras. Por ello, resulta indispensable garantizar la

protección de la información, donde la confidencialidad, integridad y

disponibilidad de los datos son esenciales. Abordar estas áreas críticas con

soluciones específicas y bien definidas permitirá a la empresa

comercializadora de calzado mitigar los riesgos asociados con el uso de

OData, protegiendo sus datos y asegurando la continuidad de la operación.

Figura 1.

Esquema de solución

Nota. Arquitectura de implementación de servicios Restful utilizando protocolo OData.

Elaboración propia, realizado con Drawio.

8

Como se puede observar en la Figura 1, la arquitectura propuesta se

compone de un API gateway, los servicios RESTful con OData, la

autenticación y autorización, la base de datos y el servicio de monitorización y

pruebas automatizadas. El API gateway actúa como el punto de entrada único

para todas las solicitudes, manejando el enrutamiento, la autenticación, el

balanceo de carga y la limitación de velocidad. Los servicios RESTful con

OData exponen datos y funcionalidades utilizando el protocolo OData, que

permite la consulta y manipulación de datos mediante URLs. La autenticación

y autorización gestionan la autenticación multifactor y la autorización basada

en roles, garantizando que solo los usuarios legítimos puedan acceder al

sistema. La base de datos almacena los datos que se exponen a través de los

servicios RESTful. Finalmente, el servicio de monitorización y pruebas

automatizadas mide el rendimiento y la seguridad del servicio.

Para la implementación del API gateway, Azure API Management es la

herramienta propuesta, proporcionando capacidades avanzadas de gestión de

API, incluyendo autenticación, limitación de velocidad, monitoreo y análisis.

Azure API Management facilita la creación, publicación, mantenimiento,

monitoreo y protección de APIs RESTful a cualquier escala.

La autenticación multifactor (MFA) añade una capa adicional de

seguridad al proceso de inicio de sesión, asegurando que solo los usuarios

legítimos puedan acceder al sistema. En este proceso, el usuario primero

ingresa su nombre de usuario y contraseña. Luego, el sistema envía un código

de verificación a un segundo factor. El usuario ingresa el código recibido y el

sistema lo verifica para autenticar al usuario. La autorización, por otro lado,

controla el acceso a recursos y funcionalidades basándose en roles y permisos

definidos en la base de datos. Los tokens de autenticación incluyen los roles

9

del usuario y se verifican en cada solicitud, asegurando que solo los usuarios

con los permisos adecuados puedan acceder a ciertos recursos.

Para implementar estas funcionalidades, Microsoft proporciona varias

herramientas y tecnologías. Azure Active Directory (Azure AD) se utiliza para

la gestión de identidades y el control de acceso, soportando la autenticación

multifactor (MFA) y la autorización basada en roles. Microsoft Identity es una

biblioteca para la integración de la autenticación y autorización en aplicaciones

.NET.

Los servicios RESTful con OData se implementarán utilizando

ASP.NET Core con OData. ASP.NET Core proporciona un framework robusto

y escalable para construir aplicaciones web y APIs, mientras que OData añade

capacidades avanzadas de consulta y manipulación de datos. En ASP.NET

Core, se configuran las rutas OData y se crean controladores y modelos para

exponer datos a través de OData.

Las pruebas automatizadas son fundamentales para asegurar la

calidad y disponibilidad del servicio. Las métricas para evaluar incluyen el

porcentaje de tiempo de disponibilidad del servicio (uptime), el número de

usuarios autenticados, el número de intentos de acceso no autorizado

bloqueados, el número de vulnerabilidades detectadas en las pruebas, el

tiempo de inactividad del servicio y el tiempo medio de recuperación ante

desastres.

El servicio de monitorización y pruebas automatizadas se puede

implementar utilizando Azure Monitor, que proporciona una plataforma para la

monitorización de aplicaciones, incluyendo la recolección de métricas, logs y

alertas. Azure Application Insights para el monitoreo de infraestructura y

10

aplicaciones, se integra con Azure Monitor para ofrecer un análisis detallado

del rendimiento de las aplicaciones. Azure DevOps proporciona herramientas

para la integración y la entrega continuas (CI/CD), incluyendo la ejecución de

pruebas automatizadas con Selenium y JMeter.

11

4. ALCANCES

4.1. Alcance investigativo

Esta investigación se centra en analizar y proponer medidas para

mejorar la seguridad de la información en servicios implementados mediante

el protocolo OData. Se identifican y evalúan diversas estrategias de

autenticación, autorización y cifrado, con el objetivo de proteger la integridad,

confidencialidad y disponibilidad de los datos. Se considera la implementación

de autenticación multifactor, la prevención de inyección de consultas y el

cifrado adecuado de datos en tránsito como soluciones clave para abordar las

vulnerabilidades inherentes a OData. También se analizan las deficiencias en

las prácticas de seguridad dentro de la organización y se propone un enfoque

integral que incluya tanto medidas técnicas como una cultura organizacional

de seguridad sólida.

4.2. Alcance técnico

El proyecto define el diseño de un prototipo que incorpora diversas

herramientas y tecnologías para fortalecer la seguridad en servicios basados

en OData, considerando las siguientes características:

• Procedimiento para implementar autenticación multifactor: Establecer

mecanismos robustos de autenticación para proteger contra accesos no

autorizados.

12

• Diseño de una arquitectura segura: Incluir medidas preventivas como la

detección y mitigación de inyección de consultas, asegurando que las

configuraciones por defecto no sean inseguras.

• Evaluaciones de seguridad automatizadas: Integrar herramientas de

pruebas de seguridad automatizadas en el ciclo de desarrollo de

servicios OData para identificar y corregir vulnerabilidades de manera

proactiva.

4.3. Resultados esperados

El desarrollo de esta investigación debe proporcionar una solución

integral para mejorar la seguridad de los servicios implementados mediante

OData en la empresa comercializadora de calzado, incluyendo:

• Un enfoque de autenticación y autorización efectivo: Propuestas

concretas para implementar autenticación multifactor y políticas de

acceso seguras.

• Arquitectura robusta y segura: Un diseño arquitectónico que prevenga

vulnerabilidades comunes en implementaciones OData y mejore la

disponibilidad del servicio.

• Definición de medidas de seguridad: Iniciativas para fortalecer la

formación en seguridad informática y la adopción de estándares

reconocidos dentro de la empresa.

13

5. MARCO TEÓRICO

5.1. Servicios de Transferencia de Estado Representacional (REST)

REST, en la arquitectura de software, es un estilo que define

condiciones y restricciones, por ejemplo, una interfaz uniforme, que, al

utilizarse para servicios web, debe de implementar propiedades como

rendimiento, escalabilidad y capacidad de modificación, optimizando así el

funcionamiento de los servicios en la web (Cupek y Huczala, 2015). En este

estilo, los datos y las funcionalidades se tratan como recursos a los que se

accede mediante Identificadores Uniformes de Recursos (URIs), y que

comúnmente están vinculados en la web. La forma de gestionar los recursos

se, es mediante operaciones simples y bien definidas.

