

ESTUDIO, REDISEÑO Y AMPLIACIÓN DEL SISTEMA DE AGUA POTABLE Y, ALCANTARILLADO SANITARIO DE LA ALDEA SAN JOSÉ LA SIERRA DEL MUNICIPIO DE MATAQUESCUINTLA, DEPARTAMENTO DE JALAPA

DANIEL ARAGÓN DURÁN Asesorado por el Ing. Manuel Alfredo Arrivillaga Ochaeta

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA

FACULTAD DE INGENIERÍA

TRABAJO DE GRADUACIÓN

ESTUDIO, REDISEÑO Y AMPLIACIÓN DEL SISTEMA DE AGUA POTABLE Y, ALCANTARILLADO SANITARIO DE LA ALDEA SAN JOSÉ LA SIERRA DEL MUNICIPIO DE MATAQUESCUINTLA, DEPARTAMENTO DE JALAPA

PRESENTADO A JUNTA DIRECTIVA DE LA FACULTAD DE INGENIERÍA POR

DANIEL ARAGÓN DURÁN

ASESORADO POR EL ING. MANUEL ALFREDO ARRIVILLAGA OCHAETA

AL CONFERÍRSELE EL TÍTULO DE INGENIERO CIVIL

GUATEMALA, NOVIEMBRE 2005

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA

NÓMINA DE JUNTA DIRECTIVA

DECANO Ing. Murphy Olympo Paiz Recinos

VOCAL I

VOCAL III
Lic. Amahán Sánchez Álvarez
VOCAL III
Ing. Julio David Galicia Celada
VOCAL IV
Br. Kenneth Issur Estrada Ruiz
VOCAL V
Br. Elisa Yazminda Vides Leiva
SECRETARIA
Inga. Marcia Ivonne Véliz Vargas

TRIBUNAL QUE PRACTICÓ EL EXAMEN GENERAL PRIVADO

DECANO Ing. Murphy Olympo Paiz Recinos

EXAMINADOR Ing. Manuel Alfredo Arrivillaga Ochaeta

EXAMINADOR Ing. Luis Gregorio Alfaro Véliz

EXAMINADOR Ing. Oswaldo Romeo Escobar Álvarez

SECRETARIA Inga. Marcia Ivonne Véliz Vargas

HONORABLE TRIBUNAL EXAMINADOR

Cumpliendo con los preceptos que establece la ley de la Universidad de San Carlos de Guatemala, presento a su consideración mi trabajo de graduación titulado:

ESTUDIO, REDISEÑO Y AMPLIACIÓN DEL SISTEMA DE AGUA POTABLE Y, ALCANTARILLADO SANITARIO DE LA ALDEA SAN JOSÉ LA SIERRA DEL MUNICIPIO DE MATAQUESCUINTLA, DEPARTAMENTO DE JALAPA,

tema que me fuera asignado por la Dirección de la Escuela de Ingeniería Civil el 26 de julio de 2004.

AGRADECIMIENTO A:

DIOS Por iluminarme y guiarme en todo momento.

Mi hermana Eréndira Aragón Durán, por todo su apoyo.

Mi asesor Ing. Manuel Alfredo Arrivillaga Ochaeta

Por su valiosa asesoría a este trabajo de

graduación.

La Municipalidad de Por darme la oportunidad de realizar mí

Mataquescuintla, Jalapa Ejercicio Profesional Supervisado (EPS) en

especial al señor alcalde Emanuel Carrera

Morales.

La Facultad de Ingeniería Por formarme como profesional.

La Universidad de San Carlos de P

Guatemala

Por ser el templo del conocimiento.

ACTO QUE DEDICO A:

Mis padres Daniel Aragón Cabrera(Q.E.P.D.) y

Estela Margoth Durán (Q.E.P.D.)

Mis hermanas Anamaría, Eréndira, Liz Arlée (Q.E.P.D.) e

Ibiza Margoth Aragón Durán, por su aprecio y

cariño.

Mis tíos Delia, Marina, Carlos, Irma, Susana, y Celso

Durán, por todos sus consejos.

Mis sobrinos Jorge Rodolfo, Carlos Fernando, José Alberto,

Eréndira Lucía, Maria Andrée y Mónica Dialá,

con mucho cariño.

Mi familia en general Con mucho cariño y afecto.

Mis amigos Alfredo Monzón, Saúl Irungaray, Carlos

Padilla, Carlos Ochaíta y Rudy Pacheco, con

aprecio.

ÍNDICE GENERAL

	Pag.
ÍNDICE DE ILUSTRACIONES	V
LISTA DE SÍMBOLOS	VII
GLOSARIO	IX
RESUMEN	XI
OBJETIVOS	XII
INTRODUCCIÓN	XV
1. MONOGRAFÍA DEL LUGAR	1
1.1. Aldea San José La Sierra	1
1.1.1. Ubicación Geográfica	1
1.1.2. Aspectos climáticos	1
1.1.3. Colindancias	2
1.1.4. Topografía	2
1.1.5. Flora y Fauna	2
1.1.6. Suelo	3
1.2. Demografía y situación social	3
1.2.1. Población	3
1.2.2. Tipo de vivienda	3
1.2.3. Vías de acceso	3
1.3. Servicios	4
1.3.1. Educación	4
1.3.2. Drenajes	4
1.3.3. Salud	4
1.3.4. Transporte	4
1.3.5 Electricidad	5

	1.4. Activ	idad económica	5
	1.4.1.	Comercio	5
	1.4.2.	Producción	5
2.	SERVICIO	O TÉCNICO PROFESIONAL, AGUA POTABLE	7
	2.1. Datos	s preliminares	7
	2.1.1.	Fuentes de agua	7
	2.1.2.	Aforo	7
	2.1.3.	Calidad de agua	8
	2.1.4.	Levantamiento topográfico	8
	2.1.5.	Cálculo topográfico	8
	2.2. Diseñ	o Hidráulico	9
	2.2.1.	Población actual	9
	2.2.2.	Periodo de diseño	9
	2.2.3.	Población futura	9
	2.2.4.	Dotación	10
	2.2.5.	Caudal medio diario	10
	2.2.6.	Caudal máximo diario	10
	2.2.7.	Caudal máximo horario	11
	2.2.8.	Tanques de distribución existentes	12
	2.3. Red d	le distribución	12
	2.3.1.	Red de distribución, circuito cerrado	12
	2.3.2.	Caudal de vivienda	12
	2.3.3.	Caudal instantáneo	13
	2.3.4.	Presión estática	13
	2.3.5.	Presión dinámica	13
	2.3.6.	Bases de diseño	14
	2.3.7.	Cálculo del diseño hidráulico	15
	2.4. Obras	s de arte	20
	2.4.1.	Caja rompe-presión	20

	2.4.2. Profundidad de zanja para la colocación de tubería	20
	2.4.3. Conexiones	21
	2.4.4. Diámetro, tipo y clase de tubería	21
	2.5. Análisis de costos	23
	2.5.1. Cuantificación de materiales	23
	2.5.2. Cuantificación de mano de obra	28
	2.5.3. Presupuesto final	31
	2.5.4. Cronograma de ejecución	32
	2.6. Sistema tarifario	32
3.	OPERACIÓN Y MANTENIMIENTO	35
	3.1. Obras de arte	35
	3.2. Accesorios	36
	3.3. Tubería	37
4.	RIESGO Y VULNERABILIDAD	39
5.	MEDIDAS DE MITIGACIÓN	45
6.	DISEÑO DE ALCANTARILLADO SANITARIO	47
	6.1. Análisis de censos existentes	47
	6.1.1. Predicción de población futura a servir	48
	6.2. Estudios topográficos	48
	6.2.1. Levantado topográfico	48
	6.2.2. Cálculo topográfico	48
	6.2.3. Levantamiento topográfico del plano de densidad de vivienda	49
	6.3. Consideraciones del sistema sanitario	50
	6.3.1. Selección de ruta	50
	6.3.2. Área tributaria	50
	6.3.3. Población de diseño	51
	6.3.4. Integración del caudal sanitario	51
	6.3.5. Diámetro de tubería	51
	6.3.6. Colocación de tubería en pozos de visita (cotas Invert)	52

	6.3.7. Velocidad de la tubería a sección llena	53
	6.3.8. Capacidad a tubo lleno	54
	6.3.9. Flujo en secciones parcialmente llenas	54
	6.3.10. Pendiente de tubería (s)	55
	6.3.11. Velocidad de caudal negro (v)	55
	6.3.12. Altura de tirante (d)	56
	6.3.13. Normas para colocación de tubería	56
	6.3.14. Volumen de excavación	58
	6.4. Diseño de la red de alcantarillado sanitario	59
	6.4.1. Bases de diseño	59
	6.4.2. Cálculo de alcantarillado sanitario	61
	6.4.3. Presupuesto proyecto de alcantarillado sanitario	65
	6.4.4. Cronograma de ejecución, proyecto de drenajes	68
	6.4.5. Propuesta de planta de tratamiento para la Aldea San José La Sierra	69
	6.4.6. Impacto ambiental	74
7.	OPERACIÓN Y MANTENIMIENTO	79
	7.1. Obras de arte	79
	7.2. Tubería	80
8.	RIESGO Y VULNERABILIDAD	81
9.	MEDIDAS DE MITIGACIÓN	85
CO	ONCLUSIONES	87
RE	ECOMENDACIONES	89
ΒI	BLIOGRAFÍA	91
Αľ	NEXOS	93
•	Levantamiento topográfico: libretas topográficas	95
•	Especificaciones técnicas dosificador de cloro tipo DSA	104
•	Informes Análisis Físico Químico Sanitario y Bacteriológico de Agua	105
•	Planos: planta general, planta - perfil y detalles	109

ÍNDICE DE ILUSTRACIONES

FIGURAS

		Pag.
1	Mapa de ubicación y localización 1:50,000	1
2	Detalle de la conexión domiciliar de drenaje	53
3	Esquema de la profundidad de tubería	57
4	Esquema del volumen de excavación	59
5	Esquemas de planta de tratamiento tipo RAFA	73
	TABLAS	
		Pág.
I	Diseño del diámetro de la tubería	15
II	Diseño hidráulico de presiones	17
III	Cuantificación de materiales, proyecto de agua potable	23
IV	Cuantificación de mano de obra, proyecto de agua potable	28
V	Presupuesto final, proyecto de agua potable	31
VI	Cronograma de ejecución	32
VII	Cálculo de tarifa	33
VIII	Planificación de mantenimiento	35
IX	Censo de habitación Aldea San José La Sierra.	47
X	Profundidad mínima de la cota Invert para evitar ruptura (cm.)	58
XI	Ancho de zanja de acuerdo al diámetro de la tubería	58
XII	Memoria de cálculo proyecto de alcantarillado sanitario	61
XIII	Presupuesto proyecto de alcantarillado sanitario	65
XIV	Cronograma de ejecución, proyecto de drenajes	68
XV	Libreta topográfica línea de distribución Aldea San José La Sierra	95

LISTA DE SÍMBOLOS

Símbolo Significado

% Por ciento

ACI American Concrete Institute

ASTM Sociedad Americana para pruebas y materiales

d Altura del tirante de agua dentro de la alcantarilla

D Diámetro de la tubería a sección llena

d/D Relación de tirantes

E Estación

FHM Factor de hora máxima (adimensional)

gpm Galones por minuto

H Altura

Hf Pérdida de carga expresada en metros

HG Hierro galvanizado

INFOM Instituto de Fomento Municipal

IVA Impuesto al valor agregado

Km² Kilómetro cuadrado

Q Caudal a sección llena

R Radio hidráulico

L/s Litros por segundo

Lts./hab./día Litros por habitante por día

m Metro

m² Metro cuadrado
 m³ Metro cúbico

m/s Metro por segundo

Mca Metros columna de agua

msnm Metros sobre el nivel del mar

mm Milímetros

m³/seg Metro cúbico por segundo

DH Distancia horizontal

v Velocidad del flujo en la alcantarilla

V Velocidad del flujo a sección llena

q Caudal de diseño

v/V Relación de velocidades

a/A Relación de áreas

q/Q Relación de caudales

n Coeficiente de rugosidad

S% Pendiente en porcentaje

PV Pozo de visita

GLOSARIO

Agua potable Agua que es, sanitariamente, segura y agradable a los sentidos.

Agua residual Aguas que son retiradas de una vivienda, comercio o industria,

después de haber sido utilizadas.

Alcantarillado Sistema formado por obras, accesorios, tuberías o conductos

generalmente cerrados que no trabajan a presión y que conducen

aguas residuales.

Bases de diseño Bases técnicas adoptadas para el diseño del proyecto.

Candela domiciliar Receptáculo donde se reciben las aguas negras provenientes del

interior de la vivienda y que conduce al sistema de drenaje.

Caudal Volumen de agua que pasa por unidad de tiempo.

Colector Es una tubería generalmente de servicio público, que recibe y

conduce las aguas indeseables de la población.

Contaminación del Es la p

agua

Es la polución de ésta que produce o puede producir enfermedad

y aun la muerte del consumidor.

Cota de cimentación Altura donde se construyen los cimientos referidos a un nivel

determinado.

Cota de terreno Altura de un punto de terreno, referido a un nivel determinado.

Cota Invert Es la cota de la parte inferior del diámetro interno de la tubería.

Cota piezométrica Máxima presión dinámica en cualquier punto de la línea de

conducción o distribución, es decir, la altura que alcanzaría una

columna de agua sí, en dicho punto se colocara un manómetro.

Descarga Salida de agua de desecho en un punto determinado.

Dotación Estimación de la cantidad promedio de agua que consume cada

habitante en un día.

Factor de rugosidad Factor que expresa el tipo de superficie de la tubería.

Monografía Breve descripción sobre las características físicas, económicas,

sociales y culturales de una región.

Pendiente Inclinación respecto a una línea horizontal.

Período de diseño Tiempo durante el cual la obra diseñada prestará un servicio

satisfactorio.

Presión Es la fuerza ejercida sobre un área determinada.

Tratamiento Conjunto de operaciones y procesos unitarios que se realizan

sobre el agua cruda con el fin de modificar sus características

físicas, químicas o bacteriológicas, para obtener agua potable.

RESUMEN

El trabajo de graduación que a continuación se presenta muestra como resultado el diseño de dos proyectos realizados en el municipio de Mataquescuintla, Jalapa; específicamente, en Aldea San José La Sierra.

En esta aldea se diseñó un sistema de agua potable y uno de drenajes; el de agua con tubería PVC norma ASTM y el sistema sanitario con tubería de PVC NOVAFORT norma ASTM F-949, de varios diámetros con pozos de visita y se hace la propuesta de un tipo de planta de tratamiento de agua residual, para los puntos de desfogue.

OBJETIVOS

General

Contribuir al desarrollo integral de la Aldea San José la Sierra del municipio de Mataquescuintla, Jalapa, mejorando el sistema de agua potable y la ampliación del mismo, así como la implementación de la red del alcantarillado sanitario adecuado al crecimiento y salubridad de los habitantes, para elevar, así, su calidad de vida.

Específicos

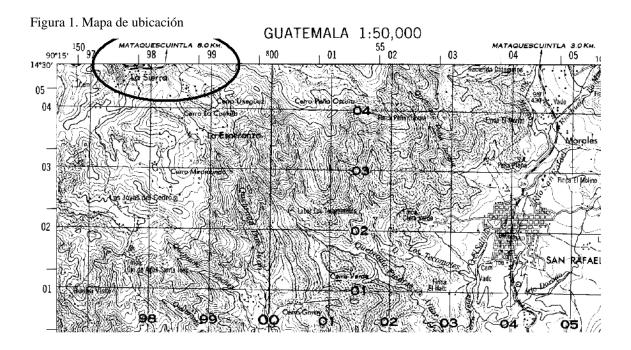
- 1. Por medio del rediseño y ampliación del sistema de agua potable y el diseño del alcantarillado sanitario, abastecer de agua a la población , además, contar con los respectivos drenajes sanitarios para recolectar las aguas servidas, tanto para la población actual y futura de la aldea San José la Sierra Mataquescuintla., Jalapa.
- 2. Establecer parámetros para el óptimo desarrollo de la administración, operación y mantenimiento de la red de agua potable y la red del alcantarillado sanitario de la aldea San José la Sierra Mataquescuintla, Jalapa.

INTRODUCCIÓN

El presente anteproyecto contiene una breve relación del contenido que tendrá el "REDISEÑO Y AMPLIACIÓN DEL PROYECTO DE AGUA POTABLE Y DISEÑO DEL ALCANTARILLADO SANITARIO, DE LA ALDEA SAN JOSÉ LA SIERRA DEL MUNICIPIO DE MATAQUESCUINTLA, JALAPA", para poder ser evaluado en forma apropiada.

La Aldea San José La Sierra tiene una población actual de 2,088 habitantes, la cual se proyecta un incremento de 3,772 habitantes en 20 años y 6,812 habitantes en 40 años. Dicho aumento hace notable los grandes problemas de salubridad que se reflejan en la gran demanda de servicios públicos, principalmente del abastecimiento del agua potable y drenajes sanitarios.

En dicha aldea no se cuenta hoy en día con un buen servicio de agua potable y carecen de drenajes sanitarios; como consecuencia de esto, se ha decidido elaborar un rediseño del sistema de agua potable y un diseño del alcantarillado sanitario, como parte del E. P. S.


La práctica ha sido asesorada por la unidad de E. P. S.- Ejercicio Profesional Supervisado- de la Facultad de Ingeniería, en coordinación con la U. T. M. -Unidad Técnica Municipal- de Mataquescuintla, Jalapa. La realización de la misma, también, ha sido esfuerzo de la comunidad, con el objetivo de disminuir los problemas que actualmente se afrontan.

1. MONOGRAFÍA DEL LUGAR

1.1. Aldea San José La Sierra

1.1.1. Ubicación geográfica

La Aldea San José La Sierra se encuentra ubicada a 51 kilómetros del departamento de Jalapa.

1.1.2. Aspectos climáticos

La Aldea San José La Sierra, por su localización, cuenta con un clima frió, cuya temperatura promedio es 22° C. Su temperatura máxima promedio es de 26° C y su temperatura mínima promedio, de 18° Celsius. La época más fría del año está comprendida entre los meses de diciembre a enero y la más calurosa se presenta entre abril y mayo.

1.1.3. Colindancias

La Aldea San José La Sierra colinda de la siguiente manera: al norte con la aldea el Pajal, al sur con la aldea la Esperanza, al oeste aldea Samororo, al este con la aldea el Carrizal.

1.1.4. Topografía

Las condiciones topográficas de la Aldea San José La Sierra son sumamente quebradas ya que se encuentra entre las cuencas del pacifico y el atlántico, además cuenta con muchas montañas.

1.1.5. Flora y fauna

Por la deforestación en el área rural son pocos animales que aún se conservan, existiendo en las montañas, maderas para la construcción y maderas finas entre esta: ciprés, pino, Matilisguate, etc.

Para proteger las especies de mangle, las autoridades respectivas han establecido la prohibición de su comercialización y explotación. Asimismo, se cuenta con variedad de árboles frutales, sobre todo los cítricos como naranja, limón y mandarina. También existe variedad de flores como buganvilla, rosa, quinceañera, camarón, clavel, narciso, margarita, entre otras.

La fauna terrestre se compone de especies de conejos, mapaches, tacuazines, aves, palomas, loros, patos, pericos. Entre las serpientes aún existen coral, mazacuata, barba amarilla, cascabel, zumbadora, cantil de agua, bejuquillo y tornasol.

1.1.6. Suelo.

El suelo es suave, está formado por una capa vegetal, luego por barro, arena y por último, talpetate.

1.2. Demografía y situación social

1.2.1. Población

Los datos de la población se obtuvieron en el censo levantado por la unidad de E. P. S. y con la colaboración de la comunidad. El número de viviendas es de 344.

1.2.2. Tipo de vivienda

En cuanto a su infraestructura, éstas son de topología mixta. Es decir, que el levantamiento es de mampostería de block y adobe. La cubierta de techos es de lámina de zinc.

1.2.3. Vía de acceso

La vía de acceso esta constituida por la ruta nacional CA-1, y la carretera 18 haciendo un total de 104 kilómetros asfaltados, hasta llegar al municipio de Mataquescuintla donde hay 10 kilómetros de terracería para llegar a la Aldea San José La Sierra..

1.3. Servicios

1.3.1. Educación

La Aldea San José La Sierra cuenta con una escuela para primaria y un instituto de educación básica. Se cuenta también con un salón de usos múltiples para las actividades culturales.

1.3.2. Drenajes

La Aldea San José La Sierra no cuenta con un sistema de drenaje sanitario, lo que altera los diferentes sistemas ambientales. Para la evacuación de excretas se utiliza tasa lavable con pozo ciego con un tubo de ventilación.

1.3.3. Salud

Existe un puesto de salud del gobierno, el cual brinda a la comunidad los servicios básicos. Y cuando presentan enfermedades mayores, se recurre al traslado del enfermo a un hospital de cabecera municipal. Recientemente se termino la construcción del centro de salud.

1.3.4. Transporte

Se utiliza el transporte extra urbano, que va de Mataquescuintla a la Aldea San José La Sierra y lugares cercanos, además cuenta con una línea de transporte que va de Mataquescuintla a la ciudad capital.

1.3.5. Electricidad

La Aldea San José La Sierra es abastecida del servicio eléctrico por empresa DEOCSA (Distribuidora de Electricidad de Occidente, S.A.).

1.4. Actividad económica

1.4.1. Comercio

Algunas familias se dedican a la venta de insumos básicos, por medio de pequeñas tiendas, las cuales generan ingresos para ayudar a la economía del hogar. Además se dedican a la compra y venta del café y a los productos lácteos como la crema y el queso.

1.4.2. Producción

La actividad principal es la agricultura se dedican a la siembra del café. Los principales cultivos son: maíz, plátano, limón, naranja. El maíz se comercializa en la cabecera departamental y en otras comunidades aledañas. Además, es la base fundamental para la alimentación de los habitantes.

2. PROYECTO DE AGUA POTABLE

2.1. Datos preliminares

2.1.1. Fuentes de agua

Las fuentes de agua pueden ser de origen subterráneo o superficial. Entre las fuentes de origen subterráneo se encuentran: nacimientos, manantiales, galerías de infiltración y pozos. Entre las de origen superficial figuran: ríos, lagos, el agua de lluvia y el agua de condensación.

Para la Aldea San José La Sierra las fuentes de alimentación para agua potable lo constituyen dos nacimientos de agua uno llamado el Chichicaste y el otro llamado el Maiceno, además de ello tiene una alimentación de una quebrada llamada Rosa Montana.

Para este proyecto de red de distribución de agua potable se cuenta con dos nacimientos y una quebrada los cuales alimentan los tanques de distribución hacia la aldea por medio de un sistema por gravedad.

2.1.2. Aforo

Es la operación que consiste en medir un caudal de agua. Según el diseño, se determinó que el aforo por método volumétrico deberá ser mayor de 4.00 l/s para poder satisfacer las necesidades de la población.

2.1.3. Calidad del agua

Para la calidad del agua potable se utilizarán dos dosificadores proporcionales sin electricidad que irán conectados a la caja unificadora de caudales antes de la entrada del a los tanques de distribución; el tipo de dosificador propuesto es el DSA 15.

Este tipo de dosificador se obtiene en el mercado bajo la marca DOSATRON de 20 GPM.

Los análisis realizados al agua son: Físico Químico y Bacteriológico (ver resultados de laboratorio en Anexo).

2.1.4. Levantamiento topográfico

Para el levantamiento de la red de distribución, se trabajaron la nivelación y el tránsito. El trabajo se realizó con los siguientes recursos:

- Recurso Humano: 2 estudiantes de E. P. P., 2 ayudantes de la aldea
- Recurso físico: equipo de topografía (teodolito, nivel, trípode, estadal y cinta métrica) y madera para la elaboración de trompos

2.1.5. Cálculo topográfico

Posteriormente al trabajo de campo, se calculó la libreta y se obtuvieron datos de azimut, elevaciones y distancias, con el objetivo de dibujar la planta y las curvas de nivel. Las curvas de nivel muestran las condiciones topográficas del terreno.

2.2. Diseño hidráulico

2.2.1. Población actual

La población actual se determinó por medio del levantamiento topográfico de

densidad y vivienda. Se obtuvo la siguiente información:

• Casas = 344

• Población actual = 2064

2.2.2. Período de diseño

Se consideró factible un período de 20 años, debido a que se va a utilizar tubería

de PVC, lo cual permite una durabilidad de las instalaciones y de la capacidad de agua

que genera la fuente de servicio.

2.2.3. Población futura

Para calcular el crecimiento de una población y estimar la población se utilizó el

método geométrico, ya que éste es aplicable a población dispersa y con poca

probabilidad de crecimiento.

 $Pf = Pa * (1+r)^n$

9

Pf = Población futura (habitantes)

Pa = Población actual (habitantes)

r= Tasa de crecimiento (según I. N. E. = 3%)

n = Período de diseño (años)

Pa = 2004 habitantes r = 0.0284

Pf = 3818 habitantes n = 20 años

2.2.4. Dotación

Es la cantidad de agua que se le asigna a una persona para consumo diario, siendo el consumo diario la cantidad real que utiliza una persona, y se expresa en litros por habitante por día. En acueductos rurales, especialmente en clima húmedo, se adopta la siguiente dotación:

Conexiones prediales (colocar un grifo a una casa) 150l/hab/día Servicios basados en llenar cántaros 40-60l/hab/día

2.2.5. Caudal medio diario (Qm)

Es la cantidad de agua que requiere una población en un día. Otra definición es el consumo durante un día (24h), la cual se obtiene como promedio de los consumos diarios en el periodo de un año. Cuando no se conocen registros, podrá aceptarse el producto de dividir la dotación entre el número de habitantes:

$$Qm = \frac{dotacion*poblacionfutura}{86,400} = \frac{litros}{segundo}$$

Qm = 150*3818/86,400 = 6.61 1/s

2.2.6. Caudal máximo diario

El caudal máximo diario se utiliza para diseñar la línea de conducción del proyecto. Este caudal se define como el máximo consumo de agua durante las 24 horas, observado en el período de un año. El factor de día máximo que se utiliza en el área rural es de 1.2 - 1.5.

En este proyecto se utiliza el factor 1.5 por ser un clima cálido y porque existen

variaciones o desviaciones de consumo durante el día.

Qmd = Factor de día máximo (FDM) * Qm

Qmd = 1.5 * 6.61 = 9.92 l/seg.

Este caudal máximo diario es el caudal de conducción y debe ser menor que el aforo.

2.2.7. Caudal máximo horario

El caudal horario máximo se utiliza para diseñar la red de distribución. Se define

como el máximo consumo de agua observado durante una hora del día en el período de

un año.

Según las normas generalmente aceptadas, el factor de hora máxima en el área

rural es de 1.8 - 2. Este es un factor de seguridad, porque el consumo de agua presentara

variaciones hora a hora, mostrando horas de consumo máximo y horas de consumo

mínimo. Este factor se originó de un diagrama de consumo (Q) contra tiempo (hora). El

factor de horas máximas a utilizarse en este diseño es de 1.9.

Qmh = Factor de hora máxima (FHM) * Qm.

Qmh = 1.59 * 6.61

Qmh = 10.50 l/s

El caudal horario máximo es el caudal de distribución y debe ser menor que el aforo.

11

2.2.8. Tanques de distribución existentes

Actualmente la Aldea San José La Sierra cuenta con dos tanques de distribución de

agua, teniendo capacidad de almacenamiento de 40 y 75 metros cúbicos respectivamente

también a los mismos se les aplicará un repello interior de 2 cms. de espesor, se aplicará

un alisado de cemento y luego e impermeabilizarán con una sustancia epóxica, estos

trabajos se incluirán en el presupuesto.

2.3. Red de distribución

La red de distribución comprende tuberías que van desde el tanque de distribución

hasta las líneas que conforman las conexiones domiciliares. La red de distribución

cuenta con los siguientes diámetros de tubería PVC: 4, 2 ½, 2, 1½, 1 ¼, 1, y ½

pulgadas.

2.3.1. Red de distribución, circuito cerrado

En este caso en particular la red de distribución está constituida por ramales

cerrados, debido a las características geométricas de la comunidad.

2.3.2. Caudal de vivienda (Qv)

El caudal de vivienda nos sirve para diseñar una red de distribución. Se determina

por medio del caudal máximo horario dividido entre el número total de viviendas de una

población.

Qv = Qmh (caudal de distribución)/total de viviendas

Qv = 9.92/334

Ov = 0.0297 l/s

12

2.3.3. Caudal instantáneo (Qi)

El caudal se basa en la probabilidad de que se utilice al mismo tiempo solamente un porcentaje del número de viviendas de un ramal. El caudal está dado por la ecuación:

$$Qi = \frac{k}{n-1}$$

n = Número de viviendas

k = 0.15 (0 - 334 viviendas)

k = 0.20 (>334 viviendas)

2.3.4. Presión estática

La máxima presión estática que soporta la tubería de 160 PSI se encuentra en un rango que va de 90 - 112 metros columna de agua, ya que con mayores presiones fallan los empaques de grifería y válvulas. Se produce cuando todo el líquido existente en la tubería, se encuentra en reposo. La presión estática es igual al peso especifico del agua, es decir, el peso del agua multiplicado por la altura ($P = \beta *H$).

2.3.5. Presión dinámica

Se produce cuando hay movimiento de agua. La presión estática modifica su valor disminuyéndose, debido a la fricción que causan las paredes de la tubería. La presión dinámica en un punto es la diferencia entre la cota piezométrica y la cota del terreno. La menor presión dinámica en las casas debe estar comprendida entre 4 y 15 metros columna de agua. Debido a que la topografía de la aldea San José La Sierra es muy accidentada, y también a que este diseño, es un circuito cerrado, se recomiendan instalar válvulas aliviadoras de presión, en los puntos en que la presión dinámica exceda de 60 metros columna de agua.

2.3.6. Bases de diseño

Aforo Mayor de 4.36 l/s

Fuente Nacimientos y fuente superficial

Sistema Gravedad

Tipo de servicio Domiciliar

Conexiones actuales 334

Población actual 2,004 habitantes

Tasa de crecimiento 2.84 % anual

Período de diseño 20 años

Población futura 3,818 habitantes

Dotación 150 l/hab/día

Caudal medio (Qm.) 6.61 l/s

Factor de día máximo 1.5

Caudal máximo diario (Qmd.) 9.92 l./s

Factor de hora máximo 1.59

Caudal máximo horario (Qmh) 10.50 l/s

Caudal de vivienda (Qv) 0.0297 l/s

2.3.7. Cálculo del diseño hidráulico de agua potable

Tabla I. Diseño del diámetro de la tubería.

PROYECTO: DISEÑO DE LA RED DE DISTRIBUCIÓN DE AGUA POTABLE

COMUNIDAD: ALDEA SAN JOSÉ LA SIERRA MATAQUESCUINTLA, JALAPA

ID	Nudo	Nudo	Longitud	Diámetro	Diámetro	Tubería	Caudal	Velocidad	Pérdida
Línea	Inicial	Final	m	mm	Pulg	PSI	LPS	m/s	m/km
2	3	2	332.78	30.36	1"	160	-0.17	0.24	2.98
3	2	4	52.50	30.36	1"	160	-0.75	1.03	45.13
4	5	4	170.24	30.36	1"	160	0.61	0.84	30.95
5	6	4	121.94	30.36	1"	160	0.45	0.63	17.94
6	7	6	37.83	30.36	1"	160	0.51	0.71	22.34
9	5	9	79.08	30.36	1"	160	-0.05	0.07	0.35
10	9	7	69.56	30.36	1"	160	0.63	0.86	32.55
12	13	5	74.87	38.90	1 1/4"	160	0.67	0.56	11.04
13	13	14	78.34	30.36	1"	160	-0.19	0.26	3.57
14	14	15	96.71	30.36	1"	160	-0.35	0.49	11.29
15	15	16	25.22	30.36	1"	160	0.05	0.07	0.35
16	16	17	63.70	30.36	1"	160	-0.22	0.31	4.81
17	17	12	77.89	30.36	1"	160	0.33	0.46	9.96
18	12	11	43.67	30.36	1"	160	0.10	0.14	1.09
20	16	11	71.81	30.36	1"	160	0.28	0.38	7.20
22	14	9	69.98	30.36	1"	160	0.42	0.58	15.41
24	20	18	75.98	30.36	1"	160	-0.07	0.10	0.61
25	18	19	69.31	30.36	1"	160	0.15	0.21	2.34
27	20	21	69.59	44.56	1 1/2"	160	0.31	0.20	1.35
28	17	19	105.73	30.36	1"	160	0.05	0.07	0.30
30	23	24	55.00	30.36	1"	160	0.18	0.25	3.37
31	22	23	106.87	30.36	1"	160	0.20	0.27	3.79
32	20	22	75.98	30.36	1"	160	0.22	0.30	4.51
33	21	23	75.00	30.36	1"	160	0.31	0.42	8.72
36	23	26	81.84	30.36	1"	160	0.12	0.16	1.49
37	24	27	93.38	30.36	1"	160	0.13	0.18	1.69
38	26	27	191.06	30.36	1"	160	0.10	0.14	1.16
39	28	29	73.81	30.36	1"	160	-0.27	0.38	7.04
40	29	30	90.28	30.36	1"	160	-0.36	0.50	11.79
41	30	31	87.74	30.36	1"	160	0.13	0.19	1.89
42	31	32	68.06	30.36	1"	160	0.07	0.10	0.60
43	32	33	75.17	30.36	1"	160	0.11	0.15	1.24
44	33	34	76.61	30.36	1"	160	0.12	0.17	1.56
45	34	22	81.09	30.36	1"	160	0.28	0.39	7.43

ID	Nudo	Nudo	Longitud	Diámetro	Diámetro	Tubería	Caudal	Velocidad	Pérdida
Línea	Inicial	Final	m	mm	Pulg	PSI	LPS	m/s	m/km
46	33	20	70.20	44.56	1 1/2"	160	0.65	0.42	5.40
47	32	18	69.70	30.36	1"	160	0.03	0.42	6.10
48	31	17	69.91	44.56	1 1/2"	160	0.23	0.53	8.53
49	30	15	72.00	30.36	1"	160	0.41	0.56	14.72
50	29	14	77.10	30.36	1"	160	0.40	0.55	14.11
51	28	13	80.75	38.90	1 1/4"	160	0.65	0.55	10.51
52	61	62	71.89	67.45	2 1/2"	160	-1.80	0.50	4.74
53	62	63	74.45	67.45	2 1/2"	160	4.82	1.35	29.32
54	63	64	78.04	67.46	2 1/2"	160	3.16	0.88	13.37
55	59	64	80.27	67.46	2 1/2"	160	-3.04	0.85	12.49
56	59	53	81.62	44.56	1 1/2"	160	1.59	1.02	28.32
57	53	46	64.00	44.56	1 1/2"	160	1.17	0.75	16.10
58	46	39	72.57	30.36	1"	160	0.55	0.76	25.88
59	39	32	69.74	30.36	1"	160	0.37	0.52	12.56
60	55	49	81.38	38.90	1 1/4"	160	1.01	0.85	23.64
61	49	42	61.08	38.90	1 1/4"	160	-0.09	0.08	0.28
62	42	35	121.41	38.90	1 1/4"	160	0.30	0.25	2.51
63	35	28	77.88	38.90	1 1/4"	160	0.52	0.44	6.97
64	55	56	86.32	38.90	1 1/4"	160	-1.12	0.95	28.87
65	56	57	84.20	30.36	1"	160	-0.57	0.78	27.21
66	58	57	66.44	30.36	1"	160	-0.13	0.19	1.90
69	49	50	91.89	30.36	1"	160	-0.58	0.80	28.44
70	50	51	83.77	30.36	1"	160	-0.49	0.67	20.36
73	53	54	75.87	30.36	1"	160	0.25	0.34	5.80
75	58	52	86.57	44.56	1 1/2"	160	1.57	1.01	27.63
76	57	51	84.63	55.71	2"	160	2.86	1.17	28.20
77	56	50	83.77	38.90	1 1/4"	160	0.96	0.81	21.51
78	50	43	70.94	38.90	1 1/4"	160	0.60	0.51	9.14
79	43	36	93.29	30.36	1"	160	0.40	0.55	14.09
80	36	29	79.13	30.36	1"	160	0.37	0.51	12.15
81	51	44	71.96	55.71	2"	160	2.00	0.82	14.54
82	44	37	77.61	44.56		160	1.40	0.90	22.44
83	37	30	74.00			160	0.93	0.60	10.52
84	52	45	69.91	44.56		160	1.17	0.75	15.98
85	45	38	75.98	44.56		160	1.33	0.85	20.33
86	38	31	63.98	44.56		160	1.12	0.72	14.67
87	54	47	66.54	44.56		160	1.32	0.85	20.16
88	47	40	72.24	44.56		160	1.22	0.78	17.39
89	40	33	72.75			160	0.98	0.63	11.54
91	41	34	60.48	30.36	1"	160	0.22	0.30	4.61
92	42	43	97.98	30.36	1"	160	-0.48	0.66	19.88
93	43	44	85.29	30.36	1"	160	-0.42	0.58	15.34

