

Universidad de San Carlos de Guatemala
Facultad de Ingeniería
Escuela de Ingeniería Civil

DISEÑO DE LA EDIFICACIÓN DE TRES NIVELES PARA OFICINAS MUNICIPALES Y CARRETERA HACIA LA ZONA AGRÍCOLA EL HATO, MUNICIPIO DE SANTA MARÍA DE JESÚS, SACATEPÉQUEZ

Jaime Geovanni Olcot Ejcalón

Asesorado por Ing. Juan Merck Cos

Guatemala, marzo de 2007

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA

FACULTAD DE INGENIERÍA

DISEÑO DE LA EDIFICACIÓN DE TRES NIVELES PARA OFICINAS MUNICIPALES Y CARRETERA HACIA LA ZONA AGRÍCOLA EL HATO, MUNICIPIO DE SANTA MARÍA DE JESÚS, SACATEPÉQUEZ

TRABAJO DE GRADUACIÓN
PRESENTADO A LA JUNTA DIRECTIVA DE LA
FACULTAD DE INGENIERÍA
POR

JAIME GEOVANNI OLCOT EJCALÓN

ASESORADO POR EL ING. JUAN MERCK COS

AL CONFERÍRSELE EL TÍTULO DE

INGENIERO CIVIL

GUATEMALA, MARZO DE 2007

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA

FACULTAD DE INGENIERÍA

NÓMINA DE JUNTA DIRECTIVA

DECANO: Ing. Murphy Olympo Paiz Recinos
VOCAL I: Inga. Glenda Patricia García Soria
VOCAL II: Lic. Amahán Sánchez Álvarez
VOCAL III: Ing. Julio David Galicia Celada
VOCAL IV: Br. Kenneth Issur Estrada Ruiz
VOCAL V: Br. Elisa Yazminda Vides Leiva
SECRETARIA: Inga. Marcia Ivonne Véliz Vargas

TRIBUNAL QUE PRACTICÓ EL EXAMEN GENERAL PRIVADO

DECANO: Ing. Murphy Olympo Paiz Recinos

EXAMINADOR: Ing. Ángel Roberto Sic García

EXAMINADOR: Ing. Ronald Estuardo Galindo Cabrera EXAMINADOR: Ing. Oswaldo Romeo Escobar Álvarez

SECRETARIA: Inga. Marcia Ivonne Véliz Vargas

HONORABLE TRIBUNAL EXAMINADOR

Cumpliendo con los preceptos que establece la ley de la Universidad de San Carlos de Guatemala, presento a su consideración mi trabajo de graduación titulado:

DISEÑO DE LA EDIFICACIÓN DE TRES NIVELES PARA OFICINAS
MUNICIPALES Y CARRETERA HACIA LA ZONA AGRÍCOLA EL HATO,
MUNICIPIO DE SANTA MARÍA DE JESÚS, SACATEPÉQUEZ,

tema que me fue asignado por la Dirección de Escuela de Ingeniería Civil, con fecha 23 de mayo del 2005.

Jaime Geovanni Olcot Ejcalón

ACTO QUE DEDICO A:

Dios Que Él es fuente de sabiduría, y que todo lo que

logrado es gracias a sus bendiciones que recibo y

por guiar mi camino hasta este triunfo.

Mis Padres Armando Olcot y Sofía Ejcalón de Olcot

Que gracias a su apoyo moral y económico, he

logrado un triunfo más en mi vida, que este trabajo

sea un reconocimiento a sus esfuerzos.

Mis Hermanos Henry Armando, Nidia Magdalia, Nancy Sofía y

Kevin Alexander, que este triunfo sea ejemplo

para que ellos alcancen sus metas.

Mis Abuelos,

tíos y primos con mucho Cariño

Mis compañeros por su amistad invaluable, éxitos en su vida

profesional

A La Universidad de San Carlos de Guatemala

Porque fue la casa de estudios que me dio la

enseñanza para ser un profesional.

A La Municipalidad de Santa María de Jesús

Porque fue ahí donde me dieron la oportunidad de

ejercerme como profesional.

ÍNDICE GENERAL

INDI	ICE DE ILUSTI	RACIONES	V
ÍNDI	ÍNDICE DE TABLAS GLOSARIO RESUMEN OBJETIVOS		VIII
GLC			ΧI
RES			XV
OBJ			XVII
INTF	RODUCCIÓN		XIX
1.	FASE DE IN	VESTIGACIÓN	
	2.1 Monogra	afía de la cabecera municipal de Santa María de	
	Jesús, S	acatepéquez	
	1.1.1	Localización geográfica	1
	1.1.2	Recursos naturales	1
	1.1.3	Población	2
	1.1.4	Educación	2
	1.1.5	Salud	3
	1.1.6	Economía	4
	1.1.7	Organizaciones sociales	5
	1.1.8	Cultura	6
	1.1.9	Instituciones públicas y privadas	7
	1.1.10	Infraestructura y servicios	7
	1.1.11	Ambiente	7
	1.2 Diagnós	tico sobre necesidades de servicios básicos e	
	infraestr	uctura de la cabecera municipal	
	1.2.1	Descripción de las necesidades	8
	1.2.2	Priorización de las necesidades	9

2. FASE DE SERVICIO TÉCNICO PROFESIONAL

2.1 Diseno de edificación de tres niveles para oficin	as
municipales	
2.1.1 Descripción del proyecto	11
2.1.2 Estudio de suelos	11
2.1.3 Diseño estructural	13
2.1.3.1 Estructuración	13
2.1.3.1.1 Sistema estructural a utilizar	13
2.1.3.1.2 Diseño arquitectónico	13
2.1.3.1.2.1 Requerimiento de áreas	13
2.1.3.1.2.2 Distribución de espacios	14
2.1.3.1.2.3 Alturas y cotas	14
2.1.3.2 Análisis estructural	16
2.1.3.2.1 Pre-dimensionamiento estructural	16
2.1.3.2.2 Modelos matemáticos de marcos dúctile	es 18
2.1.3.2.3 Cargas verticales y horizontales aplicada	as
a marcos dúctiles	18
2.1.3.2.3.1 cargas verticales	18
2.1.3.2.3.2 cargas horizontales	20
2.1.3.2.4 Fuerzas internas halladas con un métod	0
de análisis estructural	27
2.1.3.2.5 Momentos últimos por envolvente de	
momentos	35
2.1.3.2.6 Diagrama de momentos	41
2.1.3.3 Dimensionamiento	44
2.1.3.3.1 Diseño de losas	44
2.1.3.3.2 Diseño de vigas	47