La arquitectura REST es una arquitectura cliente/servidor que utiliza un

protocolo de comunicación sin estado, como HTTP. Los clientes y servidores

interactúan a través de representaciones de recursos. En lugar de

comunicarse directamente sobre los datos, se envían versiones de esos datos,

como JSON o XML utilizando una interfaz y un protocolo estándar, tal como

proponen Cupek et al. (2015).

El diseño y la adaptabilidad de las API REST son esenciales para la

comunicación en arquitecturas distribuidas. Debido a que los servicios

experimentan cambios y actualizaciones frecuentes, las API REST deben ser

flexibles y capaces de evolucionar sin afectar a los clientes. Li y colaboradores

(2016) demuestran que una API REST puede ser diseñada para facilitar la

14

navegación por hipertexto, lo que permite enfrentar cambios en la estructura

de la API sin depender excesivamente de su diseño inicial.

El objetivo principal de la navegación por hipertexto es manejar los

cambios en la API REST al reducir la dependencia entre el cliente y la API,

permitiendo que el cliente navegue hacia los recursos objetivo según el

hipertexto (Li et al., 2016). Este enfoque se basa en cinco capas dentro de una

API REST:

• Conexión: enlaces implementados independiente del lenguaje de

programación y ejecutados en cualquier dispositivo.

• Interacciones: métodos o protocolos, como HTTP (Hypertext Transfer

Protocol), para interactuar con los recursos.

• Identificación: identificadores URI (Uniform Resource Identifier) para los

recursos.

• Representación: hipertextos XML (eXtensible Markup Language) que

se envían y reciben en las interacciones.

• Descripción: información sobre las posibles representaciones de

recursos.

La accesibilidad de la red de Petri determina la navegación por

hipertexto en una API REST (Li y colaboradores, 2016). Se modelan los

estados del cliente como la distribución de tokens en dicha red. Por ejemplo,

en la Figura 2 se muestra que el estado inicial del cliente es (x1, 0, 0), lo que

indica que tiene el token x1 en el lugar de login, pero no en los lugares de

credential y account. Desde este estado inicial, el REST Chart muestra que el

estado final (0, 0, x3) se puede alcanzar de la siguiente forma:

(x1, 0, 0) → (x1, x2, 0) → (0, 0, x3).

15

Figura 2.

Ilustración de REST Chart

Nota. Ilustración de un REST Chart básico. Obtenido de Li, L., Chou, W., Zhou, W., & Luo, M.

(2016). Design patterns and extensibility of REST API for networking applications.

(https://ieeexplore.ieee.org/document/7378522), consultado 14 de septiembre de 2024. De

dominio público.

No todos los estados posibles se pueden alcanzar desde el estado

inicial, y tales estados incluyen (x1, 0, x3) y (0, x2, x3). El estado (x1, 0, x3)

significa que un cliente puede acceder a la cuenta sin una credencial válida, y

el estado (0, x2, x3) significa que el cliente puede acceder a la cuenta sin seguir

el hipervínculo. Según Li y colaboradores (2016), una característica importante

del REST Chart es que el conjunto de estados alcanzables define las

conexiones de recursos que los clientes pueden seguir mediante la

navegación por hipertexto. Si un cliente puede alcanzar un estado

inalcanzable, esto indica que la API REST viola el principio de navegación

impulsada por hipertexto.

La ilustración de la arquitectura en capas del REST Chart se muestra

en la figura 3. Este enfoque en capas incluye la parte principal del Petri-Net en

la parte superior que conecta pilas de tecnologías de servicios REST en el

https://ieeexplore.ieee.org/document/7378522

16

medio, como tipos de medios y protocolos de red, los cuales dependen de URI

y URI Template en la parte inferior.

Figura 3.

Arquitectura de capas de REST Chart

Nota. Arquitectura de capas de REST Chart ilustrada. Obtenido de Li, L., & Chou, W. (2015).

Designing large scale REST APIs based on REST chart.

(https://ieeexplore.ieee.org/document/7195624), consultado 14 de septiembre de 2024. De

dominio público.

El REST Chart Jerárquico proporciona un método para descomponer y

extender una API REST en varias dimensiones, haciendo más manejable el

desarrollo de APIs complejas y sujetas a cambios frecuentes. Estas mejoras

se integran fácilmente en el XML del REST Chart con pequeñas

modificaciones en la sintaxis, facilitando la creación de componentes

https://ieeexplore.ieee.org/document/7195624

17

reutilizables tanto para el cliente como para el servidor. Estas innovaciones

han demostrado ser efectivas en el diseño y verificación de APIs REST para

entornos de computación en la nube y distribuidas (Li y Chou, 2015).

5.1.1. Protocolo OData en arquitecturas orientadas a

servicios

OData, una extensión de los estándares Atom Publishing y Atom

Syndication, fue desarrollada por Microsoft. Estos estándares están

fundamentados en XML y HTTP(s), proporcionando una base sólida para la

estructuración de datos. La capacidad de extensibilidad de OData permite la

incorporación de información adicional específica del dominio a los tipos de

datos. Atom, en sí mismo, comprende dos componentes clave: el Formato de

Sindicación Atom, una estructura XML que describe los documentos ofrecidos

por un sitio web (Feed), y el Formato de Publicación Atom, un protocolo HTTP

que facilita la manipulación de documentos de Sindicación Atom (Cupek y

Huczala, 2015).

Es relevante mencionar que el Formato de Publicación Atom no

establece un método específico para codificar los datos dentro de un feed, lo

que limita su conformidad con los principios RESTful, ya que sus mensajes

carecen de la autodescripción necesaria. Según Cupek et al. (2015), OData

amplía Atom al introducir una descripción de metadatos que incluye: tipos de

datos simples y complejos, asociaciones y rutas de navegación entre entradas,

así como comportamientos personalizados más allá de las operaciones CRUD

estándar (del inglés Create, Read, Update y Delete). OData admite mensajes

tanto en XML como en JSON (JavaScript Object Notation).

18

La tecnología OData se compone de cuatro elementos principales. El

modelo de datos OData proporciona un método genérico para organizar y

describir datos. El protocolo OData para facilitar a los clientes la realización de

solicitudes y la obtención de respuestas de un servicio OData. Las bibliotecas

de cliente OData ayudan en la creación de software que accede a datos a

través del protocolo OData. Finalmente, el servicio OData expone un punto

final que permite el acceso a los datos.

Los servicios OData se definen a través de un modelo de datos común,

que es publicado en un formato legible, permitiendo una interacción clara y

bien definida para los clientes. Un servicio OData expone dos recursos

esenciales: un documento de servicio, que enumera los conjuntos de

entidades y funciones disponibles, y un documento de metadatos, que detalla

los tipos, conjuntos, funciones y acciones soportadas por el servicio (Cupek y

Huczala, 2015). El documento de servicio permite a los clientes navegar por el

modelo, mientras que el documento de metadatos ofrece una guía para la

consulta e interacción con las entidades dentro del servicio.