ID Línea	Nudo Inicial	Nudo Final	Longitud m	Diámetro mm	Diámetro Pulg	Tubería PSI	Caudal LPS	Velocidad m/s	Pérdida m/km
94	44	45				160	0.15	0.21	2.27
95	45	46	66.73	30.36	1"	160	-0.19	0.26	3.44
96	46	47	68.00	30.36	1"	160	0.35	0.48	11.05
98	35	36	77.88	30.36	1"	160	-0.37	0.51	12.04
99	36	37	85.97	30.36	1"	160	-0.34	0.46	10.25
100	37	38	89.16	30.36	1"	160	0.02	0.03	0.06
101	38	39	65.95	30.36	1"	160	0.12	0.17	1.57
102	39	40	51.94	30.36	1"	160	0.16	0.22	2.49
103	40	41	75.26	30.36	1"	160	0.31	0.43	9.04
104	61	56	93.78	38.90	1 1/4"	160	1.75	1.47	65.21
105	62	57	83.97	55.71	2"	160	3.88	1.59	49.61
106	63	58	78.09	44.56	1 1/2"	160	1.55	0.99	27.00
108	59	54	139.65	44.56	1 1/2"	160	1.31	0.84	19.70
109	22	26	152.81	30.36	1"	160	0.19	0.26	3.45
7	9	11	129.07	30.36	1"	160	-0.38	0.52	12.74
8	47	41	161.56	30.36	1"	160	0.36	0.50	11.98
19	25	62	335.58	105.30	4"	160	10.50	1.21	14.15
21	2	1	335.58	30.36	1"	160	0.20	0.28	3.98
1	8	65	259.64	38.90	1 1/4"	160	-1.19	1.01	32.28
11	65	49	80.00	38.90	1 1/4"	160	-1.31	1.10	7.31

Tabla II. Diseño hidráulico de presiones PROYECTO: DISEÑO DE LA RED DE DISTRIBUCIÓN DE AGUA POTABLE COMUNIDAD: ALDEA SAN JOSÉ LA SIERRA MATAQUESCUINTLA, JALAPA

ID	Cota Terreno	Demanda	Cota Piezometrica	Presión Dinámica	Presión Estática
Nudo	m	L/s	m	mca	mca
1	980.36	0.20	1,019.47	39.11	70.21
2	960.50	0.37	1,020.81	60.31	90.07
3	992.27	0.17	1,019.81	27.54	58.30
4	961.97	0.32	1,023.18	61.21	88.60
5	996.53	0.12	1,028.45	31.92	54.04
6	963.85	0.06	1,025.36	61.51	86.72
7	977.28	0.12	1,026.21	48.93	73.29
9	977.55	0.12	1,028.47	50.92	73.02
11	964.88	0.00	1,030.12	65.24	85.69
12	980.70	0.23	1,030.17	49.47	69.87
13	996.05	0.17	1,029.27	33.22	54.52
14	976.71	0.14	1,029.55	52.84	73.86

ID	Cota Terreno	Demanda	Cota Piezometrica	Presión Dinámica	Presión Estática
Nudo	m	L/s	m	mca	mca
15	973.11	0.00	1,030.64	57.53	77.46
16	979.12	0.00	1,030.64	51.52	71.45
17	982.63	0.23	1,030.94	48.31	67.94
18	980.79	0.03	1,031.07	50.28	69.78
19	979.26	0.20	1,030.91	51.65	71.31
20	980.10	0.20	1,031.03	50.93	70.47
21	977.26	0.00	1,030.93	53.67	73.31
22	979.72	0.12	1,030.68	50.96	70.85
23	970.78	0.20	1,030.28	59.50	79.79
24	967.01	0.06	1,030.09	63.08	83.56
26	968.34	0.20	1,030.16	61.82	82.23
27	956.44	0.23	1,029.93	73.49	94.13
28	994.51	0.14	1,030.12	35.61	56.06
29	985.17	0.06	1,030.64	45.47	65.40
30	972.44	0.03	1,031.70	59.26	78.13
31	984.73	0.34	1,031.54	46.81	65.84
32	977.26	0.09	1,031.50	54.24	73.31
33	969.00	0.32	1,031.40	62.40	81.57
34	964.56	0.06	1,031.28	66.72	86.01
35	994.51	0.14	1,030.66	36.15	56.06
36	976.20	0.00	1,031.60	55.40	74.37
37	974.74	0.12	1,032.48	57.74	75.83
38	984.91	0.12	1,032.48	47.57	65.66
39	978.21	0.14	1,032.37	54.16	72.36
40	972.80	0.09	1,032.24	59.44	77.77
41	979.46	0.46	1,031.56	52.10	71.11
42	982.34	0.09	1,030.97	48.63	68.23
43	985.52	0.14	1,032.92	47.40	65.05
44	978.10	0.03	1,034.22	56.12	72.47
45	985.89	0.17	1,034.02	48.13	64.68
46	988.26	0.09	1,034.25	45.99	62.31
47	989.00	0.09	1,033.50	44.50	61.57
49	994.17	0.37	1,030.95	36.78	56.40
50	991.20	0.26	1,033.56	42.36	59.37

ID	Cota Terreno	Demanda	Cota Piezometrica	Presión Dinámica	Presión Estática
Nudo	m	L/s	m	mca	mca
51	987.55	0.37	1,035.27	47.72	63.02
52	982.14	0.40	1,035.14	53.00	68.43
53	989.52	0.17	1,035.28	45.76	61.05
54	978.06	0.23	1,034.84	56.78	72.51
55	1,000.03	0.12	1,032.87	32.84	50.54
56	995.53	0.23	1,035.37	39.84	55.04
57	992.68	0.32	1,037.66	44.98	57.89
58	984.95	0.12	1,037.53	52.58	65.62
59	973.91	0.14	1,037.59	63.68	76.66
61	986.70	0.06	1,041.48	54.78	63.87
62	989.87	0.00	1,041.82	51.95	60.70
63	985.54	0.12	1,039.64	54.10	65.03
64	969.56	0.12	1,038.60	69.04	81.01
65	1,000.00	0.12	1,030.95	30.95	50.57
T.D. 25	1,046.57	-10.50	1,046.57	0.00	0.00
T.D. 8	1,022.57	1.19	1,022.57	0.00	0.00

2.4. Obras de arte

2.4.1. Caja rompe-presión

Las cajas rompe-presión son dispositivos que se utilizan para reducir la presión del agua y evitar así el rompimiento de la tubería.

Este dispositivo puede ser fabricado de concreto armado, de block reforzado, de ladrillo tayuyo o de mampostería.

Las cajas rompe-presión en una línea de conducción, se recomienda colocarlas donde la presión estática exceda 90 mca. (metros columna de agua) de presión estática.

En ningún caso se permitirá en una conducción por gravedad que la tubería pase más alta que la línea piezométrica.

En este diseño no se utilizarán cajas rompe-presión, debido a que la red de distribución es un circuito cerrado.

2.4.2. Profundidad de zanja para colocación de tubería

La zanja deberá ser lo suficientemente amplia para permitir un acomodo correcto de la tubería. En las especificaciones técnicas para la construcción de acueductos rurales, UNEPAR establece que las zanjas deberán tener como mínimo un ancho de 0.40 metros, y la profundidad mínima de 0.60 metros sobre la corona (nivel superior del tubo).

Si los terrenos se dedican a la agricultura, la profundidad mínima será de 0.80 metros.

2.4.3. Conexiones

Como parte de la red de distribución se deben considerar las conexiones domiciliares y los llena-cántaros.

Las conexiones domiciliares están compuestas de una llave de chorro y los accesorios necesarios. Para que el costo de las conexiones sea lo más bajo posible, se construyen inmediatas al cerco de la propiedad.

Los llena-cántaros se emplean en dos casos:

- A. Cuando la fuente es un pozo del cual se extrae agua con una bomba de mano y se surte a varias familias.
- B. Cuando existe una red de distribución, pero hay viviendas que están a mayor altura de la línea piezométrica del ramal más próximo.

2.4.4. Diámetro, tipo y clase de tubería

Toda tubería tiene tres características principales, que son: diámetro, clase y tipo.

Respecto al diámetro, comercialmente las tuberías se asignan por un diámetro nominal, que difiere del diámetro interno de conducto.

La clase se refiere a la norma de fabricación, íntimamente relacionada con la presión de trabajo.

El tipo de tubería se refiere al material del que está hecha; los materiales que se emplean actualmente son el hierro fundido, el acero, el acero galvanizado y el cloruro de polivinilo.

- A. Tubería de PVC. El cloruro de polivinilo (PVC) es el material que más se emplea actualmente. Es más liviano, fácil de instalar, durable y no se corroe, pero es frágil y se vuelve quebradizo al estar a la intemperie. Para sistemas rurales de abastecimiento de agua se utiliza la cédula 40.
- B. Tubería de acero galvanizado. El acero galvanizado tiene su principal aplicación cuando queda a la intemperie, ya que enterrado se corroe. Generalmente se le conoce como hierro galvanizado, cuando en realidad es acero galvanizado. La tubería se fabrica con las denominaciones cédula 30, 40 y 80.

2.5. Análisis de costos

2.5.1. Cuantificación de materiales

Tabla III.

No RENGLÓN		1				
DESCRIPCIÓN		Remodelacion	Captacion Existente			
CANTIDAD ESTIMADA		1.00				
UNIDAD		unidad				
DESCRIPCIÓN	CANTIDAD	UNIDAD	COSTO UNITARIO	COSTO PARCIAL		
MATERIALES	·		•			
Alambre espigado de 400 pies	2.00	rollos	Q 200.00	Q 400.00		
Postes metal H.G.de 6 mts de long * 2	20.00	tubos	Q 225.00	Q 4,500.00		
Cemento Portland 4000 P. S. I.	5.00	sacos	Q 42.00	Q 210.00		
Alambre de amarre	10.00	lbs.	Q 5.00	Q 50.00		
Cubetas concreteras	12.00	u	Q 20.00	Q 240.00		
Piedrín de 1/2"	1	m³	Q 300.00	Q 300.00		
HERRAMIENTA Y EQUIPO						
Cubetas concreteras	12.00	unidad	Q 20.00	Q 240.00		
Piochas	2.00	unidad	Q 75.00	Q 150.00		
Palas	Q 2.00	Q 2.00 global Q 75.00				
		Tota	l de materiales y herramienta	Q 6,240.00		

No RENGLÓN		2		
DESCRIPCIÓN	Caja Reur	nidora de Caudales		
CANTIDAD ESTIMADA		1.00		
UNIDAD		unidad		
DESCRIPCIÓN	CANTIDAD	UNIDAD	COSTO UNITARIO	COSTO PARCIAL
MATERIALES				
Adaptador macho P. V. C. de 2-1/2" agua p	2.00	unidad	Q 15.00	Q 30.00
Alambre de amarre	30.00	libras	Q 5.00	Q 150.00
Arena de rio cernida	2.00	m³	Q 250.00	Q 500.00
Candado de 1-1/2"	1.00	unidad	Q 80.00	Q 80.00
Cemento Porland 4000 P.S.I.	12.00	sacos	Q 42.00	Q 504.00
Clavo de 3"	3.00	lbs.	Q 5.00	Q 15.00
Codo P. V. C. de 2" * 90	1.00	unidad	Q 17.00	Q 17.00
Hierro de 3/8" grado 40	5.00	varillas	Q 19.00	Q 95.00
Piedra bola de 4"	1.5	m³	Q 250.00	Q 375.00
Piedrín de 1/2"	0.25	m³	Q 300.00	Q 75.00
Reglas de madera de 1" * 12"	60	p.t	Q 8.00	Q 480.00
Tubo de P. V. C. de 2" 160 P. S. I.	1	unidad	Q 140.00	Q 140.00
Pichacha PVC de 2-1/2"	1	unidad	Q 125.00	Q 125.00
Abrazaderas de 3/8"	5	unidad	Q 4.00	Q 20.00
HERRAMIENTA Y EQUIPO				
Cubetas concreteras	12.00	unidad	Q 20.00	Q 240.00
Piochas	2.00	unidad	Q 75.00	Q 150.00
Palas	Q 2.00	global	Q 75.00	Q 150.00
	_	Total	de materiales y herramienta	Q 3,146.00

No RENGLÓN		3				
DESCRIPCIÓN	Reparacion y E	Reparacion y Equipamiento de tanques existentes				
CANTIDAD ESTIMADA		2.00				
UNIDAD		unidad				
DESCRIPCIÓN	CANTIDAD	UNIDAD	COSTO U	UNITARIO	COSTO PARC	IAL
MATERIALES						
Pintura Impermeable Marina	20.00	gal.	Q	140.00	Q 2,8	300.00
Arena de río cernida	6.00	m³	Q	300.00	Q 1,8	00.00
Cemento Porland 4000 P.S.I.	60.00	sacos	Q	42.00	Q 2,5	20.00
Dosificadores de cloro DSA-45	2.00	unidad	Q	7,000.00	Q 14,0	00.00
HERRAMIENTA Y EQUIPO						
Rodillos con maneral, para pintar	8.00	unidad	Q	20.00	Q 1	60.00
Espátulas de 5"	4.00	unidad	Q	15.00	Q	60.00
Brochas de 3"	4	unidad	Q	12.00	Q	48.00
		Tota	l de materiales	s y herramienta	Q 21,3	88.00
				•		
No RENGLÓN		4	1			
DESCRIPCIÓN		Corte en zanja	1			
CANTIDAD ESTIMADA		1,851.55	1			
UNIDAD		m³	1			
DESCRIPCIÓN	CANTIDAD	UNIDAD	COSTO U	UNITARIO	COSTO PARC	IAL
MATERIALES			-1	•		
HERRAMIENTA Y EQUIPO	I					
PIOCHAS	15	unidad	Q	45.00	0 6	75.00
PALAS	15	unidad	0	55.00	_	325.00
CARRETAS	15	unidad	Ŏ	65.00		75.00
		Tota	l de materiales	s y herramienta	0 2.4	75.00
<u> </u>					,	
No RENGLÓN		5	1			
DESCRIPCIÓN	R	elleno en zanja	1			
CANTIDAD ESTIMADA		1,851.55	1			
UNIDAD		m³	1			
DESCRIPCIÓN	CANTIDAD	UNIDAD	COSTO U	UNITARIO	COSTO PARC	IAL
MATERIALES			41			
			1			
HERRAMIENTA Y EQUIPO			11		1	
BAILARINA	50	días	0	350.00	0 17,5	00.00
D1 112/4 11(11 1/4 1	30			s y herramienta	,	00.00
		1014	i de materiales	s y nerrannenta	17,5	00.00
No RENGLÓN		6.01	7			
DESCRIPCIÓN	Tubo de 4	" PVC 160 PSI	1			
CANTIDAD ESTIMADA	1 000 de 4	336.00	1			
UNIDAD ESTIMADA UNIDAD	_	m	1			
DESCRIPCIÓN	CANTIDAD	UNIDAD	COSTO	UNITARIO	COSTO PARC	IAI
MATERIALES	CANTIDAD	UNIDAD	20510 (CITITINO	COSTOTARC	11
	5.0	tubos		/15 OO	0 22.2	40.00
tubos 160 psi cemento solvente	56 2/7	tubos galones	Q O	415.00 443.81	,	24.27
contento sorvente	2/1	gaiones	<u> </u>	443.01	`	24.27

Total de materiales y herramienta Q

23,364.27

No RENGLÓN		6.02		
DESCRIPCIÓN	Tubo de 2	1/2" PVC 160 PSI		
CANTIDAD ESTIMADA		306.00		
UNIDAD		m		
DESCRIPCIÓN	CANTIDAD	UNIDAD	COSTO UNITARIO	COSTO PARCIAL
MATERIALES				
tubos 160 psi	51	tubos	Q 170.00	Q 8,670.00
cemento solvente	1/6	galones	Q 443.81	Q 70.73
		Total	l de materiales y herramienta	Q 8,740.73

No RENGLÓN		6.03				
DESCRIPCIÓN	Tubo de 1	1/4" PVC 160 PSI				
CANTIDAD ESTIMADA		2,916.00				
UNIDAD		m				
DESCRIPCIÓN	CANTIDAD	UNIDAD	COSTO UNITARIO	COSTO PARCIAL		
MATERIALES						
tubos 160 psi	486	tubos	Q 57.00	Q 27,702.00		
cemento solvente	3/5	galones	Q 443.81	Q 269.61		
	Total de materiales y herramient					

No RENGLÓN		6.04		
DESCRIPCIÓN	Tubo de 1"	PVC 160 PSI		
CANTIDAD ESTIMADA		5,508.00		
UNIDAD		m		
DESCRIPCIÓN	CANTIDAD	UNIDAD	COSTO UNITARIO	COSTO PARCIAL
MATERIALES				
tubos 160 psi	918	tubos	Q 42.00	Q 38,556.00
cemento solvente	3/4	galones	Q 443.81	Q 339.51
_		Total	de materiales y herramienta	Q 38,895.51

No RENGLÓN		6.05		
DESCRIPCIÓN	Tubo de 2"	PVC 160 PSI		
CANTIDAD ESTIMADA		246.00		
UNIDAD		m		
DESCRIPCIÓN	CANTIDAD	UNIDAD	COSTO UNITARIO	COSTO PARCIAL
MATERIALES				
tubos 160 psi	41	tubos	Q 128.44	Q 5,266.04
cemento solvente	1/9	galones	Q 443.81	Q 50.55
		Total	de materiales y herramienta	Q 5,316.59

No RENGLÓN		6.06					
DESCRIPCIÓN	Tubo de 1-1/2	" PVC 160 PSI					
CANTIDAD ESTIMADA		1,236.00					
UNIDAD		m					
DESCRIPCIÓN	CANTIDAD	UNIDAD	COSTO UNITARIO	COSTO PARCIAL			
MATERIALES							
tubos 160 psi	206	tubos	Q 82.43	Q 16,980.58			
cemento solvente	1/3	galones	Q 443.81	Q 142.85			
	Total de materiales y herramienta						

No RENGLÓN		1							
DESCRIPCIÓN	Accesorios PV0								
CANTIDAD ESTIMADA		302							
UNIDAD		accesorios							
DESCRIPCIÓN	CANTIDAD	UNIDAD	COSTO UNITARIO	COSTO PARCIAL					
MATERIALES									
Válvula de compuerta de 1-1/4"	1	unidad	Q 350.00	Q 350.00					
Cruz PVC lisa de 2"	3	unidad	Q 63.41	Q 190.23					
Cruz PVC lisa de 1-1/2"	13	unidad	Q 43.63	Q 567.19					
Cruz PVC lisa de 1-1/4"	5	unidad	Q 38.06	Q 190.30					
Cruz PVC lisa de 1"	12	unidad	Q 36.63	Q 439.56					
Codos PVC liso de 90° * 2-1/2"	2	unidad	Q 70.05	Q 140.10					
Codos PVC liso de 90° * 1-1/2"	2	unidad	Q 9.26	Q 18.52					
Codos PVC liso de 90° * 1"	8	unidad	Q 6.54	Q 52.32					
Codos PVC liso de 90° * 1-1/4"	1	unidad	Q 8.31	Q 8.31					
Codos PVC liso de 45° * 1-1/2"	2	unidad	Q 13.21	Q 26.42					
Codos PVC liso de 45° * 1-1/4"	3	unidad	Q 10.24	Q 30.72					
Codos PVC liso de 45° * 1"	29	unidad	Q 7.90	Q 229.10					
Tee PVC de 1-1/2"	5	unidad	Q 12.18	Q 60.90					
Tee PVC de 1-1/4"	5	unidad	Q 9.94	Q 49.70					
Reducidor Bushing liso de 2-1/2" a 1"	15	unidad	Q 31.87	Q 478.05					
Reducidor Bushing liso de 2" a 1"	17	unidad	Q 10.63	Q 180.71					
Reducidor Bushing liso de 1-1/2" a 1-1/4"	55	unidad	Q 6.31	Q 347.05					
Reducidor Bushing liso de 1-1/2" a 1"	124	unidad	Q 6.31	Q 782.44					
Válvula de compuerta de 4"	1	unidad	Q 450.00	Q 450.00					
Válvula de compuerta de 2-1/2"	2	unidad	Q 250.00	Q 500.00					
Válvula de compuerta de 2"	2	unidad	Q 200.00	Q 400.00					
Válvula de compuerta de 1-1/2"	5	unidad	Q 170.00	Q 850.00					
Válvula de compuerta de 1"	8	unidad	Q 70.00	Q 560.00					
cemento solvente	1	galones	Q 443.81	Q 443.81					
		Tota	l de materiales y herramienta	a Q 7,345.43					

N. DENGLÓN	1		1	
No RENGLÓN	<u> </u>	/		
DESCRIPCIÓN	Caja	s de Válvulas		
CANTIDAD ESTIMADA		4.00		
UNIDAD		unidad		
DESCRIPCIÓN	CANTIDAD	UNIDAD	COSTO UNITARIO	COSTO PARCIAL
MATERIALES	<u>. </u>			
Adaptado macho P. V. C. de 2-1/2"	8.00	unidad	Q 27.00	Q 216.00
Alambre de amarre	10.00	libras	Q 5.00	Q 50.00
Arena de rio cernida	0.50	m³	Q 250.00	Q 125.00
Candado de 1-1/2"	4.00	unidad	Q 80.00	Q 320.00
Cemento Porland 4000 P.S.I.	5.00	sacos	Q 42.00	Q 210.00
Clavo de 3"	5.00	libras	Q 5.00	Q 25.00
Hierro de 3/8" grado 40	8.00	varillas	Q 19.00	Q 152.00
Piedra bola de 4"	1.50	m³	Q 250.00	Q 375.00
Tabla de 1" *12"	40.00	p.t.	Q 8.00	Q 320.00
Válvula de compuerta de 2 -1/2"	4	unidad	Q 300.00	Q 1,200.00
HERRAMIENTA Y EQUIPO	<u> </u>			<u> </u>
Cubetas concreteras	4.00	unidad	Q 20.00	Q 80.00
Piochas	1.00	unidad	Q 75.00	Q 75.00
Palas	Q 1.00	global	Q 75.00	Q 75.00
	·	Total	de materiales y herramienta	Q 3,223.00

No RENGLÓN		8		
DESCRIPCIÓN	Conexiones Domiciliares			
CANTIDAD ESTIMADA		348.00		
UNIDAD		unidad		
DESCRIPCIÓN	CANTIDAD	UNIDAD	COSTO UNITARIO	COSTO PARCIAL
MATERIALES				
Llave de chorro de 1/2" de bronce	348.00	unidad	Q 30.00	Q 10,440.00
Válvula de Paso 1/2"	348.00	unidad	Q 26.25	Q 9,135.00
codo 1/0" 90	696.00	unidad	Q 1.65	Q 1,148.40
adaptadores macho 1/2"	696.00	unidad	Q 1.28	Q 890.88
tubo PVC 1/2"	1,044.00	tubos	Q 22.39	Q 23,372.55
caja para llave de paso	367.00	unidad	Q 60.00	Q 22,020.00
Adaptador hembra PVC 1/2" con rosca	348.00	unidad	Q 2.40	Q 835.20
Tee PVC de 2-1/2"	15.00	unidad	Q 64.98	Q 974.70
Tee PVC de 2"	13.00	unidad	Q 16.37	Q 212.81
Tee PVC de 1-1/2"	47.00	unidad	Q 12.18	Q 572.46
Tee PVC de 1-1/4"	48.00	unidad	Q 9.94	Q 477.12
Tee PVC de 1"	235	unidad	Q 6.31	Q 1,482.85
Reducidor Bushing PVC de 1" a 1/2" liso	348.00	unidad	Q 3.65	Q 1,270.20
Codo PVC liso de 90° * 1/2"	348.00	unidad	Q 1.65	Q 574.20
_		Total	de materiales y herramienta	Q 73,406.37

2.5.2. Cuantificación de mano de obra

Tabla IV.

No RENGLÓN		1				
DESCRIPCIÓN			Remodelacion	n Captacion Existente		
CANTIDAD ESTIMADA			1.00			
UNIDAD			u			
DESCRIPCION	CAN	ITIDAD	UNIDAD	COSTO UNITARIO)	COSTO PARCIAL
MANO DE OBRA (INCLUYENDO PRESTA	CIONE	S)				
Albañiles		2.00	dias/albañil	Q 100.	00	Q 200.00
ayudantes		1.00	dias/ayud.	Q 60.	00	Q 60.00
Prestaciones	Q	260.00	global	Q 0.	83	Q 215.80
				Total mano de ob	ora	Q 475.80

			5	
No RENGLÓN		2		
DESCRIPCIÓN	Caja Reuni	dora de Caudales		
CANTIDAD ESTIMADA		1.00		
UNIDAD		u		
DESCRIPCIÓN	CANTIDAD	UNIDAD	COSTO UNITARIO	COSTO PARCIAL
MANO DE OBRA (INCLUYENDO PRESTA	CIONES)			
Albañiles	1.00	dias/albañil	Q 100.00	Q 100.00
ayudantes	1.00	dias/ayud.	Q 60.00	Q 60.00
Prestaciones	Q 160.00	global	Q 0.83	Q 132.80
			Total mano de obra	Q 292.80

No RENGLÓN		3]	
DESCRIPCIÓN	Repar	acion y E	quipamiento d	de tanqu	ies existentes		
CANTIDAD ESTIMADA			2.00				
UNIDAD			u				
DESCRIPCIÓN	CAN	CANTIDAD UNIDAD COSTO UNITARIO				COS	TO PARCIAL
MANO DE OBRA (INCLUYENDO PRESTA	CIONE	S)					
Albañiles		4.00	dias/albañil	Q	100.00	Q	400.00
ayudantes		2.00	dias/ayud.	Q	60.00	Q	120.00
Prestaciones	Q	520.00	global	Q	0.83	Q	431.60
	Total mano de obra						951.60

No RENGLÓN		4		
DESCRIPCIÓN	C	orte en zanja		
CANTIDAD ESTIMADA		1,851.55		
UNIDAD		m³		
DESCRIPCIÓN	CANTIDAD	UNIDAD	COSTO UNITARIO	COSTO PARCIAL
MANO DE OBRA (INCLUYENDO PRESTA	CIONES)			
CORTE EN ZANJA	1,851.55	m³	Q 12.00	Q 22,218.60
	-	-	Total mano de obra	Q 22,218.60

No RENGLÓN	5			
DESCRIPCIÓN	Relleno en zanja			
CANTIDAD ESTIMADA		1,851.55		
UNIDAD		m³		
DESCRIPCIÓN	CANTIDAD	UNIDAD	COSTO UNITARIO	COSTO PARCIAL
MATERIALES				
MANO DE OBRA (INCLUYENDO PRESTA	CIONES)			
RELLENO A MANO CON BAILARINA	1,851.55	m³	Q 8.00	Q 14,812.40
AYUDANTES	1,851.55	m³	Q 4.00	Q 7,406.20
			Total mano de obra	Q 22,218.60
No RENGLÓN		6.01		
DESCRIPCIÓN	Tubo de 4"	PVC 160 PSI		
CANTIDAD ESTIMADA		336.00		
UNIDAD		mts		
DESCRIPCIÓN	CANTIDAD	UNIDAD	COSTO UNITARIO	COSTO PARCIAL
MANO DE OBRA (INCLUYENDO PRESTA	CIONES)			
instalacion de tubería	56.00	tubos	Q 7.50	Q 420.00
ayudantes	56.00	tubos	Q 3.75	Q 210.00
prestaciones	Q 630.00		Q 0.83	Q 522.90
			Total mano de obra	Q 1,152.90

No RENGLÓN		6.02		
DESCRIPCIÓN	Tubo de 2 1/2" PVC 160 PSI			
CANTIDAD ESTIMADA		306.00		
UNIDAD		m		
DESCRIPCIÓN	CANTIDAD	UNIDAD	COSTO UNITARIO	COSTO PARCIAL
MANO DE OBRA (INCLUYENDO PRESTA	CIONES)		•	
instalacion de tubería	51.00	tubos	Q 7.50	Q 382.50
ayudantes	51.00	tubos	Q 3.75	Q 191.25
prestaciones	Q 573.75		Q 0.83	Q 476.21
	Q 1,049.96			

No RENGLÓN		6.03		
DESCRIPCIÓN	Tubo de 1 1	/4" PVC 160 PSI		
CANTIDAD ESTIMADA		2,916.00		
UNIDAD		m		
DESCRIPCIÓN	CANTIDAD	UNIDAD	COSTO UNITARIO	COSTO PARCIAL
MANO DE OBRA (INCLUYENDO PRESTA	CIONES)			
instalacion de tubería	486.00	tubos	Q 7.50	Q 3,645.00
ayudantes	486.00	tubos	Q 3.75	Q 1,822.50
prestaciones	Q 5,467.50		Q 0.83	Q 4,538.03
	Q 10,005.53			

No RENGLÓN		6.04		
DESCRIPCIÓN	Tubo de 1"	PVC 160 PSI		
CANTIDAD ESTIMADA		5,508.00		
UNIDAD		m		
DESCRIPCIÓN	CANTIDAD	UNIDAD	COSTO UNITARIO	COSTO PARCIAL
MANO DE OBRA (INCLUYENDO PRESTA	CIONES)			
instalacion de tubería	918.00	tubos	Q 7.50	Q 6,885.00
ayudantes	918.00	tubos	Q 3.75	Q 3,442.50
prestaciones	Q 10,327.50		Q 0.83	Q 8,571.83
			Total mano de obra	Q 18,899.33

No RENGLÓN		6.05		
DESCRIPCIÓN	Tubo de 2"	PVC 160 PSI		
CANTIDAD ESTIMADA		246.00		
UNIDAD		m		
DESCRIPCIÓN	CANTIDAD	UNIDAD	COSTO UNITARIO	COSTO PARCIAL
MANO DE OBRA (INCLUYENDO PRESTA	CIONES)			
instalacion de tubería	41.00	tubos	Q 7.50	Q 307.50
ayudantes	41.00	tubos	Q 3.75	Q 153.75
prestaciones	Q 461.25		Q 0.83	Q 382.84
	Q 844.09			

No RENGLÓN		6.06			
DESCRIPCIÓN	Tubo de 1-1/2	" PVC 160 PSI			
CANTIDAD ESTIMADA		1,236.00			
UNIDAD		m			
DESCRIPCIÓN	CANTIDAD	UNIDAD	COSTO UNITARIO	COSTO PARCIAL	
MANO DE OBRA (INCLUYENDO PRESTA	CIONES)				
instalacion de tubería	206.00	tubos	Q 7.50	Q 1,545.00	
ayudantes	206.00	tubos	Q 3.75	Q 772.50	
prestaciones	Q 2,317.50		Q 0.83	Q 1,923.53	
			Total mano de obra	Q 4,241.03	

No RENGLÓN		6.07						
DESCRIPCIÓN	Accesorios PV	C en línea de	distribución	1				
CANTIDAD ESTIMADA		302						
UNIDAD		accesorios						
DESCRIPCION	CANTIDAD	CANTIDAD UNIDAD COSTO UNITARIO						
MANO DE OBRA (INCLUYENDO PRES	(ACIONES)							
instalacion de accesorios	320.00	u	Q 7.50	Q 2,400.00				
ayudantes	302.00	u	Q 3.75	Q 1,132.50				
prestaciones	Q 3,397.50	Q 3,397.50 Q 0.83						
	Q 6,352.43							

No RENGLÓN		7			
DESCRIPCIÓN	Cajas	de Válvulas			
CANTIDAD ESTIMADA		4.00			
UNIDAD		u			
DESCRIPCIÓN	CANTIDAD	UNIDAD	COSTO UNITARIO	COSTO PARCIAL	
MANO DE OBRA (INCLUYENDO PRESTA	CIONES)				
Albañiles	4.00	dias/albañil	Q 100.00	Q 400.00	
ayudantes	1.00	dias/ayud.	Q 60.00	Q 60.00	
Prestaciones	Q 460.00	global	Q 0.83	Q 381.80	
	Q 841.80				

No RENGLÓN		8			
DESCRIPCIÓN	Conexiones	Domiciliares			
CANTIDAD ESTIMADA		348.00			
UNIDAD		u			
DESCRIPCIÓN	CANTIDAD	UNIDAD	COSTO UNITARIO	CC	OSTO PARCIAL
MANO DE OBRA (INCLUYENDO PRESTA	CIONES)				
instalación de tubería	348.00	u	Q 80.5	0 Q	28,014.00
ayudantes	348.00	u	Q 30.0	0 Q	10,440.00
	a Q	38,454.00			

2.5.3. Presupuesto final

Tabla V.

PROYECTO: DISEÑO DE LA RED DE DISTRIBUCIÓN DE AGUA POTABLE

COMUNIDAD: Aldea San Jose la Sierra Mataquescuintla Jalapa

Renglón	DESCRIPCIÓN		Total de		Total de	Total		To	tal Moneda
No.		M	ano de obra		Materiales		Renglón		U.S.
1	Remodelacion Captacion Existente	Q	475.80	Q	6,240.00	Q	6,715.80	\$	861.00
2	Caja Reunidora de Caudales	Q	292.80	Q	3,146.00	Q	3,438.80	\$	440.87
3	Reparacion y Equipamiento de tanques existentes	Q	951.60	Q	21,388.00	Q	22,339.60	\$	2,864.05
4	Corte en zanja	Q	22,218.60	Q	2,475.00	Q	24,693.60	\$	3,165.85
5	Relleno en zanja	Q	22,218.60	Q	17,500.00	Q	39,718.60	\$	5,092.13
6	Tubería, válvulas y accesorios de distribución.	Q	42,545.25	Q	128,757.57	Q	171,302.82	\$	21,961.90
7	Cajas de Válvulas	Q	841.80	Q	3,223.00	Q	4,064.80	\$	521.13
8	Conexiones Domiciliares	Q	38,454.00	Q	73,406.37	Q	111,860.37	\$	14,341.07
	COSTO	Q	127,998.45	Q	256,135.94	Q	384,134.39	\$	49,248.00
MATER	IALES					Q	256,135.94	\$	32,837.94
MANO I	DE OBRA					Q	127,998.45	\$	16,410.06
ADMINI	STRACIÓN					Q	38,413.44	\$	4,924.80
IMPREV	TISTOS					Q	38,413.44	\$	4,924.80
UTILIDA	AD					Q	96,033.60	\$	12,312.00
SUPERV	SUPERVISIÓN							\$	4,924.80
IMPUES	IMPUESTO AL VALOR AGREGADO							\$	5,909.76
	COSTO TOTAL DEL PROYECTO								82,244.16
						\$	82,244.16		

Tipo de cambio utilizado: USA \$1.00 = Q7.80.

2.5.4. Cronograma de ejecución

Tabla VI.

			mes 1	mes 2	mes 3	mes 4	mes 5	mes 6
Id	Nombre de tarea	Duración						
1	Visita de campo	2 días		1				
2	Permisos municipales o privados	7 días		*				
3	Bodega	2 días						
4	Envío de materiales	16 días		T	Ъ			
5	Reparación de tanques existentes	20 días						
6	Rectificación topográfica	7 días		*				
7	Limpia, chapeo y destronque	7 días						
8	Trazo y estaqueado	7 días		1				
9	Zanjeo	18 días			<u>*</u>			
10	Acarreo de materiales	7 días		1				
11	Cajas de válvulas	10 días						
12	Línea de distribución	20 días			1	<u> </u>		
13	Conexión domiciliar	25 días				1		₽U
14	Inauguración	1 día						Ť

2.6. Sistema tarifario

La tarifa que se implemente por la prestación del servicio de agua en la aldea San José la Sierra debe cubrir como mínimo los costos anuales relacionados con la administración, operación y mantenimiento.

La tarifa deberá cubrir los componentes siguiente:

- Costos relacionados con las medidas de prevención y mitigación del sistema
- Gastos por cloración del sistema de agua
- Pago de salario del operario y el fontanero que trabajen en el sistema de agua

El costo mensual de las medidas de prevención y mitigación en el sistema se ha establecido en el 0.2 por ciento del costo total del proyecto (Q.641,504.44). Este dinero se utilizará para comprar materiales, herramienta y equipo necesario para desarrollar las acciones de operación y mantenimiento en la línea de conducción y distribución. El monto mensual de este rubro se estima en Q.1,283.01

El gasto de cloración comprende la compra de hipoclorito de calcio al 0.1%, que trabaja con una concentración de 1 miligramo / litro. Según el diseño de la dosificación (realizada por una empresa privada), son necesarias 100 libras de hipoclorito al mes, lo que equivale a Q.1,100.00 al mes (100 libras * Q.11.00).

El operario y el fontanero trabajarán ocho días al mes (dos días por semana). El monto mensual se estima en Q.2,200.00 cada uno.

Para calcular la tarifa se ha procedido a sumar los rubros descritos anteriormente, y el resultado se ha dividido entre el número de conexiones contempladas (348 viviendas).

Tabla VII. Cálculo de la tarifa

No.	Componente	Costo / mes (Q.)
1	Gastos de cloración	Q1,100.00
2	Fontanero	Q1,400.00
3	Operario	Q800.00
4	Subtotal	Q3,200.00
5	TARIFA	Q9.20

El pago mensual por vivienda será de Q.9.20 al mes, monto que servirá para cubrir un salario mínimo de los encargados de la operación y el mantenimiento. Se incluye el gasto de energía eléctrica que consume la bomba, así como un estimado de los gastos de repuestos que se necesiten.

3. OPERACIÓN Y MANTENIMIENTO

3.1. Obras de arte

Tabla VIII. Planificación de mantenimiento

Parte del sistema	Acción	MM	MC	Frecuencia
Tanque de distribución	Limpieza del área			Mensual
	Revisión de estructuras			Trimestral
	Reparación de estructuras			Eventual
	Revisión de válvulas			Mensual
	Reparación – cambio de válvulas			Eventual
Cajas de válvulas	Revisión de cajas			Trimestral
	Reparación de cajas			Eventual
	Revisión de válvulas			Trimestral
	Reparación de válvulas			Eventual
	Engrase de candado			Trimestral
Línea de distribución	Revisión de líneas			Mensual
	Verificación de fugas			Mensual
	Reparación de fugas			Eventual
Conexiones domiciliares	Revisión de válvulas de paso			Trimestral
	Reparación de válvulas de paso			Eventual
	Revisión de válvula de grifo			Trimestral
	Reparación-cambio válvula de grifo			Eventual

MM: Medida de mitigación o mantenimiento preventivo.