2.1.3.3.3 Diseño de columnas	52
2.1.3.3.4 Diseño de zapatas	62
2.1.3.3.4.1 Zapatas tipo 1	62
2.1.3.3.4.2 Zapatas tipo 2	68
2.1.3.3.5 Diseño de muro de contención	74
2.1.4 Presupuesto	77
2.2 Diseño de la Carretera Hacia la Zona Agrícola El Hato	
2.2.1 Descripción del proyecto	81
2.2.2 Preliminar de Campo	81
2.2.2.1 Selección de ruta	81
2.2.3 Derecho de vía	81
2.2.4 Selección del tipo de carretera	82
2.2.5 Levantamiento topográfico preliminar	82
2.2.5.1 Planimetría	82
2.2.5.2 Altimetría	83
2.2.5.3 Secciones transversales	83
2.2.6 Cálculo topográfico preliminar	84
2.2.6.1 Cálculo planimétrico	84
2.2.6.2 Cálculo altimétrico	85
2.2.6.3 Cálculo de secciones transversales	85
2.2.7 Dibujo preliminar	86
2.2.7.1 Planimétrico	86
2.2.7.2 Altimétrico	86
2.2.8 Diseño de localización	87
2.2.8.1 Diseño de subrasante de preliminar	87
2.2.8.2 Diseño de línea de localización	87
2.2.8.3 Cálculo de elementos de curva horizontal	88
2.2.8.4 Determinación de curva vertical	93

2.2.9 Movimiento de tierras	95
2.2.9.1 Diseño de la subrasante	95
2.2.9.2 Dibujo de secciones transversales	97
2.2.9.3 Dibujo de secciones típicas	98
2.2.9.4 Cálculos de áreas de secciones transversales	99
2.2.9.5 Cálculo de volúmenes	100
2.2.10 Drenajes	101
2.2.10.1 Ubicación de drenajes	101
2.2.10.2 Diseño de cunetas	102
2.2.10.3 Diseño de drenajes transversales	102
2.2.10.4 Cálculo de áreas de descarga por método	
racional	103
2.2.11 Pavimento	106
2.2.11.1 Selección del tipo de pavimento	106
2.2.11.2 Diseño del pavimento	109
2.2.12 Elaboración de planos	117
2.2.13 Presupuesto	117
CONCLUSIONES	119
RECOMENDACIONES	121
BIBLIOGRAFÍA	123
APÉNDICES	125

ÍNDICE DE ILUSTRACIONES

FIGURAS

No.	Descripción	Pág
1	Matriz de relaciones	14
2	Sección longitudinal	15
3	Sección transversal	15
4	Planta típica	15
5	Sección predimencionada de viga	17
6	Sección predimencionada de columna	17
7	Planta distribución de cargas	18
8	Análisis con carga muerta (T-m) X-X	29
9	Análisis con carga viva (T-m) X-X	30
10	Análisis con carga Sísmica (T) X-X	31
11	Análisis con carga Muerta (T-m) Y-Y	32
12	Análisis con carga viva (T-m) Y-Y	33
13	Análisis con carga Sísmica (T) Y-Y	34
14	Diagrama de momentos últimos (T-m) Sentido X-X	42
15	Diagrama de momentos últimos (T-m) Sentido Y-Y	43
16	Losa típica	44
17	Sección nervio típico, vigueta	45
18	Confinamiento de columna	61
19	Esfuerzo en el terreno	69
20	Zapata de lindero	70
21	Muro de contención por gravedad	74
22	Delta	89
23	Grado de curvatura	89

No.	Descripción	Pág.
24	Elemento de una curva vertical	90
25	Tipo de curvas verticales	94
26	Sección típica en tangente	98
27	Sección típica en curva	99
28	Volumen de movimiento de tierra	100
29	Planta amueblada sótano + bodega	127
30	Planta amueblada primer nivel	128
31	Planta amueblada segundo nivel	129
32	Planta acotada sótano + bodega	130
33	Planta acotada primer nivel	131
34	Planta acotada segundo nivel	132
35	Elevación principal	133
36	Elevación lateral	134
37	Elevación posterior	135
38	Sección transversal	136
39	Sección longitudinal	137
40	Planta cimentación sótano + bodega	138
41	Planta distribución de columnas primer nivel	139
42	Planta distribución de columnas segundo nivel	140
43	Planta acabados sótano + bodega	141
44	Planta acabados primer nivel	142
45	Planta acabados segundo nivel	143
46	Planta techos sótano + bodega	144
47	Planta techos primer nivel	145
48	Planta techos segundo nivel	146
49	Planta iluminación sótano + bodega	147
50	Planta iluminación primer nivel	148
51	Planta iluminación segundo nivel	149

No.	Descripción	Pág
52	Planta fuerza sótano + bodega	150
53	Planta fuerza primer nivel	151
54	Planta fuerza segundo nivel	152
55	Planta agua potable sótano + bodega	153
56	Planta agua potable primer nivel	154
57	Planta agua potable segundo nivel	155
58	Planta drenaje sótano + bodega	156
59	Planta drenaje primer nivel	157
60	Planta drenaje segundo nivel	158
61	Plano detalle de vigas (transversal)	159
62	Plano detalle de vigas (longitudinal)	160
63	Plano localización	161
64	Plano planta perfil general	162
65	Plano banco de materiales	163
66	Plano planta perfil km. 0+000	164
67	Plano planta perfil km. 0+750	165
68	Plano planta perfil km. 1+500	166
69	Plano planta perfil km. 2+250	167
70	Plano secciones 0+000 - 0+700	168
71	Plano secciones 0+720 - 1+420	169
72	Plano secciones 1+440 - 2+160	170
73	Plano secciones 2+180 - 2+962.21	171
74	Plano tablas	172
75	Plano detalles	173