5.2. Diseño y arquitectura de sistemas de autenticación y

autorización

La seguridad en redes tradicionales y modernas es fundamental para

asegurar la integridad y autenticidad de los datos. El modelo de Autenticación,

Autorización y Contabilidad (AAA) es un enfoque adaptable y comúnmente

utilizado para proteger redes, particularmente en entornos móviles

(Papatheodoulou et al., 2009). La autenticación verifica la autenticidad de los

datos almacenados y recibidos, mientras que la autorización otorga permisos

específicos a clientes con credenciales verificadas. La contabilidad, dividida

19

en recopilación de métricas y análisis de tendencias, se encarga de registrar

el uso de recursos por parte de los clientes.

En el diseño propuesto por Papatheodoulou et al. (2009), la arquitectura

de autenticación utiliza el Protocolo de Autenticación Extensible (EAP) junto

con la función hash MD5 y bases de datos SQL para almacenar las

credenciales de autenticación. EAP, ampliamente reconocido y utilizado en

redes móviles, no solo es relevante en AAA, sino también en diversos

protocolos y aplicaciones de red actuales.

Figura 4.

Esquema de autenticación

Nota. Autenticación en el Protocolo AAA. Obtenido de Papatheodoulou, N., & Sklavos, N.

(2009). Architecture & system design of Authentication, Authorization, & Accounting services.

(https://ieeexplore.ieee.org/document/5167894), consultado 14 de septiembre de 2024. De

dominio público.

https://ieeexplore.ieee.org/document/5167894

20

La Figura 4 muestra en el modelo de autenticación, como el cliente se

comunica con el Servidor de Acceso a la Red (NAS), y luego reenvía las

solicitudes al servidor de recursos. Cada conjunto de credenciales es único y

está encriptado con MD5. El NAS envía la solicitud de autenticación al servidor

AAA, que verifica la autenticidad de las credenciales mediante scripts

conectados a la base de datos. Si la autenticación es exitosa, el servidor AAA

permite el acceso del cliente a los recursos de la red por un tiempo limitado,

determinado por las políticas de la sesión.

Figura 5.

Esquema de autorización

Nota. Autorización en el Protocolo AAA. Obtenido de Papatheodoulou, N., & Sklavos, N.

(2009). Architecture & system design of Authentication, Authorization, & Accounting services.

(https://ieeexplore.ieee.org/document/5167894), consultado 21 de septiembre de 2024. De

dominio público.

https://ieeexplore.ieee.org/document/5167894

21

El flujo de cómo el proceso de autorización se comunica con el proceso

de autenticación se muestra en la figura 5. Después de finalizar correctamente

el procedimiento de autenticación, el servidor envía una solicitud al servidor de

autorización para verificar el nivel de autorización del cliente.

Para el proceso de contabilidad se utilizan algunos contadores, por

ejemplo: registrar el dato de la fecha y hora del inicio y finalización de la sesión,

la IP de cada sesión y la duración del uso del recurso o su tamaño. Luego,

todos los datos se enviarían a otro servidor para iniciar el proceso de

almacenamiento y análisis.

5.2.1. Gestión de identidad y acceso para servicios web

La computación Cloud o en la nube, se ha convertido en fundamental

para las necesidades organizacionales modernas, destacándose por su

flexibilidad y eficiencia de costos. Sin embargo, como advierten Indu et al.

(2015), las opciones de servicios Cloud, como IaaS (Infrastructure as a

Service), PaaS (Platform as a Service), SaaS (Software as a Service), y

entornos multi-tenant, presentan riesgos significativos en términos de

privacidad y seguridad. Para mitigar estos riesgos, las organizaciones

necesitan un sistema de Gestión de Identidad y Acceso (IAM) robusto y

escalable.

Indu y Anand (2015) proponen un sistema integrado de gestión para la

identidad y control de acceso fundamentado en atributos para servicios web

en la nube. Este enfoque combina la autenticación y el control de acceso que

se basa en atributos, mejorando la seguridad al garantizar que solo usuarios

autorizados accedan a los recursos bajo condiciones específicas. La Figura 6,

representa en este modelo, como la autenticación exitosa genera un token de

22

acceso, que es validado y utilizado para la autorización basada en atributos en

el servidor web de la nube.

Figura 6.

Modelo gestión de identidades y acceso

Nota. Modelo integrado de gestión de identidades y accesos para servicios web en la nube.

Obtenido de Indu, I., & Anand, P. R. (2015). Identity and access management for cloud web

services. (https://ieeexplore.ieee.org/document/7488450), consultado 21 de septiembre de

2024. De dominio público.

5.2.2. OAuth2 en la autorización de servicios web en la nube

OAuth 2, un marco de autorización web, permite que los servicios

actúen en nombre de los usuarios al interactuar con otros servicios, evitando

la necesidad de compartir credenciales sensibles entre ellos (Sendor et al.,

2014). Aunque este protocolo es crucial para proteger a los usuarios, su

implementación puede ser compleja y propensa a vulnerabilidades.

https://ieeexplore.ieee.org/document/7488450

23

En un modelo de arquitectura cliente-servidor, el cliente utiliza sus

credenciales para solicitar acceso a los recursos protegidos que se encuentran

en el servidor. Si un tercero necesita acceder a esos recursos en

representación del propietario, este último debe compartir sus credenciales

con el tercero. Este enfoque puede generar varios problemas indeseables,

como la duplicación de las credenciales del propietario en la ubicación del

tercero, otorgar acceso total a los recursos sin restricciones, o la complejidad

de revocar los derechos de acceso, lo cual requeriría un cambio de

credenciales. OAuth se diseñó precisamente para resolver estos problemas,

permitiendo el acceso sin necesidad de compartir las credenciales (Sendor et

al., 2014).

Figura 7.

Flujo general de OAuth 2

Nota. Diagrama de flujo de OAuth2. Adaptado de Sendor, J., Lehmann, Y., Serme, G., & de

Oliveira, A. S. (2014, March). Platform-level support for authorization in cloud services with

OAuth 2. (https://ieeexplore.ieee.org/document/6903511), consultado 21 de septiembre de

2024. De dominio público.

https://ieeexplore.ieee.org/document/6903511

24

OAuth define cuatro roles clave: el propietario del recurso, el servidor

de recursos, cliente y servidor de autorización. El flujo general del protocolo,

según la Figura 7, implica que el cliente solicite autorización del propietario del

recurso para acceder a los activos protegidos. Si el propietario del recurso

concede la autorización, el cliente obtiene un token de acceso del servidor de

autorización, que luego utiliza para solicitar los recursos protegidos. Mientras

el token de acceso no haya expirado y siga siendo válido, el cliente puede

acceder a los recursos.