MC: Mantenimiento correctivo.

3.2. Accesorios

3.2.1. Válvulas de compuerta

Estas válvulas se emplean en los abastecimientos rurales. Cuando la válvula esta abierta, el paso del agua es prácticamente libre. El cierre y la apertura se realizan mediante un disco, el cual es accionado por un vástago.

Las válvulas de compuerta pueden ser de hierro fundido, de bronce y de plástico. Las primeras se emplean principalmente para diámetros de 6" en adelante; las de bronce son más económicas que las de hierro fundido; las de plástico se emplean en los equipos dosificados de solución de hipoclorito de calcio.

3.2.2. Válvulas de compuerta para limpieza

Estas válvulas sirven para extraer de la tubería arena, hojas o cualquier otro cuerpo que haya ingresado en la misma, y que tiende a depositarse en los puntos bajos del perfil. Como válvula de limpieza se emplea una compuerta, de diámetro igual al de la tubería.

En este proyecto no se utilizarán válvulas de compuerta para limpieza debido a que las condiciones del perfil del terreno son muy planas.

3.2.3. Válvulas de globo

Las válvulas de globo se emplean en las conexiones domiciliares, tanto para suspender temporalmente el servicio, como para regular el caudal. El recorrido del agua a través de la válvula es sinuoso, lo que produce una considerable descarga, aun con la válvula completamente abierta.

3.2.4. Válvula de aire

El aire disuelto en el agua, o aquél que queda atrapado dentro de la tubería, tiende a depositarse en los puntos altos del perfil de la tubería. La cantidad de agua que pueda acumularse reduce la sección de la tubería y, por ende, su capacidad de conducción. La cantidad acumulada de aire puede ser tanta que llegue a impedir completamente la circulación del agua. La eliminación del agua se obtiene con el empleo de válvulas automáticas de aire, las cuales se escogen basándose en la presión de servicio.

Estas válvulas permiten tanto la salida de aire como su ingreso; el acceso del aire se produce cuando se inicia bruscamente la salida del agua, como en el caso de una rotura; de no contarse con la válvula de aire pueden llegar a producirse presiones negativas dentro de la tubería, la que podría romperse si es de PVC, o a colapsar si es de acero.

Las válvulas de aire se pueden emplear para una presión máxima determinada, ya que los dos empaques tienden a arruinarse a presiones mayores. Por ello es que debe verificarse el rango de presiones para el que está diseñada una válvula, a fin de tener la seguridad de que es la adecuada para el caso.

3.3. Tubería

La tubería de HG se utiliza para sitios donde ésta va expuesta, terreno rocosos, inestable, lugares con presión muy elevada o pasos de zanjones.

Para este caso en particular se recomienda cambiar válvulas de grifo y válvulas de paso en conexiones domiciliares con el objetivo; así como la tubería de 1" que se instalará debajo de la superestructura del puente ubicado en el tramo 2-3, de 12 metros de longitud.

4. RIESGO Y VULNERABILIDAD

4.1. Concepto de vulnerabilidad

Se entiende por vulnerabilidad, la susceptibilidad a la pérdida de un elemento o conjunto de elementos como resultado de la ocurrencia de un desastre. Indica el grado en que un sistema está expuesto o protegido del impacto de las amenazas naturales. Esto depende del estado de los asentamientos humanos y su infraestructura, la manera en que la administración pública y las políticas manejan la gestión del riesgo, y el nivel de información y educación de que dispone una sociedad sobre los riesgos existentes y cómo debe enfrentarlos.

Esta definición es lo suficientemente amplia para que se aplique tanto a aspectos físicos, como operativos y administrativos. No obstante, el reconocimiento de las incertidumbres asociadas a la cuantificación de la vulnerabilidad física ha hecho que ésta sea expresada como la probabilidad de que ocurra un determinado fenómeno natural. La reducción de la vulnerabilidad se puede lograr mediante medidas de prevención y mitigación, las que ayudan a corregir debilidades ante la eventual ocurrencia de un desastre y, además, minimizan el riesgo en condiciones normales.

4.2. Tipos de vulnerabilidad

4.2.1. Vulnerabilidad administrativa

Con el fin de tratar de manera integral los problemas que afectan a los aspectos administrativos / funcionales se recomienda analizar los aspectos que tengan relación en la administración de los sistemas (vulnerabilidad administrativa) por separado de aquellos que tengan referencia con los aspectos operativos de los mismos (vulnerabilidad operativa).

El Departamento de Servicios Públicos de la municipalidad, que es la sección encargada de supervisar el funcionamiento del sistema de agua potable y drenajes sanitarios, y el coordinador de la oficina municipal de Planificación, que se encarga de la operación directa del sistema, están alertas constantemente respecto de cada una de las situaciones que se pudieran suscitar en torno a alguna falla o desperfecto que ocasione la suspensión del servicio. Su función radica principalmente en corregir fallas menores, tales como la reparación del equipo y la infraestructura física. Toda reparación mayor o cambio en la distribución física debe ser estudiado y aprobado por el Concejo Municipal.

Los principales factores de vulnerabilidad administrativa tienen relación con el nivel de capacitación en los temas referentes a las amenazas naturales, la capacidad del personal administrativo para desempeñar sus obligaciones y con las debilidades de la organización institucional.

Algunos indicadores de vulnerabilidad administrativa son: falta de capacitación del personal, altos porcentajes de morosidad de los usuarios en el pago de cuotas, saldos contables negativos, ausencia de comunicación con los usuarios, ausencia de fondos de capitalización y de herramientas para la operación del sistema.

La coordinación interinstitucional es fundamental en la atención de emergencias y desastres, porque si no hay coordinación, el resultado es un caos que afectará a los clientes del sistema y a la capacidad de rehabilitación.

En el nivel de la organización institucional, las debilidades son: escasa o nula comunicación entre los niveles organizacionales, ausencia de coordinación, información, incumplimiento de responsabilidades e incertidumbre en las competencias de las acciones.

El objetivo del estudio de la vulnerabilidad administrativa es identificar las debilidades de la organización institucional y de la administración local que impiden contar con una buena gestión para disponer de recursos humanos capacitados, recursos materiales y económicos suficientes, así como de una correcta organización del trabajo para el funcionamiento del sistema en condiciones normales, la implementación de medidas de mitigación y la respuesta oportuna en caso de impacto de un fenómeno natural.

La capacitación de las personas encargadas de la operación de la línea de conducción es indispensable, ya que las fallas pueden ser de diferentes índoles, pero debido a un descontrol en la organización y designación del personal capacitado para realizar dichas tareas, se ha incurrido en el atraso de la realización de tareas, por la falta de información, asignación de más personal y falta de transporte, pues la extensión a cubrir es muy grande. La falta de fondos asignados para mejorar el servicio, también ha sido una causa muy grande, por lo que los sistemas sufren fallas, y al no ser corregidas su deterioro es indudable.

4.2.2. Vulnerabilidad operativa

Los principales factores de vulnerabilidad operativa tienen relación con la cantidad, calidad y continuidad, las rutinas de operación, mantenimiento y la capacitación del operador para el cumplimiento de sus funciones.

Algunos indicadores de vulnerabilidad operativa son: poca o ninguna capacitación del operador, mal estado de equipos, herramientas, operación y mantenimiento defectuoso, ausencia de registros de caudales, del monitoreo de la calidad de agua, tratamientos defectuosos del agua.

El objetivo del estudio de la vulnerabilidad operativa es identificar las debilidades que ocasionan deficiencias en la prestación del servicio en cuanto a cantidad, continuidad y calidad del agua, por rutinas de operación de mantenimiento y por capacidad del personal, durante la operación norma.

4.2.3. Vulnerabilidad física

Los factores de vulnerabilidad física tienen relación con las condiciones desfavorables actuales de los componentes y del sistema en su conjunto, de acuerdo a su ubicación en relación con las amenazas naturales; luego, la vulnerabilidad física puede presentarse por condición y/o por ubicación.

Para identificar las condiciones favorables del estado actual se deben inspeccionar los elementos, equipos y accesorios de cada componente y señalar su estado, su conformidad con las normas de diseño, su utilidad dentro del funcionamiento del sistema y su necesidad. Este proceso es el que permite determinar los elementos y componentes deficientes para el funcionamiento normal del sistema.

Para estimar los daños potenciales provocados por los fenómenos naturales, se debe primero identificar las amenazas se priorizan para comenzar su análisis, con base en la recurrencia y magnitud de los efectos esperados.

Luego se cuantifican los efectos, pudiéndose utilizar el parámetro denominado factor de daño o cualquier otro procedimiento disponible, como la utilización de los daños observados por el impacto de amenazas ocurridas en el pasado.

Llegar a valores numéricos de los efectos sólo se justifica cuando el riesgo del sistema es muy alto.

La población guatemalteca es susceptible a sufrir daños a su salud debido a que al ocurrir este tipo de catástrofes, existe el riesgo de contaminación del agua, por lo que aumenta la tasa e incidencia de enfermedades como la diarrea, el cólera, las infecciones respiratorias, las enfermedades infecto-contagiosas, entre otras.

La vulnerabilidad física ante huracanes y sismos es evidente, porque los componentes están expuestos directamente al medio, por lo que según sea la intensidad del huracán o sismo, podrán sufrir daños graves o destrucción total.

Los daños esperados por el impacto de este tipo de amenazas, deben ser tomados en cuenta en el momento en que ocurra otro siniestro; para ello se toman las debilidades que provocan daños físicos en los sistemas en relación con las siguientes amenazas:

- Por sismo: Prácticamente todos los componentes de los sistemas pueden sufrir las consecuencias directas del impacto de un sismo. Las estructuras de concreto sufren, en mayor o menor grado, agrietamientos y fallas estructurales que las inutilizan; las cajas, pozos de visita, planta de tratamiento, fallan en las uniones rígidas del concreto con las tuberías; las tuberías rígidas fallan en cortante y las de juntas flexibles se desacoplan.
- Por huracanes: Para los componentes ubicados en pasos expuestos en los cauces de los ríos, quebradas y terrazas inundables existe el riesgo de rotura de tuberías debido a correntadas, rotura y daños de las tapas en los tanque o pozos de visita, y falla de estructuras por asentamientos del terreno por inundaciones.
- Sequías, que se caracterizan por la reducción del agua, lo que produce la disminución del caudal. Puede afectar el sistema de la siguiente manera:
- Pérdida o disminución del caudal de agua subterránea

- Pérdida de la calidad del servicio o incremento de costos
- Racionamiento y suspensión del servicio
- Contaminación de las redes de agua potable: existe riego de contaminación en el agua potable cuando se rompen simultáneamente las tuberías de las redes de agua potable y las de alcantarillado sanitario, porque es posible que algo de las aguas servidas se mezcle o penetre a la red de agua potable.

Ello se debe a que usualmente las tuberías de agua potable y alcantarillado sanitario se construyen en forma paralela, por las mismas calles y a pocos metros entre sus ejes. Así, puede haber roturas cercanas en ambas tuberías que posibiliten la entrada de aguas servidas a la red de agua potable, especialmente si es considerable el volumen de aguas servidas vertidas al terreno.

5. MEDIDAS DE MITIGACIÓN

Desastre natural

Un desastre natural sucede cuando la ocurrencia de un fenómeno natural afecta a un sistema vulnerable. Los fenómenos naturales en sí no provocan necesariamente desastres. Es sólo su interacción con el sistema y su entorno lo que genera impactos que pueden llegar a tener dimensiones catastróficas, dependiendo de la vulnerabilidad.

5.1. Actividades de mitigación de desastres naturales

Las razones para proteger el sistema de agua contra los desastres naturales, van desde proteger la salud hasta asegurar la inversión. Por ello se tiene que identificar la vulnerabilidad del sistema para así, establecer las medidas de mitigación que serán aplicadas, como las siguientes:

- En lo que respecta a sismos y huracanes, se utilizan datos estadísticos para dar a conocer la tolerancia al riesgo, tomando, para el efecto, medidas de alto valor técnico para reducir dicho riesgo.
- Ordenamiento territorial, con el desarrollo de mapas de riesgo, para asegurar que la gente se asiente o habite en un lugar seguro; así como la adopción de códigos de construcción apropiados y técnicas de ingeniería que respondan a evaluaciones locales de riesgo.
- Mitigación de los efectos de los desastres naturales: Los sistemas de agua son extensos y pueden hallarse en mal estado. Cuando el agua potable se contamina como resultado de un desastre o colapso en el sistema de alcantarillado, el riesgo de que la población contraiga enfermedades aumenta y la higiene se deteriora.

 A menudo, resulta difícil valorar las consecuencias indirectas para la salud y el costo de la reparación del sistema es, en general, muy elevado.

Las autoridades encargadas del funcionamiento y mantenimiento de los sistemas de alcantarillado deben contar con estrategias para reducir la vulnerabilidad de estos sistemas a los desastres naturales y con procedimientos para restablecer rápida y eficazmente el servicio en tales casos. Al igual que para los establecimientos de salud, el análisis de vulnerabilidad es el primer paso para identificar y cuantificar el impacto potencial de los desastres sobre el rendimiento y los componentes del sistema. El proceso es complicado porque los sistemas de alcantarillado se extienden a lo largo de zonas muy amplias, están compuestos por una variedad de materiales y expuestos a diversos tipos de desastres, tales como aludes, inundaciones, vientos fuertes, erupciones volcánicas o terremotos.

- Capacidad de respuesta del gobierno local: a nivel de gobierno municipal, en caso de bienes y servicios para reparar, rehabilitar, reconstruir y remplazar elementos de infraestructura por la ocurrencia de un fenómeno natural, se recurre a maquinaria y empleados de instituciones públicas o empresas privadas locales. Sin embargo se considera que, como en el caso de infraestructura vial, las autoridades no se restringen a mencionar aquellos elementos que sólo pueden ser suministrados a nivel del gobierno central.
- La coordinación más efectiva de los servicios de respuesta también contribuye a reducir la vulnerabilidad (es decir, el mejoramiento en la preparación de los especialistas). Todo esto es obvio, pero no siempre se refleja en la realidad. Todas las personas relacionadas con las respuestas de emergencias deben obedecer a una sola orden, guiarse por procedimientos comunes y mantener una comunicación transparente.

6. DISEÑO DE ALCANTARILLADO SANITARIO

6.1. Estudios de población y predicción de población futura

El estudio de población se efectúa con el objeto de estimar la población futura, para lo cual se hace necesario determinar el período de diseño y hacer un análisis del último censo existente.

Tomando en cuenta que es regla general en Guatemala un período de diseño de alcantarillado que oscila de 30 a 40 años dadas las condiciones de vida útil y demás aspectos de drenajes, se toma como base de diseño un período de 40 años.

6.1.1. Análisis de censo existente

En la siguiente tabla se presenta resultados de dos tipos de censos realizados en la Aldea San José la Sierra, de habitación y población; obtenidos de la base de datos del Instituto Nacional de Estadística (INE), correspondientes al último censo, (XI) de población y habitación realizado en el año 2,002.

CENSO DE	CENSO DE HABITACIÓN ALDEA SAN JOSÉ LA SIERRA Tabla IX									
Tipo de local (viviendas)										
Total Viv.	Formales Apartamento		o Pai	lomar	Ranchos Impr		rovisadas	Otros		
359	35	9								
Servicios (en	Servicios (en hogares)									
Agua: 249	Dr	enaje: 4	Ele	ectricio	lad: 266	Tota	l hogares:	280		
Hombres: 664 Mujeres: 704										
Grupos por	edades									
De 0 a 6 año	os: 276	De 7 a 14 años:	317	De 15 a 64 años: 676 De 65 y más:9			nás:99			
Grupo étnic	o (indígen	as):		Grup	o étnico (n	o indíg	genas): 13	68		
Alfabetismo	(alfabeto	s): 801		Alfal	oetismo (ar	alfabe	tas): 291			
Nivel de escolaridad										
Ninguno:289	Ninguno:289 Preprimaria:6 Primari				Media	: 111	Super	ior: 4		
P. E. A. Hombres: 326 P. E. A. Mujeres: 24						s: 24	_			

6.1.2. Predicción de población futura a servir

Para determinar la población de diseño futura Pf, se utilizó el método geométrico, y la fórmula correspondiente se presenta a continuación:

$$Pf = Pa * (1+r)^n$$

Pf = 6,812 habitantes

6.2. Estudios topográficos

6.2.1. Levantado topográfico

En el levantamiento topográfico se tomó en cuenta el área que actualmente está edificada y la de futuro desarrollo, incluyendo la localización exacta de las calles, edificios, alineación municipal, ubicación de los mismos, carreteras y todas aquellas estructuras que guarden relación con el problema a resolver o influyan en el diseño.

Tanto en el levantamiento topográfico de la población como en el de las líneas de descarga, se tomarán en cuenta las quebradas, zanjas, cursos de agua, elevaciones, depresiones, etc. Los datos de todo el levantamiento topográfico están claramente consignados en la libreta de campo, los que deberán respetarse al ser ejecutada la obra, a medida que avanza el trabajo.

6.2.2. Cálculo topográfico

El método de levantamiento Planimétrico que se utilizó en este proyecto, fue el de conservación del azimut, con vuelta de campana.

El equipo utilizado para realizar el levantamiento topográfico fue:

• Teodolito Wild T-1

Estadia

Cinta métrica de 100 metros

Plomada de centro

Estacas

6.2.2.1. Altimetría

El levantamiento se realizó por medio de nivelación taquimétrica, utilizando para el efecto el mismo equipo de planimetría. La fórmula utilizada para la cota de cada estación es:

$$CT = Cant + AI - HM + \left(\frac{1}{2}K\right) * (HS - HI) * (SEN^{2}Z)$$

Donde: Cant = cota anterior

AI = altura de instrumento

HS = hilo superior

HM = hilo medio

HI = hilo inferior

K = constante del aparato = 100

Z = ángulo cenital

6.2.3. Levantamiento del plano de densidad de vivienda

Para obtener los datos para el plano de densidad de vivienda, se recorrió el área de trabajo considerando todas las casas incluyendo las que en la actualidad cuentan con servicios de drenaje sanitario. De la encuesta sanitaria se obtuvo un factor de 6 habitantes por vivienda, el cual con la información del plano de densidad de vivienda se obtiene un dato de población actual cercano a la realidad, comparado con los datos estimados en base al último censo existente.

De este plano se obtiene un dato de un total de 340 casas, de las cuales 4 tienen servicio de alcantarillado sanitario y 336 se tomaron en cuenta para el presente proyecto.

6.3. Consideraciones del sistema sanitario

6.3.1. Selección de ruta

Al realizar la elección de la ruta se deben considerar los siguientes aspectos:

- a) Iniciar el recorrido en los puntos que tengan las cotas más altas y dirigir el flujo hacia las cotas más bajas.
- b) Para el diseño, en lo posible se debe seguir la pendiente del terreno; con esto se evitará una excavación profunda y se disminuirán así los costos de excavación.
- c) Acumular los caudales mayores en tramos en los cuales la pendiente del terreno es pequeña y evitar de esta manera que a la tubería se le dé otra pendiente, ya que se tendría que colocar la tubería más profunda.
- d) Evitar, en lo posible, dirigir el agua en contra de la pendiente del terreno.

6.3.2. Área tributaria

Se estimó que cada vivienda tiene en promedio un área de 400 metros cuadrados; de los cuales se considera que 180 metros cuadrados corresponden al área de techos y 220 metros cuadrados corresponden al área de patio.

6.3.3. Población de diseño

Para determinar la población de diseño, se tomó una densidad poblacional de 6 habitantes por vivienda de un total de 348 viviendas, obteniendo una población actual Pa = 2,088 habitantes; como tasa de incremento r = 3% y como período de diseño n = 40 años, según la fórmula:

$$Pf = Pa * (1+r)^n$$

$$Pf = 2,088 * (1+3)^{40}$$

Pf = 6.812 habitantes

6.3.4. Integración de caudal sanitario

En el diseño de la red de drenaje sanitario, el caudal negro que es el caudal máximo total o caudal de diseño Q_{diseño}, se integró mediante el caudal máximo domiciliar, sumando el caudal por infiltración y conexiones ilícitas.

6.3.5. Diámetro de tubería

Por requerimientos de flujo y por posibilidades de limpieza, el diámetro mínimo es de 6 pulgadas para tubería de colector central en PVC. Un cambio de diámetro estará influido por la pendiente, velocidad y por el tirante. La tubería a utilizar en este proyecto es de 6, 8 y 10 pulgadas de diámetro en PVC NOVAFORT, Norma ASTM F-949.

6.3.6. Colocación de tubería en pozos de visita (cotas Invert)

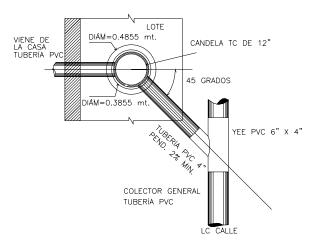
La cota Invert es la distancia que existe entre el nivel de la rasante del suelo y el nivel inferior interior de la tubería, se debe verificar que la cota Invert sea, al menos, igual al recubrimiento mínimo necesario de la tubería. Las cotas Invert se calculan con base en la pendiente del terreno y la distancia entre un pozo y otro. Para el diseño de las cotas Invert se tomaron en cuenta las siguientes normas:

- La diferencia de cotas Invert entre las tuberías que entran y salen de un pozo de visita será como mínimo de 0.03 mt.
- Cuando la diferencia de cotas Invert entre la tubería que entra y la que sale en un pozo de visita sea mayor a 0.70 metros deberá diseñarse un accesorio especial que encauce el caudal con un mínimo de turbulencia.
- Cuando a un pozo de visita llega una tubería y salen dos tuberías, todas de igual diámetro, una de corrimiento y otra inicial, la tubería de corrimiento debe de colocarse por lo menos un diámetro debajo de la tubería de ramal inicial y por lo menos 0.03 mt.. de la tubería de llegada.
- Cuando a un pozo de visita llegan dos o más tuberías todas de igual diámetro la tubería de salida debe de colocarse por lo menos a 0.03 mt. debajo de la tubería que llegue a mayor profundidad.
- Cuando a un pozo de visita llega una tubería y salen 3 ramales, dos iniciales y uno de corrimiento la tubería de corrimiento debe de colocarse como mínimo un diámetro debajo de la tubería de ramal inicial de mayor profundidad y por lo menos 0.03 mt. debajo de la tubería de llegada.

6.3.7. Velocidad de la tubería a sección llena

Para el diseño del alcantarillado sanitario se debe contar con la información correspondiente a los valores de la velocidad y el caudal de la sección llena de la tubería que se está utilizando. Para el cálculo de la velocidad se emplea la fórmula siguiente:

$$V = (1/n) * R^{2/3} * S^{1/2}$$


n = Coeficiente adimensional de rugosidad de Manning

R = Radio hidráulico expresado en metros.

S = Pendiente de la tubería

Para tubería de PVC el diámetro mínimo a utilizar en los alcantarillados sanitarios será de 6 pulgadas, y una pendiente mínima de 2 %. Para las conexiones domiciliares se podrá utilizar tubería de 4 pulgadas PVC, ésta deberá formar un ángulo horizontal con respecto a la línea central de aproximadamente 45 grados en el sentido de la corriente; ver figura siguiente:

Figura 2. Detalle de la conexión domiciliar.

6.3.8. Capacidad a tubo lleno

El caudal que transportará:

$$Q = A * V$$

 \mathbf{Q} = caudal a tubo lleno, m³/s

 \mathbf{A} = área de la tubería, m²

V = velocidad a sección llena, m/s

6.3.9. Flujo en secciones parcialmente llenas

Los ramales de los sistemas sanitarios nunca se diseñan para fluir a sección llena, por lo que se analizarán los elementos hidráulicos de la sección parcialmente llena (indicados por una letra minúscula) y su relación al elemento correspondiente de la sección totalmente llena (indicados por una letra mayúscula).

Elementos hidráulicos:

• Altura de tirante d:

$$d = \frac{D}{2} * \left(1 - \cos \frac{\theta}{2} \right)$$

• Área a:

$$a = \frac{D^2}{4} * \left(\frac{\pi * \theta}{360} - \frac{\sin \theta}{2} \right)$$

• Perímetro mojado p:

$$p = \frac{\pi * D * \theta}{360}$$

• Radio hidráulico r:

$$r = \frac{\pi * D * \theta}{360}$$

• Velocidad v:

$$v = \frac{1}{n} * r^{\frac{2}{3}} * s^{\frac{1}{2}}$$

• Caudal de diseño:

Qdiseño = a * v

Donde: **n** es el coeficiente adimensional de rugosidad de Manning y

s es la pendiente de la tubería.

6.3.10. Pendiente de tubería (s)

Para reducir costos por excavación, la pendiente de la tubería deberá adaptarse en lo posible a la pendiente del terreno. Sin embargo, en todos los casos se tienen que cumplir las siguientes especificaciones hidráulicas, que determinan la pendiente apropiada de la tubería:

a. q < Q

Donde: Q = Caudal a sección llena y q = Caudal de diseño

b. 0.60 m/s < v > 3.00 m/s

Donde: v = velocidad del caudal de diseño

c. 0.10 < d/D > 0.75

Donde: d = Tirante y D = Diámetro interno de la tubería

6.3.11. Velocidad de caudal negro (v)

La velocidad del flujo o caudal negro está determinada por la pendiente del terreno, así como por el diámetro de la tubería y el tipo de tubería que se utiliza. La velocidad del flujo se determina por la fórmula de Manning y las relaciones hidráulicas de v/V, donde v es la velocidad del flujo y V es la velocidad a sección llena. Por norma de diseño, v debe ser mayor de 0.60 metros por segundo, para que no exista sedimentación en la tubería así como evitar taponamiento (esta se conoce como velocidad de arrastre), y menor o igual a 3.0 metros por segundo, para que no exista erosión o desgaste; estos datos son aplicables para tubería de PVC.

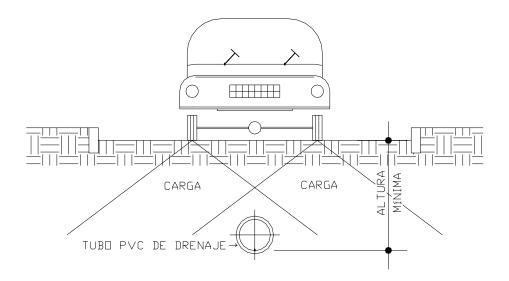
Para la tubería de pared corrugada de doble pared norma ASTM F 949, se permiten velocidades máximas de 5.0 metros por segundo, ya que tiene una mayor resistencia a la erosión y desgaste. Es importante mencionar que para tramos iniciales con poco caudal se tolera velocidades mínimas de 0.50 metros por segundo.

6.3.12. Altura de tirante (d)

Como ya se mencionó, la altura del tirante o profundidad del flujo deberá ser mayor de 10% del diámetro de la tubería y menor del 75% de la misma; estos parámetros aseguran su funcionamiento como canal abierto, así como la funcionalidad en el arrastre de los sedimentos.

6.3.13. Normas para colocación de tubería

La colocación de la tubería debe hacerse a una profundidad tal que no sea afectada la tubería por las inclemencias del tiempo, principalmente por las cargas transmitidas por el tráfico y que evite rupturas en los tubos.


La profundidad mínima de la tubería, desde la superficie del suelo hasta la parte superior de la tubería, en cualquier punto de su extensión, será determinada de la siguiente manera:

Para tráfico normal (menor a 200 quintales) = 1.00 metros Para tráfico pesado (mayor a 200 quintales) = 1.20 metros

La cota Invert mínima se calcula sumando la profundidad por tráfico más el espesor del tubo más diámetro interior del tubo.

Invert mínima = h tráfico + t + D

Figura 3. Esquema de la profundidad de tubería

Profundidad mínima de pozos de visita

La profundidad del pozo de visita al inicio del tramo está definida por la cota Invert de salida previamente determinada.

 H_{pv} = Cota del terreno al inicio – Cota Invert de salida del tramo + 0.25

Debe considerarse que la cota Invert mide la distancia del dátum (abajo) al punto en cuestión (arriba), mientras que la profundidad del pozo mide la distancia de la superficie del terreno (arriba) a la superficie del fondo del pozo (abajo). Así, una cota Invert menor indica mayor profundidad y una cota Invert mayor indica menor profundidad; en cambio, una profundidad de pozo menor es realmente una profundidad menor y una profundidad de pozo mayor es realmente una profundidad mayor.

Recomendaciones

En las tablas 3 y 4 se presentan los valores de profundidad mínima de la cota Invert, de la cual depende la profundidad mínima del pozo de visita al inicio y final del tramo y ancho de la zanja, la cual depende del diámetro de tubería y de la profundidad.

Tabla X. Profundidad mínima de la cota Invert para evitar ruptura (cm.)

Diámetro de	4"	6"	8"	10"	12"	15"	18"	24"
tubo								
Tráfico	111	117	100	120	124	140	140	1.65
Normal	111	117	122	128	134	140	149	165
Tráfico	121	127	1.40	1.40	151	1.00	1.00	105
Pesado	131	137	142	148	154	160	169	185

Tabla XI. Ancho de zanja de acuerdo al diámetro de la tubería que se va a instalar y la profundidad a que será colocada (m)

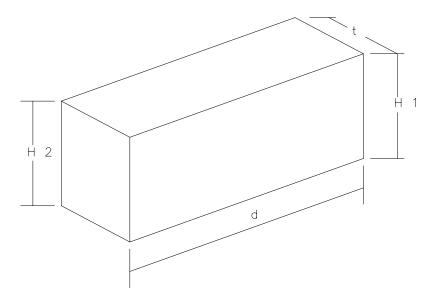
Diámetro		Ancho de zanja	
en	Para profundidades	Para profundidades de	Para profundidades de
pulgadas	hasta 2.00 metros	2.00 a 4.00 metros	4.00 a 6.00 metros
4	0.50	0.60	0.70
6	0.55	0.65	0.75
8	0.60	0.70	0.80
10	0.70	0.80	0.80
12	0.80	0.80	0.80
15	0.90	0.90	0.90
18	1.00	1.00	1.10
24	1.10	1.10	1.35

6.3.14. Volumen de excavación

La cantidad de tierra o volumen V, que se removerá para colocar la tubería está comprendida a partir de la profundidad de los pozos de visita, el ancho de la zanja, que depende del diámetro de la tubería a instalar, y la longitud entre pozos. Para ello se utilizó la siguiente fórmula:

$$V = \left[\left(\frac{H_1 + H_2}{2} \right) * d * t \right]$$

Donde: V = volumen de excavación, m³


 H_1 = profundidad del primer pozo, m

 H_2 = profundidad del segundo pozo, m

d = distancia entre pozos, m

t = ancho de la zanja, m

Figura 4. Esquema del volumen de excavación

6.4. Diseño de la red de alcantarillado sanitario

6.4.1. Bases de diseño

- Dotación = 150 l/hab/día
- Población de diseño =6,812 habitantes
- Densidad de vivienda = 6 habitantes por vivienda
- Factor de retorno FR = 0.80

• Caudal domiciliar =
$$\frac{\text{Pf * Dot * FR}}{86,400} = \frac{6,812_{\text{hab}} * 150_{\text{1/hab/día}} * 0.80}{86,400_{\text{seg/día}}} = 9.46_{\text{1/seg}}$$

• Intensidad de lluvia I =
$$\frac{1,825}{(t+11)^{0.833}} = \frac{1,825}{(12+11)^{0.833}} = 133.95_{mm/hora}$$

• Caudal de aporte pluvial =
$$\frac{C*I*A_{patios}}{360} + \frac{C*I*A_{techos}}{360} =$$

$$\mathbf{q} \; \text{pluvial} = \left(\frac{0.90*133.95*540/10,000}{360} + \frac{0.40*133.95*660/10,000}{360}\right)*1,000 = 27.90_{\text{l/seg}}$$

• Caudal de diseño sanitario:

$$Q \text{dise} \\ \tilde{n} = q \\ \text{domiciliar} + q \\ \text{infiltraci\'on} \\ \text{(p/PVC = 0)} + q \\ \text{pluvial} + q \\ \text{industrial} \\ \text{(= 0 no hay industrias)} \\ \\$$

$$Q_{dise\tilde{n}o} = 9.46 \ l/s + 0 + 27.90 \ l/s + 0 = 37.36 \ l/s$$

$$Q_{dise\tilde{n}o} = 37.36 \text{ l/s}$$

• Factor de caudal medio FQM =
$$\frac{Q_{\text{diseño}}}{Pf} = \frac{37.36_{1/s}}{6,812_{\text{hab}}} = 0.0055_{\frac{1/s}{\text{hab}}}$$

$$FQM = 0.0055 \frac{1/s}{hab}$$

6.4.2. Cálculo del alcantarillado sanitario

Tabla XII

Memoria de cálculo de alcantarillado sanitario Aldea San José La Sierra, Mataquescuintla, Jalapa.