TABLAS

No.	Descripción	Pág
I	Pesos y alturas por nivel	24
II	Fuerzas por marco en cada nivel sentido X	26
III	Fuerzas por marco en cada nivel sentido Y	27
IV	Combinaciones criticas	35
V	Resultados de envolvente de momentos (sentido X-X)	35
VI	Resultados de envolvente de momentos (sentido Y-Y)	38
VII	Comprobación del A _s corrido (momento positivo)	46
VIII	Comprobación del A _s corrido (momento negativo)	47
IX	Áreas de acero momentos negativos (sentido X-X)	49
Χ	Áreas de acero momentos positivos (sentido X-X)	49
XI	Áreas de acero momentos negativos (sentido Y-Y)	49
XII	Áreas de acero momentos positivos (sentido Y-Y)	50
XIII	Envolventes y áreas de acero (primer nivel)	50
XIV	Armado en viga (primer nivel)	51
XV	Envolventes y áreas de acero (segundo nivel)	51
XVI	Armado en viga (segundo nivel)	51
XVII	Envolventes y áreas de acero (tercer nivel)	51
XVIII	Armado en viga (tercer nivel)	51
XIX	Refuerzo de A _s columna 2do. nivel	59
XX	Refuerzo de A _s columna 3er. nivel	59
XXI	Datos base de zapata tipo 2	73
XXII	Datos para el diseño del muro	75
XXIII	Presupuesto	77
XXIV	Libreta de campo (planimetría)	82
XXV	Libreta de campo (altimetría)	83
XXVI	Libreta de secciones	84

No.	Descripción	Pág
XXVII	Coordenadas parciales y totales	84
XXVIII	Cálculo de cotas	85
XXIX	Cálculo de niveles de sección	86
XXX	Valores de "K", según velocidad de diseño	94
XXXI	Relación para dibujo de taludes	99
XXXII	Ejemplo de cálculo de movimiento de tierras	101
XXXIII	Categoría por cargas de eje	115
XXXIV	Valores de K para diseño sobre base no tratada (PCA)	115
XXXV	Valores de K para diseño sobre base de suelo cemento	115
XXXVI	TPDC Permisible, carga por eje categoría 2 pavimentos	
	con juntas doveladas	116
XXXVII	Espesores estimadas de base según su uso	117
XXXVIII	Costo total	118

GLOSARIO

Definiciones de Estructuras

Cimentación

Subestructura destinada a soportar el peso de la construcción que gravitará sobre ella, la cual transmitirá sobre el terreno las cargas correspondientes de una forma estable y segura.

Efecto de esbeltez

Es la reducción de resistencia de elementos estructurales, cuya relación longitud-peralte es grande, cuando son sometidos a compresión axial o flexo-compresión, aplicable sobre columnas.

Formula: $E = \frac{KL_n}{r}$

Esfuerzo

Magnitud de una fuerza por unidad de área.

Estructura

Ordenamiento de un conjunto de elementos encargado de resistir los efectos de las fuerzas externas de un cuerpo físico. También, se le llama a un sistema de elementos que se combinan de una forma ordenada para cumplir una función determinada, por ejemplo: cubrir una longitud, contener un empuje de tierras, cubrir un techo, conducir un caudal determinado, etc.

Envolvente de momentos

Diagrama de momentos donde se superponen los momentos producidos en la estructura de por las combinaciones de cargas, para determinar cuales son los momentos críticos y proceder a diseñar los elementos de la estructura con ellos.

Longitud de desarrollo

Longitud embebida en el hormigón que se requiere para poder desarrollar la resistencia de diseño de la armadura en una sección crítica.

Momento resistente

Es el resultado de multiplicar la fuerza de tensión o la de compresión, por el brazo del par interno.

Magnificación de Momentos

Factor de seguridad obtenido a partir de la evaluación de los efectos de esbeltez de las columnas.

Momento último o de diseño

Es el momento resistente afectado por un factor de magnificación, el cual nos asegura que los elementos estructurales son diseñados para soportar las fuerzas internas actuantes con un cierto margen de seguridad.

Peso específico

Se define como el peso por unidad de volumen.

Definiciones de Carreteras

Base Capa de material pétreo, mezcla de suelo-cemento,

mezcla bituminosa, o piedra triturada, que se coloca

encima de la sub-base.

Calzada Parte de la corona destinada al tránsito de vehículos.

Capa de rodamiento La que se coloca encima de la base y está formada

por mezcla bituminosa o de concreto hidráulico.

Cuneta Canal que se ubica en cada uno de los lados de un

camino o carretera, en las cuales el agua circula

debido a la acción de la gravedad.

Derecho de vía Superficie de terreno a los laterales de la línea cuyas

dimensiones fija la Dirección General de Caminos, que se requiere para la construcción, conservación,

reconstrucción, ampliación, para el uso adecuado de

una vía de comunicación.

Grado de curvatura De acuerdo con el tipo de carretera, se fija un grado

máximo de curva a usarse. Este debe llenar las

condiciones de seguridad para el tránsito a la

velocidad de diseño.

Pavimento Estructura que descansa sobre el terreno de

fundación y que se halla formado por diferentes

capas: sub-base, base, Capa de rodamiento y sello.

Pendiente Relación entre el desnivel y la distancia horizontal

que hay entre dos puntos.

Rasante Proyección del desarrollo del eje de la corona de una

carretera sobre un plano vertical.

Sección típica Es la representación gráfica transversal y acotada

que muestra las partes componentes de una sección

de carretera por debajo de la estructura.

Sub base La capa de material seleccionado que se coloca

encima de la sub-rasante.

Talud Inclinación de un terreno que pertenece a la sección

típica; la cual delimita los volúmenes de corte y

relleno.

RESUMEN

El trabajo de graduación que a continuación se presenta, es acerca de la realización del Ejercicio Profesional Supervisado, en el cual en la fase de investigación, a través de un diagnóstico realizado en el municipio de Santa María de Jesús, departamento de Sacatepéquez, se determinó que las necesidades mas prioritarias están orientadas hacia las áreas de infraestructura, y, específicamente, en lo que concierne a edificio para oficinas municipales y de una carretera.