5.3. Comprobación y pruebas de las propiedades de los servicios

REST

En el contexto de servicios en la nube accesibles a través de APIs

REST, un cliente envía solicitudes a un servicio y recibe respuestas basadas

en el protocolo HTTP/S, donde cada respuesta incluye un código de estado

HTTP. Atlidakis et al. (2020) definen una API REST como un conjunto finito de

solicitudes, donde cada solicitud es una combinación de un token de

autenticación, tipo de solicitud, ruta de recurso y cuerpo de la solicitud. Cada

solicitud r es una tupla de la forma (a, t, p, b) donde:

• a es un token de autenticación,

• t es el tipo de solicitud,

• p es una ruta de recurso, y

• b es el cuerpo de la solicitud.

Un tipo de solicitud t es cualquiera de los siguientes cinco valores

permitidos por REST: PUT o POST (crear o actualizar), GET (leer o consultar),

DELETE (eliminar), PATCH (actualizar). La ruta de recurso p es una cadena

que identifica un recurso en la nube y su jerarquía principal. Comúnmente, p

25

es una cadena con la expresión: (/resourceType/resourceName/). Donde

resourceType denota el tipo de un recurso en la nube y resourceName es el

nombre específico del recurso de ese tipo. El cuerpo de la solicitud b puede

incluir parámetros adicionales y sus valores que pueden ser requeridos u

opcionales para que la solicitud se ejecute con éxito (Atlidakis et al., 2020).

Atlidakis et al. (2020) también presentan las siguientes cuatro reglas de

seguridad para APIs REST y servicios:

• Acceso tras eliminación: Una vez que un recurso ha sido eliminado, no

debe ser posible acceder a él. Cualquier intento de acceder, modificar

o eliminar el recurso tras su eliminación debe resultar infructuoso.

• Pérdida de recursos: Si se produce un fallo durante la creación de un

recurso, este no debe existir ni ser accesible, y su falla no debe impactar

el estado del servicio ni consumir recursos, como la cuota.

• Estructura jerárquica de recursos: Un recurso hijo no debería ser

accesible desde un recurso padre equivocado. Cada recurso hijo debe

estar vinculado únicamente al recurso padre que lo originó.

• Pérdida de recursos anidados: Si se elimina un recurso padre, todos

sus recursos hijos también deben dejar de estar disponibles o visibles.

5.3.1. Pruebas automatizadas de caja blanca a servicios

RESTful

Arcuri (2017) señala que generar datos de prueba es una tarea

compleja debido a la variabilidad del software, y que crear manualmente casos

26

de prueba puede resultar complicado para los desarrolladores. Aunque la

generación aleatoria de casos de prueba es sencilla, no suele ser efectiva ya

que puede cubrir solo pequeñas porciones del software. En su lugar, la

ingeniería de software basada en búsqueda ha demostrado ser más eficiente

para resolver problemas de pruebas de software, empleando algoritmos de

búsqueda para optimizar tanto la cobertura del código como la detección de

fallos.

Para las APIs RESTful, las pruebas consisten en solicitudes HTTP, que

pueden ser complejas debido a la variedad de formatos de contenido, aunque

JSON es el formato más común. Swagger es una herramienta popular para

documentar APIs REST. Las pruebas generadas pueden ser útiles tanto para

pruebas de regresión como de seguridad, detectando fallos en la verificación

de autorizaciones y utilizando códigos de estado HTTP. El empleo de un

Algoritmo Genético (GA) para generar casos de prueba permite crear

conjuntos de pruebas que cubren tanto la cobertura de declaraciones del

sistema como varios códigos de estado HTTP. El GA evoluciona conjuntos de

pruebas al combinar y modificar casos existentes, optimizando así la calidad

de las pruebas (Arcuri, 2017).

Arcuri (2017) propone un enfoque totalmente automatizado para las

pruebas de caja blanca, empleando un algoritmo evolutivo para la generación

de casos de prueba. Este enfoque está diseñado para maximizar la cobertura

del código y detectar errores a través del análisis de los códigos de estado

HTTP. Al tener acceso al código fuente, el método permite una evaluación

detallada de la lógica interna y la estructura del código, identificando errores

que podrían pasar inadvertidos con métodos de caja negra. Al diseñar pruebas

que abarquen todas las rutas posibles, se incrementa considerablemente la

efectividad de las pruebas.

27

5.3.2. Pruebas de caja negra a servicios RESTful

Viglianisi et al. (2020) proponen que cuando el código fuente no está

disponible o es difícil de analizar, las pruebas de caja negra son una opción

adecuada, ya que requieren solo el acceso al sistema a través de una interfaz

específica. Partiendo de la definición de la interfaz (Swagger), se generan

valores de entrada y solicitudes para cada operación de la API, con el fin de

evaluar tanto escenarios nominales como situaciones de error. La

investigación empírica realizada demuestra que esta herramienta es eficaz

para detectar fallos en APIs REST reales.

Se utiliza la especificación Swagger para construir un grafo de

dependencias de operaciones (ODG), que organiza las pruebas en función de

las dependencias de datos entre las operaciones. El ODG es un grafo dirigido

G=(N,V), donde los nodos N representan las operaciones en la API REST.

Existe una arista v ∈ V, con v = n2→n1, cuando hay una dependencia de datos

entre n2 y n1. Esta dependencia se establece si un campo de la salida

(respuesta) de n1 coincide con un campo de la entrada (solicitud) de n2.

Intuitivamente, esto significa que n1 debe ser probado antes que n2, ya que la

salida de n1 podría ser utilizada para deducir los valores de entrada necesarios

para probar n2 (Viglianisi et al., 2020).

Laranjeiro et al. (2021) desarrollaron una herramienta para pruebas de

caja negra. Esta herramienta genera solicitudes tanto válidas como inválidas

para evaluar los servicios REST. La metodología se desarrolla en cuatro

etapas: primero, se analiza la descripción de la interfaz para extraer

información sobre las operaciones y los datos de entrada/salida a partir del

documento de descripción de la API; luego, se generan y ejecutan cargas de

trabajo válidas para comprender el comportamiento del servicio bajo

28

condiciones normales; a continuación, se crean y ejecutan cargas con fallos

mediante la inyección de errores en los parámetros de las solicitudes válidas

para provocar comportamientos incorrectos; finalmente, se almacenan y

analizan los resultados, incluyendo las respuestas del servicio y la metadata

de las pruebas.