De	A		Terreno		Samtano <i>F</i>		Casas		um (lit/seg)		S%	Vel n		Rel	d/D	Cota Ir	nvert m	Prof. I	ozo m	Vol. Excav
P.V.	P.V.	Inicio	Final	D.H. Mt	Terreno	Local	Acum.	Actual	Futuro	(pulg.)	Tubo	Actual	Futura	Actual	Futura	Inicio	Final	Inicio	Final	m3
2	3	1000.00	994.17	69.47	8.39	8	8	1.14	3.60	6	8.39	1.27	1.80	0.10	0.17	998.80	992.97	1.20	1.20	70.82
4	3	1000.93	994.17	81.38	8.31	6	6	0.86	2.73	6	4.93	0.98	1.38	0.10	0.17	996.98	992.97	3.95	1.20	178.19
3	5	994.17	991.20	91.89	3.23	5	19	2.65	8.26	6	3.2	1.20	1.63	0.18	0.32	992.94	990.00	1.23	1.20	94.92
7A	7	998.51	995.53	63.92	4.66	5	5	0.72	2.29	6	3.44	0.82	1.15	0.10	0.17	996.53	994.33	1.98	1.20	86.36
4	7	1000.93	995.53	80.38	6.72	4	4	0.58	1.84	6	2.22	0.66	0.92	0.10	0.17	996.11	994.33	4.82	1.20	205.80
7	5	995.53	991.20	83.77	5.17	4	13	1.83	5.75	6	5.13	1.24	1.74	0.14	0.24	994.30	990.00	1.23	1.20	86.42
5	6	991.20	987.55	83.77	4.36	6	38	5.17	15.87	6	4.32	1.59	2.17	0.23	0.42	989.97	986.35	1.23	1.20	86.47
7	9	995.53	992.68	84.20	3.38	7	7	1.00	3.17	6	3.38	0.89	1.26	0.11	0.20	994.33	991.48	1.20	1.20	85.74
9	6	992.68	987.55	84.62	6.06	7	14	1.97	6.17	6	6.03	1.34	1.88	0.13	0.24	991.45	986.35	1.23	1.20	87.48
6	14	987.55	987.69	80.00	- 0.18	10	62	8.26	24.99	8	1	1.05	1.41	0.29	0.54	986.32	985.52	1.23	2.17	115.60
23	14	989.52	987.69	65.76	2.78	3	3	0.43	1.39	6	2.18	0.60	0.85	0.08	0.15	987.92	986.49	1.60	1.20	78.35
14	37	987.69	985.89	69.91	2.57	4	69	9.14	27.57	8	1.14	1.13	1.52	0.30	0.55	985.49	984.69	2.20	1.20	118.74
24	37	988.26	985.89	66.73	3.55	3	3	0.43	1.39	6	2.18	0.60	0.85	0.08	0.15	986.14	984.69	2.12	1.20	110.93
37	38	985.89	984.91	75.98	1.29	8	80	10.52	31.57	8	1.25	1.21	1.62	0.31	0.58	984.66	983.71	1.23	1.20	78.46
38	39	984.91	984.73	63.98	0.28	7	87	11.38	34.08	8	1	1.15	1.51	0.35	0.66	983.68	983.04	1.23	1.69	93.40
39	32	984.73	982.63	69.91	3.00	7	94	12.24	36.57	8	2.26	1.57	2.11	0.29	0.53	983.01	981.43	1.72	1.20	86.76
32	41	982.63	980.86	35.82	4.94	2	96	12.49	37.27	8	4.85	2.07	2.81	0.24	0.43	981.40	979.66	1.23	1.20	36.95
41	42	980.86	979.26	69.91	2.29	5	101	13.10	39.03	8	2.25	1.60	2.14	0.30	0.55	979.63	978.06	1.23	1.20	72.29
42	43	979.26	978.25	59.98	1.68	6	107	13.83	41.12	8	1.63	1.44	1.91	0.34	0.63	978.03	977.05	1.23	1.20	61.89
43	44	978.25	977.26	21.89	4.52	0	107	13.83	41.12	8	4.37	2.05	2.78	0.26	0.47	977.02	976.06	1.23	1.20	22.58
32	31	982.63	980.79	68.96	2.67	1	1	0.15	0.47	6	5.6	0.60	0.85	0.04	0.07	981.43	977.57	1.20	3.22	129.59
31	33	980.79	980.10	75.98	0.91	4	5	0.72	2.29	6	1.41	0.60	0.84	0.12	0.21	977.54	976.47	3.25	3.63	222.21
33	44	980.10	977.26	69.59	4.08	1	6	0.86	2.73	6	1.2	0.60	0.84	0.13	0.23	976.44	975.60	3.66	1.66	157.20
44	45	977.26	973.76	41.68	8.40	1	114	14.67	43.54	8	5.18	2.22	3.00	0.26	0.46	974.72	972.56	2.54	1.20	66.23
45	46	973.76	971.40	37.71	6.26	1	115	14.79	43.89	8	5.14	2.22	3.00	0.26	0.46	972.14	970.20	1.62	1.20	45.17
46	47	971.40	970.78	17.61	3.52	0	115	14.79	43.89	8	3.35	1.91	2.56	0.29	0.52	970.17	969.58	1.23	1.20	18.19
33	34	980.10	979.72	75.98	0.50	4	4	0.58	1.84	6	1.7	0.60	0.84	0.10	0.18	978.90	977.61	1.20	2.11	106.94
35	34	980.88	979.72	69.98	1.66	3	3	0.43	1.39	6	2.18	0.60	0.85	0.08	0.15	979.68	978.15	1.20	1.57	82.25
34	47	979.72	970.78	106.85	8.37	5	12	1.69	5.32	6	7.99	1.42	1.99	0.12	0.20	978.12	969.58	1.60	1.20	127.03
47	48	970.78	969.74	37.90	2.74	0	127	16.23	47.99	8	2.66	1.80	2.39	0.32	0.59	969.55	968.54	1.23	1.20	39.11
48	49	969.74	968.34	43.95	3.19	0	127	16.23	47.99	8	3.12	1.91	2.54	0.31	0.56	968.51	967.14	1.23	1.20	45.41
35	35A	980.88	981.52	47.99	- 1.33	2	2	0.29	0.93	6	3.11	0.60	0.85	0.06	0.11	979.68	978.19	1.20	3.33	92.44
35A	35B	981.52	978.23	8.71	37.77	1	3	0.43	1.39	6	2.2	0.60	0.85	0.08	0.15	977.22	977.03	4.30	1.20	20.37
35B	35C	978.23	974.93	8.71	37.89	0	3	0.43	1.39	6	2.18	0.60	0.85	0.08	0.15	973.92	973.73	4.31	1.20	20.40
35C	35D	974.93	971.64	8.71	37.77	0	3	0.43	1.39	6	2.18	0.60	0.85	0.08	0.15	970.63	970.44	4.30	1.20	20.36
35D	49	971.64	968.34	8.71	37.89	1	4	0.58	1.84	6	2.2	0.65	0.92	0.10	0.17	967.33	967.14	4.31	1.20	20.40
49	50	968.34	964.94	63.82	5.33	1	132	16.83	49.69	8	4.72	2.23	3.00	0.28	0.51	966.75	963.74	1.59	1.20	75.74
50	51	964.94	960.80	77.79	5.32	4	136	17.30	51.04	8	4.63	2.24	3.00	0.29	0.52	963.20	959.60	1.74	1.20	97.25
51	52	960.80	956.44	49.45	8.82	1	137	17.42	51.37	8	4.6	2.24	2.99	0.29	0.52	957.51	955.24	3.29	1.20	94.46
32	40	982.63	980.99	31.91	5.14	1	1	0.15	0.47	6	5.79	0.60	0.85	0.04	0.07	981.40	979.55	1.23	1.44	36.18
40	84	980.99	980.70	51.67	0.56	3	4	0.58	1.84	6	1.7	0.60	0.84	0.10	0.18	979.52	978.64	1.47	2.06	77.48
84	85	980.70	973.56	71.21	10.03	0	4	0.58	1.84	6	6.8	0.96	1.37	0.07	0.13	977.20	972.36	3.50	1.20	142.31
85	86	973.56	974.30	42.00	- 1.76	0	4	0.58	1.84	6	1.7	0.60	0.84	0.10	0.18	972.33	971.62	1.23	2.68	69.86
86	87 88	974.30	966.67	68.96	11.06	0	4	0.58	1.84	6	8.87	1.06	1.50	0.07	0.12	971.59	965.47	2.71	1.20	114.50
87	ŏŏ	966.67	967.01	44.00	- 0.77	2	6	0.86	2.73	6	1.22	0.60	0.84	0.13	0.23	965.44	964.90	1.23	2.11	62.40

Continuación

78 79 978.79 978.10 23.97 2.88 0 14 1.97 6.17 6 2.75 1.02 1.42 0.16 0.29 977.56 976.90 1.23 1.20 378 995.93 985.99 198.104 195.1 30.56 1 2 0.29 0.93 6 16.12 1.06 1.50 0.04 0.07 985.99 982.84 4.00 1.20 378 376 379 984.04 978.10 195.0 30.68 1 3 0.43 1.39 6 16.12 1.06 1.50 0.04 0.07 985.99 982.84 4.00 1.20 376	De	A	Cotas	Terreno		S%	No.	Casas	Q DisAc	um (lit/seg)	Diám.	S%	Vel n	n/seg.	Rel	d/D	Cota II	nvert m	Prof. P	ozo m	Vol. Excav
88 90 987.01 994.29 35.96 7.56 2 10 1.42 4.47 6 4.94 1.13 1.59 0.12 0.21 994.87 995.93 2.14 1.20 91 95 97 97 95 95 95 95 95 95 95 95 95 95 95 95 95	P.V.	P.V.	Inicio	Final	D.H. Mt	Terreno	Local	Acum.	Actual	Futuro	(pulg.)	Tubo	Actual	Futura	Actual	Futura	Inicio	Final	Inicio	Final	m3
90 91 98449 982.03 45.00 5.02 3 13 1.83 5.75 6 4.95 1.23 1.72 0.14 0.24 983.08 980.83 1.23 1.20 5.21 981.00 1.25 1.88 1.25 0.11 0.19 980.80 982.44 1.23 1.20 5.21 981.00 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25	47	88	970.78	967.01	33.00	11.42	2	2	0.29	0.93	6	11.43	0.93	1.33	0.05	0.08	969.58	965.81	1.20	1.20	33.69
90 91 986.29 982.03 45.00 5.02 3 13 1.83 5.75 6 4.95 1.23 1.72 0.14 0.24 983.08 980.83 1.23 1.20 0.25 0.25 0.26 0.25 0.26 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	88	90	967.01	964.29	35.96	7.56	2	10	1.42	4.47	6	4.94	1.13	1.59	0.12	0.21	964.87	963.09	2.14	1.20	50.99
52 De8tion 1 956.44 956.71 67.48 0.04 0 15U 18395 55.71 1U 10.71 1.05 1.38 0.73 2.12 1.28 1.38 3 3.04 3.13 6 11.23 1.05 1.50 0.06 0.10 932.77 982.44 3.28 41.50 3 3 0.43 1.39 6 11.23 1.05 1.06 0.10 932.77 987.31 32.84 15.62 3 3 0.43 1.39 6 11.23 1.00 0.10 193.18 181.24 2.39 1.20 20 77 987.31 985.20 29.83 10.13 1 9 1.28 4.04 6 10 1.41 1.29 0.10 0.17 986.00 981.20 981.24 2.39 1.20 5 7.7 987.31 985.20 987.29 982.00 987.83 1.39 6 1.23 1.00 1.11 1.20 1.20 1.20 1.23	90	91		962.03	45.00	5.02	3	13	1.83	5.75	6	4.95	1.23	1.72	0.14	0.24	963.06	960.83	1.23	1.20	46.43
3 20 994.17 987.31 61.08 11.23 3 3 0.43 1.38 6 11.23 1.05 1.06 0.06 0.10 992.47 298.44 12.23 1.20 1.53 0.06 0.10 992.44 987.31 1.50 2.2 5 0.72 2.29 6 12 1.25 1.07 1.57 0.06 0.10 993.18 1.93 1.20 1.20 1.77 76 995.20 993.20 1.75 1.15 3 1.2 1.60 6 1.14 1.19 0.17 986.00 1.75 1.41 1.10 0.17 986.00 998.00 1.75 4.41 1.10 1.15 0.44 6 8.74 1.11 1.15 0.14 6 8.74 0.99 0.04 0.00 980.00 980.00 1.22 1.20 1.20 1.20 1.40 1.11 1.10 1.41 1.11 1.11 1.10 1.41 1.11 1.11 1.10<	91	52	962.03	956.44	46.00	12.15	0	13	1.83	5.75	6	12.08	1.68	2.35	0.11	0.19	960.80	955.24	1.23	1.20	47.44
53 53A 99757 992.44 32.84 15.62 3 3 0.43 1.39 6 12 1.07 1.53 0.06 0.10 995.18 991.24 2.39 1.20 20 77 987.31 385.20 20.83 10.13 1 9 1.28 4.04 6 10 1.41 1.98 0.10 0.17 386.08 198.00 77.15 4.15 3 12 1.69 5.32 6 4.11 12 1.57 0.14 0.24 983.97 980.00 1.23 1.20 5 7.67 891.20 97.15 4.15 3 12 1.69 5.32 6 4.11 12 1.57 0.14 0.24 989.39 1980.01 2.38 0 1.4 1.97 6.17 6 10.08 1.00 2.01 2.02 9.03 0.0 1.00 2.0 1.00 9.00 9.93 9.93 9.93 9.12 1.22 1.22 <td>52</td> <td>Desto.1</td> <td>956.44</td> <td>956.71</td> <td>67.48</td> <td>- 0.40</td> <td>0</td> <td>150</td> <td>18.95</td> <td>55.71</td> <td>10</td> <td>0.57</td> <td>1.06</td> <td>1.36</td> <td>0.38</td> <td>0.75</td> <td>955.21</td> <td>954.83</td> <td>1.23</td> <td>1.88</td> <td>89.32</td>	52	Desto.1	956.44	956.71	67.48	- 0.40	0	150	18.95	55.71	10	0.57	1.06	1.36	0.38	0.75	955.21	954.83	1.23	1.88	89.32
53A 20 992.44 897.31 32.94 15.62 2 5 0.72 2.29 6 12 1.25 1.78 0.07 0.12 990.05 988.11 2.39 1.20 77 76 985.20 982.00 77.15 4.15 3 12 1.69 5.32 6 4.11 1.12 1.57 0.14 0.24 989.00 77.94 8.74 1 1 0.15 0.44 6 1.04 1.11 1.12 1.57 0.14 0.24 989.00 77.94 8.74 1.11 0.15 0.44 6 8.74 1.06 0.04 0.06 989.09 9.95 1.23 1.20 7.75 1.20 7.75 0.04 0.02 989.00 97.75 97.85 9.83 9.89 1.23 1.20 7.20 7.21 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.23 1.22 1.20 1.23 1.23 1.22	3	20	994.17	987.31	61.08	11.23	3	3	0.43	1.39	6	11.23	1.05	1.50	0.06	0.10	992.97	986.11	1.20	1.20	62.28
20	53	53A	997.57	992.44	32.84	15.62	3	3	0.43	1.39	6	12	1.07	1.53	0.06	0.10	995.18	991.24	2.39	1.20	50.12
The color of the	53A	20	992.44	987.31	32.84	15.62	2	5	0.72	2.29	6	12	1.25	1.78	0.07	0.12	990.05	986.11	2.39	1.20	50.12
5 76 991.20 985.00 70.94 8.74 1 1 0.15 0.47 6 8.74 0.69 0.99 0.04 0.66 990.00 983.80 1.20 1.20 78 79 978.79 978.79 978.79 978.79 978.79 978.79 978.79 978.79 978.79 978.79 978.79 978.79 978.79 978.70 0.23 0.00 1.41 1.97 6.17 6 2.75 1.02 1.42 0.16 0.29 977.56 976.90 1.23 1.20 37B 37B 989.99 984.04 1.95.51 30.50 1 2 0.29 0.93 6 16.12 1.06 1.50 0.04 0.07 988.99 982.94 4.00 1.20 0.29 0.93 6 16.12 1.00 1.00 0.00 0.09 980.98 982.24 4.00 1.20 2.93 1.6 16.12 1.20 1.71 0.05 0.00	20	77	987.31	985.20	20.83	10.13	1	9	1.28	4.04	6	10	1.41	1.98	0.10	0.17	986.08	984.00	1.23	1.20	21.54
76 78 982.00 978.79 61.32 5.23 1 14 1.97 6.17 6 2.76 1.02 1.42 0.16 0.22 977.89 978.79 978.59 92.89 978.79 989.99 918.51 30.45 1 1 0.15 0.47 6 1.60 0.28 1.12 0.00 989.99 988.99 19.51 30.45 1 1 0.15 0.47 6 16.07 0.83 1.23 0.03 0.05 998.94 0.04 0.02 0.03 0.06 1.12 0.00 0.03 0.06 0.09 988.28 9.00 1.20 0.33 6 16.12 1.00 1.00 0.07 989.98 982.04 0.00 1.20 0.03 0.98 982.04 0.00 1.20 0.03 0.00 0.88 0.00 0.00 980.04 0.00 1.20 0.00 0.89 1.00 0.00 1.20 0.00 0.00 0.00 0.00	77	76	985.20	982.00	77.15	4.15	3	12	1.69	5.32	6	4.11	1.12	1.57	0.14	0.24	983.97	980.80	1.23	1.20	79.71
78	5	76	991.20	985.00	70.94	8.74	1	1	0.15	0.47	6	8.74	0.69	0.99	0.04	0.06	990.00	983.80	1.20	1.20	72.36
37B 37E 995.93 889.99 19.51 30.45 1 1 1 0.15 0.47 6 16.07 0.83 123 0.03 0.05 991.93 988.79 4.00 1.20 37C 79 984.04 978.10 19.51 30.50 1 2 0.29 0.93 6 16.12 1.06 1.50 0.04 0.07 985.89 98.28 4 4.00 1.20 37C 79 984.04 978.10 19.50 30.46 1 3 0.43 1.39 6 16.12 1.06 1.50 0.04 0.07 985.89 98.28 4 4.00 1.20 1.77 1.00 1.20 1.77 1.00 1.20 1.77 1.00 1.20 1.77 1.00 1.20 1.77 1.00 1.20 1.77 1.00 1.20 1.77 1.00 1.20 1.77 1.00 1.20 1.77 1.00 1.20 1.77 1.00 1.20 1.77 1.00 1.20 1.77 1.00 1.20 1.77 1.00 1.20 1.20 1.77 1.00 1.20 1.20 1.77 1.00 1.20 1.20 1.77 1.00 1.20 1.20 1.20 1.20 1.20 1.20 1.20	76	78	982.00	978.79	61.32	5.23	1	14	1.97	6.17	6	10.08	1.60	2.26	0.12	0.21	980.77	974.59	1.23	4.20	141.54
37C 989.99 984.04 19.51 30.50 1 2 0.29 0.33 6 16.12 1.06 1.50 0.04 0.07 985.99 982.84 4.00 1.20 79 984.04 978.10 19.50 30.46 1 3 0.43 1.39 6 16.12 1.06 1.50 0.04 0.07 985.99 980.04 978.00 1.20 79 79 984.04 978.10 19.50 30.46 1 3 0.43 1.39 6 16.12 1.71 0.05 0.09 980.04 978.09 4.00 1.20 79 79 75 978.10 974.74 77.93 4.31 3 20 2.79 885.7 6 4.27 1.32 1.83 0.17 0.31 976.87 97.35 1.23 1.23 1.20 75 59 56 986.05 99.87 996.05 17.99 2.88 1 1 0.15 0.47 6 5.79 0.80 0.85 0.04 0.07 995.34 994.30 1.23 1.27 56.4 56 999.74 996.05 17.99 2.88 1 1 1 0.15 0.47 6 5.79 0.80 0.85 0.04 0.07 995.34 994.30 1.23 1.27 56.6 56.8 995.74 996.05 17.99 2.88 1 1 0.15 0.47 6 5.79 0.80 0.85 0.04 0.07 995.34 994.30 1.23 1.27 56.6 56.8 995.74 996.05 17.99 1.24 1.20 0.3 0.43 1.39 6 12.86 1.10 1.58 0.05 0.10 992.81 989.61 3.24 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20	78	79	978.79	978.10	23.97	2.88	0	14	1.97	6.17	6	2.75	1.02	1.42	0.16	0.29	977.56	976.90	1.23	1.20	24.75
37C 79 984.04 978.10 19.50 30.46 1 3 0.43 1.39 6 16.12 1.20 1.77 0.05 0.09 980.04 976.90 4.00 1.20	37A	37B	995.93	989.99	19.51	30.45	1	1	0.15	0.47	6	16.07	0.83	1.23	0.03	0.05	991.93	988.79	4.00	1.20	43.08
Fy 7/5 9/8.10 9/4.74 7/39 4.31 3 20 2.79 8.66 6 4.27 1.32 1.83 0.17 0.31 9/6.67 9/5.37 1.32 1.20 5 5 5 98.67 99.80 1.33 0.15 0.06 0.88 0.04 0.07 995.33 4.12 1.12 1.20 5 6 5.79 0.80 0.88 0.04 0.05 0.10 997.03 998.85 2.71 1.20 5 6 5.79 980.05 990.81 2.88 21.00 0 3 0.43 1.39 6 1.286 1.10 1.58 0.05 0.10 987.81 982.21 1.22 1.20 5 6 5.60 980.56 980.32 24.87 21.07 1 4 0.58 1.84 6 12.86 1.20 1.71 0.00 0.11 988.45 2.22 1.20 5 5 5 980.52 998.51 3.5	37B	37C	989.99	984.04	19.51		1	2	0.29	0.93	6	16.12	1.06	1.50	0.04	0.07	985.99	982.84	4.00	1.20	43.08
59 56 986.57 986.05 17.99 2.89 1 1 0.15 0.47 6 5.79 0.60 0.85 0.04 0.07 995.34 994.80 1.23 1.75 566 568 999.81 24.88 21.06 0 3 0.43 1.39 6 12.86 1.10 1.58 0.05 0.10 992.81 988.36 24.88 21.00 0 3 0.43 1.39 6 12.86 1.10 1.58 0.05 0.10 997.81 988.36 3.24 1.20 56C 58 985.56 980.32 24.87 21.07 1 4 0.58 1.84 6 12.86 1.10 1.58 0.05 0.11 987.56 984.36 3.24 1.20 73 58 982.21 980.32 41.39 4.57 1 1 0.15 0.47 6 5.6 0.60 0.08 0.01 1.98 1.93 3 3 <td>37C</td> <td>79</td> <td>984.04</td> <td>978.10</td> <td></td> <td>30.46</td> <td>1</td> <td>3</td> <td>0.43</td> <td>1.39</td> <td>6</td> <td>16.12</td> <td>1.20</td> <td>1.71</td> <td>0.05</td> <td>0.09</td> <td>980.04</td> <td>976.90</td> <td>4.00</td> <td>1.20</td> <td>43.12</td>	37C	79	984.04	978.10		30.46	1	3	0.43	1.39	6	16.12	1.20	1.71	0.05	0.09	980.04	976.90	4.00	1.20	43.12
56A 56 599.74 99.60 S 37.58 9.82 2 2 2 0.29 0.93 6 5.81 0.74 1.06 0.05 0.10 997.03 994.85 2.71 1.20 56B 56C 990.81 985.56 24.88 21.10 0 3 0.43 1.39 6 12.86 1.10 1.58 0.05 0.10 997.56 984.36 3.24 1.20 56C 990.31 985.56 980.32 24.87 21.07 1 4 0.58 1.84 6 12.86 1.20 1.71 0.06 0.11 987.56 984.36 3.22 1.20 1.63 58 982.21 980.32 24.87 21.07 1 4 0.58 0.60 0.85 0.04 0.07 981.12 3.24 1.20 56 55 996.05 994.51 39.02 1.62 0.86 2.73 6 4.62 0.95 1.35	79	75	978.10	974.74	77.93	4.31	3	20	2.79	8.67	6	4.27	1.32	1.83	0.17	0.31	976.87	973.54	1.23	1.20	80.40
56 58B 996.05 990.81 24.88 21.06 0 3 0.43 1.39 6 12.86 1.10 1.58 0.05 0.10 992.81 986.61 3.24 1.20 56C 58 985.56 24.88 21.10 0 3 0.43 1.39 6 12.86 1.10 1.58 0.05 0.10 987.56 984.36 3.24 1.20 56C 58 985.56 980.32 24.87 21.07 1 4 0.58 1.84 6 12.86 1.10 1.55 0.04 0.07 981.01 978.69 12.0 1.63 58 57 980.32 976.20 79.13 5.21 1 6 0.86 0.73 6 4.62 0.95 1.35 0.10 0.17 978.66 975.00 1.63 55 596.05 994.51 390.23 3 0.43 1.39 6 2.18 0.60 0.85				996.05			1	1	0.15			5.79	0.60	0.85	0.04		995.34			1.75	22.80
56B 56C 990.81 985.56 24.88 21.10 0 3 0.43 1.39 6 12.86 1.10 1.58 0.05 0.10 987.56 984.36 3.25 1.20 73 58 982.21 980.32 24.87 21.07 1 4 0.58 1.84 6 12.86 1.20 1.71 0.06 0.11 982.32 979.12 3.224 1.20 1.63 3.224 1.20 1.63 3.224 1.20 1.63 3.224 1.20 1.63 3.224 1.20 1.63 3.22 1.70 1 4 0.58 0.06 0.85 0.04 0.07 981.01 984.51 1.60 0.86 0.08 0.08 0.05 0.08 0.05 0.08 0.05 0.09 984.51 980.32 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 <				996.05	37.58		2		0.29	0.93	6	5.81	0.74	1.06	0.05	0.10				1.20	62.50
56C 58 985.56 980.32 24.87 21.07 1 4 0.58 1.84 6 12.86 1.20 1.71 0.06 0.11 982.32 979.12 3.24 1.20 58 57 980.32 976.20 79.13 5.21 1 6 0.86 2.73 6 4.62 0.95 1.35 0.10 0.17 978.69 1.20 1.63 58 57 980.32 976.20 79.13 5.21 1 6 0.86 2.73 6 4.62 0.95 1.35 0.10 0.17 978.69 1.20 1.63 56 55 996.05 994.51 75.98 1.93 3 0.43 1.39 6 2.18 0.60 0.85 0.08 0.15 994.51 95.93 1 1.20 1.40 4.40 1.20 1.42 4.40 1.20 1.42 4.47 1.41 1.52 2.16 0.80 0.08 0.04	56	56B		990.81			0		-	1.39	6	12.86				0.10					46.94
73 58 982.21 980.32 41.39 4.57 1 1 0.15 0.47 6 5.6 0.60 0.85 0.04 0.07 981.01 976.89 1.20 1.63 56 55 996.05 994.51 79.98 1.93 3 3 0.43 1.39 6 2.18 0.60 0.85 0.08 0.15 994.85 993.11 1.20 1.40 55A 55 1000.83 994.51 39.02 16.20 2 2 0.29 0.93 6 8 0.82 1.18 0.05 0.09 996.43 993.31 4.40 1.20 55 55 997.57 994.51 55.73 5.49 3 3 0.43 1.39 6 2.28 0.60 0.86 0.08 0.14 994.58 993.31 1.40 1.20 55 55 997.57 994.51 38.04 1.14 1.63 2.20 0.00 0.86<	56B	56C	990.81				0	3		1.39	6	12.86	1.10	1.58	0.05	0.10				1.20	47.05
58 57 980.32 976.20 79.13 5.21 1 6 0.86 2.73 6 4.62 0.95 1.35 0.10 0.17 978.66 975.00 1.66 1.20 55A 55 1000.83 994.51 39.02 16.20 2 2 0.29 0.93 6 8 0.82 1.18 0.05 0.09 996.43 993.31 1.20 1.40 53 55 1900.83 58 917.57 994.51 55.73 5.49 3 3 0.43 1.39 6 2.28 0.60 0.86 0.08 0.14 994.51 983.31 2.99 1.20 55 55 58 945.11 982.31 27.10 22.51 2 10 1.42 4.47 6 14 1.63 2.30 0.09 0.16 984.90 981.11 3.51 1.20 55 55 982.31 97.10 22.54 0 10							1	4													46.91
56 55 996.05 994.51 79.98 1.93 3 3 0.43 1.39 6 2.18 0.60 0.85 0.08 0.15 994.55 993.11 1.20 1.40 53 55 1000.83 994.51 55.73 5.49 3 3 0.43 1.39 6 2.28 0.60 0.08 0.14 994.58 993.31 4.40 1.20 55 55 597.77 994.51 55.73 5.49 3 3 0.43 1.39 6 2.28 0.60 0.08 0.14 994.58 993.31 1.20 1.20 55.55 558 994.51 988.41 27.10 22.51 0 8 1.14 3.60 6 14 1.63 2.30 0.09 0.16 978.80 975.00 3.51 1.20 55C 57 982.31 976.20 27.11 22.54 0 10 1.42 4.47 6 14 1.63<								1		_											49.74
55A 55 1000.83 994.51 39.02 16.20 2 2 0.29 0.93 6 8 0.82 1.18 0.05 0.09 996.43 993.31 4.40 1.20 53 55 997.57 994.51 55.73 5.49 3 3 0.43 1.39 6 2.28 0.60 0.88 0.08 0.15 991.00 996.43 993.31 2.99 1.20 555 556B 994.51 988.41 27.10 22.51 0 8 1.14 3.60 6 14 1.63 2.30 0.09 0.16 984.90 981.11 3.51 1.20 55C 57 982.31 976.20 27.11 22.54 0 10 1.42 4.47 6 14 1.63 2.30 0.09 0.16 988.80 975.00 3.51 1.20 55C 57 982.31 976.20 27.14 25.97 1.70 1		-																			96.04
53 55 997.57 994.51 55.73 5.49 3 3 0.43 1.39 6 2.28 0.60 0.86 0.08 0.14 994.58 993.31 2.99 1.20 55 55B 994.51 988.41 27.10 22.51 0 8 1.14 3.60 6 14 1.52 2.16 0.08 0.15 991.00 987.21 3.51 1.20 55D 58B 38.41 982.31 27.10 22.51 2 10 1.42 4.47 6 14 1.63 2.30 0.09 0.16 984.99 978.00 3.51 1.20 55C 75 982.31 976.20 27.11 22.54 0 10 1.42 4.47 6 1.4 1.63 2.30 0.09 0.16 978.80 975.00 3.51 1.20 57 75 976.20 974.74 85.97 1.70 1 17 2.38 7.43 </td <td></td> <td>88.50</td>																					88.50
55 55B 994.51 988.41 27.10 22.51 0 8 1.14 3.60 6 14 1.52 2.16 0.08 0.15 991.00 987.21 3.51 1.20 55B 55C 988.41 982.31 27.10 22.51 2 10 1.42 4.47 6 14 1.63 2.30 0.09 0.16 988.49 981.11 3.51 1.20 55C 57 982.31 276.20 27.11 22.54 0 10 1.42 4.47 6 14 1.63 2.30 0.09 0.16 978.80 975.00 3.51 1.20 57 976.20 974.74 85.97 1.70 1 17 2.38 7.43 6 1.66 0.90 1.25 0.20 0.36 974.97 973.54 1.23 1.20 80A 80A 989.27 984.43 13.56 35.72 0 4 0.58 1.84 6																					92.89
55B 55C 98.41 982.31 27.10 22.51 2 10 1.42 4.47 6 14 1.63 2.30 0.09 0.16 984.90 981.11 3.51 1.20 55C 57 982.31 976.20 27.11 22.54 0 10 1.42 4.47 6 14 1.63 2.30 0.09 0.16 978.80 975.00 3.51 1.20 57 75 976.20 974.74 85.97 1.70 1 17 2.38 7.43 6 1.66 0.90 1.25 0.20 0.36 974.97 975.54 1.23 1.20 80 80A 989.27 984.43 13.56 35.69 4 4 0.58 1.84 6 15 1.27 1.80 0.06 0.10 985.26 983.23 4.01 1.20 80A 80B 984.43 979.59 13.55 35.79 0 4 0.58 1.84																					99.26
55C 57 982.31 976.20 27.11 22.54 0 10 1.42 4.47 6 14 1.63 2.30 0.09 0.16 978.80 975.00 3.51 1.20 57 75 976.20 974.74 85.97 1.70 1 17 2.38 7.43 6 1.66 0.90 1.25 0.20 0.36 974.97 973.54 1.23 1.20 80 80A 989.27 984.43 13.56 35.69 4 4 0.58 1.84 6 15 1.27 1.80 0.06 0.10 985.26 983.23 4.01 1.20 80 80B 984.43 979.59 13.55 35.79 0 4 0.58 1.84 6 15 1.27 1.80 0.06 0.10 985.26 983.39 4.01 1.20 80B 75 979.59 974.74 13.55 35.79 0 4 0.58 1.84 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>54.29</td>							_														54.29
57 75 976.20 974.74 85.97 1.70 1 17 2.38 7.43 6 1.66 0.90 1.25 0.20 0.36 974.97 973.54 1.23 1.20 80 80A 989.27 984.43 13.56 35.69 4 4 0.58 1.84 6 15 1.27 1.80 0.06 0.10 985.26 983.23 4.01 1.20 80A 80B 984.43 379.59 13.55 35.72 0 4 0.58 1.84 6 15 1.27 1.80 0.06 0.10 9874.94 978.39 4.01 1.20 80B 75 979.59 974.74 13.55 35.79 0 4 0.58 1.84 6 15 1.27 1.80 0.06 0.10 975.57 973.54 4.02 1.20 75 74 974.74 971.20 60.95 12.26 3 3 0.43 1.39 </td <td></td> <td>54.29</td>																					54.29
80 80A 989.27 984.43 13.56 35.69 4 4 0.58 1.84 6 15 1.27 1.80 0.06 0.10 985.26 983.23 4.01 1.20 80A 80B 984.43 979.59 13.55 35.72 0 4 0.58 1.84 6 15 1.27 1.80 0.06 0.10 980.42 978.39 4.01 1.20 80B 75 979.59 974.74 13.55 35.79 0 4 0.58 1.84 6 15 1.27 1.80 0.06 0.10 975.57 973.54 4.02 1.20 75 74 974.74 971.20 73.64 4.81 1 42 5.70 17.42 6 4.76 1.69 2.31 0.04 0.43 973.51 970.00 1.23 1.20 74 81 971.20 973.11 72.00 - 2.65 0 45 6.08 18.5		-						-					-								54.21
80A 80B 984.43 979.59 13.55 35.72 0 4 0.58 1.84 6 15 1.27 1.80 0.06 0.10 980.42 978.39 4.01 1.20 80B 75 979.59 974.74 13.55 35.79 0 4 0.58 1.84 6 15 1.27 1.80 0.06 0.10 975.57 973.54 4.02 1.20 75 74 974.74 971.20 73.64 4.81 1 42 5.70 17.42 6 4.76 1.69 2.31 0.24 0.43 973.51 970.00 1.23 1.20 39A 74 978.67 971.20 60.95 12.26 3 3 0.43 1.39 6 12.2 1.08 1.06 0.01 977.44 970.00 1.23 1.20 74 81 971.20 969.55 12.26 3 3 0.43 1.39 6 12.2 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>88.68</td>							_														88.68
80B 75 979.59 974.74 13.55 35.79 0 4 0.58 1.84 6 15 1.27 1.80 0.06 0.10 975.57 973.54 4.02 1.20 75 74 974.74 971.20 73.64 4.81 1 42 5.70 17.42 6 4.76 1.69 2.31 0.24 0.43 973.51 970.00 1.23 1.20 39A 74 978.67 971.20 60.95 12.26 3 3 0.43 1.39 6 12.2 1.08 1.55 0.06 0.10 977.44 970.00 1.23 1.20 74 81 971.20 973.11 72.00 - 2.65 0 45 6.08 18.58 6 1 0.98 1.20 1.23 1.20 64 61 996.90 996.53 43.95 0.84 4 0.58 1.84 6 1.7 0.60 0.84 0.10																					30.05
75 74 974.74 971.20 73.64 4.81 1 42 5.70 17.42 6 4.76 1.69 2.31 0.24 0.43 973.51 970.00 1.23 1.20 39A 74 978.67 971.20 60.95 12.26 3 3 0.43 1.39 6 12.2 1.08 1.55 0.06 0.10 977.44 970.00 1.23 1.20 74 81 971.20 973.11 72.00 - 2.65 0 45 6.08 18.58 6 1 0.98 1.28 0.37 0.74 969.97 969.25 1.23 3.86 64 61 996.90 996.53 43.95 0.84 4 4 0.58 1.84 6 1.7 0.60 0.84 0.10 0.18 995.70 994.95 1.20 1.58 61 61A 61B 991.78 997.03 0 4 0.58 1.84 6																			_		30.02
39A 74 978.67 971.20 60.95 12.26 3 3 0.43 1.39 6 12.2 1.08 1.55 0.06 0.10 977.44 970.00 1.23 1.20 74 81 971.20 973.11 72.00 - 2.65 0 45 6.08 18.58 6 1 0.98 1.28 0.37 0.74 969.97 969.25 1.23 3.86 64 61 996.90 996.53 43.95 0.84 4 4 0.58 1.84 6 1.7 0.60 0.84 0.10 0.18 995.70 994.95 1.20 1.58 61 61A 996.53 991.78 19.77 24.03 0 4 0.58 1.84 6 1.4 1.24 1.76 0.06 0.11 993.35 995.58 3.18 1.20 61A 991.78 987.03 19.77 24.03 0 4 0.58 1.84 6 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td>30.08 75.90</td>							0														30.08 75.90
74 81 971.20 973.11 72.00 - 2.65 0 45 6.08 18.58 6 1 0.98 1.28 0.37 0.74 969.97 969.25 1.23 3.86 64 61 996.90 996.53 43.95 0.84 4 4 0.58 1.84 6 1.7 0.60 0.84 0.10 0.18 995.70 994.95 1.20 1.58 61 61A 996.53 991.78 19.77 24.03 0 4 0.58 1.84 6 1.4 1.24 1.76 0.06 0.11 993.35 990.58 3.18 1.20 61B 991.78 19.77 24.03 0 4 0.58 1.84 6 14 1.24 1.76 0.06 0.11 993.35 990.58 3.18 1.20 61B 61C 987.03 982.28 19.77 24.03 1 5 0.72 2.29 6 14							2														75.90 62.84
64 61 996.90 996.53 43.95 0.84 4 4 0.58 1.84 6 1.7 0.60 0.84 0.10 0.18 995.70 994.95 1.20 1.58 61 61A 996.53 991.78 19.77 24.03 0 4 0.58 1.84 6 14 1.24 1.76 0.06 0.11 993.35 990.58 3.18 1.20 61B 991.78 987.03 19.77 24.03 0 4 0.58 1.84 6 14 1.24 1.76 0.06 0.11 998.65 3.18 1.20 61B 991.78 987.03 19.77 24.03 0 4 0.58 1.84 6 14 1.24 1.76 0.06 0.11 988.60 985.83 3.18 1.20 61B 61C 987.03 982.28 19.77 24.03 1 5 0.72 2.29 6 14 1.33																					155.75
61 61A 996.53 991.78 19.77 24.03 0 4 0.58 1.84 6 14 1.24 1.76 0.06 0.11 993.35 990.58 3.18 1.20 61A 61B 991.78 987.03 19.77 24.03 0 4 0.58 1.84 6 14 1.24 1.76 0.06 0.11 993.35 990.58 3.18 1.20 61B 61C 987.03 982.28 19.77 24.03 1 5 0.72 2.29 6 14 1.24 1.76 0.06 0.11 988.60 985.83 3.18 1.20 61C 987.03 982.28 19.77 24.03 1 5 0.72 2.29 6 14 1.33 1.89 0.07 0.12 983.85 981.08 3.18 1.20 61C 63 982.28 977.55 42.67 17.95 2 2 0.29 0.93 6 <td></td> <td>51.87</td>																					51.87
61A 61B 991.78 987.03 19.77 24.03 0 4 0.58 1.84 6 14 1.24 1.76 0.06 0.11 988.60 985.83 3.18 1.20 61B 61C 987.03 982.28 19.77 24.03 1 5 0.72 2.29 6 14 1.33 1.89 0.07 0.12 983.85 981.08 3.18 1.20 61C 63 982.28 977.55 19.77 23.93 1 6 0.86 2.73 6 14 1.40 1.98 0.07 0.13 979.12 976.35 3.16 1.20 63AA 63 985.21 977.55 42.67 17.95 2 2 0.29 0.93 6 15.18 1.03 1.47 0.04 0.08 982.83 976.35 3.16 1.20 63AA 63 985.21 977.55 42.67 17.95 2 2 0.29 0																					36.78
61B 61C 987.03 982.28 19.77 24.03 1 5 0.72 2.29 6 14 1.33 1.89 0.07 0.12 983.85 981.08 3.18 1.20 61C 63 982.28 977.55 19.77 23.93 1 6 0.86 2.73 6 14 1.40 1.98 0.07 0.13 979.12 976.35 3.16 1.20 63AA 63 985.21 977.55 42.67 17.95 2 2 0.29 0.93 6 15.18 1.03 1.47 0.04 0.08 982.83 976.35 2.38 1.20 63 62 977.55 973.51 69.98 5.77 1 9 1.28 4.04 6 5.73 1.15 1.63 0.11 0.19 976.32 972.31 1.23 1.20 61 60 996.53 987.69 74.87 11.81 4 4 0.58 1.84							_									_					36.78
61C 63 982.28 977.55 19.77 23.93 1 6 0.86 2.73 6 14 1.40 1.98 0.07 0.13 979.12 976.35 3.16 1.20 63AA 63 985.21 977.55 42.67 17.95 2 2 0.29 0.93 6 15.18 1.03 1.47 0.04 0.08 982.83 976.35 2.38 1.20 63 62 977.55 973.51 69.98 5.77 1 9 1.28 4.04 6 5.73 1.15 1.63 0.11 0.19 976.32 972.31 1.23 1.20 61 60 996.53 987.69 74.87 11.81 4 4 0.58 1.84 6 11.81 1.17 1.66 0.06 0.11 995.37 986.49 1.20 1.20 59 60 996.57 987.69 62.76 14.15 4 4 0.58 1.8		_																			36.78
63AA 63 985.21 977.55 42.67 17.95 2 2 0.29 0.93 6 15.18 1.03 1.47 0.04 0.08 982.83 976.35 2.38 1.20 63 62 977.55 973.51 69.98 5.77 1 9 1.28 4.04 6 5.73 1.15 1.63 0.11 0.19 976.32 972.31 1.23 1.20 61 60 996.53 987.69 74.87 11.81 4 4 0.58 1.84 6 11.81 1.17 1.66 0.06 0.11 995.33 986.49 1.20 1.20 59 60 996.57 987.69 62.76 14.15 4 4 0.58 1.84 6 14.15 1.24 1.77 0.06 0.11 995.37 986.49 1.20 1.20 60 60A 987.69 982.96 26.51 17.84 0 8 1.14																					36.62
63 62 977.55 973.51 69.98 5.77 1 9 1.28 4.04 6 5.73 1.15 1.63 0.11 0.19 976.32 972.31 1.23 1.20 61 60 996.53 987.69 74.87 11.81 4 4 0.58 1.84 6 11.81 1.17 1.66 0.06 0.11 995.33 986.49 1.20 1.20 59 60 996.57 987.69 62.76 14.15 4 4 0.58 1.84 6 14.15 1.24 1.77 0.06 0.11 995.37 986.49 1.20 1.20 60 60A 987.69 982.96 26.51 17.84 0 8 1.14 3.60 6 8.67 1.29 1.83 0.10 0.17 984.06 981.76 3.63 1.20																					64.87
61 60 996.53 987.69 74.87 11.81 4 4 0.58 1.84 6 11.81 1.17 1.66 0.06 0.11 995.33 986.49 1.20 1.20 59 60 996.57 987.69 62.76 14.15 4 4 0.58 1.84 6 14.15 1.24 1.77 0.06 0.11 995.37 986.49 1.20 1.20 60 60A 987.69 982.96 26.51 17.84 0 8 1.14 3.60 6 8.67 1.29 1.83 0.10 0.17 984.06 981.76 3.63 1.20																					72.27
59 60 996.57 987.69 62.76 14.15 4 4 0.58 1.84 6 14.15 1.24 1.77 0.06 0.11 995.37 986.49 1.20 1.20 60 60A 987.69 982.96 26.51 17.84 0 8 1.14 3.60 6 8.67 1.29 1.83 0.10 0.17 984.06 981.76 3.63 1.20		_																			76.44
60 60A 987.69 982.96 26.51 17.84 0 8 1.14 3.60 6 8.67 1.29 1.83 0.10 0.17 984.06 981.76 3.63 1.20																					64.03
																					54.40
	60A	60B	982.96	978.24	26.51	17.80	0	8	1.14	3.60	6	8.67	1.29	1.83	0.10	0.17	979.34	977.04	3.62	1.20	54.29
60B 62 978.24 973.51 26.51 17.84 1 9 1.28 4.04 6 8.67 1.34 1.89 0.10 0.17 974.61 972.31 3.63 1.20																					54.40