Por lo que, de acuerdo a estas prioridades, se plantea el diseño de un edificio para oficinas municipales, detallando para efecto el proceso de diseño del edificio, partiendo de un criterio de diseño de una estructura de concreto reforzado, fundamentando la simplicidad del análisis estructural en la aplicación de métodos que proporcionen el comportamiento adecuado, bajo cargas de servicio para que funcione tanto estructural como arquitectónicamente, el cual beneficiará a empleados, usuarios y visitantes del municipio.

Así, también, se desarrolla el diseño de la carretera hacia la zona agrícola El Hato, en esta se describen todas las actividades necesarias como visitas de campo, levantamiento topográfico, cálculo topográfico, diseño geométrico, movimiento de tierras y sus volúmenes, drenajes transversales y longitudinales, diseño de pavimento, presupuesto y planos.

OBJETIVOS

General

 Diseñar la edificación de tres niveles para oficinas municipales y carretera hacia la zona agrícola el Hato, municipio de Santa María de Jesús, Sacatepéquez.

Específicos

- Realizar una investigación de tipo monográfico y un diagnóstico sobre necesidades de servicios básicos e infraestructura de la cabecera municipal de Santa María de Jesús departamento de Sacatepéquez.
- 2. Capacitar a los miembros del COCODE de la zona agrícola El Hato sobre aspectos de mantenimiento de carreteras.

INTRODUCCIÓN

El presente trabajo de graduación es el resultado de la realización del Ejercicio Profesional Supervisado (E. P. S.) efectuado en el municipio de Santa María de Jesús, del departamento de Sacatepéquez, en la que se realizó un diagnóstico del municipio, con el propósito de conocer las necesidades, en cuanto a servicios básicos e infraestructura mas prioritarias.

Con la investigación realizada en el municipio, se determinó que las necesidades prioritarias son las de infraestructura y vías de comunicación, en el área de infraestructura la necesidad se orienta hacia un edificio para oficinas municipales, ya que, el actual no cuenta con las comodidades necesarias para prestar los servicios, para dar solución a la misma se describe el proceso de diseño de un nuevo edificio para oficinas municipales, que satisfaga las necesidades de los usuarios.

En el área de vías de comunicación se determinó que se requiere una carretera para la zona agrícola El Hato, pues es aquí donde la mayor parte de habitantes del municipio cultiva productos agrícolas en gran cantidad, por lo que se propone el diseño de una carretera que cumpla las condiciones de una carretera mejorada y se adapte al lugar, teniendo todos los elementos que la componen, como los son las cunetas, drenaje transversal, cajas y cabezales, etc.

Al final, se presentan planos detallados de cada uno de los proyectos, así como el presupuesto.

1. FASE DE INVESTIGACIÓN

1.1 Monografía de la cabecera municipal de Santa María de Jesús, Sacatepéquez

1.1.1 Localización geográfica

El municipio de Santa María de Jesús se localiza a 14º29'36" latitud norte y 90º42'36" longitud oeste, con una altitud de 2,070 msnm. Pertenece al departamento de Sacatepéquez y se ubica a 10 km de la cabecera departamental con dirección hacia el sur y a 55 km de la ciudad capital. Corresponde a la jurisdicción de la región V conforme al sistema de regionalización vigente del país, con una extensión de 34 km² de territorio.

Limita al norte con el municipio de Magdalena Milpas Altas y la Antigua Guatemala; al sur con el municipio de Palín (Escuintla); al Este con los municipios de Magdalena Milpas Altas y Amatitlán (Guatemala) y al Oeste con el municipio de Antigua Guatemala.

El municipio está dividido en cuatro cantones identificados únicamente con número ordinal (primero, segundo, tercero y cuarto). También tiene una pequeña colonia. No cuenta con aldeas ni caseríos.

1.1.2 Recursos naturales

El volcán de Agua, ha sido declarada área protegida y parcialmente corresponde a la jurisdicción de Santa María de Jesús, estando aún pendiente de definir su superficie. Actualmente está siendo administrado por el Consejo Nacional de Áreas Protegidas.

El 70.72% del territorio del municipio corresponde con la zona de vida bosque húmedo montano bajo; el 22.27% de bosque muy húmedo montano bajo y el 7.01% con bosque muy húmedo subtropical cálido. En este entorno natural, el municipio cuenta con una significativa cobertura boscosa, propicias para el albergue de una rica flora, que destaca especies como cedro, ciprés, pino, pinabete, lama, encino, roble, eucalipto, gravilea, manzano, perales, naranjos, jocotales, entre otras. En lo que respecta a fauna prevalece coyote, gato de monte, comadreja, jabalí, venado, tepezcuintle, mapache, conejos, entre otros.

1.1.3 Población

Cuenta con una población total estimada de 17,393 habitantes con una relación porcentual de 48% y 52% de hombres y mujeres respectivamente. Estos habitantes están distribuidos en 2,899 viviendas, obteniendo así un promedio aproximado de 6 miembros en cada una. El 95% de la población es indígena de descendencia maya-kagchikel.

1.1.4 Educación

En el municipio existe una población escolar a nivel primario de 2,040 alumnos, calculado para el año 2000; cuenta con 3 escuelas públicas y 2 privadas. En las escuelas públicas de nivel primario se cuentan en servicio un total de 64 maestros, los cuales imparten clases en horario regular.

Contaban para el mismo año con 150 alumnos de nivel pre-primario atendidos por 2 escuelas privadas y 148 estudiantes para el nivel básico, que funciona mediante una escuela por cooperativa. En el municipio solo se cuenta con un maestro de educación física.

Con base en la estrategia de reducción a la pobreza de Sacatepéquez formulada por la SEGEPLAN, se establece que el analfabetismo calculado para el año 2000 en este municipio es de 46.6%, que al efectuar las comparaciones

respectivas se determina que es el más alto de todos los municipios del departamento. Indica además que cuenta con una débil y escasa infraestructura en esta área y escasa accesibilidad a los servicios educativos.

En esta misma fuente se puntualiza que la tasa de incorporación al sistema educativo a nivel primario para el año 2000 en este municipio es de 47.69 en contraste con el 59.32 que presenta la media a nivel departamental; a su vez la tasa de repitencia en el municipio es de 15.52 superior al 12.65 que corresponde al departamento.