29

6. PROPUESTA DE ÍNDICE DE CONTENIDOS

ÍNDICE DE ILUSTRACIONES

ÍNDICE DE TABLAS

LISTA DE SÍMBOLOS

GLOSARIO

RESUMEN

PLANTEAMIENTO DEL PROBLEMA Y FORMULACIÓN DE PREGUNTAS

ORIENTADORAS

OBJETIVOS

RESUMEN DE MARCO METODOLÓGICO

INTRODUCCIÓN

1. ANTECEDENTES

2. JUSTIFICACIÓN

3. ALCANCES

3.1 Alcance investigativo

3.2 Alcance técnico

3.3 Resultados esperados

4. MARCO TEÓRICO

4.1 Servicios de Transferencia de Estado Representacional

(REST)

4.1.1 Protocolo OData en arquitecturas orientadas a servicios

30

4.2 Diseño y arquitectura de sistemas de autenticación y

autorización

4.2.1 Gestión de identidad y acceso para servicios web

4.2.2 OAuth2 en la autorización de servicios web en la nube

4.3 Comprobación y pruebas de las propiedades de los servicios

REST

4.3.1 Pruebas automatizadas de caja blanca a servicios

RESTful

4.3.2 Pruebas de caja negra a servicios RESTful

5. PRESENTACIÓN DE RESULTADOS

5.1 Análisis, diseño y desarrollo del prototipo para servicios OData

5.1.1 Diseño de flujo de los servicios RESTful con OData

5.1.2 Implementación de autenticación multifactor y control de

acceso basado en roles

5.1.3 Configuración del API Gateway con Azure API

Management

5.1.4 Integración de Microsoft Identity y Azure Active Directory

para autenticación y autorización

5.1.5 Diseño y desarrollo de base de datos para servicios

OData

5.2 Monitorización y pruebas automatizadas del sistema

5.2.1 Configuración de Azure Monitor y Application Insights

5.2.2 Implementación de pruebas automatizadas con Selenium

y JMeter

5.2.3 Métricas de rendimiento y seguridad monitoreadas

5.3 Evaluación de seguridad de la arquitectura propuesta

5.3.1 Pruebas de vulnerabilidades y simulación de ataques de

denegación de servicio (DoS)

31

5.3.2 Evaluación de los mecanismos de autenticación y

autorización

5.3.3 Análisis de resultados de la seguridad del sistema

5.4 Síntesis de presentación de resultados

5.4.1 Detalles del prototipo desarrollado

5.4.2 Comparativa de rendimiento en entornos controlados

6. DISCUSIÓN DE RESULTADOS

6.1 Arquitectura basada en servicios OData

6.2 Evaluación del rendimiento de la autenticación multifactor y

control de acceso

6.3 Impacto del uso de Azure API Management y Azure Monitor en

la optimización del sistema

6.4 Mejores prácticas identificadas para la implementación segura

de servicios RESTful con OData

6.5 Futuras mejoras y evolución del prototipo

6.5.1 Implementación de nuevos controles de seguridad y

auditoría

6.5.2 Escalabilidad del sistema para soportar mayor volumen de

transacciones

6.5.3 Incorporación de nuevas funcionalidades basadas en

inteligencia artificial

 CONCLUSIONES

 RECOMENDACIONES

 BIBLIOGRAFÍA Y REFERENCIAS

 ANEXOS

32

33

7. METODOLOGÍA

7.1. Características del estudio

La investigación tendrá un enfoque mixto. El tipo de estudio es

cualitativo y cuantitativo.

Se considera cuantitativo, ya que se evaluará la efectividad de las

mejoras en seguridad a través de métricas antes y después de la

implementación. Se llevarán a cabo pruebas de rendimiento utilizando

herramientas para medir la capacidad de la arquitectura propuesta de manejar

cargas de trabajo y responder a incidentes de seguridad.

Desde una perspectiva cualitativa, se mostrará la calidad de la

arquitectura de seguridad propuesta evaluando la adecuación de las medidas

de autenticación, autorización y respuesta a incidentes desde el punto de vista

de la organización.

El estudio será descriptivo y explicativo. Desde el enfoque descriptivo,

permitirá una comprensión clara de las medidas y herramientas de seguridad

implementadas para proteger la integridad, confidencialidad y disponibilidad

de los datos en servicios basados en el protocolo OData. Esto incluye un

análisis detallado de los componentes de la arquitectura propuesta y cómo

estos elementos interactúan para garantizar la seguridad de la información.

También se detallarán las herramientas utilizadas para las pruebas de calidad

y su impacto en la identificación de vulnerabilidades.

34

Por otra parte, el enfoque explicativo proporcionará una visión de cómo

y por qué estas medidas son efectivas para mejorar la seguridad de los

servicios OData. Se buscará explicar la relación entre las diferentes medidas

de seguridad implementadas y su efectividad en la mitigación de riesgos

específicos. El estudio analizará cómo las pruebas automatizadas y las

herramientas de evaluación de calidad contribuyen a mejorar la seguridad de

la arquitectura propuesta, destacando las razones detrás del éxito o fracaso

de ciertas medidas en escenarios específicos.

El diseño del estudio será experimental, centrado en la implementación

y validación de un prototipo seguro basado en servicios OData. La arquitectura

propuesta se evaluará a través de pruebas de calidad utilizando herramientas

como para la automatización de pruebas funcionales y para pruebas de

rendimiento, simulando múltiples escenarios de uso e intentos de

autenticación y autorización. También se emplearán herramientas para la

recolección de métricas de rendimiento y análisis de seguridad en tiempo real.

La validación de la arquitectura se realizará mediante la ejecución de

pruebas de estrés y resistencia para evaluar la robustez del sistema ante picos

de demanda y fallas del sistema. Estas pruebas permitirán identificar posibles

puntos de fallo y áreas de mejora en la arquitectura de seguridad.

7.2. Variables

Las variables que se estarán abordando en el estudio se describen a

continuación.

35

Tabla 1.

Variables en estudio

Variable Definición teórica Subvariables Indicadores

Operatividad

del sistema

Representa

una medida del

tiempo durante el

cual los datos y los

servicios se pueden

acceder y se

encuentran en

estado disponible.

Disponibilidad % de tiempo de

disponibilidad del

servicio

Inactividad Tiempo de

inactividad del

servicio

Recuperación Tiempo medio de

recuperación ante

desastres

Seguridad del

acceso al

sistema

Medidas de

autenticación y

autorización

efectivas para

proteger los

servicios contra

accesos no

autorizados

Autenticación Número de

intentos de acceso

no autorizado

bloqueados

Autorización Número de

usuarios con

acceso al recurso

solicitado

Calidad de los

servicios

implementados

Pruebas de

seguridad para la

detección de

vulnerabilidades en

los servicios OData.

Confiabilidad Número de

vulnerabilidades

detectadas en las

pruebas

Nota: Definición de variables, subvariables e indicadores. Elaboración propia, realizado con

Word.

36

7.3. Fases de estudio

Fase de revisión documental y literatura

En esta fase se recopilará y revisará información relevante de fuentes

académicas, publicaciones científicas, documentos técnicos, normativas de

seguridad, y guías de implementación de protocolos de comunicación segura

y fundamentos de los servicios OData, las mejores prácticas de

implementación y los requisitos específicos de seguridad. Esta fase también

incluirá una revisión de herramientas de evaluación de seguridad y pruebas de

calidad.