Continuación

De	Α	Cotas '	Terreno		S%	No.	Casas	Q DisAc	um (lit/seg)	Diám.	S%	Vel n	n/seg.	Rel	d/D	Cota In	nvert m	Prof. P	ozo m	Vol. Excav
P.V.	P.V.	Inicio	Final	D.H. Mt	Terreno	Local	Acum.	Actual	Futuro	(pulg.)	Tubo	Actual	Futura	Actual	Futura	Inicio	Final	Inicio	Final	m3
73	73A	982.21	979.31	11.60	25.00	1	1	0.15	0.47	6	1.48	0.37	0.53	0.05	0.10	978.28	978.11	3.93	1.20	25.30
73A	73B	979.31	976.41	11.60	25.00	1	2	0.29	0.93	6	5.81	0.74	1.06	0.05	0.10	975.88	975.21	3.43	1.20	22.85
73B	62	976.41	973.51	11.60	25.00	1	3	0.43	1.39	6	12.86	1.10	1.58	0.05	0.10	973.80	972.31	2.61	1.20	18.79
62	81	973.51	973.11	96.71	0.41	Ö	21	2.92	9.08	6	1	0.80	1.10	0.25	0.46	972.28	971.31	1.23	1.80	124.42
82	81	978.59	973.11	25.22	21.73	1	1	0.15	0.47	6	12	0.72	1.11	0.03	0.06	974.94	971.91	3.65	1.20	51.95
81	72	973.11	963.17	78.43	12.67	0	67	8.89	26.84	6	7.15	2.22	3.00	0.27	0.49	967.58	961.97	5.53	1.20	224.25
84	84A	980.70	975.29	21.84	24.77	1	1	0.15	0.47	6	14.39	0.79	1.17	0.03	0.06	977.23	974.09	3.47	1.20	43.37
84A	83	975.29	969.88	21.83	24.78	2	3	0.43	1.39	6	12.86	1.10	1.58	0.05	0.10	971.49	968.68	3.80	1.20	46.36
83	72	969.88	963.17	73.00	9.19	0	3	0.43	1.39	6	9.15	0.98	1.40	0.06	0.10	968.65	961.97	1.23	1.20	75.38
63	63A	977.55	970.36	36.74	19.57	4	4	0.58	1.84	6	19.57	1.39	1.98	0.06	0.10	976.35	969.16	1.20	1.20	37.48
63A	72	970.36	963.17	36.74	19.57	2	6	0.86	2.73	6	14	1.40	1.98	0.07	0.13	967.11	961.97	3.25	1.20	69.54
72	70	963.17	963.79	73.98	- 0.84	0	76	10.02	30.12	8	1	1.11	1.47	0.32	0.60	961.94	961.20	1.23	2.59	120.10
65	66	961.97	963.23	57.98	- 2.17	5	5	0.72	2.29	6	1.41	0.60	0.84	0.12	0.21	960.77	959.95	1.20	3.28	110.33
66	67	963.23	962.74	35.99	1.36	3	8	1.14	3.60	6	1	0.61	0.85	0.16	0.28	959.92	959.56	3.31	3.18	99.27
67	68	962.74	963.85	27.97	- 3.97	0	8	1.14	3.60	6	1	0.61	0.85	0.16	0.28	959.53	959.25	3.21	4.60	92.84
63AA	63AA1	985.21	981.24	13.44	29.54	2	2	0.29	0.93	6	14	1.00	1.44	0.04	0.08	981.92	980.04	3.29	1.20	25.66
63AA1	69	981.24	977.28	13.45	29.44	0	2	0.29	0.93	6	14	1.00	1.44	0.04	0.08	977.96	976.08	3.28	1.20	25.63
69	69A	977.28	972.81	12.61	35.45	3	5	0.72	2.29	6	14	1.33	1.89	0.07	0.12	973.38	971.61	3.90	1.20	27.31
69A	69B	972.81	968.34	12.61	35.45	0	5	0.72	2.29	6	14	1.33	1.89	0.07	0.12	968.91	967.14	3.90	1.20	27.31
69B	68	968.34	963.85	12.61	35.61	0	5	0.72	2.29	6	14	1.33	1.89	0.07	0.12	964.42	962.65	3.92	1.20	27.41
68	70	963.85	963.79	74.00	0.08	0	13	1.83	5.75	6	1	0.70	0.97	0.20	0.36	959.22	958.48	4.63	5.31	312.61
	Desto.2	963.79	959.34	24.48	18.18	0	89	11.63	34.79	6	1	1.16	1.27	0.54	0.90	958.45	958.21	5.34	1.13	67.36
7A	12	998.51	996.70	27.86	6.50	3	3	0.43	1.39	6	2.27	0.60	0.86	0.08	0.14	996.13	995.50	2.38	1.20	42.42
12	11	996.70	990.06	71.21	9.32	3	6	0.86	2.73	6	9.28	1.21	1.72	0.08	0.14	995.47	988.86	1.23	1.20	73.49
9	11	992.68	990.06	83.77	3.13	6	6	0.86	2.73	6	3.13	0.83	1.17	0.11	0.18	991.48	988.86	1.20	1.20	85.52
11	13	990.06	982.54	71.45	10.52	4	16	2.24	7.01	6	10.48	1.69	2.37	0.13	0.22	988.83	981.34	1.23	1.20	73.73
9	10	992.68	984.95	66.44	11.63	2	2	0.29	0.93	6	11.63	0.94	1.34	0.05	0.08	991.48	983.75	1.20	1.20	67.68
14	10	987.69	984.95	87.53	3.13	4	4	0.58	1.84	6	2.22	0.66	0.92	0.10	0.17	985.69	983.75	2.00	1.20	119.16
10 13	13 13A	984.95	982.54 976.08	78.09 39.02	3.09 16.56	3	9 27	1.28 3.72	4.04 11.51	6	3.05 13.6	0.93 2.16	1.30	0.13 0.15	0.23	983.72	981.34	1.23 2.35	1.20 1.20	80.71 58.82
13A	15A 15	982.54 976.08	969.62	39.02	16.56	3	30	4.12	12.72	6	12.5	2.16	3.00	0.15	0.28	980.19 973.30	974.88 968.42	2.78	1.20	65.96
21 A	21	982.32	978.06	33.34	12.78	2	2	0.29	0.93	6	5.81	0.74	1.06	0.16	0.28	978.80	976.86	3.52	1.20	78.63
23	21	989.52	978.06	75.87	15.10	3	3	0.43	1.39	6	15.1	1.16	1.66	0.05	0.10	988.32	976.86	1.20	1.20	90.91
21	19	978.06	974.58	59.84	5.82	3	8	1.14	3.60	6	5.76	1.12	1.58	0.03	0.09	976.83	973.38	1.23	1.20	72.61
19	18	974.58	974.48	23.97	0.42	0	8	1.14	3.60	6	0.95	0.60	0.83	0.16	0.18	973.35	973.30	1.23	1.36	31.01
18	16	974.48	973.74	55.85	1.32	3	11	1.56	4.90	6	0.93	0.66	0.83	0.10	0.23	973.09	972.54	1.39	1.20	61.41
23AA	16	984.12	973.74	47.84	21.70	3	3	0.43	1.39	6	16	1.19	1.70	0.15	0.09	980.19	972.54	3.93	1.20	104.39
10A	16	975.58	973.74	27.74	6.63	1	1	0.15	0.47	6	1.48	0.37	0.53	0.05	0.10	972.95	972.54	2.63	1.20	45.16
16	16A	989.52	982.89	26.59	24.93	3	18	2.52	7.84	6	16	2.03	2.85	0.12	0.10	985.94	981.69	3.58	1.20	54.07
16A	16B	982.89	976.26	26.59	24.93	1	19	2.65	8.26	6	16	2.06	2.89	0.12	0.21	979.31	975.06	3.58	1.20	54.07
16B	15	976.26	969.62	26.60	24.96	1	20	2.79	8.67	6	16	2.09	2.93	0.13	0.22	972.68	968.42	3.58	1.20	53.99
15	17	969.62	968.77	15.88	5.35	1	51	6.86	20.86	6	5.15	1.83	2.49	0.26	0.47	968.39	967.57	1.23	1.20	16.39
17	Desto.3	968.77	964.00	70.00	6.81	Ö	51	6.86	20.86	6	5.05	1.82	2.48	0.26	0.47	967.54	964.01	1.23	0.00	36.44
25A	25B	990.53	986.42	11.19	36.73	1	1	0.15	0.47	6	14	0.78	1.16	0.03	0.06	986.79	985.22	3.74	1.20	23.48
25B	25C	986.42	982.31	11.19	36.73	0	1	0.15	0.47	6	14	0.78	1.16	0.03	0.06	982.68	981.11	3.74	1.20	23.48
25C	25	982.31	978.21	11.21	36.57	1	2	0.29	0.93	6	14	1.00	1.44	0.04	0.08	978.58	977.01	3.73	1.20	23.48
24	25	988.26	978.21	72.57	13.85	3	3	0.43	1.39	6	12.86	1.10	1.58	0.05	0.10	986.34	977.01	1.92	1.20	96.30
25	28	978.21	972.80	75.73	7.14	2	7	1.00	3.17	6	6.67	1.14	1.60	0.10	0.17	976.65	971.60	1.56	1.20	88.87
22A	22	988.16	986.57	14.02	11.34	1	1	0.15	0.47	6	5.79	0.60	0.85	0.04	0.07	986.18	985.37	1.98	1.20	18.96

Continuación

De	Α	Cotas	Terreno		S%	No.	Casas	Q DisAc	um (lit/seg)	Diám.	S%	Vel r	n/seg.	Rel	d/D	Cota Ir	nvert m	Prof. P	ozo m	Vol. Excav
P.V.	P.V.	Inicio	Final	D.H. Mt	Terreno	Local	Acum.	Actual	Futuro	(pulg.)	Tubo	Actual	Futura	Actual	Futura	Inicio	Final	Inicio	Final	m3
26	22	986.95	986.57	83.94	0.45	11	11	1.56	4.90	6	1	0.66	0.93	0.19	0.33	985.75	984.91	1.20	1.66	102.01
22	28	986.57	972.80	77.24	17.83	2	14	1.97	6.17	6	16	1.88	2.65	0.11	0.18	983.96	971.60	2.61	1.20	125.02
26	27	986.95	979.46	77.62	9.65	4	4	0.58	1.84	6	9.65	1.09	1.55	0.07	0.12	985.75	978.26	1.20	1.20	79.18
27	28	979.46	972.80	75.26	8.85	2	6	0.86	2.73	6	8.81	1.19	1.69	0.08	0.14	978.23	971.60	1.23	1.20	77.74
28	30	972.80	969.61	70.75	4.51	3	30	4.12	12.72	6	5.27	1.59	2.20	0.20	0.35	971.57	967.84	1.23	1.77	90.16
39	29	984.73	977.20	68.05	11.07	3	3	0.43	1.39	6	11.07	1.04	1.49	0.06	0.10	983.53	976.00	1.20	1.20	69.50
29	30	977.20	969.61	75.17	10.10	9	12	1.69	5.32	6	10.81	1.57	2.21	0.11	0.19	975.97	967.84	1.23	1.77	95.71
33	30	980.10	969.61	72.19	14.53	3	3	0.43	1.39	6	12.86	1.10	1.58	0.05	0.10	977.69	968.41	2.41	1.20	110.87
30	36	969.61	965.56	75.63	5.36	1	46	6.21	18.96	6	5.31	1.80	2.46	0.24	0.44	968.38	964.36	1.23	1.20	77.98
36	Desto.4	965.56	963.63	70.00	2.76	0	46	6.21	18.96	6	1	0.99	1.28	0.38	0.75	964.33	963.63	1.23	0.00	36.59
				7451.47		336	·		·	·	•	·	•	•	·					9262.41

TRABAJOS PRELIMINARES

	Resumen del presupuesto, del proyecto de alcantarillado sanitario Aldea San José La Sierra												
No.	Descripción	Cantidad	Unidad	P.Unitario	Totales Q.	Totales \$							
Α	TRABAJOS PRELIMINARES	1.00	global	Q28,354.41	Q28,354.41	\$3,635.18							
В	COLECTOR PRINCIPAL	7451.47	ml.	Q158.41	Q1,180,390.27	\$151,332.09							
С	POZOS DE VISITA	128.00	unidades	Q4,929.80	Q631,013.90	\$80,899.22							
D	CONEXIONES DOMICILIARES	336.00	unidades	Q543.01	Q182,452.33	\$23,391.32							
Е	HERRAMIENTA	1.00	global	Q4,820.00	Q4,820.00	\$617.95							
				SUB-TOTAL	Q2,022,210.90	\$259,257.81							
				IVA	Q242,665.31	\$31,110.94							
				TOTAL	Q2,264,876.21	\$290,368.74							
			PU =	Q303,950.26	/Kilómetro								

INTEGRACIÓN DE COSTOS POR RENGLONES DE TRABAJO, PROYECTO DE ALCANTARILLADO SANITARIO, ALDEA SAN JOSÉ LA SIERRA,MATAQUESCUINTLA, JALAPA

1 global

110	IBI BOS I REENVILVINES	1	groour		
	Descripción	Cantidad	Unidad	P.Unitario	Total
_1	Limpieza	7,451.47	ml.	Q1.00	Q7,451.47
2	Trazo y estaqueado	7,451.47	ml.	Q2.00	Q14,902.94
3	Bodega y guardianilla	1	global	Q6,000.00	Q6,000.00
		Т	otal trabajos	preliminares	Q28,354.41
				_	
CO	LECTOR PRINCIPAL	7,451.47	ml.		
No.	Descripción	Cantidad	Unidad	P. Unitario	Total
	MATERIALES				
1	Zanjeo con retro excavadora	7,451.47	ml.	Q27.30	Q203,425.13
2	Relleno y compactación	7,451.47	ml.	Q21.00	Q156,480.87
	Tubo NOVAFORT PVC 6" * 20' con enpaque de hule	1066.00	unidades	Q426.55	Q454,704.43
4	Tubo NOVAFORT PVC 8" * 20' con enpaque de hule	166.00	unidades	Q702.54	Q116,622.39
5	Tubo NOVAFORT PVC 10" * 20' con enpaque de hule	12.00	unidades	Q990.41	Q11,884.95
6	Flete de Tubería (Rastra o Tráiler)	1.00	global	Q12,000.00	Q12,000.00
			Total	de materiales	Q955,117.77
	MANO DE OBRA				
7	Nivelación, centrado y colocación tubo de 6"	1066.00	unidades	Q10.50	Q11,193.00
8	Nivelación, centrado y colocación tubo de 8"	166.00	unidades	Q15.75	Q2,614.50
9	Nivelación, centrado y colocación tubo de 10"	12.00	unidades	Q21.00	Q252.00
	Subtotal de mano de obra				Q14,059.50
	Factor de ayudante 38%				Q5,342.61
	Factor de prestaciones 65%				Q9,138.68
			Total de i	mano de obra	Q28,540.79
	Total de materiales y mano de obra :				Q983,658.56
	Utilidades 20%				Q196,731.71
		<u> </u>		TOTAL	Q1,180,390.27

POZ	ZOS DE VISITA	128.00	unidades		
No.	Descripción	Cantidad	Unidad	P.Unitario	Total
	MATERIALES				
1	Tubo NOVAFORT PVC 6" * 20' con enpaque de hule	20.00	unidades	Q426.55	Q8,531.04
2	Tubo NOVAFORT PVC 8" * 20' con enpaque de hule	1.00	unidad	Q702.54	Q702.54
3	Yee PVC de 6" * 6" NOVAFORT caída>0.7mt. c/empaque	53.00	unidades	Q158.35	Q8,392.58
4	Codo PVC de 6" * 90° NOVAFORT caída>0.7mt.c/empaque	55.00	unidades	Q98.65	Q5,425.61
5	Codo PVC de 6" * 45° NOVAFORT caída>0.7mt.c/empaque	165.00	unidades	Q90.46	Q14,925.49
6	Yee PVC de 8" * 6" NOVAFORT caída>0.7mt. con empaque	2.00	unidad	Q225.75	Q451.50
7	Cemento	1,882.84	sacos	Q43.05	Q81,056.36
8	Arena de río	136.07	mt.3	Q105.00	Q14,287.16
9	Piedrín 3/4"	78.96	mt.3	Q199.50	Q15,752.10
10	Hierro No. 4 grado 40 (armadura p/44 brocales)	637.00	varillas	Q36.75	Q23,409.75
11	Hierro No. 2 grado 40 (eslabones, armadura p/44 brocales)	135.00	varillas	Q9.45	Q1,275.75
12	Hierro No. 4 grado 40 (escalones en pozo)	216.00	varillas	Q36.75	Q7,938.00
13	Alambre de amarre	505.43	libras	Q3.68	Q1,857.45
14	Madera p/30 moldes de tapaderas y brocal	19.53	p.t.	Q3.78	Q73.82
15	Madera p/15 andamios (de 1.22 de alto) de pozos	870.00	p.t.	Q3.78	Q3,288.60
16	Ladrillo tayuyo de 6.5 cm. * 11 cm. * 7.5 cm.	116,929.12	unidades	Q1.16	Q135,053.13
17	Clavo de 3"	50.00	libras	Q3.68	Q183.75
18	Clavo de 4"	50.00	libras	Q3.68	Q183.75
			Total	de materiales	Q284,359.63
	MANO DE OBRA				
19	Excavación	1,820.00	mt.3	Q21.00	Q38,220.00
20	Armadura No. 4	5,322.72	m.l.	Q2.52	Q13,413.25
21	Armadura No. 2	842.40	m.l.	Q1.26	Q1,061.42
22	Nivelación, centrado y colocación tubo de 6"	20.80	unidades	Q10.50	Q218.40
23	Nivelación, centrado y colocación tubo de 8"	1.04	unidades	Q15.75	Q16.38
24	Colocación de accesorios PVC	286.00	unidades	Q42.00	Q12,012.00
25	Formaleteado (128 Moldes de tapaderas y 128 de brocales)	266.24	unidades	Q5.25	Q1,397.76
26	Fundición p/128 pozos (tapadera + brocal + piso +pañuelos)	133.12	pozos	Q94.50	Q12,579.84
	Desencofrado	276.89	mt.²	Q2.63	Q726.84
28	Levantado ladrillo tayuyo de punta (6.5cm.*11cm.* 23cm.)	1,085.77	mt.²	Q73.50	Q79,804.12
	Subtotal de mano de obra				Q79,645.89
	Factor de ayudante 38%				Q30,265.44
	Factor de prestaciones 65%				Q51,769.83
	1		Total de 1	nano de obra	Q241,485.29
	Total de materiales y mano de obra :				Q525,844.91
	Utilidades 20%				Q105,168.98
				TOTAL	Q631,013.90

CO	NEXIONES DOMICILIARES	336.00	unidades]	
No.	Descripción	Cantidad	Unidad	P. Unitario	Total
	MATERIALES				
1	Tubo de cemento de 12" de diámetro	336.00	unidades	Q50.40	Q16,934.40
2	Tubo PVC de 4" * 20' NOVAFORT	275.00	unidades	Q180.38	Q49,604.36
3	Codo PVC 4" * 90° NOVAFORT	260.00	unidades	Q44.49	Q11,567.01
4	Yee pvc de 6" * 4" NOVAFORT	279.00	unidades	Q134.59	Q37,550.33
5	Yee pvc de 8" * 4" NOVAFORT	36.00	unidades	Q255.21	Q9,187.67
9	Cemento	112.90	sacos	Q43.05	Q4,860.17
10	Arena de río	6.34	mt.3	Q105.00	Q665.28
11	Piedrín de 3/4"	6.34	mt.3	Q199.50	Q1,264.03
12	Hierro de No. 3 Grado 40 de 6 mt. de largo	168.00	varillas	Q19.95	Q3,351.60
13	Hierro de No. 2 Grado 40 de 6 mt. de largo	120.00	varillas	Q10.50	Q1,260.00
14	Alambre de amarre	83.02	libras	Q3.68	Q305.08
15	Clavo de 3"	25.00	libras	Q3.68	Q91.88
			Total	de materiales	Q136,641.81
	MANO DE OBRA				
16	Armadura No. 3	1008.00	ml.	Q1.89	Q1,905.12
17	Armadura No. 2	720.00	ml.	Q1.26	Q907.20
18	Formaleteado	78.60	ml.	Q6.30	Q495.18
19	Fundición (piso + colocación candela y fundición de pañuelo	336.00	unidades	Q12.00	Q4,032.00
20	Desencofrado	78.60	ml.	Q3.15	Q247.59
	Subtotal de mano de obra				Q7,587.09
	Factor de ayudante 38%				Q2,883.09
	Factor de prestaciones 65%				Q4,931.61
	Total de mano de obra				Q15,401.79
	Total de materiales y mano de obra :				Q152,043.61
	Utilidades 20%				Q30,408.72
				TOTAL	Q182,452.33

6.4.4. Cronograma de ejecución, proyecto de drenajes

Tabla XIV

6.4.5. Propuesta de planta de tratamiento para la Aldea San José La Sierra

Para realizar esta propuesta, se realizó una investigación del tipo de plantas de tratamiento que se fabrican y venden actualmente en Guatemala, y se recomienda instalar plantas del tipo RAFA que a continuación se describen, en los cuatro puntos de desfogue indicados en planos.

Sistemas de Tratamiento de Aguas Durman Esquivel S.A. ofrece una nueva alternativa para plantas de tratamiento de agua residual, se trata de un sistema de tratamiento del tipo RAFA (UASB en inglés), reactor anaerobio de flujo ascendente. Lo novedoso de esta opción consiste en que la unidades de tratamiento que componen el sistema se prefabrican en planta a base de PVC, lo que permite obtener un producto de fácil instalación y transporte, pues la obra gris se reduce a losas de fondo y sedimentación de las diferentes unidades de tratamiento, por lo que una obra puede concluirse en un lapso muy corto de tiempo.

Una de las ventajas que el fabricante señala acerca de este sistema es que el reactor principal de tratamiento no requiere de energía eléctrica para su funcionamiento, lo que redunda en costos muy bajos de operación. El tratamiento se basa en una compleja interrelación bacteriana de tipo anaerobio que se produce en el reactor y que permite en forma natural que se produzca una degradación y estabilización de los residuos líquidos influentes, que en última instancia se transforman en agua y gases. Los gases del reactor son atrapados y conducidos en forma conveniente, lo que evita la producción de olores desagradables en el sistema.

Tanto el reactor principal, como las demás unidades de tratamiento, son producidos para que su instalación y transporte sean factibles con poca mano de obra. Estas unidades se fabrican en gran parte con PVC, por lo que su peso permite que sean muy maniobrables.

Las unidades de tratamiento que requieren por lo general estos sistemas son:

- Unidad de rejillas (mampostería y hierro para rejas, separadoras de basuras).
- Reactor tipo RAFA (UASB).
- Lechos de secado o patio de secado de lodos.
- Unidad de trasiego de lodos o sistema de transporte hacia el patio de secado.

Dependiendo del caudal se pueden agregar más reactores tipo UASB y conectarlos en serie o en paralelo. En lugares donde se cuente con fluido eléctrico puede agregarse una pequeña bomba que retorne los lixiviados de los lechos de secado al reactor anaerobio para que sean tratados en esta unidad.

Funcionamiento y esquemas de la Planta tipo RAFA

El proceso de tratamiento de la presente planta es fundamentalmente del tipo Anaeróbico. Los componentes del sistema mismo son: Unidad de Rejillas, Reactor Anaeróbico de Flujo Ascendente (UASB sistema holandés), Biofiltro de Acabado, Lechos de Secado, Retorno de Lixiviados.

Para este caso el Reactor Principal de Tratamiento Anaeróbico no requiere de energía eléctrica para su funcionamiento, lo que redunda en costos muy bajos de operación.

Se podría decir que los complejos procesos bacterianos que se dan dentro del reactor, en ausencia de oxígeno libre, permiten una digestión de muy alto grado, mediante la estratificación bacteriana, haciendo que la estabilización de los residuos se lleve a cabo en forma natural transformando finalmente la materia orgánica que ha ingresado al mismo en lodos, gases como metano, dióxido de carbono, gases sulfurosos y agua.

Por su diseño, los gases son conducidos convenientemente hacia la cámara de recolección de dónde en el presente diseño por su pequeña cantidad, son dispuestos mediante una tubería en una zona elevada.

También puede decirse que al tratarse de aguas del tipo doméstico, la relativa poca carga de ellas y el balance del sistema no es gran generador de gases de la familia de los sulfuros, dándose por tanto, poco o ningún olor proveniente de este tipo de digestión.

A continuación se presentan ventajas, características y el proceso del uso de este tipo de plata de tratamiento:

Las ventajas de la digestión anaeróbica en comparación con los métodos de tratamiento aeróbico, para el tratamiento de aguas residuales son:

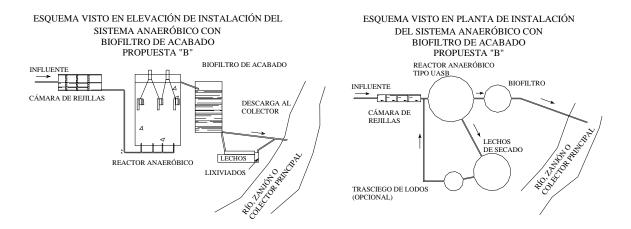
- Se requiere menor cantidad de energía, además de producción de biogás, el cual representa un magnífico combustible.
- Se produce una menor cantidad de exceso de lodos, el cual además queda estabilizado.
- Si a este sistema se le agrega tratamiento posterior de tipo aeróbico, se llega entonces a tratamientos excelentes y para lo cual se utilizará solo una fracción de la energía que requieren los sistemas aeróbicos propiamente dichos.

Las características del presente diseño son:

- No se produce recirculación de lodo o agitación mecánica.
- En lo más alto del reactor se produce separación entre gases, líquidos y sólidos.

La biomasa por el concepto del flujo ascendente, forma flóculos de colonias de bacterias que se transforman al sedimentarse a su vez en una capa de lodo granular.

Sobre la capa de lodos floculados se crea un espacio de sedimentación, por el cual se previene la pérdida del lodo.


- En cuanto a la temperatura, el nivel de trabajo corresponde a especies de microorganismos del rango mesofílico que trabajan muy normalmente entre 20 y 42 grados centígrados.
- La altura de la lámina líquida del reactor es igual o mayor a los 4.00 metros.

Proceso de la planta de tratamiento propuesta

- El efluente del sistema tratado en el sistema anaeróbico y con un 80% de remoción, es enviado al Biofiltro de Acabado, que es una estructura con digestión aeróbica que da un mayor grado de purificación al agua con el fin de hacer que la misma salga en condiciones más aptas hacia el cuerpo receptor.
- Luego este proceso es de refinamiento ya que las aguas negras salen del Reactor UAB con un contenido de DBO del orden de los 47 mg./lt. que es menor que los 50 mg./lt. de la normativa, por lo que el proceso es de refinamiento.
 - De aquí el agua se enviará al cuerpo receptor. Cuando se requiere limpiar el Biofiltro, el sistema se hace lavar a presión para desprender las paredes inestables de la biomasa propia del filtro, hacia los lechos del secado.

- Los lodos que se producen en el reactor anaeróbico son trasegados periódicamente hacia los lechos de secado dándose esta operación en intervalos mensuales y una vez que la masa de los mismos ocupe el volumen de diseño del UASB.
- Los lixiviados, producto del desecado pueden disponerse en pozos de absorción o bien retornarse mediante bombeo al reactor principal.

Figura 5. Esquemas de Planta Tipo RAFA

6.4.6. Impacto ambiental

La comunidad de la Aldea San José La Sierra, no cuenta con un sistema de drenajes y para este proyecto se hace necesario recomendar la instalación de plantas de tratamiento previo a lo cuatro desfogues, localizados en los sectores más bajos de esta comunidad. Por lo que se puede apreciar, entre los principales impactos negativos que produce el no tener plantas de tratamiento unidos a sistemas de drenajes están: la contaminación del suelo y la contaminación de las aguas subterráneas, lo cual se describe a continuación.

6.4.7. Efectos negativos de no instalar plantas de tratamiento

6.4.7.1. Contaminación del suelo

Los residuos de tipo doméstico pueden penetrar en el suelo y contaminarlo a través de fugas de los depósitos o tanques, los derrames y las descargas ilegales. Los terrenos de relleno sanitario, incluso los construidos con las más modernas técnicas, pueden contaminar las aguas subterráneas cuando los productos de la lixiviación se filtran hacia las capas interiores del suelo.

Con una concentración suficientemente alta, los microorganismos del suelo perecen, volviéndolo estéril, lo cual a su vez mata a la vegetación.

La contaminación del suelo también puede penetrar en las aguas subterráneas, y ser ingerida de manera directa por la fauna silvestre o por los seres humanos.

Así mismo, las precipitaciones entran en contacto con el suelo originando escurrimientos que se filtran a las aguas subterráneas o se vierten en los sistemas acuíferos de superficie.

6.4.7.2. Contaminación de las aguas subterráneas

Éstas suelen contaminarse por resultado directo de la contaminación del suelo, por lo que los acuíferos siempre se encuentran bajo riesgo en el suelo y debido a esto el suelo actúa como fuente de contaminación de las aguas superficiales a través de la lixiviación.

6.4.8. Efectos ambientales de las aguas residuales municipales

Las aguas residuales municipales son las que se desechan de los hogares, edificios públicos, establecimientos comerciales, sumideros para aguas pluviales y algunas industrias que desaguan en los sistemas de alcantarillados municipales.

Los efectos dependen de las cantidades que se descarguen de tres contaminantes: los sedimentos, el exceso de nutrientes y la materia orgánica. Además de que las aguas residuales municipales producen efectos estéticamente indeseables como la alteración del color del agua, olor, espuma y nata superficial.

Los sedimentos, incluidos los suelos, reducen la profundidad a la que penetra la luz del sol en el agua, lo cual disminuye la fotosíntesis de las plantas acuáticas, obstaculiza la captura de presas a los depredadores acuáticos que se guían por la vista, obstruye o daña las branquias de los peces y restringe la sobre vivencia de la crías.

Adicionalmente, el sedimento depositado en aguas receptoras que se mueven con lentitud puede aumentar la turbiedad y asfixiar a los organismos acuáticos que viven en el fondo además de destruir los bancos de crustáceos y las fuentes de alimentos de los seres acuáticos.

6.4.8.1. Efectos negativos de los sistemas sépticos

Los sistemas sépticos se usan con más frecuencia en zonas rurales, donde el agua subterránea es una de las principales fuentes de abastecimiento para beber, pues el efluente séptico sigue el camino del declive, que es paralelo a la inclinación del terreno y se dirige hacia zonas más bajas.

En consecuencia los pozos de agua localizados aguas abajo tienden a contaminarse.

6.4.8.2. Efectos positivos que produciría instalar una planta de tratamiento

6.4.8.2.1. Menor producción de lodos

Se produce una menor cantidad de exceso de lodos, que al descargarlos quedan estabilizados, reduciendo su turbiedad y por consiguiente se obtiene agua residual con mayor claridad, sin natas ni espumas.

6.4.8.2.2. Reducción de la contaminación del suelo

Al construirse un sistema de drenajes e instalar una planta de tratamiento, se evitaría que muchas de las residencias en la Aldea San José La Sierra viertan sus aguas negras a la calle y que los residuos de tipo doméstico y por consiguiente la lixiviación que éstos producen, vuelvan al suelo estéril.

6.4.8.2.3. Menor contaminación de las aguas subterráneas

Una planta de tratamiento tendría efluentes procesados de mejor calidad que se descargarían en el río que recibe las descargas del colector municipal; evitando en gran parte que microorganismos y líquidos producto de la lixiviación penetren y se filtren en las capas interiores del suelo.

Aunque los sistemas sépticos constituyen un medio eficaz de tratar las aguas residuales domésticas en lugar de origen, siempre que a éstos se les de un mantenimiento adecuado; éstos constituyen una de las fuentes principales de contaminación de las aguas subterráneas; al integrar todas las aguas residuales de la Aldea San José La Sierra y tratarlas en conjunto con una planta de tratamiento.

7. OPERACIÓN Y MANTENIMIENTO EN PROYECTO DE DRENAJE

7.1. Obras de arte

Dentro de las obras de arte que componen el proyecto de alcantarillado sanitario de Aldea San José La Sierra, y que requerirán de mantenimiento están: los pozos de visita, tubería PVC de varios diámetros, y la planta de tratamiento de aguas negras.

7.1.1. Inspecciones y mantenimiento a pozos de visita

Estas estructuras poseen dimensiones que permiten el ingreso de una persona para realizar trabajos de limpieza e inspecciones que pueden ayudar al retiro de materiales que obstruyan el flujo de aguas negras en el alcantarillado sanitario.

Las tapaderas de pozos y candelas deben ser inspeccionadas periódicamente y realizar cambios para que no ocasionen accidentes con el paso de peatones y daños a vehículos.

El deterioro de tapaderas provoca filtraciones de agua superficial o de lluvia a los pozos y ello puede acarrear sólidos y éstos pueden provocar taponamientos y obstrucciones en el alcantarillado principal.

Para evitar esto se debe revisar que las tapaderas estén bien instaladas y si es necesario considerar el reemplazo de las mismas, así como revisar que no exista desprendimiento del repello interior.

7.1.2. Elementos que no deben arrojarse en un sistema de drenaje sanitario:

- Metales: varillas, latas de aluminio, hojalatas, etc.
- Plásticos: bolsas, envases y otros.
- Cartones, químicos y tóxicos.
- Pañales desechables y toallas sanitarias
- Agua de lluvia.

7.2. Tubería

Esta posee características que le permiten tener una deformación aceptable en su sección sin que la misma se fracture. Para evitar el reemplazo o colapso de una pieza o tramos de tubería, debe tenerse especial cuidado en la instalación, siguiendo especificaciones sobre compactación y control de deflexiones, para ello debe conocerse el tipo de suelo que cubrirá la tubería, ya que de acuerdo a sus propiedades y calidad, éste absorberá cierta cantidad de la carga transmitida por el tubo.

Por lo tanto, la clase de suelo que se utilice para encamado, soporte lateral y relleno es fundamental en el comportamiento de la tubería.

8. RIESGO Y VULNERABILIDAD

Riesgo es la posibilidad de sufrir daño debido a un peligro. Peligro es una sustancia o acción que puede causar daño, enfermedad, pérdida económica o daño ambiental. La mayoría de los peligros provienen de la exposición a varios factores en el ambiente dentro de los cuales están los siguientes:

Peligros físicos: dentro de los cuales están el ruido, incendios, inundaciones, sequías, tornados, huracanes, derrumbes sismos y volcánicos.