También cabe destacar que la tasa de deserción escolar a nivel municipal es de 3.99 lo que denota una tasa baja, no obstante el alto índice de analfabetismo indica un alto grado de repitencia.

1.1.5 **Salud**

Según registros del Centro de Salud de la localidad, las enfermedades más frecuentes que padece la población en su orden de importancia son: resfriado común, diarreas, infecciones de la piel, gastritis, infecciones urinarias, espasmo muscular, asma, parasitismo intestinal, conjuntivitis y diabetes.

Las formas de tratamiento de estas enfermedades por lo regular se efectúan con medicina química, recurriendo en la mayoría de los casos a consultas al mencionado Centro. En promedio se atienden 26 consultas al día, calculado en el período de enero-abril del 2004. Por aparte un pequeño segmento de la población utiliza servicios médicos privados, ya sea en un consultorio médico que funciona en la localidad o en la cabecera departamental de Antigua Guatemala. También funciona un consultorio dental.

Las prácticas preventivas en la población son mínimas, frente a tal situación instituciones como el Centro de Salud, entre otras, efectúan esfuerzos de información y conscientización sobre la necesidad de implementar medidas para reducir la incidencia de las enfermedades recurrentes.

Dentro del perímetro municipal se cuentan con 10 farmacias particulares y una Farmacia de la Comunidad que dispone de medicamentos genéricos, los que tienen mayor demanda por su precio.

En total se cuentan con 6 comadronas autorizadas por el Ministerio de Salud que trabajan en coordinación con el Centro de Salud de la localidad. Se cuentan además con 25 curanderas/os que atienden a la población, además técnicos de salud, 3 enfermeras del Centro de Salud y guardianes de salud.

Los servicios que presta el Puesto de Salud del municipio incluyen: consultas, vacunación, planificación familiar, atención de emergencias, pláticas sobre temas de salud y vacunación canina, primordialmente.

Las principales causas identificadas de las enfermedades es la calidad del agua domiciliar entubada que no recibe un tratamiento adecuado, previo a su utilización en las necesidades domésticas. Además un régimen alimenticio que presenta deficiencias nutricionales y por lo tanto vulnerabilidad a las enfermedades, que además está ligado a los bajos ingresos económicos y a la educación.

En general, la población no tiene buena aceptación de las vacunas que de ordinario se debe administrar a los neonatos e infantes, argumentando efectos no deseados de las mismas. Prueba de ello es que de los 454 niños nacidos vivos en el año 2003, únicamente han sido vacunados 56 (12%) durante los cuatro primeros meses de 2004.

1.1.6 Economía

La base principal de la economía de su población es la producción hortícola entre las que figuran tomate, ejote y güisquil (sechium edule)

primordialmente; además otros productos como aguacate (*persea americana*) y durazno, que comercializan en el mercado local, departamental, en la Terminal de la zona 4 y Central de Mayoreo de la ciudad capital. Por otro lado, como aporte de la mujer a la economía, un número significativo se dedica al comercio de los mismos productos, como eslabón entre pequeños productores de otros municipios del departamento y los consumidores finales en la ciudad capital.

La producción de granos básicos como el maíz (<u>zea mays</u>) y frijol (<u>phaseolus vulgaris</u>), es utilizada para el consumo familiar y pequeños excedentes se destinan al mercado local.

La producción artesanal no figura como fuente significativa de ingresos; ésta incluye la confección de tejidos como güipiles, fajas, morrales y otros materiales accesorios que comercializan en forma de menudeo. Se agrega a la actividad económica la producción que se basa en trabajos de herrería y de joyería.

El empleo de mano de obra local estacionaria y esporádica en actividades agrícolas representa una remuneración de veinticinco quetzales hombre/día. El turismo nacional y extranjero, dado a los atractivos escénicos, recreativos y ecológicos que ofrece el Volcán de Agua, representa un potencial económico para la población que no es aprovechado en su justa dimensión.

1.1.7 Organizaciones Sociales

La población por mucho tiempo estuvo organizada mediante comités de promejoramiento cuya función era la de coordinar esfuerzos para la obtención de satisfactores básicos.

Sin embargo, a partir de la aprobación y puesta en vigencia de la nueva ley de los Consejos de Desarrollo Urbano y Rural mediante el decreto 11-2002, se establecen los Consejos Comunitarios de Desarrollo –COCODES-, creándose con ella las condiciones para la reestructuración de las formas de organización local, en cuyo ámbito hasta el momento se han establecido cinco COCODES, uno por cada cantón.

1.1.8 Cultura

El 95% de la población es indígena, de descendencia Maya-Kaqchikel y como tal conserva un legado cultural histórico, que incluye el idioma kaqchikel, que por lo regular es utilizado en la vida cotidiana, constituyéndose en un medio de transmisión de valores culturales propios y una forma de cohesión social. Destaca también el uso del traje en la mujer, no así el hombre que viste a la usanza occidental, con excepción de algunos adultos mayores que aún lo conservan, principalmente la camisa.

Como parte del sincretismo cultural que se ha venido forjando desde la invasión española, actualmente se fomentan las tradiciones alrededor de las prácticas religiosas, en especial, de la iglesia católica, contando así con nueve cofradías, a saber, de mayordomos, de la Virgen de Concepción, de Santa Cruz, de Corpus Christi, de la Virgen Natividad, de San Nicolás, de San José, de San Sebastián, de Santo Domingo y de San Francisco.

Las fiestas patronales de la localidad se celebran del 12 al 16 de septiembre en honor al Dulce Nombre de María y del 1 al 5 de enero en honor al Dulce Nombre de Jesús, realizando para ellas procesiones, actos de juegos florales, bailes públicos, baile del torito y quema de pólvora.

1.1.9 Instituciones Públicas y Privadas

En cuanto a instituciones públicas se cuenta con 3 escuelas nacionales, a saber: Escuela Oficial para Niñas "Leonor Rosales Vda. de Ramírez que fue construida en 1978, Escuela Oficial para Varones "Mariano Navarrete" instalada en 1980 y Escuela Oficial Urbana Mixta establecida en 1993 (todas a nivel primario). Se cuenta a su vez con un centro de salud y una sub-estación de la Policía Nacional Civil.