Fase de análisis de seguridad

Se realizará un análisis de los riesgos y amenazas asociados con la

implementación de servicios OData. Evaluar los posibles ataques, como

inyecciones de datos, ataques de denegación de servicio (DoS) y accesos no

autorizados. Utilizar estudios de caso y ejemplos de vulnerabilidades

reportadas en implementaciones OData.

Fase de diseño de la arquitectura de seguridad y servicios

Diseñar una arquitectura de software que contemple las medidas de

seguridad para la implementación de servicios OData. La arquitectura incluirá

la selección de herramientas, la configuración de políticas de seguridad como

autenticación multifactor (MFA), y control de acceso basado en roles. Este

diseño servirá para demostrar mediante un prototipo como llevar a cabo una

implementación segura. Se documentará un plan detallado para la

infraestructura de hardware y software necesaria.

37

Fase de desarrollo del prototipo

Crear un prototipo que implemente los servicios OData en un entorno

seguro. Desarrollar ejemplos de código y configuraciones para los servicios

RESTful con OData, incluyendo los modelos para autenticación y autorización,

sistemas de monitoreo y pruebas automatizadas. Esta fase también incluirá la

instalación y configuración de todas las herramientas necesarias y estará

orientada a demostrar cómo se puede implementar la arquitectura propuesta.

Fase de pruebas de seguridad

Se realizarán pruebas de seguridad para evaluar la robustez de la

arquitectura de seguridad propuesta mediante simulaciones de amenazas y

vulnerabilidades. Se utilizarán herramientas de pruebas automatizadas para

simular ataques y verificar la resistencia del sistema ante accesos no

autorizados. Incluyen la evaluación de los mecanismos de autenticación

multifactor y el control de acceso basado en roles para demostrar la

metodología de pruebas de seguridad aplicable a servicios OData.

Fase de pruebas de calidad y rendimiento

Ejecutar pruebas de calidad y rendimiento del prototipo en un entorno

controlado. Utilizar herramientas o monitores para evaluar el comportamiento

del sistema bajo condiciones de carga y estrés, verificando disponibilidad, el

tiempo de respuesta, y el uso de recursos del sistema.

38

Fase de análisis de resultados y redacción de informe final

Analizar los resultados obtenidos de las pruebas de seguridad y

rendimiento, evaluando si la arquitectura cumple con los objetivos de proteger

la integridad, confidencialidad y disponibilidad de los datos. Documentar las

observaciones, conclusiones y recomendaciones basadas en los resultados

de las pruebas.

39

8. TÉCNICAS DE ANÁLISIS DE LA INFORMACIÓN

Como primer punto, se realizará un análisis de contenido para revisar

la información recogida de fuentes documentales, como normativas de

seguridad, papers o publicaciones científicas y guías de implementación. El

análisis se centrará en identificar patrones, temas o conceptos clave

relevantes para la seguridad de los servicios OData.

Este análisis permitirá, para los datos cualitativos, realizar una teoría

fundamentada, examinando cómo la arquitectura de seguridad propuesta se

adapta a las necesidades. Se estará analizando la implementación de las

medidas de autenticación, autorización y respuesta a incidentes en un

contexto controlado, evaluando su efectividad y adecuación desde el punto de

vista de la organización. Se hará un análisis de caso del prototipo, incluyendo

la revisión de cómo estas medidas responden a incidentes de seguridad y su

impacto en las operaciones.

Para los datos cuantitativos, se utilizará estadística descriptiva para

evaluar la eficacia de las medidas de seguridad implementadas. Se

recopilarán métricas de los indicadores que corresponden a cada variable de

operatividad, seguridad y calidad de la arquitectura implementada como el

tiempo de disponibilidad, el número y la tasa de éxito de los intentos de

autenticación y la frecuencia de detección de amenazas y vulnerabilidades

encontradas. Los datos serán organizados en tablas y gráficos para facilitar su

interpretación y se emplearán medidas de tendencia central (media, mediana,

moda) y dispersión (desviación estándar) para analizar las variaciones y

tendencias en los datos.

40

Finalmente, se elaborará un análisis comparativo para evaluar los

resultados obtenidos durante las pruebas de seguridad con estándares y

mejores prácticas documentadas. Este enfoque permitirá identificar áreas para

mejoras y garantizar que la arquitectura cumpla con los requisitos de seguridad

esperados.

41

9. CRONOGRAMA

A continuación, se detallan el cronograma de trabajo, las fases y la

duración estimada para llevar a cabo el estudio.

Figura 8.

Diagrama de Gantt del estudio

Nota: Cronograma de las fases del estudio. Elaboración propia, realizado con OnlineGantt.

42

Tabla 2.

Fases del estudio

Fase Descripción Duración estimada

Fase de revisión

documental y

literatura

Recopilación de información,

revisión de literatura,

estudios técnicos y

normativas de seguridad.

2 semanas

Fase de análisis de

seguridad

Análisis de riesgos y

amenazas, evaluación de

posibles ataques y ejemplos

de vulnerabilidades.

2 semanas

Fase de diseño de

la arquitectura de

seguridad y

servicios

Diseño de la arquitectura,

selección de herramientas y

políticas de seguridad,

documentación del plan.

4 semanas

Fase de desarrollo

del prototipo

Desarrollo del prototipo de

servicios OData,

configuración de

herramientas de seguridad.

6 semanas

Fase de pruebas de

seguridad

Realización de pruebas

automatizadas de seguridad,

simulación de amenazas y

evaluación de resultados.

4 semanas

Fase de pruebas de

calidad y

rendimiento

Pruebas de rendimiento,

evaluación del

comportamiento del sistema

bajo carga y estrés.

2 semanas

43

Continuación de la tabla 2.

Fase Descripción Duración estimada

Fase de análisis de

resultados y

redacción de

informe final

Análisis de los resultados de

pruebas, redacción de

conclusiones y

recomendaciones.

4 semanas

Nota: Descripción y duración estimada de las fases del estudio. Elaboración propia, realizado

con Word.

44

45

10. FACTIBILIDAD DEL ESTUDIO

10.1. Factibilidad temporal

Para evaluar la factibilidad del tiempo, se consideran las fases del

estudio, las actividades específicas y su duración estimada. El objetivo es

determinar que las tareas necesarias se pueden completar dentro del plazo de

6 meses (aproximadamente 26 semanas).

Fase de revisión documental y literatura (2 semanas): Recopilación de

información de fuentes académicas, publicaciones científicas, documentos

técnicos, normativas de seguridad, y guías de implementación de protocolos

OData. También se realizará una revisión de herramientas de evaluación de

seguridad y pruebas de calidad. Este tiempo es adecuado para investigar y

reunir toda la información necesaria.

Fase de análisis de seguridad (2 semanas): Evaluación de riesgos y

amenazas asociados con la implementación de servicios OData (inyecciones

de datos, ataques DoS, accesos no autorizados). Análisis de casos de estudio

y ejemplos de vulnerabilidades reportadas. Considerando el enfoque en

ejemplos específicos de seguridad y riesgos de OData, este tiempo es

conveniente para identificar vulnerabilidades críticas y definir los requisitos de

seguridad.