Peligros biológicos: estos son causados por bacterias y virus que causan enfermedades, polen y parásitos. Las enfermedades humanas pueden ser clasificadas de manera general, como transmisibles y no transmisibles.

Una enfermedad transmisible es causada por organismos vivos como las bacterias, virus y gusanos parásitos y pueden ser diseminadas de una persona a otra por el aire, el agua, los alimentos, líquidos corporales y en algunos casos insectos y otros transmisores no humanos. Una enfermedad no transmisible no es causada por organismos vivos y no se transmite de una persona a otra.

Amenaza Existente

En general, entre los riesgos ecológicos y de salud de mayor magnitud que afectan a la población y que constituyen una amenaza existente pueden mencionarse los problemas ecológicos de mediano riesgo como la deposición ácida, plaguicidas, sustancias químicas tóxicas transportadas por el aire, nutrientes y turbidez tóxica en aguas superficiales.

También puede mencionarse los problemas de salud de alto riesgo como la contaminación del aire interior, exposición de trabajadores a sustancias químicas industriales o utilizadas en granjas agrícolas o ganaderas, contaminantes en las aguas para beber, residuos de plaguicidas en los alimentos o productos de consumo.

Amenazas existentes en Aldea San José La Sierra

Para la aldea San José la Sierra las amenazas existentes que se pueden identificar debido a su ubicación geográfica son de tres tipos: natural, sísmico y por inundaciones.

Las amenazas de tipo natural y de inundaciones están asociadas a las fuertes lluvias que se producen en la época de invierno, las cuales acarrean sedimentos sólidos por la diferentes quebradas; y que se debe a la erosión de los cerros vecinos que rodean la aldea . Las Amenazas de tipo sísmico que pueden ocasionar desprendimientos severos en las faldas de los cerros, pues la altitud a la que se localiza la aldea San José la Sierra, hace a ésta, una zona templada de condiciones muy húmedas.

Tipos de vulnerabilidad existentes de la población de la Aldea San José La Sierra

Existen varios tipos de vulnerabilidad presentes en la población a que se refiere el presente estudio y que se consideran como poblaciones afectadas directas, entre las cuales podemos citar:

1. La vulnerabilidad social: que se relaciona con el grado de preparación y la actitud ante el desarrollo de un posible evento por parte de los pobladores.

- 2. La vulnerabilidad física: que se relaciona con la infraestructura existente y la ubicación de las poblaciones.
- 3. La vulnerabilidad económica: que es inherente a la condición socioeconómica y los recursos económicos destinados a la prevención y a la recuperación posterior a un evento de desastre.

9. MEDIDAS DE MITIGACIÓN

De las medidas de prevención y mitigación que se necesitaría implementar, en caso de que ocurriese un evento de desastre están las siguientes:

- a. Las de tipo preventivo: éstas son las más factibles de realizar por parte de las autoridades nacionales y locales, entre las que se mencionan:
 - Regulación del uso del suelo: se debe evitar el aumento de las actividades humanas en la zona de mayor impacto y debe ser regulado el uso del suelo en las zonas próximas con el fin de reducir las prácticas inadecuadas que generan altas tasas de escorrentía superficial y erosión.
 - La reforestación, el cambio del uso del suelo y la variación en las prácticas agrícolas pueden fortalecer a las capas superiores de la zona con tendencia a deslizarse, disminuyendo el impacto o a mediano plazo.
- Las de tipo correctivo: son sumamente costosas y requieren de ayuda externa, como por ejemplo
 - Obras civiles: esta se refiere principalmente a la infraestructura que servirá de soporte y de esta forma generar barreras artificiales para evitar o disminuir el daño directo al ser humano. Algunas de estas son diques o muros, construcción de canales de bifurcación para el transporte del agua excesiva, construcción de embalses.

 Medidas de Control: una masa de suelos y roca deslizándose o en proceso de deslizamiento posee un comportamiento mecánico que obedece a leyes físicas, como tal se deben monitorear los asentamientos de las masas de suelo y su movimiento horizontal con el fin de determinar la dirección y magnitud del movimiento. teniendo puntos fijos de control.

CONCLUSIONES

- 1. El corto tiempo programado de ejecución del proyecto de drenajes en Aldea San José La Sierra, se debe en su mayoría al tipo de tubería PVC propuesto, el cual es fabricado bajo la norma ASTM F-949, pues no se necesita de la aplicación de cemento solvente para la unión e instalación de accesorios, ya que, este material está provisto de empaque de hule y campana en sus extremos, en comparación con otros tipos de tubería que son más pesados y costosos.
- 2. Los resultados de los exámenes de calidad de agua, revelan que éstas, desde el punto de vista bacteriológico, no son potables, esto obliga a que se proporcione desinfección del agua del tipo de inyección directa de cloro, para el cual se propone el dosificador DSA-45 a efecto de garantizar la potabilidad de la misma.
- Es urgente la construcción del sistema de alcantarillado sanitario, tomando en cuenta que la tasa de mortalidad infantil por infecciones gastrointestinales es del 8.52 %.
- 4. La vida útil de los pozos de visita profundos con caída mayor a 0.70 mt. depende en gran parte de la instalación adicional que se haga para evitar que éstos se destruyan por la presión y la velocidad del agua, especialmente si ésta transporta sólidos.
- 5. La comunidad de la Aldea San José La Sierra, consta de un total de 348 familias las cuales serán beneficiadas directamente con la ejecución de los proyectos.

RECOMENDACIONES

- Implicar a la comunidad beneficiada en todo el proceso relativo a la realización de los proyectos de agua y drenaje, a través del comité. Esta participación comunitaria permite que los miembros de la aldea conozcan el proyecto y se apropien de él desde un inicio.
- 2. Capacitar a nivel técnico y práctico a los operadores y miembros del comité, invitándolos a participar en reuniones y clases magistrales que pueden ser impartidas por el personal de la oficina municipal de planificación, con el objeto de cubrir las acciones planteadas en el programa de mantenimiento de la tabla VIII y lo referente al uso de los dosificadores de cloro.
- 3. Efectuar un programa de reforestación, tanto en la comunidad como en las proximidades de los nacimientos de agua, a fin de garantizar una fuente perdurable para el sistema de abastecimiento de agua potable, para ello el Instituto Nacional de Bosques (INAB) aconseja que dicha reforestación sea de la misma especie donde están ubicados los nacimientos de agua.
- 4. Crear los mecanismos necesarios para obtener el financiamiento para la ejecución del proyecto por cualquier vía legal que no sea del cobro directo a los vecinos, pues, la mayoría de familias son de escasos recursos económicos.

BIBLIOGRAFÍA

- Orozco Castillo, Silvio Antonio. Proyecto de introducción de agua potable y saneamiento básico, Caserío Nueva Independencia, San Pablo, departamento San Marcos. Tesis Ing. Civil. Guatemala Universidad de San Carlos de Guatemala, Facultad de Ingeniería, 1997.
- 2. Del Cid Pérez, Gonzalo. Proyecto diseño de ampliación de la red de alcantarillado sanitario, Aldea Estancia de la Virgen, San Cristóbal Acasaguastlán, departamento de El Progreso. Tesis Ing. Civil. Guatemala, Universidad de San Carlos de Guatemala, Facultad de Ingeniería, 1993.
- 3. Streeter, Víctor L. **Mecánica de los Fluidos.** 4ta. Edición. México: Editorial McGraw-Hill. 1975. 747pp.
- 4. Alfaro Véliz, Luis Gregorio. Planificación y Diseño de la Red de Agua Potable, para la Aldea Los Cerritos, del municipio de Sansare, El Progreso. Trabajo de graduación Ingeniería Civil, Guatemala, universidad de San Carlos de Guatemala, Facultad de Ingeniería, 2000.
- 5. Carlos Antonio Burrión Chicol. **Mejoramiento del sistema de distribución de agua potable del municipio de santa Apolonia, departamento de Chimaltenango.** Trabajo de graduación Ingeniería Civil. Guatemala, Universidad de San Carlos de Guatemala, Facultad de Ingeniería, 2004.
- 6. Cossio, Fabián Yánez. **Normas de diseño de plantas de tratamiento de aguas residuales.** Organización Panamericana de la Salud programa de desarrollo tecnológico en el campo del tratamiento de aguas residuales en Guatemala, 1993.
- 7. Dieguez González, Eduardo Gaspar. Estudio y diseño del Sistema de Agua Potable para La Aldea Tapalapa del Municipio de San Carlos Alzatate, Jalapa. Trabajo de graduación Ingeniería Civil, Guatemala, universidad de San Carlos de Guatemala, Facultad de Ingeniería, 1994.

ANEXOS

•	Levantamiento topográficos: libretas topográficas
•	Especificaciones técnicas del dosificador de líquidos DSA e informes de laboratorio de los análisis de agua.
•	Juego de planos de ambos proyectos:
	Planta General

Planta y Perfil

Detalles

Libreta topográfica línea de distribución Aldea San José La Sierra

Tabla XV

Libre	ta top	ogran	ca iine	a de	aistric	bucton	Aidea	San Jose	e La S	ierra					1 :	abla XV
EST.	PO	HIL	OS	A.V.	A	AZIMU	T	Cota	Altura		COTA	Elevación	Coorde	nadas	Coorde	enadas
		sup.	medio	Gra	Gra	Mins	Seg	Est	Instru.	Distancia	P.O.	m	Parci	iales	Tot	ales
	2	sup.			Ora	111110	505	List								
	pv2										1000.00		0.00	0.00	0.00	0.00
pv2	74	1.38	1.30	99	0	0	0	1000.00	1.540	15.61	997.77	997.77	0.00	15.61	0.00	15.61
pv2	75	1.18	1.00	98	188	25	12	1000.00	1.540	35.30	995.58	995.58	-5.17	-34.92	-5.17	-34.92
pv2	1	0.94	0.90	86	75	24	36	1000.00	1.550	7.96	1001.21	1,001.21	7.70	2.01	7.70	2.01
pv2	2	1.31	1.21	91	92	0	0	1000.00	1.550	19.99	999.99	999.99	19.98	-0.70	19.98	-0.70
pv2	3	1.38	1.30	93	208	11	30	1000.00	1.550	15.96	999.41	999.41	-7.54	-14.06	-7.54	-14.06
pv2	5	1.78	1.60	94	186	10	36	1000.00	1.550	35.82	997.44	997.44	-3.85	-35.62	-3.85	-35.62
pv2	7	1.60	1.40	94	184	17	42	1000.00	1.550	39.81	997.37	997.37	-2.98	-39.69	-2.98	-39.69
-	6	1.60	1.40	93	174	43	36	1000.00		39.89	998.06	998.06	3.67	-39.72	3.67	-39.72
pv2	_								1.550							
pv2	pv3	1.65	1.30	95	180	0	0	1000.00	1.550	69.47	994.17	994.17	0.00	-69.47	0.00	-69.47
pv3	9	0.71	0.60	88	102	1	0	994.17	1.540	20.97	995.84	995.84	20.51	-4.37	20.51	-73.84
pv3	10	1.48	1.30	85	96	27	54	994.17	1.540	35.73	997.54	997.54	35.50	-4.02	35.50	-73.49
pv3	11	1.10	0.90	84	94	54	12	994.17	1.540	39.56	998.97	998.97	39.42	-3.38	39.42	-72.85
pv3	12	1.80	1.50	86	92	24	12	994.17	1.540	59.71	998.39	998.39	59.66	-2.50	59.66	-71.97
pv3	13	2.90	2.60	83	88	25	48	994.17	1.540	58.12	1000.25	1,000.25	58.10	1.59	58.10	-67.88
pv3	72	1.82	1.41	85	89	44	18	994.17	1.540	82.37	1001.51	1,001.51	82.37	0.38	82.37	-69.09
		1.70	1.60	99		9		994.17		19.51					-19.50	-70.10
pv3	15				268		18		1.540		991.02	991.02	-19.50	-0.63		
pv3	23	1.40	1.20	99	260	47	30	994.17	1.540	39.02	988.33	988.33	-38.52	-6.24	-38.52	-75.71
pv3	24	1.20	0.90	98	261	16	34	994.17	1.540	57.86	986.68	986.68	-57.19	-8.78	-57.19	-78.24
pv3	25	0.77	0.40	98	261	22	48	994.17	1.540	72.57	985.11	985.11	-71.75	-10.88	-71.75	-80.34
pv3	16	0.90	0.70	94	182	8	48	994.17	1.540	39.75	991.88	991.88	-1.49	-39.73	-1.49	-109.19
pv3	17	0.80	0.60	98	261	22	48	994.17	1.540	39.23	989.60	989.60	-38.78	-5.88	-38.78	-75.35
pv3	18	1.82	1.50	92	181	45	42	994.17	1.540	63.92	991.98	991.98	-1.97	-63.89	-1.97	-133.36
pv3	19	2.80	2.40	92	180	43	0	994.17	1.540	79.90	990.52	990.52	-1.00	-79.90	-1.00	-149.36
pv3	8	1.66	1.50	91	168	49	54	994.17	1.540	30.99	993.67	993.67	6.00	-30.40	6.00	-99.87
_				91	173	28		994.17								
pv3	22	2.50	2.30				36		1.540	39.97	992.37	992.37	4.54	-39.71	4.54	-109.18
pv3	pv20	1.21	0.90	97	267	22	30	994.17	1.540	61.08	987.31	987.31	-61.02	-2.80	-61.02	-72.27
pv3	pv4	2.31	1.90	85	89	53	30	994.17	1.540	81.38	1000.93	1,000.93	81.38	0.15	81.38	-69.31
pv3	pv5	1.76	1.30	92	177	53	36	994.17	1.540	91.89	991.20	991.20	3.38	-91.83	3.38	-161.29
pv5	34a	1.16	0.90	87	80	35	12	991.20	1.540	51.86	994.56	994.56	51.16	8.48	54.54	-152.81
pv5	21	0.90	0.80	89	72	9	48	991.20	1.540	19.99	992.29	992.29	19.03	6.12	22.41	-155.17
pv5	26	1.15	1.00	94	185	12	42	991.20	1.540	29.85	989.66	989.66	-2.71	-29.73	0.67	-191.02
pv5	27	1.00	0.80	93	183	53	54	991.20	1.540	39.89	989.85	989.85	-2.71	-39.80	0.67	-201.09
_	28	1.66	1.40	93	181	43	18	991.20	1.540	51.86	988.63	988.63	-1.56	-51.83	1.82	-213.13
pv5																
pv5	29	1.16	0.80	93	181	45	42		1.540	71.80	988.18	988.18	-2.21	-71.77	1.17	-233.06
pv5	31	1.08	0.90	93	170	54	18	991.20	1.540	35.90	989.96	989.96	5.68	-35.45	9.05	-196.74
pv5	32	1.16	1.00	94	171	11	24	991.20	1.540	31.84	989.52	989.52	4.88	-31.47	8.26	-192.76
pv5	33	0.66	0.60	90	94	8	48	991.20	1.540	12.00	992.04	992.04	11.97	-0.87	15.35	-162.16
pv5	pv7	2.02	1.60	87	81	56	12	991.20	1.540	83.77	995.53	995.53	82.94	11.75	86.32	-149.54
pv5	pv6	1.22	0.80	93	178	3	0	991.20	1.540	83.77	987.55	987.55	2.85	-83.72	6.23	-245.02
pv6	30	0.88	0.80	91	66	40	6	987.55	1.540	16.00	988.01	988.01	14.69	6.33	20.92	-238.68
pv6	42	0.40	0.30	92	76	0	6	987.55	1.540	19.98	988.10	988.10	19.38	4.83	25.61	-240.18
_	43	0.40	0.50	88	78	52	42	987.55	1.540	43.95	990.13	990.13	43.12	8.48	49.35	-240.18
pv6																
pv6	44	2.24	1.90	87	78	50	24	987.55	1.540	67.87	990.16	990.16	66.59	13.14	72.82	-231.88
pv6	45	1.56	1.20	89	83	17	30	987.55	1.540	71.98	989.15	989.15	71.49	8.41	77.71	-236.61
pv6	46	1.54	1.20	89	83	36	36	987.55	1.540	67.98	989.08	989.08	67.56	7.57	73.79	-237.45
pv6	47	2.06	1.90	87	84	32	24	987.55	1.540	31.91	988.87	988.87	31.77	3.04	38.00	-241.98
pv6	41b	0.98	0.90	92	160	43	48	987.55	1.540	15.98	987.64	987.64	5.27	-15.09	11.50	-260.10
pv6	41a	1.14	1.00	92	169	33	6	987.55	1.540	27.97	987.12	987.12	5.07	-27.50	11.30	-272.52
pv6	40	1.00	0.80	91	171	32	36	987.55	1.540	39.99	987.60	987.60	5.88	-39.55	12.11	-284.57
pv6	34	1.46	1.40	92	198	2	30	987.55	1.540	11.98	987.17	987.17	-3.71	-11.39	2.52	-256.40
_		1.38	1.40	91	198	54	54	987.55	1.540	16.00	987.51	987.51	-3.71	-11.59	2.65	-260.61
pv6	35															
pv6	36	1.32	1.20	92	188	20	12	987.55	1.540	23.97	987.06	987.06	-3.48	-23.72	2.75	-268.73
pv6	37	0.74	0.50	92	183	41	30	987.55	1.540	47.94	986.92	986.92	-3.09	-47.84	3.14	-292.86
pv6	39	3.54	3.30	88	173	36	54	987.55	1.540	47.94	987.47	987.47	5.33	-47.64	11.56	-292.66
pv5	pv7	2.02	1.60	87	81	56	12		1.54	83.77	995.534	995.5337	82.94174	11.7502	86.32	-149.54
pv7	70	0.92	0.80	84	1	15	48	995.53	1.540	23.74	998.77	998.77	0.52	23.73	86.84	-125.81
pv7	71	1.76	1.50	85	0	4	42	995.53	1.540	51.61	1000.09	1,000.09	0.07	51.60	86.39	-97.94
pv7	72	1.27	0.90	84	358	12	30	995.53	1.540	73.19	1003.87	1,003.87	-2.29	73.16	84.03	-76.39
pv7	73	1.66	1.50	84	354	7	6	995.53	1.540	31.65	998.90	998.90	-3.24	31.48	83.08	-118.06
_						25										
pv7	69	0.66	0.60	91	76	35	36	995.53	1.540	12.00	996.26	996.26	11.67	2.78	97.99	-146.76
pv7	68	0.48	0.40	90	78	20	0	995.53	1.540	16.00	996.67	996.67	15.67	3.24	101.99	-146.31
pv7	67	0.86	0.70	87	81	10	42	995.53	1.540	31.91	998.05	998.05	31.53	4.89	117.85	-144.65
pv7	66	1.00	0.80	87	82	11	18	995.53	1.540	39.89	998.36	998.36	39.52	5.42	125.84	-144.12

EST.	uación PO	HIL	OS.	A.V.		AZIMU	т	Cota	Altura			Elevación	Coorde	nadae	Coord	anadas
ESI.	FU	sup.	medio	Gra	Gra	Mins	Seg	Est	Instru.	Distancia	COTA P.O.	m	Parci			tales
pv7	62	0.92	0.70	88	88	8	30	995.53	1.540	43.95	997.91	997.91	43.92	1.43	130.24	-148.12
pv7	pvt	1.12	0.80	88	84	51	30	995.53	1.540	63.92	998.51	998.51	63.66	5.73	149.98	-143.82
pvt	65	1.40	1.30	95	89	42	54	998.51	1.540	19.85	997.01	997.01	19.85	0.10	169.83	-143.72
pvt pvt	63 64	1.98	1.90	94 93	101 91	6 44	12 18	998.51 998.51	1.540	15.92 23.93	997.03 996.99	997.03 996.99	15.62 23.92	-3.07 -0.73	165.61 173.91	-146.88 -144.54
pvt	pv12	1.54	1.40	94	98	59	42	998.51	1.540	27.86	996.70	996.70	27.52	-4.36	177.51	-144.34
pv12	pv11	1.76	1.40	96	183	56	42	996.70	1.540	71.21	989.35	989.35	-4.90	-71.04	172.61	-219.22
pv11	76	0.66	0.60	92	73	16	30	989.35	1.540	11.99	989.87	989.87	11.48	3.45	184.08	-215.77
pv11	79	1.76	1.60	95	84	1	42	989.35	1.540	31.76	986.51	986.51	31.58	3.30	204.19	-215.91
pv11	pv9	3.02	2.60	87	260	4	24	989.35	1.540	83.77	992.68	992.68	-82.52	-14.44	90.09	-233.66
pv11 pv11	78 80	1.36	1.30	94 94	176 180	48 7	18 54	989.35 989.35	1.540	11.94 51.75	988.76 985.87	988.76 985.87	0.67 -0.12	-11.92 -51.75	173.27 172.49	-231.14 -270.96
pv11	81	0.84	0.60	95	183	16	24	989.35	1.540	47.64	986.13	986.13	-0.12	-47.56	169.89	-270.90
pv11	pv13	2.46	2.10	95	182	4	30	989.35	1.540	71.45	982.54	982.54	-2.59	-71.41	170.02	-290.62
pv13	82	3.89	3.60	89	43	40	36	982.54	1.540	57.98	981.49	981.49	40.04	41.94	210.06	-248.69
pv13	84	1.32	1.20	78	265	31	6	982.54	1.540	22.96	987.76	987.76	-22.89	-1.79	147.13	-292.42
pv13	83	1.46	1.40	77	255	36	42	982.54	1.540	11.39	985.31	985.31	-11.04	-2.83	158.98	-293.45
pv13	85	1.65	1.60	100	176	32	6	982.54	1.540	9.70	980.77	980.77	0.59	-9.68	170.61	-300.30
pv13 pv13	86 pv15	1.74 2.50	1.60 2.10	100	178 179	28 18	30	982.54 982.54	1.540	27.16 78.04	977.69 969.62	977.69 969.62	0.73 0.94	-27.15 -78.04	170.74 170.96	-317.77 -368.66
pv15	87	0.76	0.70	85	340	57	24	969.62	1.540	11.91	971.50	971.50	-3.89	11.26	167.08	-357.40
pv15	88	0.74	0.70	88	15	10	24	969.62	1.540	7.99	970.74	970.74	2.09	7.71	173.05	-360.95
pv15	92	2.74	2.60	85	253	23	24	969.62	1.540	27.79	970.99	970.99	-26.63	-7.94	144.33	-376.60
pv15	89	1.92	1.80	86	267	5	48	969.62	1.540	23.88	971.03	971.03	-23.85	-1.21	147.11	-369.87
pv15	90	2.45	2.10	86	262	28	36	969.62	1.540	69.66	973.93	973.93	-69.06	-9.12	101.90	-377.78
pv15	91	2.75	2.40	87	258	11	0	969.62	1.540	69.81	972.42	972.42	-68.33	-14.30	102.63	-382.95
pv15 pv15	pv16 93	2.00	1.60 0.60	87 105	259 193	40 57	42 42	969.62 969.62	1.540	79.78 3.73	973.74 969.56	973.74 969.56	-78.49 -0.90	-14.29 -3.62	92.47 170.06	-382.95 -372.28
pv15	pv17	1.08	1.00	95	81	33	48	969.62	1.540	15.88	968.77	968.77	15.71	2.33	186.67	-366.33
	pv9	3.02	2.60	87	260	4	24		1.54	83.77	992.683	992.6829	-82.5158	-14.441	90.09	-233.66
pv9	55	0.62	0.50	89	351	13	36	992.68	1.540	23.99	994.14	994.14	-3.66	23.71	86.43	-209.95
pv9	49	1.08	0.90	88	0	52	0	992.68	1.540	35.96	994.58	994.58	0.54	35.95	90.63	-197.71
pv9	50	1.92	1.70	86	0	50	18	992.68	1.540	43.79	995.58	995.58	0.64	43.78	90.73	-189.88
pv9 pv9	51 54	1.86	1.59	87 87	356	42 24	6 54	992.68 992.68	1.540	53.85 53.85	995.46 995.75	995.46 995.75	0.66 -3.37	53.85 53.75	90.75 86.72	-179.81 -179.91
pv9	52	1.56	1.20	87	0	7	42	992.68	1.540	71.80	996.79	996.79	0.16	71.80	90.25	-161.85
pv9	53	1.66	1.30	87	357	3	12	992.68	1.540	71.80	996.69	996.69	-3.69	71.71	86.40	-161.95
pv9	48	2.27	2.20	85	69	17	54	992.68	1.540	13.89	993.24	993.24	13.00	4.91	103.09	-228.75
pv9	58	0.90	0.70	90	82	59	36	992.68	1.540	40.00	993.52	993.52	39.70	4.88	129.79	-228.78
pv9	62	0.64	0.40	90	78	54	48	992.68	1.540	48.00	993.40	993.40	47.10	9.23	137.19	-224.43
pv9 pv9	59 60	1.50 2.34	1.20 2.00	91 91	83 81	17 53	54	992.68 992.68	1.540	59.98 67.98	991.98 991.04	991.98 991.04	59.57 67.30	7.00 9.60	149.66 157.39	-226.66 -224.06
pv9	61	3.36	3.00	91	79	23	36	992.68	1.540	71.98	989.97	989.97	70.75	13.25	160.84	-220.41
pv9		3.12	2.70	91	80	16	48	992.68		83.97	990.06		82.77	14.18	172.86	
pv9	56	0.94	0.90	94	162	21	12	992.68	1.540	7.95	992.70	992.70	2.41	-7.58	92.50	
pv9	57	0.49	0.30	97	176	36	18	992.68	1.540	37.44	989.33	989.33	2.22	-37.37	92.31	-271.03
pv9		0.78	0.60	94	178	32	54	992.68	1.540	35.82	991.12	991.12	0.91	-35.81	91.00	
-	pv10	1.36	1.20	102	177	11	36	991.12	1.540	30.62	984.95	984.95	1.50	-30.58	92.50	
pv10 pv10	94 97	0.26	0.20	86 93	95 261	54 3	48 48	984.95 984.95	1.540	11.94 19.95	987.13 984.74	987.13 984.74	11.88 -19.70	-1.23 -3.10	104.38 72.79	
pv10	96	1.00	0.80	91	261	33	36	984.95	1.540	39.99	984.99	984.99	-39.55	-5.87	52.94	
pv10	95	1.46	1.20	90	259	48	54	984.95	1.540	52.00	985.29	985.29	-51.18	-9.20	41.32	-309.25
pv10	98	1.16	0.90	91	255	0	42	984.95	1.540	51.98	984.68	984.68	-50.22	-13.44	42.28	-313.49
pv10	99	2.54	2.26	99	183	39	12	984.95	1.540	54.63	975.58	975.58	-3.48	-54.52	89.02	-354.57
pv10	•	1.42	1.00		180	25	42	984.95	1.540	82.37	973.91	973.91	-0.62	-82.37	91.88	-382.42
pv16	100	1.75	1.50 0.80	78 77	263 262	58	12	973.91 973.91	1.540	47.84 41.77	984.12 984.30	984.12 984.30	-47.49 -41.46	-5.79 -5.12	44.39 50.42	-388.21 -387.54
pv16 pv16	101	1.02	0.80	78	258	14	48	973.91	1.540	42.10	983.60	983.60	-41.40	-8.58	50.42	-391.00
pv16	104	2.62	2.40	86	173	45	30	973.91	1.540	43.79	976.12	976.12	4.76	-43.53	96.64	
pv16	105	1.46	1.30	85	181	5	12	973.91	1.540	31.76	976.93	976.93	-0.60	-31.75	91.28	-414.17

23.97 20.33 974.58 968.99 974.58 968.99 -18.00 2.00

-15.83 -20.23 75.58 77.58 -454.08 -474.31

974.48 1.540 974.58 1.540

 pv18
 pv19
 0.72
 0.60
 92

 pv19
 106
 1.41
 1.30
 106

228 174 30 48

	maci	

EST.	PO PO	HIL	OS	A.V.	A	AZIMU	T	Cota	Altura		gom.	Elevación	Coorde	nadas	Coorde	enadas
		sup.	medio	Gra	Gra	Mins	Seg	Est	Instru.	Distancia	COTA P.O.	m	Parci	iales	Tot	ales
pv19	107	0.88	0.80	90	265	27	0	974.58	1.540	16.00	975.32	975.32	-15.95	-1.27	59.63	-455.35
pv19	108	1.06	0.80	89	259	29	36	974.58	1.540	51.98	976.23	976.23	-51.11	-9.48	24.46	-463.56
pv19 pv21	pv21 110	1.50	1.20	87 88	258 189	12 29	42	974.58 978.06	1.540	59.84 39.95	978.06 979.69	978.06 979.69	-58.57 -6.59	-12.24 -39.40	17.01 10.42	-466.31 -505.72
pv21	109	1.27	1.20	81	261	3	48	978.06	1.540	13.66	980.56	980.56	-13.49	-39.40	3.51	-468.43
pv21	pv22	2.74	2.40	82	266	28	36	978.06	1.540	66.68	986.57	986.57	-66.56	-4.10	-49.55	-470.41
pv21	111	0.89	0.70	78	355	58	24	978.06	1.540	36.36	986.63	986.63	-2.55	36.27	14.45	-430.04
pv21	112	1.09	0.90	77	350	54	18	978.06	1.540	36.08	987.03	987.03	-5.70	35.62	11.30	-430.69
pv21	ptv	1.64	1.40	78	353	38	0	978.06	1.540	45.93	987.96	987.96	-5.09	45.64	11.91	-420.67
ptv pv23	pv23 103	0.65 1.27	0.50	89 90	357 187	34 36	36 18	987.96 989.52	1.540	29.99 14.00	989.52 989.86	989.52 989.86	-1.27 -1.85	29.96 -13.88	10.64 8.79	-390.71 -404.58
pv23	119	1.03	0.80	90	354	11	48	989.52	1.540	46.00	990.26	990.26	-4.65	45.76	5.99	-344.94
pv23	117	1.56	1.30	88	2	43	42	989.52	1.540	51.94	991.58	991.58	2.47	51.88	13.12	-338.83
pv23	118	1.83	1.60	88	3	31	30	989.52	1.540	45.94	991.07	991.07	2.82	45.86	13.47	-344.85
pv23	pv20	1.64	1.30	88	358	35	30	989.52	1.540	67.92	992.14	992.14	-1.67	67.90	8.98	-322.81
pv23	pv24	3.12	2.80	90	256	26	24	989.52	1.540	64.00	988.26	988.26	-62.22	-15.01	-51.57	-405.71
pv24 pv24	120 121	1.48	1.20 0.80	87 88	357 351	20	6	988.26 988.26	1.540	55.85 49.94	991.53 990.75	991.53 990.75	-2.86 -7.52	55.77 49.37	-54.43 -59.09	-349.94 -356.34
pv24	122	0.68	0.60	90	342	13	54	988.26	1.540	16.00	989.20	989.20	-4.88	15.24	-56.45	-390.48
pv24	113	0.97	0.70	91	175	50	0	988.26	1.540	53.98	988.16	988.16	3.92	-53.84	-47.65	-459.55
pv24	pv22	1.14	0.80	90	177	56	30	988.26	1.540	68.00	989.00	989.00	2.44	-67.96	-49.13	-473.67
pv24	123	1.00	0.90	103	252	41	12	988.26	1.540	18.99	984.52	984.52	-18.13	-5.65	-69.70	-411.36
pv24	127	1.07	0.90	101	253	50	30	988.26	1.540	32.76	982.54	982.54	-31.47	-9.12	-83.04	-414.83
pv24	124	0.96 1.77	0.80	101 98	253 256	54 24	48 6	988.26 988.26	1.540	30.83 72.57	983.01	983.01 978.21	-29.63 -70.53	-8.54 -17.06	-81.20 -122.10	-414.26
pv24 pv24	pv25 pv22	1.14	0.80		177	56	30	988.264	1.54	68	978.21 989.004	989.0039	2.442354	-67.956	-49.13	-422.77 -473.67
pv24	128	1.38	1.30	91	188	33	54	989.00	1.540	16.00	988.96	988.96	-2.38	-15.82	-51.51	-489.48
pv22	116	1.06	1.00	91	173	12	18	989.00	1.540	12.00	989.33	989.33	1.42	-11.91	-47.71	-485.58
pv22	129	1.72	1.60	88	174	52	0	989.00	1.540	23.97	989.78	989.78	2.14	-23.87	-46.98	-497.54
pv22	130	1.06	0.90	91	177	43	18	989.00	1.540	31.99	989.09	989.09	1.27	-31.96	-47.86	-505.63
pv22	136a	0.90	0.70	91	184	36	48	989.00	1.540	39.99	989.15	989.15	-3.22	-39.86	-52.35	-513.53
pv22 pv22	131 132	0.82 1.20	0.60	92 92	178 178	7	12	989.00 989.00	1.540	43.95 59.93	988.41 987.55	988.41 987.55	1.51 1.97	-43.92 -59.89	-47.62 -47.16	-517.59 -533.56
pv22	133	1.83	1.50	90	260	47	30	989.00	1.540	65.40	989.04	989.04	-64.56	-10.47	-113.69	-484.13
pv22	134	1.90	1.40	91	179	36	36	989.00	1.540	99.97	987.40	987.40	0.68	-99.97	-48.45	-573.64
pv22	139	2.24	1.80	92	182	7	24	989.00	1.540	87.89	985.67	985.67	-3.26	-87.83	-52.39	-561.50
pv22	138	1.70	1.30	91	182	27	6	989.00	1.540	79.95	987.15	987.15	-3.42	-79.87	-52.55	-553.54
pv22	137	1.52	1.20	91	183	21	12	989.00	1.540	63.98	988.23	988.23	-3.74	-63.87	-52.87	-537.54
pv22 pv22	136b 126	1.46 1.76	1.20	91 91	183 265	40	48 48	989.00 989.00	1.540	51.98 12.00	988.44 988.63	988.44 988.63	-3.34 -11.96	-51.88 -0.90	-52.47 -61.09	-525.55 -474.57
pv22	ptv	1.77	1.70	92	253	10	0	989.00	1.540	13.98	988.36	988.36	-13.38	-4.05	-62.51	-477.72
pv22	pv26	1.82	1.40	91	180	36	42	989.00	1.540	83.94	986.95	986.95	-0.90	-83.94	-50.02	-557.61
pv26	135	2.94	3.05	98	179	57	48	986.95	1.540	-21.57	988.47	988.47	-0.01	21.57	-50.04	-536.03
pv26	140	0.94	0.80	94	261	20	54	986.95	1.540	27.86	985.74	985.74	-27.55	-4.19	-77.57	-561.80
pv26	141	1.63	1.40	93	259	29	58	986.95	1.540	45.87	984.68	984.68	-45.11 75.05	-8.36	-95.13	-565.97
pv26	pv27	3.99	3.60	94 88	258	31	54 6	986.95 979.46	1.540	77.62 23.97	979.46 980.54	979.46 980.54	-75.95 1.05	-16.03	-125.97	-573.64 -549.69
pv27	142 ptv	3.79	3.60	90	1	5	0	979.46		38.00	980.54 977.40	980.54 977.40	0.72	23.95 37.99	-124.92 -125.25	-549.69 -535.64
ptv	pv28	1.09	0.90	98	4	35	54	977.40		37.26	972.80	972.80	2.99	37.14	-122.27	-498.50
pv28	143	0.55	0.50	85	178	45	54	972.80		9.92	974.71	974.71	0.21	-9.92	-122.05	-508.42
pv28	144	1.09	1.00	96	251	19	18	972.80		17.80	971.47	971.47	-16.87	-5.70		-504.20
pv28	145	0.66	0.60	96	264	0	36	972.80		11.87	972.49	972.49	-11.80	-1.24	-134.07	-499.74
pv28 pv28	146 ptv	1.44 0.86	1.30 0.60	97 88	252	15 18	54 24	972.80 972.80		27.58 51.94	969.65 975.55	969.65 975.55	-26.27 0.28	-8.40 51.94	-148.54 -121.99	-506.90 -446.56
pv28 ptv	149	1.02	1.00	99	116	33	18	975.55	1.540	31.94	975.48	975.48	3.49	-1.74	-121.99	-448.31
ptv	pv25	0.70	0.60	76	356	52	6	975.55		18.83	981.19	981.19	-1.03	18.80		-427.76
pv25	150	1.38	1.20	75	358	17	54	981.19		33.59	990.53	990.53	-1.00	33.57	-124.01	-394.19
pv25	151	1.34	1.20	74	353	0	24	981.19		25.87	988.95	988.95	-3.15	25.68	-126.17	-402.08
pv25	152	0.90	0.80	74	174	52	0	981.19		18.48	987.23	987.23	1.65	-18.41	-121.36	-446.17
pv25	153	0.55	0.50	80	351	33	12	981.19	1.540	9.70	983.94	983.94	-1.42	9.59	-124.44	-418.17
pv25 pv25	ptv pv29	1.08	0.90	75 94	355 258	50 14	36	981.19 981.19	1.540	33.59 67.67	990.83 977.20	990.83 977.20	-2.44 -66.25	33.50 -13.79	-125.46 -189.27	-394.26 -441.55
pv29	154	1.37	1.20	74	2	15	12	977.20		31.42	986.55	986.55	1.24	31.39	-188.03	-410.16