Con relación a instituciones privadas se tiene la presencia de una estación de bomberos municipales con tres unidades, 2 escuelas privadas: Colegio Parroquial "Antonio Samoré" (pre-primaria y primaria) y Colegio "Marielos" (preprimaria). Cabe señalar que también se cuenta con un Instituto Mixto de Educación Básica por Cooperativa que actualmente tiene ya 19 años de funcionamiento. Existe a la vez una Cooperativa de Transporte.

1.1.10 Infraestructura y Servicios

En infraestructura básica se dispone de un sistema de alcantarillado que da cobertura aproximada del 80% de la población; también de un sistema de agua entubada con un total de 1,634 servicios domiciliares cubriendo el 51% de las viviendas existentes. Se dispone de servicios públicos de agua mediante 7 llena cántaros, que cubre el déficit del servicio domiciliar. El 95% de los hogares cuenta con servicio de energía eléctrica, suministrado por la empresa Unión FENOSA y distribuida por DEOCSA. El 95% de las calles están adoquinadas.

1.1.11 Ambiente

Se carece en este municipio de un sistema de recolección, transporte y tratamiento de los desechos sólidos que se generan en los domicilios. El 2% de cobertura de recolección de desechos sólidos que se dispone es mediante servicio privado, cuyo costo es de Q20.00 mensuales, utiliza como vertedero un

barranco que dista a 7 km del área poblada de Santa María. Los hogares que no utilizan este servicio de recolección, depositan sus desechos en un barranco más cercano y una parte significativa de los mismos se dispersan en las calles.

Por su lado, los desechos sólidos de la Municipalidad se recolectan en un centro de acopio ubicado contiguo al edificio municipal, los cuales son transportados y depositados en un lugar conocido como "El Tecolote", que tampoco recibe tratamiento.

A menudo la generación de desechos líquidos domiciliares (aguas negras) y de las aguas pluviales, superan la capacidad del sistema incompleto de alcantarillado para el drenaje de estos fluidos, creando condiciones para desbordes en las calles y de contaminación microbiológica, que pone en riesgo la salud. Las aguas servidas tienen tres desfogues que se descargan sin tratamiento alguno, y por su ubicación son susceptibles de contaminar acuíferos de donde se alimentan pozos que se utiliza como fuente para abastecer de agua entubada a la comunidad, además de constituirse en fuente de contaminación para poblados ubicados cuenca abajo y de campos de cultivo.

1.2 Diagnóstico sobre necesidades de servicios básicos e infraestructura de la cabecera municipal

1.3.1 Descripción de las necesidades

De acuerdo al diagnóstico practicado en el municipio de Santa María de Jesús, departamento de Sacatepéquez, se determinaron que las necesidades de servicios básicos e infraestructura son las siguientes:

Infraestructura: se puede notar en el municipio que el actual edificio que ocupa la municipalidad no cumple con las condiciones de comodidad de trabajo, y que las oficinas son improvisadas, pues no se cuenta con otras disponibles, y

por tal razón no se alcanza satisfactoriamente a servir como se debe a los pobladores.

Vías de comunicación: se determinó que El Hato es una zona agrícola muy productiva y que casi el 80 % de la población usa esta zona para cultivar sus productos, pero que no cuenta con una carretera que cumpla las condiciones necesarias y facilite a los habitantes sacar mayor provecho al lugar, así también se detectó que en el municipio las calles no están todas adoquinadas y que en ciertos lugares el que tiene ya esta muy deteriorado.

Área de Ornato: El municipio es de gran atractivo turístico, pero no cuenta con algún lugar para que turistas puedan disfrutar de este atractivo, por lo que se requiere un parque para que cumpla con esta función.

1.3.2 Priorización de las necesidades

Las necesidades se priorizaron con base a criterios que la municipalidad, pobladores y E.P.S. definieron, siendo la priorización las siguientes:

- Edificio municipal
- Carretera hacia zona agrícola El Hato
- Parque central.

2. FASE DE SERVICIO TÉCNICO PROFESIONAL

2.1 Diseño de edificación de tres Niveles para oficinas Municipales

2.1.1 Descripción del proyecto

El proyecto consiste en el diseño de un edificio para oficinas municipales, ya que el edificio actual no reúne condiciones necesarias para el desempeño de actividades. Esta edificación contará con 3 niveles en la cual el primero funcionará como área de bodega y estacionamientos en un sótano, el segundo se usará como área pública y de oficinas, que contará con las áreas financiera, técnica y servicio al público, y en tercer nivel estará el área administrativa y un área de crecimiento así como un área turística.

Con el terreno que se tiene, la mejor manera de construir el nuevo edificio es realizando dos módulos, cada uno unido por una junta de construcción.

2.1.2 Estudio de suelos

Para el estudio de suelos se tomó una muestra en el lugar del proyecto no alterada, a una profundidad de 1.80 m. y luego se le realizaron los ensayos correspondientes en el laboratorio del centro de investigaciones de ingeniería, se le hizo el ensayo de compresión triaxial, y los resultados fueron los siguientes:

Parámetros de corte: $\Phi = 26.27$ °, $Cu = 1.7 \text{ T/m}^2$

Tipo de ensayo: no consolidado y no drenado

Descripción del suelo: limo arcilloso color café con partículas de

grava.

Estos datos serán necesarios para realizar el cálculo del cimiento del edificio y para el diseño del muro de contención.