Fase de diseño de la arquitectura de seguridad y servicios (4 semanas):

Diseño de la arquitectura de software, definición de políticas de seguridad

(autenticación multifactor, control de acceso basado en roles), documentación

46

del plan de infraestructura de hardware y software. Se requiere tiempo

suficiente para diseñar una arquitectura robusta y documentarla

correctamente.

Fase de desarrollo del prototipo (6 semanas): Implementación de

servicios RESTful con OData en ASP.NET Core, configuración de Azure API

Management, Azure Active Directory, bases de datos, y herramientas de

monitoreo. Desarrollo de ejemplos de código y configuraciones para

autenticación, autorización y monitoreo. Se estima suficiente tiempo para

construir y configurar todos los componentes necesarios del prototipo, ya que

esto implica el desarrollo de múltiples servicios y configuraciones en la nube

de Azure.

Fase de pruebas de seguridad (4 semanas): Realización de pruebas de

seguridad automatizadas (simulación de accesos y verificación de

mecanismos de seguridad). Evaluación de autenticación multifactor y control

de acceso basado en roles. Tiempo suficiente para realizar pruebas

exhaustivas, simular ataques y evaluar la arquitectura de seguridad.

Fase de pruebas de calidad y rendimiento (2 semanas): Ejecución de

pruebas de carga, estrés, y rendimiento. Evaluación del comportamiento del

sistema (disponibilidad, tiempo de respuesta, uso de recursos). Esta fase es

crítica para asegurar que el sistema funcione bajo diferentes condiciones, por

lo que se necesita tiempo suficiente para llevar a cabo pruebas completas.

Fase de análisis de resultados y redacción de informe final (4 semanas):

Análisis de los resultados obtenidos de las pruebas de seguridad y

rendimiento. Documentación de observaciones, conclusiones y

47

recomendaciones, analizar los datos recopilados, redactar el informe final y

revisar las conclusiones antes de la entrega final.

Duración Total Estimada: 24 semanas

Tiempo disponible: 26 semanas (6 meses).

Por la anterior se considera factible dentro del plazo. La duración total

estimada de todas las fases del proyecto es de 23 semanas, lo que deja un

margen de 2 semanas dentro del plazo de 6 meses. Las 2 semanas de margen

pueden utilizarse para manejar cualquier retraso inesperado, ajustes de

proyecto, o iteraciones adicionales en pruebas o desarrollo.

10.2. Factibilidad técnica

Se evalúan los recursos, el conocimiento y las herramientas para

desarrollar y llevar a cabo el estudio. Este análisis permite identificar posibles

limitaciones y necesidades técnicas para asegurar la viabilidad de la

investigación.

10.2.1. Recursos Humanos

Ingeniero de software (1 recurso): El proyecto requiere un ingeniero de

software con experiencia en desarrollo de APIs, seguridad de aplicaciones,

manejo de Azure, OData, ASP.NET Core, y herramientas de monitoreo y

pruebas. Deberá realizar todas las actividades técnicas, desde la revisión

documental hasta la implementación del prototipo y pruebas de seguridad y

rendimiento.

48

10.2.2. Recursos Tecnológicos

Equipo de cómputo: Computadora con capacidad adecuada para

ejecutar herramientas de desarrollo como Visual Studio, herramientas de

pruebas automatizadas (Selenium, JMeter), y herramientas de monitoreo. Se

asume que el ingeniero de software ya cuenta con este equipo, por lo que no

hay costos adicionales.

Infraestructura en la nube: El uso de servicios en la nube de Azure

elimina la necesidad de infraestructura física adicional (servidores, redes,

almacenamiento). Se utilizarán los siguientes servicios de Azure:

• Azure API Management (Developer Tier): Para la gestión de APIs y

autenticación.

• Azure Active Directory (AAD): Para autenticación multifactor y control

de acceso.

• Azure App Service (B1, Basic Tier): Para desplegar los servicios

RESTful con OData.

• Azure SQL Database (Basic Tier): Base de datos para almacenar

información.

• Azure Monitor y Application Insights: Para monitoreo y pruebas de

rendimiento.

• Azure DevOps Services: Para integración continua (CI/CD) y pruebas

automatizadas.

10.2.3. Acceso a información y permisos

Se necesita acceso a documentación técnica, publicaciones científicas,

y normativas de seguridad relevantes, que se pueden obtener a través de

49

bibliotecas digitales, plataformas académicas y fuentes en línea. No se

requieren permisos especiales para implementar el proyecto en un entorno de

desarrollo.

El proyecto es técnicamente viable, ya que cuenta con un recurso

humano calificado y con acceso a las tecnologías necesarias (Azure) y

herramientas de desarrollo. No se requieren permisos especiales ni

inversiones en infraestructura física adicional.

10.3. Factibilidad financiera

Para la factibilidad financiera de la investigación, se consideran los

costos asociados al recurso humano, los servicios en la nube (Azure) y las

herramientas necesarias para la implementación.

En este caso, se propone aprovechar los servicios gratuitos de Azure y

el crédito inicial disponible para minimizar los costos durante la fase de

desarrollo y pruebas. El proyecto puede ser autofinanciado con fondos

propios, cubriendo tanto los costos del ingeniero de software (maestrando)

como los servicios de Azure de ser necesario. Azure ofrece un plan gratuito

que incluye varios servicios con límites de uso mensuales, además de un

crédito inicial de USD 200 disponible durante los primeros 30 días. Servicios

gratuitos de Azure que se utilizarán:

• Azure API Management (Nivel Developer): 1 millón de llamadas de API

por mes.

• Azure Active Directory (Azure AD): Gestión de identidades y acceso con

el plan gratuito.

50

• Azure SQL Database (Nivel gratuito): 250 GB de almacenamiento de

base de datos SQL durante los primeros 12 meses.

• Azure Monitor (incluyendo Application Insights): 5 GB de datos de logs

por mes durante 31 días y 1 millón de verificaciones de métricas por

mes.

• Azure DevOps: Herramientas de CI/CD gratuitas para equipos de hasta

5 usuarios con 1,800 minutos de ejecución de pipelines por mes.

Durante los primeros 30 días (4 de las 6 semanas estimadas para la

elaboración del prototipo), el proyecto hará uso del crédito de USD 200

proporcionado por Azure. Este crédito se podrá utilizar para cubrir cualquier

exceso de uso de servicios gratuitos. Los Servicios con probabilidad de

exceder el límite gratuito son:

• Azure API Management: Si el proyecto requiere más de 1 millón de

llamadas de API por mes.

• Azure Monitor (incluyendo Application Insights): Si se exceden los 5 GB

de datos de logs o las verificaciones de métricas.