~		. ,	
('or	ntını	nación	ı

EST.	PO	HIL	OS	A.V.	I	AZIMU	T	Cota	Altura		COTA	Elevación	Coorde	enadas	Coord	enadas
		sup.	medio	Gra	Gra	Mins	Seg	Est	Instru.	Distancia	COTA P.O.	m	Parc	iales	Tot	ales
pv29	153	1.56	1.50	74	9	33	30	977.20	1.540	11.09	980.42	980.42	1.84	10.93	-187.43	-430.61
pv29	156	1.66	1.50	72	355	26	6	977.20	1.540	28.94	986.64	986.64	-2.30	28.85	-191.57	-412.70
pv29	ptv	2.48	2.30	72	359	18	42	977.20	1.540	32.56	987.02	987.02	-0.39	32.56	-189.66	-408.99
pv29 pv29	158 157	1.56 1.08	1.50	103	176 190	6 2	6 42	977.20 977.20	1.540	11.39 15.06	974.61 973.98	974.61 973.98	-2.63	-11.37 -14.83	-188.49 -191.89	-452.92 -456.38
pv29	159	2.88	2.60	98	185	34	24	977.20	1.540	54.92	968.42	968.42	-5.33	-54.66	-194.60	-496.20
pv29	pv30	2.18	1.80	96	182	38	0	977.20	1.540	75.17	969.04	969.04	-3.45	-75.09	-192.72	-516.64
pv29	ptv	0.70	0.60	90	256	6	12	977.20	1.540	20.00	978.14	978.14	-19.41	-4.80	-208.68	-446.35
ptv	160	1.50	1.40	102	181	26	48	978.14	1.540	19.14	974.21	974.21	-0.48	-19.13	-209.16	-465.48
ptv	161 162	3.70	3.50	94 94	201	43 13	18 18	978.14 978.14	1.540	39.81 39.81	973.39 973.79	973.39 973.79	-14.73 -16.33	-36.98 -36.30	-223.41 -225.01	-483.33 -482.65
ptv ptv	163	3.66	3.40	92	204	47	24	978.14	1.540	51.94	974.46	974.46	-21.78	-47.15	-230.46	-493.50
ptv	pv31	0.96	0.70	88	255	31	24	978.14		51.94	980.79	980.79	-50.29	-12.98	-258.97	-459.34
pv31	pv32	3.15	2.80	83	357	39	42	980.79	1.540	68.96	988.00	988.00	-2.81	68.90	-261.78	-390.43
pv31	165	1.78	1.50	82	0	50	0	980.79	1.540	54.92	988.55	988.55	0.80	54.91	-258.17	-404.43
pv31	164	1.49	1.40	90	171	44	12	980.79	1.540	18.00	980.93	980.93	2.59	-17.81	-256.38	-477.15
pv31 pv31	168 167	0.67 1.46	0.50	90 89	183 178	9 51	48	980.79 980.79	1.540	34.00 51.98	981.83 982.04	981.83 982.04	-1.88 1.04	-33.95 -51.97	-260.84 -257.93	-493.28 -511.31
pv31	169	1.63	1.30	90	178	58	42	980.79	1.540	66.00	981.03	981.03	1.18	-65.99	-257.79	-525.33
pv31	pv33	1.28	0.90	91	181	4	18	980.79	1.540	75.98	980.10	980.10	-1.42	-75.96	-260.39	-535.30
pv33	170	2.86	2.60	83	262	52	42	980.10	1.540	51.23	985.33	985.33	-50.83	-6.35	-311.22	-541.65
pv33	171	0.83	0.80	111	105	46	0	980.10	1.540	5.23	978.84	978.84	5.03	-1.42	-255.36	-536.72
pv33	172	0.75	0.60	108	77	56	54	980.10	1.540	27.14	972.23	972.23	26.54	5.67	-233.85	-529.63
pv33	187	1.78 0.97	1.50 0.60	102 99	74	53 37	24 36	980.10 980.10	1.540	53.58	968.76	968.76 969.61	51.73	13.97 17.92	-208.66 -190.46	-521.33
pv33 pv33	pv30 173	0.97	0.50	93	75 174	53	12	980.10	1.540	72.19 21.94	969.61 980.00	980.00	69.93 1.96	-21.85	-258.43	-517.38 -557.15
pv33	174	0.45	0.30	93	175	52	54	980.10	1.540	29.92	979.78	979.78	2.15	-29.84	-258.24	-565.14
pv33	175	0.94	0.70	91	183	2	6	980.10	1.540	47.99	980.11	980.11	-2.54	-47.92	-262.93	-583.22
pv33	176	0.95	0.60	91	182	27	12	980.10	1.540	69.98	979.82	979.82	-3.00	-69.91	-263.39	-605.21
pv33	pv34	0.98	0.60	91	181	27	12	980.10	1.540	75.98	979.72	979.72	-1.93	-75.95	-262.32	-611.25
pv34	177	0.74	0.70	91	251	32	30	979.72 979.72	1.540	8.00	980.42	980.42	-7.59	-2.53	-269.90	-613.78
pv34 pv34	178 180	1.20	1.00	86 87	263 261	41	54 6	979.72	1.540	39.81 53.85	983.04 983.08	983.04 983.08	-39.56 -53.20	-4.37 -8.38	-301.88 -315.51	-615.62 -619.63
pv34	179	0.65	0.50	86	258	19	30	979.72	1.540	29.85	982.85	982.85	-29.24	-6.04	-291.55	-617.29
pv34	181	1.00	0.90	88	187	19	36	979.72	1.540	19.98	981.06	981.06	-2.55	-19.81	-264.86	-631.06
pv34	182	0.99	0.80	88	185	48	38	979.72	1.540	37.95	981.78	981.78	-3.84	-37.76	-266.16	-649.01
pv34	183	1.50	1.20	88	183	37	36	979.72	1.540	59.93	982.15	982.15	-3.79	-59.81	-266.11	-671.06
pv34	pv35	1.95	1.60	89 91	181	52	6	979.72	1.540	69.98	980.88	980.88	-2.28	-69.94	-264.60	-681.19
pv35 pv35	184 185	0.88	0.80	91	262 262	52 23	48	980.88 980.88	1.540	16.00 27.99	981.34 981.33	981.34 981.33	-15.87 -27.75	-1.99 -3.70	-280.47 -292.34	-683.18 -684.90
pv35	186	1.26	1.00	90	259	49	24	980.88	1.540	52.00	981.42	981.42	-51.18	-9.19	-315.78	-690.38
pv35	ptv	1.14	0.90	90	257	38	30	980.88	1.540	48.00	981.52	981.52	-46.89	-10.27	-311.48	-691.47
	pv30	0.97	0.60	99	75	37.00	36.00	980.10	1.54	72.19	969.61	969.61	69.93	17.92	-190.46	-517.38
pv30	187	0.49	0.40	94	263	15	30	969.61	1.540	17.91	969.50	969.50	-17.79	-2.10	-208.25	-519.48
pv30	147	0.97	0.90	89	190	12	54	969.61	1.540	14.00	970.50	970.50	2.00	13.85	-188.46	-503.53
pv30	188 pv36	1.79 1.68	1.70	94 94	180 174	46 37	24 42	969.61 969.61	1.540	17.91 75.63	968.20 964.56	968.20 964.56	-0.24 7.08	-17.91 -75.30	-190.70 -183.38	-535.29 -592.68
Pv30	pv56	1.22	0.80	93	178	37	0	991.204			987.553	987.553	2.850	-83.721	6.23	-245.02
pv6	pv14	1.80	1.40	90	178	18	24			80.00	987.69	987.69	2.36	-79.97	8.59	-324.98
pv14	38	0.79	0.70	92	278	8	36	987.69	1.540	17.98	987.91	987.91	-17.80	2.55	-9.20	-322.43
pv14	189	0.60	0.50	92	275	39	30	987.69		19.98	988.04	988.04	-19.88	1.97	-11.29	-323.01
pv14	190	1.01	0.80	91	265	17	24	987.69		41.99	987.70	987.70	-41.85	-3.45	-33.25	-328.43
pv14 pv14	191 pv37	1.21	0.90	262 92	258	18	24 12	987.69 987.69		60.80 69.91	996.88 985.89	996.88 985.89	8.78 -68.39	60.16 -14.51	17.38 -59.80	-264.82 -339.49
pv14 pv37	192	1.45	1.40	91	279	0	0	985.89		10.00	985.86	985.86	-9.87	1.56	-69.67	-337.93
pv37	193	1.61	1.50	91	264	32	36	985.89		21.99	985.55	985.55	-21.89	-2.09	-81.69	-341.58
pv37	194	1.45	1.20	91	261	51	6	985.89		49.98	985.36	985.36	-49.48	-7.08	-109.28	-346.58
pv37	195	1.58	1.30	92	259	25	18	985.89		55.93	984.18	984.18	-54.98	-10.27	-114.78	-349.76
pv37	196	1.14	0.80	93	259	3	36	985.89		67.81	983.08	983.08	-66.58	-12.87	-126.38	-352.36
pv37	197 198	1.14	0.80	91	252	53	48 12	985.89 985.89		67.98 43.95	985.45	985.45	-64.97 41.90	-19.99	-124.77	-359.49
pv37 pv37	198	1.42	1.20	92 90	252 247	26 58	30	985.89	1.540		984.70 986.13	984.70 986.13	-41.90 -31.52	-13.26 -12.75	-101.70 -91.32	-352.75 -352.24
pv37	pv38	1.58	1.20	91	255	58	54	985.89	1.540		984.91	984.91	-73.71	-12.73		-357.90
P131	r.50	1.00	1.20	/1		20	J T	, 55.67	1.0 10	, 5.70	/51./1	/51./1	, 5., 1	10.10	100.01	227.70

	าและ	

EST.	PO PO	HIL	OS	A.V.	I	AZIMU	Т	Cota	Altura	n	COTA	Elevación	Coorde	nadas	Coorde	enadas
		sup.	medio	Gra	Gra	Mins	Seg	Est	Instru.	Distancia	COTA P.O.	m	Parci	iales	Tota	ales
pv38	200	0.57	0.50	95	278	54	42	984.91	1.540	13.89	984.73	984.73	-13.73	2.15	-147.24	-355.74
pv38	201	1.44	1.30	92	262	25	12	984.91	1.540	27.97	984.17	984.17	-27.72	-3.69	-161.24	-361.59
pv38	202	1.24	1.00	91	260	46	18	984.91	1.540	47.99	984.61	984.61	-47.36	-7.70	-180.88	-365.59
pv38	203	1.65	1.40	91 91	250	28 24	30	984.91	1.540	49.98	984.17 984.55	984.17 984.55	-47.11	-16.71 -11.96	-180.62	-374.60
pv38 pv38	204	1.47	1.30	91	249 246	57	18 42	984.91 984.91	1.540	33.99 23.99	984.33	984.33	-31.82 -22.08	-9.39	-165.33 -155.59	-369.85 -367.29
pv38	206	1.10	1.00	91	243	48	30	984.91	1.540	19.99	985.10	985.10	-17.94	-8.82	-151.45	-366.72
pv38	ptv	2.02	1.90	93	346	45	18	984.91	1.540	23.93	983.29	983.29	-5.48	23.30	-139.00	-334.60
pv38	pv39	0.92	0.60	91	255	27	12	984.91	1.540	63.98	984.73	984.73	-61.93	-16.07	-195.44	-373.97
pv39	ptv	2.04	1.90	102	343	55	36	984.73	1.540	26.79	978.67	978.67	-7.42	25.74	-202.86	-348.22
pv39	207	0.95	0.90	94	278	15	0	984.73	1.540	9.95	984.67	984.67	-9.85	1.43	-205.29	-372.54
pv39	208 209	0.79	0.60 1.40	92 91	263 261	18 22	18 6	984.73 984.73	1.540	37.95 43.99	984.34 984.10	984.34 984.10	-37.69 -43.49	-4.42 -6.60	-233.14 -238.93	-378.39 -380.57
pv39	210	1.02	1.70	91	260	37	6	984.73	1.540	57.98	983.56	983.56	-57.21	-9.45	-252.65	-383.42
pv39	213	1.45	1.20	91	251	48	12	984.73	1.540	49.98	984.20	984.20	-47.49	-15.61	-242.93	-389.58
pv39	212	0.55	0.40	93	250	28	42	984.73	1.540	29.92	984.30	984.30	-28.20	-10.00	-223.64	-383.96
pv39	211	0.97	0.90	93	237	38	24	984.73	1.540	13.96	984.64	984.64	-11.79	-7.47	-207.24	-381.44
pv39	pv32	1.55	1.20	92	256	28	30	984.73		69.91	982.63	982.63	-67.98	-16.35	-263.42	-390.32
pv32	ptv	3.77	3.60	94	343	3	24	982.63	1.540	33.83	978.20	978.20	-9.86	32.37	-273.28	-357.95
pv32	pv40	1.66	1.50	93	265	55	12	982.63	1.540	31.91	980.99	980.99	-31.83	-2.27	-295.25	-392.59
pv32	pv41 166	0.98	0.80	94 83	244 80	46 48	18 24	982.63 980.86	1.540	35.82 17.73	980.86 983.68	980.86 983.68	-32.41 17.50	-15.27 2.83	-295.83 -278.32	-405.59 -402.75
pv41 pv41	220	1.24	1.20	89	122	59	0	980.86	1.540	8.00	981.34	981.34	6.71	-4.35	-278.32	-402.73
pv41	119	0.85	0.80	92	169	55	30	980.86	1.540	9.99	981.25	981.25	1.75	-9.83	-294.08	-415.42
pv41	214	1.02	1.00	96	246	28	36	980.86		3.96	980.99	980.99	-3.63	-1.58	-299.45	-407.17
pv41	215	1.45	1.30	92	221	47	30	980.86	1.540	29.96	980.06	980.06	-19.97	-22.34	-315.80	-427.93
pv41	216	0.75	0.50	93	213	37	36	980.86	1.540	49.86	979.29	979.29	-27.61	-41.52	-323.44	-447.11
pv41	217	1.27	0.90	92	210	53	54	980.86	1.540	73.91	978.92	978.92	-37.95	-63.42	-333.78	-469.01
pv41	218	1.12	0.90	92	204	30	18	980.86	1.540	43.95	979.97	979.97	-18.23	-39.99	-314.05	-445.58
pv41	pv42	1.05	0.70	92 94	207	10	42	980.86	1.540	69.91	979.26 979.17	979.26	-31.93	-62.20	-327.76	-467.78 -479.70
pv42 pv42	221	0.86	0.80	93	176 186	41 55	48 54	979.26 979.26	1.540	11.94 27.92	979.17	979.17 978.74	-3.37	-11.92 -27.72	-327.07 -331.13	-479.70 -495.50
pv42	223	1.63	1.50	93	201	16	0	979.26	1.540	25.93	977.94	977.94	-9.40	-24.16	-337.17	-491.95
pv42	224	1.72	1.50	92	197	0	30	979.26	1.540	43.95	977.77	977.77	-12.85	-42.02	-340.62	-509.81
pv42	pv43	1.80	1.50	91	190	58	54	979.26	1.540	59.98	978.25	978.25	-11.43	-58.88	-339.19	-526.67
pv43	225	0.83	0.80	99	335	52	24	978.25	1.540	5.85	978.07	978.07	-2.39	5.34	-341.58	-521.32
pv43	pv44	1.11	1.00	94	152	40	18	978.25	1.540	21.89	977.26	977.26	10.05	-19.45	-329.14	-546.12
pv44	pv45	1.61	1.40	95	206	16	42	977.26	1.540	41.68	973.76	973.76	-18.45	-37.37	-347.59	-583.49
pv45	226	0.53	0.50	98 98	340	21	36	973.76	1.540	5.88	973.97	973.97	-1.98	5.54	-349.57	-577.95
pv45 pv45	227 pv46	0.74	0.70	95	210 192	26 13	48 54	973.76 973.76	1.540	7.85 37.71	973.49 971.40	973.49 971.40	-3.98 -7.99	-6.76 -36.86	-351.57 -355.58	-590.25 -620.34
pv45	228	0.79	0.80	82	131	0	6	971.40	1.540	7.85	973.24	973.24	5.92	-5.15	-349.66	-625.49
F	pv45	1.61	1.40	95	206	16.00	42.00	977.26	1.54	41.68	973.76	973.76	-18.45	-37.37	-347.59	-583.49
pv45	pv47	0.57	0.40	97	220	3	42	973.76	1.540	33.50	970.78	970.78	-21.56	-25.64	-369.15	-609.12
pv47	pv48	0.79	0.60	93	173	23	12	970.78	1.540	37.90	969.74	969.74	4.36	-37.64	-364.78	-646.77
	pv49	1.62	1.40	92	154	38	0	969.74	1.540	43.95	968.34	968.34	18.83	-39.71	-345.96	-686.48
pv49	pv50	1.92	1.60	93	217	32	36	968.34		63.82	964.94	964.94	-38.89	-50.61	-384.85	-737.08
pv49 pv49	230	0.62	0.60	94	22	57	6	968.34		3.98	969.00	969.00	1.55	3.67	-344.40	-682.81 -709.58
pv49	231 pv50	0.55 1.92	1.60	96 93	218	51 32.00	12 36.00	968.34 968.34	1.540	29.67 63.82	966.36 964.94	966.36 964.94	-18.61 -38.89	-23.11 -50.61	-364.57 -384.85	-709.38
pv50	232	1.75	1.50	94	280	50	48	964.94		49.76	961.50	961.50	-48.87	9.36	-433.72	-727.72
pv50	pv51	1.99	1.60	93	270	56	0	964.94		77.79	960.80	960.80	-77.78	1.27	-462.62	-735.82
pv51	233	0.96	0.90	93	227	5	0	960.80		11.97	960.81	960.81	-8.76	-8.15	-471.39	-743.97
pv51	234	0.41	0.30	100	20	42	48	960.80		21.34	958.28	958.28	7.55	19.96	-455.08	-715.86
pv51	pv52	0.95	0.70	96	27	10	30	960.80		49.45	956.44	956.44	22.59	43.99	-440.04	-691.82
2.5	pv20	1.21	0.90	97	267	22.00	30.00	994.17	1.54	61.08	992.14	987.31	-1.67	67.90	-61.02	-72.27
pv20	236	0.55	0.40	97	223	25	36	992.14		29.55	989.65	989.65	-20.32	-21.46	-81.33	-93.73
pv20 pv20	220 pv53	1.44	1.20 0.70	87 86	214 248	11 6	36 18	992.14 992.14		47.87 65.68	994.98 997.57	994.98 997.57	-26.90 -60.94	-39.59 -24.49	-87.92 -121.96	-111.86 -96.76
pv20	238	0.96	0.70	95	250	15	6	992.14		31.76	997.57	997.57	-29.89	-24.49	-121.96	-96.76
pv53	237	1.31	1.30	99	6	37	48	997.57		1.95	997.50	997.50	0.23	1.94	-121.73	-94.82
pv53	239	1.75	1.60	91	259	49	6	997.57		29.99	996.98	996.98	-29.52	-5.30	-151.48	-102.06
pv53		0.98	0.70	94	256	15	0	997.57		55.73	994.51	994.51	-54.13	-13.25	-176.09	-110.00

EST.	uación PO	HIL	OS	A.V.	A	AZIMU	T	Cota	Altura			Elevación	Coorde	nadas	Coorde	enadas
		sup.	medio	Gra	Gra	Mins	Seg	Est	Instru.	Distancia	COTA P.O.	m	Parci	ales		ales
pv55	240	0.61	0.50	80	346	24	36	994.51	1.540	21.34	999.31	999.31	-5.01	20.74	-181.10	-89.26
pv55	241	1.60	1.40	81	351	5	48	994.51	1.540	39.02	1000.83	1,000.83	-6.04	38.55	-182.13	-71.45
pv55	242	1.09	0.90	90	259	38	42	994.51	1.540	38.00	995.15	995.15	-37.38	-6.83	-213.47	-116.83
pv55 pv55	243 pv56	1.05	0.80	90 89	254 256	53 5	54	994.51 994.51	1.540	50.00 79.98	995.25 996.05	995.25 996.05	-48.27 -77.63	-13.04 -19.21	-224.36 -253.72	-123.04 -129.22
pv55	244	1.79	1.60	107	170	41	36	994.51	1.540	34.75	983.83	983.83	5.62	-34.29	-170.47	-144.30
pv55	245	1.95	1.70	108	168	21	12	994.51	1.540	45.23	979.66	979.66	9.13	-44.29	-166.96	-154.30
pv55	pv57	1.44	1.00	106	166	31	34	994.51	1.540	81.31	971.74	971.74	18.95	-79.08	-157.14	-189.08
pv56	pv56 248	1.80 0.97	1.40 0.90	89 82	256 356	5.00	54.00	994.51 996.05	1.54	79.98 13.73	996.05 998.62	996.05 998.62	-77.63 -0.76	-19.21 13.71	-253.72 -254.48	-129.22 -115.51
pv56	249	1.99	1.80	84	350	9	30	996.05	1.540	37.58	999.74	999.74	-6.42	37.03	-260.14	-92.19
pv56	250	0.87	0.80	95	84	35	42	996.05	1.540	13.89	995.57	995.57	13.83	1.31	-239.89	-127.91
pv56	251	0.67	0.60	91	246	20	36	996.05	1.540	14.00	996.74	996.74	-12.82	-5.62	-266.54	-134.83
pv56	252	0.59	0.50	91	261	16	30	996.05	1.540	17.99	996.77	996.77	-17.79	-2.73	-271.51	-131.95
pv56 pv56	pv58 253	1.79	1.40	102 102	166 167	34	18 36	996.05 996.05	1.540	74.63 53.58	980.32 985.00	980.32 985.00	18.05 11.53	-72.41 -52.32	-235.67 -242.19	-201.63 -181.54
pv56	254	2.00	1.80	92	255	48	54	996.05	1.540	39.95	994.39	994.39	-38.73	-9.79	-292.45	-139.01
pv56	pv59	0.79	0.70	91	252	45	36	996.05	1.540	17.99	996.57	996.57	-17.19	-5.33	-270.91	-134.55
pv59	255	0.68	0.50	99	252	31	12	996.57	1.540	35.12	992.05	992.05	-33.50	-10.55	-304.40	-145.10
pv59	pv60	1.92	1.60	98	267	30	54	996.57	1.540	62.76	987.69	987.69	-62.70	-2.72	-333.61	-137.27
pv60 pv60	256 257	0.77	0.70	87 87	98 252	28 6	36	987.69 987.69	1.540	13.96 15.96	989.26 988.77	989.26 988.77	13.81 -15.18	-2.06 -4.90	-319.80 -348.79	-139.33 -142.18
pv60	258	1.58	1.50	85	267	19	30	987.69	1.540	15.88	989.12	989.12	-15.16	-0.74	-349.47	-138.01
pv60	pv61	2.28	1.90	83	259	33	54	987.69	1.540	74.87	996.53	996.53	-73.63	-13.56	-407.24	-150.83
pv60	259	2.47	2.21	83	260	39	0	987.69	1.540	51.23	993.31	993.31	-50.55	-8.32	-384.15	-145.59
pv60	260	0.92	0.70 1.70	83 100	259 164	17 5	18	987.69	1.540	43.35	993.86	993.86	-42.59 21.80	-8.06	-376.20 -311.81	-145.33 -213.75
pv60	pv62 pv61	2.11	1.70	83	259	33.00	36 54.00	987.69 987.69	1.540	79.53 74.87	973.51 996.53	973.51 996.53	-73.63	-76.48 -13.56	-407.24	-213.73
pv61	261	1.07	1.00	90	242	26	12	996.53	1.540	14.00	997.07	997.07	-12.41	-6.48	-419.65	-157.31
pv61	264	0.88	0.80	89	260	20	54	996.53	1.540	16.00	997.55	997.55	-15.77	-2.68	-423.01	-153.51
pv61	262	0.74	0.60	89	246	40	48	996.53	1.540	27.99	997.95	997.95	-25.70	-11.08	-432.95	-161.91
pv61 pv61	263 267	1.59	1.40	89 104	248 160	31 8	30	996.53 996.53	1.540	37.99 50.84	997.33 983.89	997.33 983.89	-35.35 17.27	-13.91 -47.82	-442.59 -389.97	-164.75 -198.65
pv61	268	1.82	1.50	104	160	0	6	996.53	1.540	60.25	981.54	981.54	20.61	-56.62	-386.63	-207.45
pv61	pv63	1.22	0.80	104	160	52	6	996.53	1.540	79.08	977.55	977.55	25.92	-74.72	-381.32	-225.55
pv61	pv61	2.92	2.70	88	252	14	0	996.53	1.540	43.95	996.90	996.90	-41.85	-13.41	-449.09	-164.24
pv61	ptv1	1.56	1.40	107	254	6	6	996.90	1.540	29.26	988.09	988.09	-28.15	-8.02	-477.24	-172.26
ptv1 ptv2	ptv2 273	2.35	2.00 3.50	105 70	284 99	7 19	12	988.09 970.13	1.540	65.31 28.26	970.13 978.46	970.13 978.46	-63.34 27.88	15.93 -4.57	-540.57 -512.69	-156.33 -160.90
ptv2	pv65	1.37	1.20	105	198	35	6	970.13	1.540	31.72	961.97	961.97	-10.11	-30.07	-550.68	-186.39
pv65	274	0.73	0.70	94	328	34	12	961.97	1.540	5.97	962.40	962.40	-3.11	5.09	-553.80	-181.30
pv65	275	0.53	0.50	106	258	45	18	961.97	1.540	5.54	961.42	961.42	-5.44	-1.08	-556.12	-187.48
pv65	277 278	1.80	1.60	78 75	200 198	50 44	18 48	961.97 961.97	1.540	38.27	970.05	970.05	-13.61 -17.99	-35.77	-564.30	-222.16
pv65 pv65	278				198					55.98 11.97	977.31 963.44	977.31 963.44	10.79	-53.01 -5.17	-568.68 -539.89	-239.41 -191.56
pv65	276	1.59	1.50		120	13	48	961.97		17.95	962.95	962.95	15.51	-9.04	-535.17	-195.43
pv65	269	2.34	2.10		128	4		961.97		47.87	963.92	963.92	37.68	-29.52	-513.00	
pv65	pv66	1.59	1.30		126	37	24	961.97		57.98	963.23	963.23	46.54	-34.59	-504.15	
pv66 pv66	270 271	2.39	2.30	83 88	136 137	37 43	36 36	963.23 963.23	1.540	17.73 27.97	964.64 964.14	964.64 964.14	12.18 18.81	-12.89 -20.69	-491.97 -485.34	-233.87 -241.68
pv66	2/1 puente	1.74	1.70		146	48	30	963.23		38.00	963.07	963.07	20.80	-31.80	-483.35	-252.78
pv66	puente	2.79	2.60	90	146	48	30	963.23		38.00	962.17	962.17	20.80	-31.80	-483.35	-252.78
pv66	^	1.58	1.40		142	42	6			35.99	962.74	962.74	21.81	-28.63	-482.34	-249.61
pv67	•	1.54	1.40	88	159	35	42			27.97	963.85	963.85	9.75	-26.21	-472.59	-275.82
pv68 pv68	279 pv69	1.31 3.62	1.30 3.40	94 68	222 56	56 37	42	963.85 963.85		1.99 37.83	963.95 977.28	963.95 977.28	-1.36 31.59	-1.46 20.81	-473.94 -441.00	-277.28 -255.02
pv68	280	1.54	1.40		51	0		963.85		23.73	974.06	974.06	18.44	14.93	-454.15	-260.89
pv68	281	0.84	0.70		58	20	12	963.85		24.40	974.06	974.06	20.77	12.81	-451.81	-263.01
pv68	•	1.97	1.60		130	17	24	963.85		74.00	963.79	963.79	56.45	-47.85	-416.14	-323.68
pv70	ptv	0.67	0.50	75	350	55	30	963.79		31.72	973.33	973.33	-5.00	31.33	-421.14	-292.35
1	pv63	1.22	0.80	104	160	52.00	6.00	996.53	1.54	79.08	977.55	977.55	25.92	-74.72	-381.32	-225.55

977.55 1.540 42.67 985.21 977.55 1.540 32.53 984.40 -41.58 -31.50
 -9.58
 -422.91
 -235.13

 -8.13
 -412.82
 -233.68

985.21

984.40

pv63 ptv 1.62 pv63 284 1.77 1.40

257 255

80

48

Contin EST.	uación PO	HIL	OS	A.V.	1	AZIMU'	Т	Cota	Altura			Elevación	Coorde	nadas	Coord	enadas
ESI.	го	sup.	medio	Gra	Gra	Mins	Seg	Est	Instru.	Distancia	COTA	m				
mv:62	283	1.72	1.50	77	259	36	5cg 6	977.55	1.540	41.77	P.O. 987.23	987.23	Parci -41.09	-7.54	-422.41	-233.09
pv63 pv63	282	0.56	0.50	96	177	36	30	977.55	1.540	11.87	977.34	987.23	0.50	-11.86	-380.83	-237.41
pv63	285	0.72	0.60	100	58	0	6		1.540	23.28	974.38	974.38	19.74	12.33	-361.58	-213.21
pv63	286	2.24	2.00	100	165	10	0		1.540	46.55	968.88	968.88	11.92	-45.00	-369.40	-270.55
pv63	288	1.80	1.60	99	159	44	30	977.55	1.540	39.02	971.31	971.31	13.51	-36.61	-367.81	-262.16
pv63	290	1.79	1.60	99	159	54	18	977.55	1.540	37.07	971.62	971.62	12.74	-34.81	-368.58	-260.36
pv63	289	0.65	0.50	99	159	2	12	977.55	1.540	29.27	973.95	973.95	10.47	-27.33	-370.85	-252.88
pv63	287	3.14	2.80	101	164	5	36	977.55	1.540	65.52	963.55	963.55	17.96	-63.02	-363.36	-288.56
pv63	pv72	2.68	2.30	100	163	36	42	977.55	1.540	73.48	963.17	963.17	20.73	-70.49	-360.59	-296.04
pv63	pv62	3.95	3.60	89	79	26	18	977.55	1.540	69.98	976.71	976.71	68.79	12.83	-312.53	-212.72
pv62	291	2.18	2.10	90	252	13	42	976.71	1.540	16.00	976.15	976.15	-15.24	-4.88	-327.76	-217.61
pv62	292	0.77	0.70	92	337	46	54	976.71	1.540	13.98	977.06	977.06	-5.29	12.94	-317.82	-199.78
pv62	295	0.75	0.70	89	74	6	0	976.71	1.540	10.00	977.72	977.72	9.61	2.74	-302.91	-209.98
pv62	293 294	0.77	0.70 0.50	86 84	90 87	45 29	36 42	976.71 976.71	1.540	13.93 21.76	978.52 980.04	978.52 980.04	13.93 21.74	-0.18 0.95	-298.60 -290.79	-212.91 -211.77
pv62 pv62	294 pv73	1.18	1.00	82	80	17	18	976.71	1.540	35.30	982.21	980.04	34.80	5.96	-290.79	-211.77
pv02	pv73	1.71	1.50	86	82	0	6		1.540	41.80	985.17	985.17	41.39	5.82	-236.34	-200.77
pv73	296	0.89	0.80	88	83	39	24	982.21	1.540	17.98	983.58	983.58	17.87	1.99	-259.86	-204.78
p+73	pv58	1.71	1.50	86	82	0.00	6.00	982.21	1.54	41.80	985.17	985.17	41.39	5.82	-236.34	-200.95
pv58	pv74	1.76	1.30	99	164	55	42	985.17	1.540	89.75	971.20	971.20	23.34	-86.66	-213.01	-287.61
pv58	pv57	2.60	2.20	96	79	2	24	985.17	1.540	79.13	976.20	976.20	77.68	15.04	-158.66	-185.91
pv57	246	0.81	0.70	93	260	7	24	976.20	1.540	21.94	975.89	975.89	-21.61	-3.76	-180.27	-189.67
pv57	297	0.75	0.70	98	154	7	48	976.20	1.540	9.81	975.66	975.66	4.28	-8.82	-154.38	-194.73
pv57	pv75	1.93	1.50	91	168	1	42	976.20	1.540	85.97	974.74	974.74	17.83	-84.10	-140.83	-270.01
pv57	pv76	1.37	0.90	85	78	13	0	976.20	1.540	93.29	985.00	985.00	91.32	19.05	-67.34	-166.86
pv76	298	3.32	2.90	77	81	31	48	985.00	1.540	79.75	1002.05	1,002.05	78.88	11.75	11.54	-155.11
pv76	299	0.99	0.80	77	80	2	36	985.00	1.540	36.08	994.07	994.07	35.53	6.24	-31.81	-160.62
pv76	zanjon	0.81	0.80	99	306	18	6		1.540	1.95	985.43	985.43	-1.57	1.16	-68.91	-165.70
pv76	zanjon	0.62	0.60	96	27	36	18	985.00	1.540	3.96	985.52	985.52	1.83	3.51	-65.51	-163.35
pv76	300	1.34	1.30	96	221	48	6		1.540	7.91	984.41	984.41	-5.27	-5.90	-72.61	-172.76
pv76 pv76	pv77 301	1.29	0.90	84 84	356 357	24 42	24 36	985.00 985.00	1.540	77.15 73.19	993.75 992.83	993.75 992.83	-4.84 -2.92	77.00 73.13	-72.17 -70.26	-89.86 -93.72
pv76		1.61	1.40	96	182	44	48	985.00	1.540	61.32	978.79	978.79	-2.92	-61.25	-70.28	-93.72
pv78	pv76 pv79	1.52	1.40	92	168	20	12	978.79	1.540	23.97	978.10	978.19	4.85	-23.48	-65.43	-251.59
pv79	302	0.74	0.70	86	178	4	24	978.10	1.540	7.96	979.49	979.49	0.27	-7.96	-65.16	-259.54
pv79	303	0.87	0.70	75	169	48	18	978.10	1.540	31.72	987.44	987.44	5.61	-31.22	-59.82	-282.81
pv79	304	3.89	3.60	70	169	55	12	978.10	1.540	51.72	994.68	994.68	8.96	-50.42	-56.47	-302.01
pv79	ptv	1.92	1.60	73	169	55	12	978.10	1.540	58.53	995.93	995.93	10.24	-57.63	-55.19	-309.21
pv79	305	0.94	0.80	93	250	5	24	978.10	1.540	27.92	977.37	977.37	-26.25	-9.51	-91.69	-261.09
pv79	306	0.89	0.60	93	254	32	6	978.10	1.540	57.84	976.01	976.01	-55.75	-15.42	-121.18	-267.01
pv79	307	1.68	1.40	92	259	27	0		1.540	55.93	976.28	976.28	-54.99	-10.24	-120.42	-261.83
pv79	pv75	1.89	1.50	91	255	51	54	978.10	1.540	77.98	976.78	976.78	-75.62	-19.04	-141.05	-270.63
pv75	ptv	1.11	0.80	74	168	42	30	976.78	1.540	57.29	993.94	993.94	11.22	-56.18	-129.83	-326.81
pv75	308	1.08	0.80	74	170	22	36		1.540	51.75	992.35	992.35	8.65	-51.02	-132.40	-321.65
pv75	309	1.11	0.90		171	0	- 6			38.81	988.54	988.54	6.07	-38.33	-134.98	-308.96
pv75	311	1.61	1.40		166	2	54	976.78		38.41	988.66	988.66	9.26	-37.28	-131.79	
pv75	pv80	0.92	0.70		168	50	42	976.78		40.66	989.27	989.27	7.87	-39.89	-133.18	
pv75	310 pv74	0.56	0.40	80 94	171	28 18	36 48			31.04	983.39	983.39	4.60	-30.69	-136.45	-301.32
pv75 pv74	213	0.54	0.80	97	256 43	43	12	976.78 972.37		73.64 7.88	972.37 972.44	972.37 972.44	-71.55 5.45	-17.42 5.70	-212.60 -207.15	
pv74	312	0.54	0.60		168	57	0			9.97	972.44	972.44	1.91	-9.79	-207.13	
pv74	314	0.76	0.60		157	16	24		1.540	31.04	978.78	978.78	11.99	-28.63	-200.61	-316.68
pv74	315	1.54	1.40		160	50	6		1.540	26.79	978.20	978.20	8.79	-25.30	-203.80	
pv74	ptv	0.67	0.60		157	19	24	972.37	1.540	13.98	973.79	973.79	5.39	-12.90	-207.21	-300.95
pv74	zanjon	0.52	0.50		280	2	18	972.37		3.88	972.72	972.72	-3.82	0.68	-216.42	-287.38
pv74	zanjon	0.62	0.60	100	213	7	48	972.37		3.88	972.62	972.62	-2.12	-3.25	-214.72	-291.30
pv74	pv81	1.16	0.80	90	256	37	42	972.37	1.540	72.00	973.11	973.11	-70.05	-16.65	-282.64	-304.70
pv81	316	0.53	0.40	79	155	34	6		1.540	25.05	979.12	979.12	10.36	-22.81	-272.28	-327.51
0.4	217	0.47	0.20	7.0	1.00	4.0	40	072.11	1 5 40	22.01	000 22	000 00	10.50	20.22	272 12	22100