A continuación se define el procedimiento del cálculo del valor soporte del suelo, aplicando el método del Dr. Karl Terzaghi:

Los datos a utilizar son los obtenidos en el estudio de suelo:

Base	1.00	m	Factor de	seguridad	3
Peso específico del suelo	1.04	T/m3			
Ángulo de fricción interna	26.27	0	Φ rad	0.45850	
Carga última	1.7	T/m2			
Desplante	1.8	m			

Factor de flujo de carga (Nq)

$$Nq = \frac{e^{\left(\frac{3}{2}*\pi - \theta rad\right)\tan\theta}}{2\cos^2\left(45 + \frac{\theta}{2}\right)}$$

$$Nq = \frac{e^{\left(\frac{3}{2}*\pi - 0.4585\right)\tan 26.27}}{2\cos^2\left(45 + \frac{26.27}{2}\right)}$$

$$Nq = 14.65 \frac{ton}{m^2}$$

Factor de flujo de carga última (Nc)

$$Nc = \cot \theta * (Nq - 1)$$

 $Nc = \cot(26.27) * (14.65 - 1)$
 $Nc = 27.65 \frac{Ton}{m^2}$

Factor de flujo (*Ny*)

$$N\gamma = 2*(Nq+1)*\tan\theta$$

$$N\gamma = 2 * (14.65 + 1) * \tan 26.27$$

$$N\gamma = 15.44$$

Valor soporte + ultimo (q_o)

$$q_o = 0.4 * \text{ psuelo} * B * N \gamma + 1.3 CuNc + \text{ psuelo} * D * N q$$

$$q_o = 0.4*1.04*1*15.44+1.31.7*27.65+1.04*1.8*14.65$$

 $q_o = 94.94 \frac{Ton}{m^2}$

Valor soporte neto último (q_{bn})

$$q_{bn} = q_o - \gamma suelo * D$$

$$q_{bn} = 94.94 - 1.04 * 1.80$$

$$q_{bn} = 93.06 \frac{Ton}{m^2}$$

Valor sopote de diseño (q_d)

$$q_d = \frac{q_{bn}}{fc}$$

$$q_d = \frac{93.06}{3}$$

$$q_d = 31.02 \frac{Ton}{m^2}$$

El valor de 31.02 Ton/m², será utilizado para el diseño de la cimentación del edificio.

2.1.3 Diseño estructural

2.1.3.1 Estructuración

2.1.3.1.1 Sistema estructural a utilizar

Para la elección del sistema estructural se toma en cuentan factores de desempeño, económicos, materiales disponibles en el lugar, como resultado de esto debe comprender el tipo de estructura formas y dimensiones.

Para este caso se eligió el sistema estructural de marcos dúctiles con nudos rígidos de concreto reforzado, y losas planas de concreto reforzado.

2.1.3.1.2 Diseño arquitectónico

2.1.3.1.2.1 Requerimiento de áreas

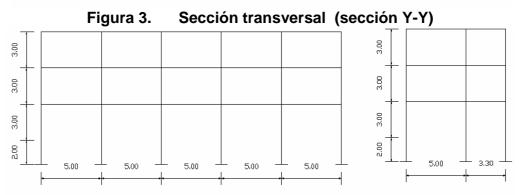
El área con que se cuenta para la construcción del nuevo edificio, es la que actualmente ocupa el edificio municipal, ya que es el único terreno con que se dispone para el nuevo edificio, con esto se trató de optimizar el área para que se cumpla con los requerimientos de un edificio público apta tanto parta los empleados como el público que hará uso de la misma.

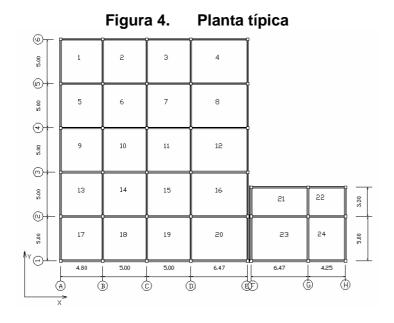
2.1.3.1.2.2 Distribución de espacios

Para la distribución de espacios se hizo una matriz de diagnóstico, la cual consistió en investigar con los usuarios de cada oficina, su uso y el mobiliario que en ella se colocará, con esto se logra determinar el largo, ancho y altura que tendrá cada espacio, para luego con el área obtenida se distribuye los ambientes mediante una matriz de relaciones, la cual se visualizará una mejor forma de distribución para que cada área del edificio se comunique mejor y así se optimizará la función que el edificio posea.

MATRIZ DE RELACIONES
AREA PUBLICA

1 | REDSTRO CIME
2 | SCOPETION NAMEDIA
3 | SERVICIOS SAREMANDI PRISADOS
4 | SERVICIOS SAREMANDI PRISADOS
5 | AL SERVICIOS SAREMANDI PRISADOS
5 | AL SERVICIOS SAREMANDI PRISADOS
6 | SERVICIOS SAREMANDI PRISADOS
7 | SERVICIOS SAREMANDI SAREMAN


Figura 1. Matriz de Relaciones


2.1.3.1.2.3 Alturas y cotas

Con las cotas y alturas se dará forma al edificio, teniendo así un mejor lugar para que se cumpla la función de cada oficina y espacios del nuevo edificio público, la cual se tendrán espacios más amplios y cómodos,

aprovechando así el área del terreno y distribuyendo los espacios de una mejor manera.

Figura 2. Sección longitudinal (sección X-X)

• Datos de diseño:

 $Vs = 30.00 \text{ ton/m}^2$ $Vs = 1.04 \text{ ton/m}^2$

 $\emptyset = 26.27^{\circ}$

2.1.3.2 Análisis estructural

El análisis estructural es el proceso para determinar las respuestas de la estructura ante las acciones exteriores que puedan afectarla en este caso serían las fuerzas aplicada al edificio.

2.1.3.2.1 Predimencionamiento estructural

Este consiste en dar medidas preliminares a los elementos que componen la estructura, que serán utilizados para soportar las cargas aplicadas a este. Para esto se utilizan métodos analíticos cortos que se describen a continuación.

Vigas

Para predimencionar vigas se usa el método que determina el peralte dependiendo de la luz que cubre la longitud mayor, basándonos en la siguiente formula:

d= L/24 donde d= peralte

L= longitud de la viga

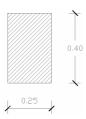
d= 5/24 = 0.21 m = peralte mínimo

se adoptará un peralte de 0.36 m.

al tener el peralte se calcula la base de la viga tomando en cuenta que puede varias entre un 40% y un 60% del peralte efectivo.

b = (0.40 - 0.60) d donde

b = base de la viga


 $b = 0.60 \cdot 0.36 = 0.22$

d = peralte efectivo

Se usara 0.25 m.

16

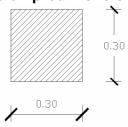
Figura 5. Sección predimencionada de viga

Columnas

El método que se utilizó para predimencionar las columnas determina la sección y se basa en la carga aplicada a esta, en este caso en particular se pretende guardar simetría en las dimensiones de la columna, por tal razón se toma la columna critica, es decir, la que soporta mayor carga, la media resultante se aplica a todas las demás.