Después del primer mes, se optimizará el uso de los servicios de Azure

para permanecer dentro de los límites gratuitos tanto como sea posible. En

caso de que sea necesario un uso adicional, se gestionarán los recursos para

minimizar los costos. Se espera concluir el prototipo, las pruebas de seguridad,

calidad y rendimiento en 8 semanas, después del mes gratuito. Los costos

estimados para los siguientes 2 meses:

• Azure API Management (Nivel Developer): USD $0.60 por 10,000

llamadas adicionales de API.

• Azure Monitor: USD $2.76 por GB adicional de logs.

51

Dependiendo del uso y las necesidades, se estima un costo adicional

de USD $20 por mes para servicios que puedan exceder los límites gratuitos

después del primer mes. Utilizando el plan gratuito de Azure y el crédito de

USD $200, los costos de servicios en la nube se mantienen al mínimo, lo que

mejora la viabilidad financiera del proyecto.

Aunque el maestrando será quien desempeñe el rol de ingeniero de

software, es importante considerar los costos asociados a este recurso

humano para reflejar la inversión de tiempo y esfuerzo en el proyecto. Estos

costos, aunque no sean pagados realmente, representan el valor del trabajo

realizado.

El ingeniero de software dedicará 10 horas a la semana al proyecto y

se calculan los costos tomando en cuenta un período de 6 meses

(aproximadamente 26 semanas).

Total de horas por semana: 10 horas

Total de semanas: 26 semanas

Total de horas de trabajo: 10 horas/semana × 26 semanas = 260 horas

Tomando un costo por hora de USD $20 para un ingeniero de software,

el costo total por el recurso humano es: 260 horas × USD $20/hora = USD

$5,200.

52

Tabla 3.

Factibilidad financiera del estudio

Descripción Cantidad Costo Unitario Costo Total

Recurso humano

(Ingeniero de software)

Horas semanales 10 horas $20 / hora $200 / semana
Semanas de trabajo

(6 meses) 26 semanas

Costo total por recurso

humano
 $5,200

Servicios de Azure

Créditos gratuitos de

Azure (primeros 30 días)
1 mes Gratis

Créditos adicionales

para uso extendido

(8 semanas)

2 meses $20 / mes $ 40

Costo total por

servicios de Azure

$ 40

Total general $5,240

Nota: Descripción y costos del estudio, expresados en dólares estadounidenses. Elaboración

propia, realizado con Word.

En la Tabla 3, se presentan los costos estimados para la factibilidad

financiera del proyecto, teniendo en cuenta el recurso humano (maestrando),

el uso de servicios gratuitos de Azure y el crédito de $40 para cubrir los

servicios que excedan el uso gratuito

53

En conclusión, la factibilidad financiera del proyecto es realizable ya que

se maximiza el uso de los recursos gratuitos disponibles en Azure, se cuenta

con la participación directa del maestrando como recurso humano, y no se

anticipan gastos significativos fuera de los recursos ya disponibles o cubiertos

por el crédito inicial de Azure.

54

55

REFERENCIAS

Agnelo, J. A. N. (2020). A robustness testing approach for RESTful Web

services [Tesis de Maestría, Universidad de Coímbra]. Archivo digital.

https://estudogeral.uc.pt/bitstream/10316/92292/1/MSc%20Thesis%20

-%20Joa%cc%83o%20Agnelo.pdf

Arcuri, A. (2017). RESTful API automated test case generation. 2017 IEEE

International Conference on Software Quality, Reliability and Security

(QRS), 9-20. https://ieeexplore.ieee.org/document/8009904/

Atlidakis, V., Godefroid, P., & Polishchuk, M. (October). Checking security

properties of cloud service REST APIs. 2020 IEEE 13th International

Conference on Software Testing, Validation and Verification (ICST),

387-397. https://ieeexplore.ieee.org/document/9159084

Cupek, R., & Huczala, L. (2015). OData for service-oriented business

applications: Comparative analysis of communication technologies for

flexible Service-Oriented IT architectures. 2015 IEEE International

Conference on Industrial Technology (ICIT), 1538-1543.

https://ieeexplore.ieee.org/document/7125315

Ed-Douibi, H., Izquierdo, J. L. C., & Cabot, J. (2018). Model-driven

development of OData services: An application to relational databases.

2018 12th International Conference on Research Challenges in

Information Science (RCIS), 1-12.

https://ieeexplore.ieee.org/document/8406667

https://estudogeral.uc.pt/bitstream/10316/92292/1/MSc%20Thesis%20-%20Joa%cc%83o%20Agnelo.pdf
https://estudogeral.uc.pt/bitstream/10316/92292/1/MSc%20Thesis%20-%20Joa%cc%83o%20Agnelo.pdf
https://ieeexplore.ieee.org/document/8009904/
https://ieeexplore.ieee.org/document/9159084
https://ieeexplore.ieee.org/document/7125315
https://ieeexplore.ieee.org/document/8406667

56

Indu, I., & Anand, P. R. (2015). Identity and access management for cloud web

services. 2015 IEEE Recent Advances in Intelligent Computational

Systems (RAICS), 406-410.

https://ieeexplore.ieee.org/document/7488450

Laranjeiro, N., Agnelo, J., & Bernardino, J. (2021). A black box tool for

robustness testing of REST services. IEEE Access 9, 24738-24754.

https://ieeexplore.ieee.org/document/9344640

Li, L., Chou, W., Zhou, W., & Luo, M. (2016). Design patterns and extensibility

of REST API for networking applications. IEEE Transactions on Network

and Service Management 13(1), 154-167.

https://ieeexplore.ieee.org/document/7378522

Li, L., & Chou, W. (2015). Designing large scale REST APIs based on REST

chart. 2015 IEEE International Conference on Web Services, 631-638.

https://ieeexplore.ieee.org/document/7195624

Papatheodoulou, N., & Sklavos, N. (2009). Architecture & system design of

Authentication, Authorization, & Accounting services. IEEE EUROCON

2009, 1831-1837. https://ieeexplore.ieee.org/document/5167894

Sendor, J., Lehmann, Y., Serme, G., & de Oliveira, A. S. (2014). Platform-level

support for authorization in cloud services with OAuth 2. 2014 IEEE

International Conference on Cloud Engineering, 458-465.

https://ieeexplore.ieee.org/document/6903511

https://ieeexplore.ieee.org/document/7488450
https://ieeexplore.ieee.org/document/9344640
https://ieeexplore.ieee.org/document/7378522
https://ieeexplore.ieee.org/document/7195624
https://ieeexplore.ieee.org/document/5167894
https://ieeexplore.ieee.org/document/6903511

57

Viglianisi, E., Dallago, M., & Ceccato, M. (2020). Restestgen: automated black-

box testing of restful apis. In 2020 IEEE 13th International Conference

on Software Testing, Validation and Verification (ICST), 142-152.

https://ieeexplore.ieee.org/document/9159077

https://ieeexplore.ieee.org/document/9159077

		2024-11-21T23:49:26+0000
	José Francisco Gómez Rivera

		2024-11-22T15:08:03+0000
	José Francisco Gómez Rivera