32.01

25.22

73.80

5.93

16.79

982.33

978.59

969.88

970.39 975.22 982.33

978.59

969.88

970.39 975.22 10.52

9.43

-59.43

-2.39

-0.73

-30.23

-23.39

-43.75

-5.43

-16.78

-272.12

-342.08

-344.46

-342.81

-334.93

-328.09

-348.45

-353.89 -365.23

pv81

pv83

pv81 pv82

pv81 pv83

317 0.47

0.63

pv83 1.27 318 0.43 319 0.79 0.30

0.50

0.90

0.40 0.70 76 160

80 158

93 233

96

75

203 182 48

38

43

29

42

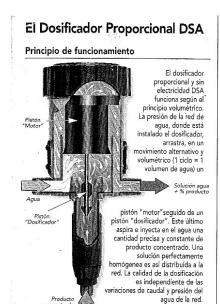
24

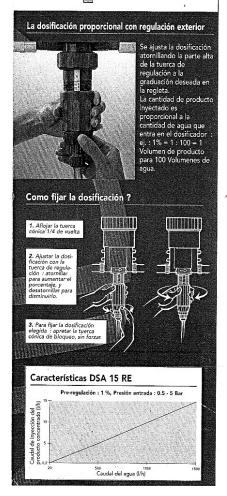
24

74

973.11 1.540

973.11 1.540

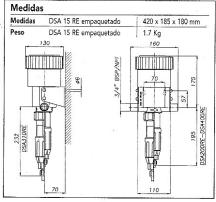

973.11 1.540


969.88 1.540 969.88 1.540

EST.	uación	TIII	OC	4 77		1711 AT I	т	C-4-	4.1.			E1:/	C 1		CI	
ES1.	PO	HIL		A.V.		AZIMU		Cota	Altura	Distancia	COTA	Elevación	Coorde	nadas	Coord	enadas
0.2	0.4	sup.	medio	Gra	Gra	Mins	Seg	Est	Instru.	10.67	P.O.	m	Parci			ales
pv83	pv84 pv72	1.03 2.68	2.30	77 100	178 163	58 36	36 42	969.88 978	1.540	43.67 73	980.70 963	980.70 963	0.78	-43.67 -70	-341.30 -360.59	-392.12 -296.04
pv72	zanjon	0.87	0.80	91	181	8	54	963.17	1.540	14.00	963.67	963.67	-0.28	-13.99	-360.87	-310.03
pv72	zanjon	0.95	0.90	91	156	17	0	963.17	1.540	10.00	963.64	963.64	4.02	-9.15	-356.57	-305.19
pv72	pv70	1.67	1.30	89	258	49	0	963.17	1.540	73.98	964.70	964.70	-72.57	-14.35	-433.16	-310.39
pv70	Df	0.93	0.80	104	182	52	12	964.70	1.540	24.48	959.34	959.34	-1.23	-24.45	-434.39	-334.84
pv69	pv69 321	3.62 0.55	3.40 0.50	68 83	56 85	37 42	48 6	964 977.28	1.540	9.85	977 979.53	977 979.53	9.82	0.74	-441.00 -431.17	-255.02 -254.28
pv69	322	0.47	0.40	82	83	4	36	977.28	1.540	13.73	980.35	980.35	13.63	1.65	-427.37	-253.36
pv69	ptv	0.98	0.80	75	80	46	48	977.28	1.540	33.59	987.02	987.02	33.15	5.38	-407.84	-249.64
	pv84	1.03	0.80	77	178	58	36	970	2	44	981	981	1	-44	-341.30	-392.12
pv84	323	0.48	0.40	82 82	80 82	41	54	980.70 980.70	1.540	15.69	984.05 984.97	984.05 984.97	15.48 21.36	2.54 3.00	-325.81 -319.93	-389.58 -389.12
pv84 pv84	325 324	0.41	0.60	79	92	32	6 12	980.70	1.540	21.57 17.34	985.01	985.01	17.33	-0.77	-319.93	-392.89
pv84	326	1.07	0.80	79	82	33	30	980.70	1.540	52.03	991.56	991.56	51.60	6.74	-289.70	-385.38
pv84	pv40	0.97	0.70	78	84	19	24	980.70	1.540	51.67	992.52	992.52	51.41	5.11	-289.88	-387.01
pv84	320	0.92	0.90	103	290	19	6	980.70	1.540	3.80	980.46	980.46	-3.56	1.32	-344.86	-390.80
pv84	pv85 pv86	1.56	0.80	96 90	197 206	49 49	24 42	980.70 973.56	1.540	71.21 42.00	973.56 974.30	973.56 974.30	-21.80 -18.96	-67.80 -37.48	-363.09 -382.05	-459.91 -497.39
pv85 pv86	pv80 pv87	1.01	0.70	90	191	35	42	973.30	1.540	68.96	966.67	966.67	-13.86	-67.55	-395.91	-564.95
pv87	327	0.62	0.60	97	67	50	0	966.67	1.540	3.94	967.13	967.13	3.65	1.49	-392.26	-563.46
pv87	328	0.65	0.60	91	164	46	42	966.67	1.540	10.00	967.43	967.43	2.62	-9.65	-393.28	-574.59
pv87	pv88	1.42	1.20	90	188	8	48	966.67	1.540	44.00	967.01	967.01	-6.24	-43.56	-402.14	-608.50
pv88	329	0.94	0.80	78	104	35	18	967.01	1.540	26.79	973.44	973.44	25.93	-6.75	-376.22	-615.25
pv88 pv88	330 pv89	1.42 0.60	1.30 0.50	77 82	103 108	32 40	6 36	967.01 967.01	1.540	22.79 19.61	972.51 970.81	972.51 970.81	22.15 18.58	-5.33 -6.28	-379.99 -383.56	-613.83 -614.78
pv88	pv90	3.18	3.00	92	203	49	12	967.01	1.540	35.96	964.29	964.29	-14.52	-32.89	-416.67	-641.40
pv90	331	0.73	0.70	85	27	39	54	964.29	1.540	5.95	965.65	965.65	2.76	5.27	-413.90	-636.12
pv90	334	0.31	0.30	110	351	21	48	964.29	1.540	1.77	964.89	964.89	-0.27	1.75	-416.93	-639.65
pv90	pv91	0.83	0.60	94	197	43	42	964.29	1.540	45.78	962.03	962.03	-13.94	-43.60	-430.60	-685.00
pv91 pv91	332 333	0.61	0.50	91 91	23 26	35 14	12 42	962.03 962.03	1.540	21.99 10.00	962.69 962.50	962.69 962.50	8.80 4.42	20.16 8.97	-421.80 -426.18	-664.84 -676.03
pv91	335	0.93	0.90	102	287	7	54	962.03	1.540	1.91	962.27	962.27	-1.83	0.56	-432.43	-684.43
pv91	pv52	0.93	0.70	90	201	25	48	962.03	1.540	46.00	962.87	962.87	-16.81	-42.82	-447.41	-727.82
pv52	336	0.23	0.20	101	57	4	18	962.87	1.540	5.78	963.09	963.09	4.85	3.14	-442.56	-724.67
pv52	Df	2.14	1.80	95	289	11	12	962.87	1.540	67.48	956.71	956.71	-63.73	22.18	-511.15	-705.64
pv65	pv65 pv92	1.37	1.20	105 92	198 306	35.00	6.00	970.13 961.97	1.54	31.72 51.94	961.97 960.50	961.97 960.50	-10.11 -41.94	-30.07 30.64	-550.68 -592.62	-186.39 -155.75
pv92	337	1.07	1.00	87	0	15	48	960.50	1.540	13.96	961.77	961.77	0.06	13.96	-592.56	-141.79
pv92	pv93	1.75	1.40	85	4	50	54	960.50	1.540	69.47	966.72	966.72	5.87	69.22	-586.75	-86.54
pv93	338	0.87	0.70	90	3	0	42	966.72	1.540	34.00	967.56	967.56	1.79	33.95	-584.96	-52.58
pv93	pv94	1.12	0.80	90	5	29	42	966.72	1.540	64.00	967.46	967.46	6.13	63.71	-580.62	-22.83
pv94 pv94	339 340	0.82	0.80	96 99	157 92	15 39	54 42	967.46 967.46	1.540	3.96	967.78 967.58	967.78 967.58	1.53 3.90	-3.65 -0.18	-579.09 -576.72	-26.48 -23.01
pv94 pv94		1.27	1.10	99	11	47	6	967.46		34.00	967.58	967.58	6.94	33.28	-573.68	10.45
	pv96	1.18	1.00	87	351	13	54	967.90		35.90	970.32	970.32	-5.47	35.48	-579.15	45.94
pv96	^	1.20	0.80	88	339	50	30	970.32	1.540	79.90	973.85	973.85	-27.54	75.01	-606.68	120.94
pv97	pv98	1.78	1.40	86	334	8	6	973.85		75.63	979.28	979.28	-32.99	68.05	-639.68	189.00
pv98	pv99	0.67	0.50	94	155	5	12	979.28		33.83	977.95	977.95	14.25	-30.69	-625.43	158.31
pv98 pv98	341 pv100	0.44 1.44	0.30	93 90	5	41 56	42 6	979.28 979.28		27.92 48.00	979.05 979.62	979.05 979.62	2.77 1.62	27.79 47.97	-636.91 -638.06	216.78 236.97
pv100	342	0.35	0.30	89	30	17	30	979.62	1.540	10.00	981.03	981.03	5.04	8.63	-633.01	245.60
pv100	pv94	1.12	0.80	90	5	29	42	979.62		64.00	980.36	980.36	6.13	63.71	-631.93	300.68
	pv92	1.46	1.20	92	306	9.00	12.00	961.97	1.54	51.94	960.50	960.50	-41.94	30.64		-155.75
pv92	pv101	1.22	1.10	85	298	30	36	960.50		23.82	963.02	963.02	-20.93	11.37	-613.55	-144.39
pv92 pv92	esq 1	1.34	1.20	86 86	295 291	49	24 54	960.50 960.50		27.86 33.83	962.79 962.91	962.79 962.91	-25.08 -31.58	12.14 12.13	-617.70 -624.20	-143.62 -143.62
pv92 pv92	esq 2 pv102	1.69	1.50	86	291	35	6	960.50		37.82	962.91	962.91	-35.40	13.30	-624.20	-143.62
pv92	pv103	1.94	1.60	85	278	32	30	960.50		67.48	966.34	966.34	-66.73	10.02	-659.35	-145.73
pv103	e104	1.48	1.40	87	264	8	6	966.34	1.540	15.96	967.32	967.32	-15.87	-1.63	-675.23	-147.36
e104	e103	0.80	0.40	87	285	2	42	967.32	1.540	79.78	972.64	972.64	-77.05	20.71	-752.27	-126.65
e104	e106	1.64	1.30	86	281	11	12	967.32	1.540	67.67	972.29	972.29	-66.38	13.13	-741.61	-134.23

Continuación

EST.	PO	HIL	OS	A.V.	A	AZIMU	T	Cota	Altura	Distancia	COTA	Elevación	Coorde	nadas	Coorde	enadas
		sup.	medio	Gra	Gra	Mins	Seg	Est	Instru.	Distancia	P.O.	m	Parci	iales	Tot	ales
e106	e108	0.96	0.70	88	280	6	36	972.29	1.540	51.94	974.95	974.95	-51.13	9.12	-792.74	-125.12
e108	E107	1.29	1.20	95	98	2	36	974.95	1.540	17.86	973.72	973.72	17.69	-2.50	-775.05	-127.62
e108	344	1.12	1.10	98	30	47	18	974.95	1.540	3.92	974.83	974.83	2.01	3.37	-790.73	-121.75
e108	345	0.93	0.80	87	309	22	35	974.95	1.540	25.93	977.04	977.04	-20.04	16.45	-812.78	-108.67
e108	e109	0.95	0.80	87	309	11	12	974.95	1.540	29.92	977.25	977.25	-23.19	18.90	-815.93	-106.21
e109	110r	1.34	1.20	81	334	59	42	977.25	1.540	27.31	981.92	981.92	-11.55	24.75	-827.48	-81.46
e109	e111	1.18	1.00	81	325	25	48	977.25	1.540	35.12	983.36	983.36	-19.93	28.92	-835.86	-77.30
e111	347	0.58	0.50	82	239	40	24	983.36	1.540	15.69	986.60	986.60	-13.54	-7.92	-849.40	-85.22
e111	346	1.20	1.00	82	259	13	34	983.36	1.540	39.23	989.41	989.41	-38.53	-7.33	-874.39	-84.63
e111	348	1.20	0.90	82	258	34	0	983.36	1.540	58.84	992.27	992.27	-57.67	-11.66	-893.53	-88.96
pv9	td1	3.72	2.00	81	82	8	36	992.68	1.550	335.58	1045.38	1,045.38	332.43	45.87	422.52	-187.78
td2	td1	3.72	2.00	81	82	8	36	0.00	1.550	335.58	52.70	52.70	332.43	45.87	504.92	-225.09
est0	caja1	1.10	1.00	91	92	45	18	982.54	1.500	19.99	982.69	982.69	19.97	-0.96	189.99	-291.58
est0	caja2	0.70	0.62	105	145	18	5	981.49	1.550	14.93	978.42	978.42	8.50	-12.27	218.56	-260.96
est0	td1	3.72	2.00	81	82	8	36	987.76	1.550	335.58	1040.46	1,040.46	332.43	45.87	479.56	-246.54
est0	td1	3.72	2.00	81	82	8	36	985.31	1.550	335.58	1038.01	1,038.01	332.43	45.87	491.42	-247.58
td2	td1	3.72	2.00	81	82	8	36	980.77	1.550	335.58	1033.47	1,033.47	332.43	45.87	503.04	-254.43



Características

Dosificadores Proporcionales sin Electricidad DSA 15 RE

DSA 200RE: 0.2 - 2 %	DSA 400RE: 0.5 - 4 % DSA 310RE: 3 - 10 %					
Sectores	Medio-Ambiente - Higiene -Mantenimiento - Industria - Ganadería - Artes gráficas - Metalurgia Horticultura - Riegos					
Principales aplicaciones	Medicación - Desinfección - Abonado - Detergencia Lubrificación - Correción PH/TH - Aplicación de desmoldeantes					
Funciones	Función única : Dosificación, inyección y mezcla de líquidos					
By-pass integrado	No - Opción disponible : consultar					
Técnica de dosificación	Proporcional sin Electricidad					
Fuente de energia	la presión del agua					
Valores de dosificación	ej. 1 % = 1 : 100 = 1 V producto concentrado para 100 V agua					
Regulación de la dosificación	regulación exterior modificable durante el funcionamiento					
Valores mínimo y máximo del caudal del agua	20 - 1 500 l/h					
Presión de funcionamiento	0.5 a 5 Bar (presión de entrada)					
Caudal de inyección del producto concentrado	0,04 a 150 l, según modelo y % elegido					
Cebado automático	Sí					
Racores	entrada y salida : 3/4" Macho NPT y BSP (racord único					
Cilindrada	0.42 L (1 ciclo)					
Cámara de mezcla	integrada : 100 % de la cilindrada total					
Pérdida de carga	0.4 - 1.7 Bar según modelo, instalación y condiciones de funcionamiento					
Temperatura de funcionamiento	max. 40 ° C – mín, proteger de las heladas					
Altura de aspiración máx. del producto concentrado	4 metros					
Viscosidad máx. del concentrado	400 cst (a 20 °C) - Kit PV recomendado a partir de 200 cst					
Normas Instalación	Para la instalación del Dosificador Proporcional sin electricidad DSA en la red de agua potable, respetar las normas en vigor de cada país.					

A fin de optimar la longevidad del dosificador, se aconseja instalar un filtro (mínimo 50 mesh/350 micras) antes del dosificador. Es aconsejable instalar un by-pass. Para cualquier duda en la instalación, póngase en contacto con su distribuidor DSA.

Opciones de entrega

- Juntas especiales : VF recomendadas para productos SN recomendadas para prod alcalinos
- Productos agresivos o corrosivos : inyección externa cuerpo dosificador en PVDF
- Productos viscosos:
- Kit PV
- · By-pass : tapa by-pass disponible

Accesorios especiales : consultar

Materiales

- lista disponible a petíción
- otras opciones a petición

Servicio y garantía Garantía de 12 meses contra todo defecto de fabricación. Se excluye las averias causadas por mala manipulación del equipo. Es necesario un enjuague regular. Se aconseja no utilizar herramientas para las operaciones de mantenimiento. En caso de noutilización prolongada del dosificador, es necesario enjuaguarlo y se aconseja no dejarlo bajo presión. Se recomienda el cambio periódico (1 vez por año por ejemplo) de las juntas.

Este documento no nos compromete y es distribuido únicamente a título informativo. La empresa DSA se reserva el derecho de modificar sus equipos en cualquier momento.

Dosificación de Líquidos

Z.I. - B.P. 7 33370 TRESSES - BORDEAUX FRANCE Tél. 33 (0)5 57 97 10 70 Fax 33 (0)5 57 97 10 85 e.mail: info@dsa-dosing.com

LABORATORIO UNIFICADO DE QUÍMICA Y MICROBIOLOGÍA SANITARIA ESCUELA REGIONAL DE INGENIERÍA SANITARIA Y RECURSOS HIDRAÚLICOS (ERIS) DE LA FACULTAD DE INGENIERÍA Y LA EMPRESA MUNICIPAL DE AGUA (EMPAGUA) DE LA MUNICIPALIDAD DE GUATEMALA CIUDAD UNIVERSITARIA, ZONA 12

THIS STATE OF THE PARTY OF THE									
O.T. No. 18 019		Α	NALISIS FISICO	QUIMIC	CO SANI	TARIO	INF.	No. 21 563	
INTERESADO:			de Ingeniería rofesional Supervisado)	PROYECTO:			CONTROL DE CALIDAD		
RECOLECTADA PO	R:	Daniel Arag	gón Durán	DEPENDENCIA: FECHA Y HORA DE RECOLECCIÓN: FECHA Y HORA DE LLEGADA AL LABORATORIO:			USAC		
LUGAR DE RECOLI	ECCIÓN:	Aldea San J	osé La Sierra				2004-09-07; 12 h 35 min.		
FUENTE:		Tanque de d	distribución No. 1				2004-09-08; 07 h 40 min.		
DEPARTAMENTO:		Jalapa	y	CONDICIÓN DEL TRANSPORTE:			En refrigeración		
MUNICIPIO:		Mataques	scuintla	4					
			RESUL	TADOS					
1. ASPECTO:	Clara	4. OLOR:		Inodora 7. TEMPER. (En el momente 8 CONDUC ELÉCTRICA		o de recolección) 20 °C TIVIDAD			
2. COLOR:	03,00 U	nidades	5. SABOR:	ELECTRIC,		152.00 μmhos/cm			
B. TURBIEDAD: 01,59 UNT		JNT	6. pH: 06,60		60 unidades				
SUSTANC	CIAS	mg/L	SUSTANCIA	S	mg/L	S	SUSTANCIAS	mg/L	
1. AMONIACO (NE	H ₃)	00,22	6. CLORUROS (CI ⁻)		06,00	11. SOLIDOS TOTALES		100,00	
2. NITRITOS (NO2)	00,00	7. FLUORUROS (F-)		00,12	12. SOLIDOS VOLÁTILES		16,00	
3. NITRATOS (NO	37)	03,30	8. SULFATOS (SO ⁻² ₄)		05,00	13. SOLIDOS FIJOS		84,00	
4. CLORO RESIDU	AL		9. HIERRO TOTAL (F	e)	00,03	14. SOLIDOS EN SUSPENSIÓN 0		03,00	
5. MANGANESO (N	Mn)		10. DUREZA TOTAL		78,00	15. SOLIDOS DISUELTOS 81		81,00	
		***************************************	ALCALINIDAD	(CLASIF	ICACIÓN)				
HIDROX mg/L		(CARBONATOS mg/L	BICARBONATOS mg/L			ALCALINIDAD TOTAL mg/L		
00,00	0		00,00	84,00		84,00			

OTRAS DETERMINACIONES _

OBSERVACIONES: Las determinaciones arriba indicadas cumplen con las Normas Internacionales de la Organización Mundial de la Salud para Fuentes de Agua.

TÉCNICA "STANDARD METHODS FOR THE EXAMINATION OF WATER AND WASTEWATER" DE LA A.P.H.A. – A.W.W.A. W.E.F. 19 TH EDITION 1995, NORMA COGUANOR NGO 4 010 (SISTEMA INTERNACIONAL DE UNIDADES) Y 29001 (AGUA POTABLE Y SUS DERIVADAS), GUATEMALASIO

Guatemala, 2004-09-14

Vo.Bo.

Jug. Francisco Javier Quiñónez
Director CII//SAC

Ze Muchanicas Ing Onico con 120 420 M. Jan and Carlon turia

LABORATORIO UNIFICADO DE QUÍMICA Y MICROBIOLOGÍA SANITARIA FACULTAD DE INGENIERÍA -USAC -CIUDAD UNIVERSITARIA, ZONA 12

	EXAMEN BAC	TERIOLÓGICO							
O.T. No. 18 019	\$1684.0-9F 1000.0-254.594.5 3 42.596.C 5664.5 3		INF. No. A – 189 026						
INTERESADO:	Facultad de Ingeniería (Ejercicio Profesional Spervisado)	PROYECTO:	CONTROL DE CALIDAD DEL AGUA						
MUESTRA RECOLECTADA PO	OR; Daniel Aragón D.	 DEPENDENCIA:	USAC						
LUGAR DE RECOLECCIÓN D LA MUESTRA: FUENTE:	E Aldea San José La Sierra Tanque de distribución No. 1	FECHA Y HORA DE RECOLECCIÓN: FECHA Y HORA DE LLEGADA AL LABORATORIO:	2004-09-07; 12 h 37 min. 2004-09-08; 07 h 40 min.						
MUNICIPIO:	Mataquescuintla								
DEPARTAMENTO:	Jalapa	CONDICIONES DE TRANSPORTE:	En Refrigeración						
SABOR:		SUSTANCIAS EN SUSPENSIÓN	Ligera cantidad						
ASPECTO:	Clara	CLORO RESIDUAL							
OLOR:	Inodora								
INVESTIG	ACION DE COLIFORM	ES (GRUPO COLI – AEROGEN							
PRUEBAS NORMALES	PRUEBA PRESUNTIVA	PRUEBA CONFIRM	IATIVA						
THOUSING HORALIES	TROEDITIADOUTITI	FORMACION DE							
CANTIDAD SEMBRADA cm ³	FORMACION DE GAS - 35°C	TOTAL	FECAL 44.5 °C						
10,00 cm ³	+++++	++++	+ + + + +						
01,00 cm ³	+++++	++++	+++++						
00,10 cm ³	+ +	+ +	+ +						
RESULTADO: NÚMERO MAS COLIFORMES/100cm ³	PROBABLE DE GÉRMENES	500	500						
TÉCNICA "STANDARD MET – W.E.F. 19 TH NORMA COGU OBSERVACIONES: <u>Bacteriológ</u>	ANOR NGO 4 010. SISTEMA	TION OF WATER AND WASTEWATI A INTERNACIONAL DE UNIDADES (S ra consumo humano, la Norma Internacional cteriológica que no exige mas que un simple	GI), GUATEMALA. de la Organizació Mun-						
Vo.Bo. Ing. Francisco Javie Quiñônez Director CIJ/USAC Director CIJ/USAC									

LABORATORIO UNIFICADO DE QUÍMICA Y MICROBIOLOGÍA SANITARIA ESCUELA REGIONAL DE INGENIERÍA SANITARIA Y RECURSOS HIDRAÚLICOS (ERIS) DE LA FACULTAD DE INGENIERÍA Y LA EMPRESA MUNICIPAL DE AGUA (EMPAGUA) DE LA MUNICIPALIDAD DE GUATEMALA CIUDAD UNIVERSITARIA, ZONA 12

WITTENSON TO THE PARTY OF THE P			N					
O.T. No. 18 019	Α	NALISIS FISICO	QUIMIC	CO SANI	TARIO	INF.	No. 21 564	
INTERESADO:		de Ingeniería rofesional Supervisado)	PROYECTO:			CONTROL DE CALIDAD		
RECOLECTADA POR:	Daniel Araş	gón Durán	DEPENDENCIA: FECHA Y HORA DE RECOLECCIÓN: FECHA Y HORA DE LLEGADA AL LABORATORIO:			USAC		
LUGAR DE RECOLECCIÓN:	Aldea San J	osé La Sierra				2004-09-07; 13 h 00 min.		
FUENTE:	Tanque de d	listribución No. 2				2004-09-08; 07 h 40 min.		
DEPARTAMENTO:	Jalapa		CONDICIÓN DEL TRANSPORTE:			En refrigeración		
MUNICIPIO:	Mataques	cuintla				4		
		RESUL	TADOS					
1. ASPECTO: <u>Cla</u>	га	4. OLOR:	Inodora	8 CONDUCT		de recolección) 18 °C		
. COLOR: 09,00 Unidades		5. SABOR:			ELÉCTRICA	52,00 μmhos/cm		
3. TURBIEDAD: 02,49 UNT		6. pH : 06,80 unidades		idades				
SUSTANCIAS	mg/L	SUSTANCIA	S	mg/L	:	SUSTANCIAS	mg/L	
I. AMONIACO (NH3)	00,25	6. CLORUROS (CI')		05,00	11. SOLIDOS TOTALES		41,00	
2. NITRITOS (NO2 ⁻)	00,00	7. FLUORUROS (F ⁻)		00,13	12. SOLIDOS VOLÁTILES		08,00	
3. NITRATOS (NO3°)	01,98	8. SULFATOS (SO ⁻² ₄)		02,00	13. SOLIDOS FIJOS		33,00	
4. CLORO RESIDUAL		9. HIERRO TOTAL (F	e)	00,22	14. SOLIDOS EN SUSPENSIÓN		06,00	
5. MANGANESO (Mn)		10. DUREZA TOTAL		48,00	15. SOLIDOS DISUELTOS 20		28,00	
		ALCALINIDAD	(CLASIF	ICACIÓN)				
HIDROXIDOS mg/L	C	CARBONATOS mg/L		BICARBONATOS mg/L		ALCALINIDAD TOTAL mg/L		
00,00		00,00	30,00		30,00			

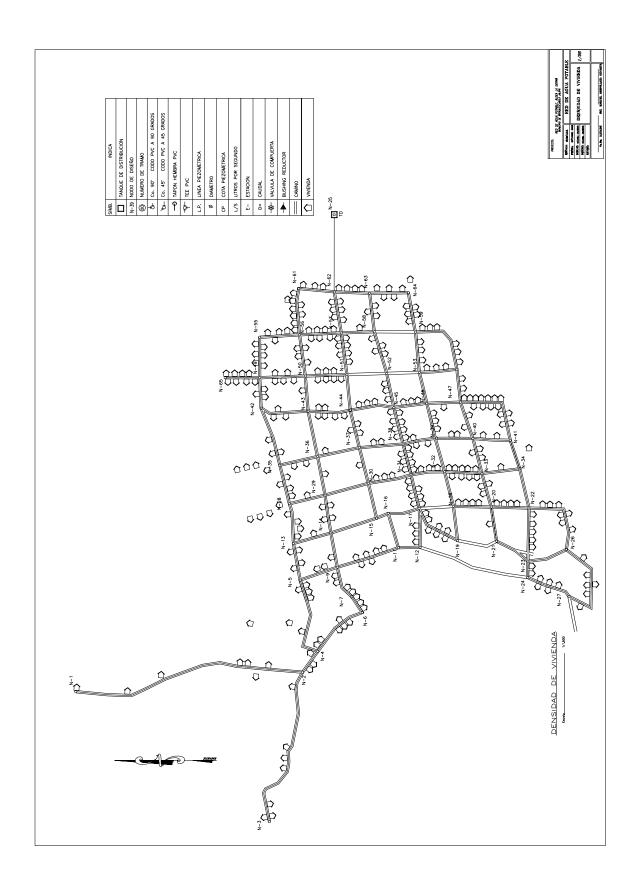
OTRAS DETERMINACIONES _

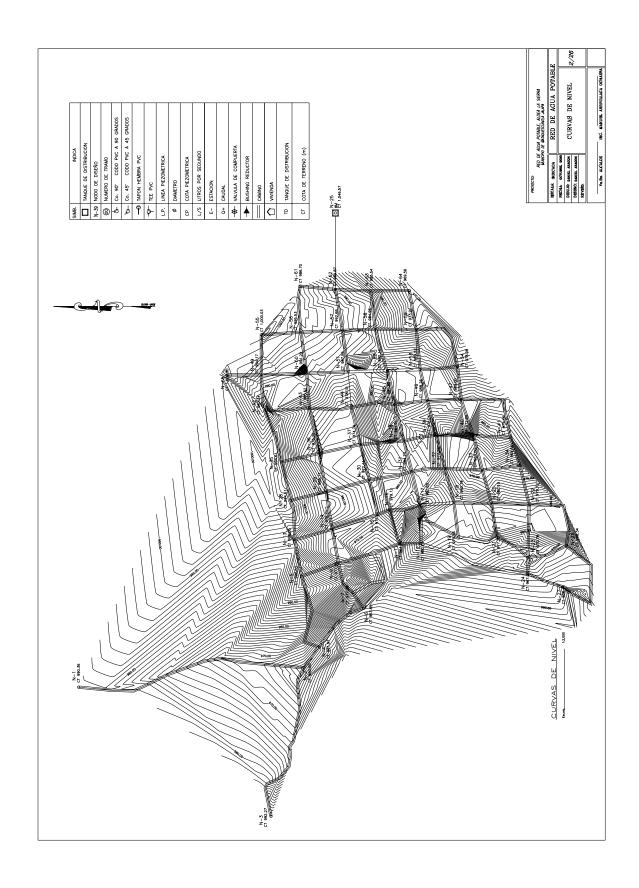
OBSERVACIONES: Las determinaciones arriba indicadas cumplen con las Normas Internacionales de la Organización Mundial de la Salud para Fuentes de Agua.

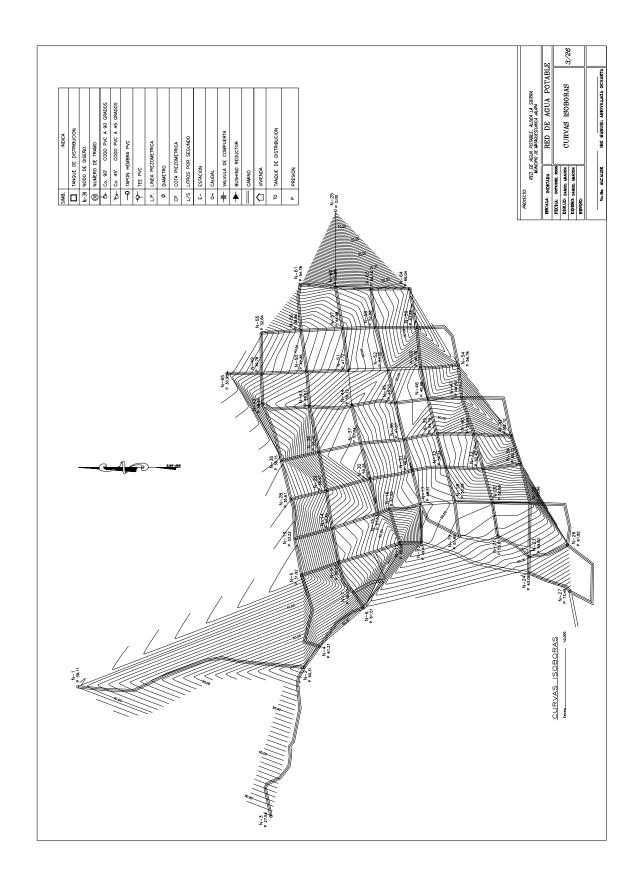
TÉCNICA "STANDARD METHODS FOR THE EXAMINATION OF WATER AND WASTEWATER" DE LA A.P.H.A. – A.W.W.A.- W.E.F. 19 TH EDITION 1995, NORMA COGUANOR NGO 4 010 (SISTEMA INTERNACIONAL DE UNIDADES) Y 29001 (AGUA POTABLE Y SUS DERIVADAS), GUATEMALA.

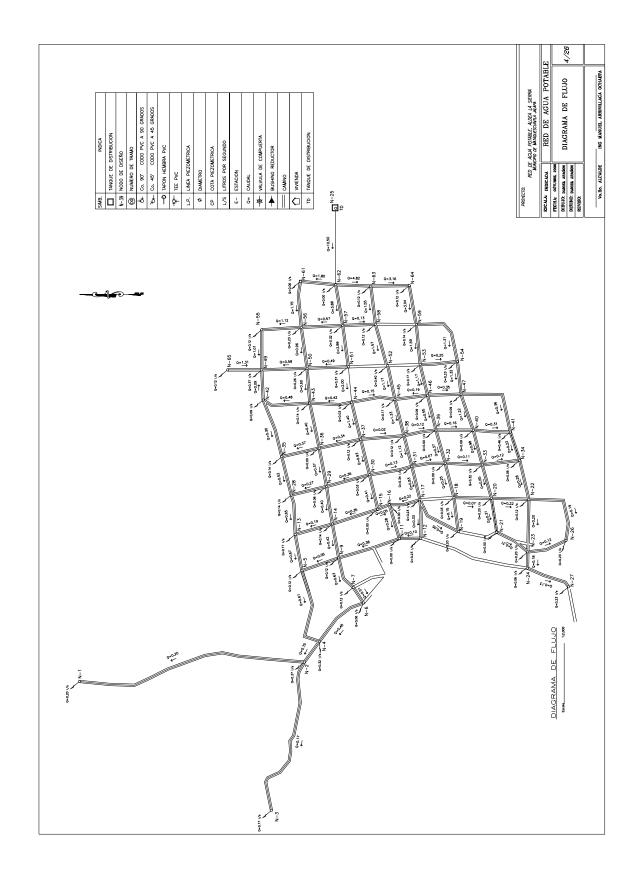
Guatemala, 2004-09-14

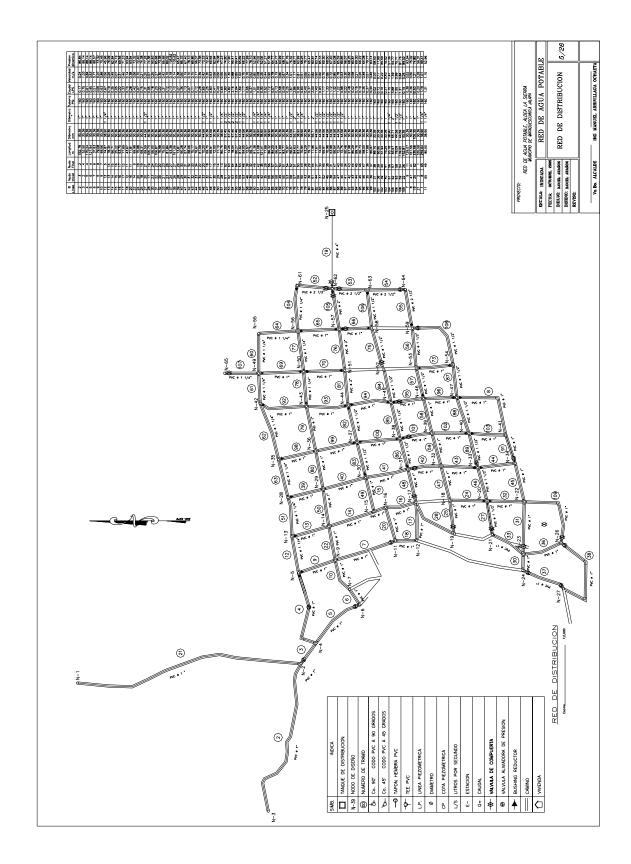
lo Ro


Ling. Fyancisco-Javier Quiñónez Director CII/SAC DIRECCION SERVICES OF WASHINGTON OF THE PROPERTY OF THE PROPER


107




LABORATORIO UNIFICADO DE QUÍMICA Y MICROBIOLOGÍA SANITARIA FACULTAD DE INGENIERÍA -USAC -CIUDAD UNIVERSITARIA, ZONA 12


O.T. No. 18 019	EXAMEN BAC	TERIOLÓGICO	TATE N
O.1. No. 18 019	Facultad de Ingeniería		INF. No. A – 189 027
INTERESADO:	(Ejercicio Profesional Spervisado)	PROYECTO:	CONTROL DE CALIDAD DEL AGUA
MUESTRA RECOLECTADA PO	OR: Daniel Aragón D.	DEPENDENCIA:	USAC
LUGAR DE RECOLECCIÓN DI LA MUESTRA:	E <u>Aldea San José La Sierra</u>	FECHA Y HORA DE RECOLEC	
FUENTE:	Tanque de distribución No. 2	LABORATORIO:	2004-09-08; 07 h 40 min.
MUNICIPIO;	Mataquescuintla	CONDICIONES DE TRANSPOR	TE: En Refrigeración
DEPARTAMENTO:	Jalapa	CONSTRUCTORES DE TRANSFOR	10.
SABOR:		SUSTANCIAS EN SUSPENSIÓN	Ligera cantidad
ASPECTO:	Clara	CLORO RESIDUAL	
OLOR:	Inodora		
INVESTIGA	ACION DE COLIFORM	ES (GRUPO COLI - AERO	OGENES)
PRUEBAS NORMALES	PRUEBA COI	NFIRMATIVA	
TROUBAS NORWIALES	PRUEBA PRESUNTIVA	FORMACIO	ON DE GAS
CANTIDAD SEMBRADA cm ³	FORMACION DE GAS - 35°C	TOTAL	FECAL 44.5 °C
10,00 cm ³	+ + + + +	++++	++
01,00 cm ³	+ +	+ -	
00,10 cm ³	+ +	+ -	
RESULTADO: NÚMERO MAS COLIFORMES/100cm ³	PROBABLE DE GÉRMENES	50	4
TÉCNICA "STANDARD MET – W.E.F. 19 TH NORMA COGU	HODS FOR THE EXAMINA ANOR NGO 4 010. SISTEMA	TION OF WATER AND WASTE INTERNACIONAL DE UNIDAI	WATER" DE LA A.P.H.A. DES (SI), GUATEMALA.
OBSERVACIONES: <u>Bacteriológi</u> dial de la Salud para Fuentes de A cción.	camente el agua NO ES apta par gua, la clasifica como calidad ba	a consumo humano, la Norma Interna cteriológica que no exige mas que un	acional de la Organizació Mun- simple tratamiento de desinfe-
Vo.Bo. Ing. Francisco Tavier Quiñe Birector CH/USAC	DIRECCION ESTA	Z D Made Nin S Park S P	Antos 649AC A