Para este método se usara la fórmula:

P = 0.80 (0.225 f'c Ag + FyAs); 1% Ag < As < 6% Ag.


P = 25*2400 = 60,000 kg. (area tributaria)

60,000 = 0.80 (0.225*210*Ag + 2810*0.02*Ag)

 $Ag = 724.98 \text{ cm}^2$

Se proponen columnas de 30*30 cm. = 900 cm² > Ag.

Figura 6. Sección predimencionada de columna

Losas

Para predimencionar losas el método usa como variable las dimensiones de la superficie de la losa y el tipo de apoyo que tiene; en este caso todas las losas están apoyadas en los cuatro extremos, la fórmula es:

T= perímetro de losa /180

T = (5*4)/180 = 0.111 = 0.12 m.

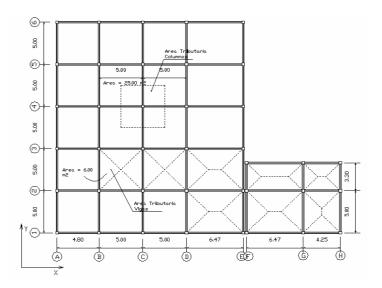


Figura 7. Planta distribución de cargas

2.1.3.2.2 Modelos matemáticos de marcos dúctiles

Representan la forma como las cargas actúan y que el marco soporta y sirve para hacer el análisis estructural; por similitud de los marcos en geometría y en las cargas aplicadas, se analizan únicamente los críticos. (Ver figuras).

2.1.3.2.3 Cargas verticales y horizontales aplicadas a marcos dúctiles

2.1.3.2.3.1 Cargas verticales

Los valores de cargas verticales que se usaron, por normas de construcción fueron las siguientes:

Carga muerta (CM)

Peso de concreto = 2,400 Kg./m³

Peso de acabados = 100 Kg./m²

Peso de muros = 150 Kg./m²

Carga viva (cv)

Oficina (aplica entrepisos) = 250 Kg./m²

Vestíbulos Públicos = 500 Kg./m²

Techos = 100 Kg./m^2

Nota: estos datos fueron obtenidos de las normas estructurales de diseño recomendadas para la república de Guatemala, AGIES NR-2: 2000

Las cargas distribuidas que se muestran en los modelos matemáticos, fueron calculados tomando en cuenta los valores anteriores y siguiendo el procedimiento siguiente:

• Integración de Cargas (en vigas)

Carga Muerta

```
Nivel 1 y 2

CM = Wlosa + Wviga + Wmuros + Wacab

CM = (eso especif. Concreto*Area Trib*t) + (Sección de viga * peso especifico concreto) + Wmuros + Aacabados

CM = (2400*(2*6)*0.12/5-0.20) + (0.20*0.40*2400) + ((5-0.20)*150) + ((6+6)*100/5-0.20)

CM = 720 + 192 + 720 + 250

CM = 1882.00 Kg/m

Nivel 3

CM = Wlosa + Wviga + Wacab

CM = 720 + 192 + 250

CM = 1,162.00 Kg/m
```

Carga Viva

```
Nivel 1 y 2

CV = Woficinas + Wpasillos

CV = (6*250/(5-0.20)) + (6*500/(5-0.20))

CV = 307.38 + 625

CV = 933 Kg/m
```

Nivel 3

CV = Wtecho

CV = (6*6)*100/(5-0.20)

CV = 750 Kg/m

De igual forma se tomó el sentido Y-Y y los resultados fueron los mismos, esto lo podemos ver en la figura No 11.

2.1.3.2.3.2 Cargas horizontales

Los requisitos de cargas laterales propuestas por los códigos, son normas mínimas para poder diseñar edificios y estructuras resistentes a fuerzas horizontales. Consideran la estructura como unidad, tomando en cuenta cada uno de sus elementos estructurales.

En Guatemala son consideradas en el análisis las cargas laterales de sismo y viento. Esta última dependiendo de la magnitud de la incidencia del mismo en una estructura sobre un área grande de exposición o bien por las condiciones del lugar. Para el siguiente trabajo únicamente tomaremos en cuenta el efecto de las cargas sísmicas.

Método SEAOC (fuerzas sísmicas)

Es un método estático equivalente, el cual consiste en encontrar una fuerza en la base del edificio que se esta sacudiendo y según a la distribución de masas, la altura del edificio y la carga adicional; distribuirla en cada nivel del edificio. Las cargas sísmicas afectan a las estructuras en zonas de gran actividad sísmica, como en nuestro país. Las sacudidas altamente irregulares del terreno transmiten aceleraciones a la estructura y la masa de la estructura resiste el movimiento debido a los efectos de la inercia. La fuerza total de la inercia (es usualmente igual a la fuerza cortante horizontal en la base de la estructura), varia aproximadamente de 0.03W a 0.10W (más recomendado en estructuras donde W es el peso total). Las respuestas de las estructuras a los

sismos, dependen de varios factores; de las características del movimiento del terreno, de la rigidez y masa de la estructura, de las condiciones del subsuelo y la magnitud del amortiguamiento.

o Corte basal:

Es un corte estático equivalente, la formula propuesta por SEAOC para obtener la fuerza horizontal total o corte básal (V), es:

V = Z*I*K*C*S*W

donde,

V = corte basal

Z = coeficiente que depende de la zona (coeficiente de riesgo sísmico)

Z = 0.50 zona con daños moderados para Sacatepéquez.

I = coeficiente de utilidad o importancia del edificio (1 \leq $I \leq$ 1.50)

I = 1.40 por ser edificación de uso público.

K = coeficiente dependiendo del sistema estructural utilizado.

K = 0.67 sistema de marcos rígidos.

C = coeficiente del periodo natural de vibración o de la flexibilidad de la estructura.

donde,

$$C = \frac{1}{15\sqrt{t}} \le 0.12$$

$$t = \frac{0.09h}{\sqrt{b}}$$

$$h = \text{altura del edificio}$$

$$b = \text{lado del edificio}$$

$$paralelo a la acción del sismo.$$

h = 11.00 mts.

b = 19.80 mts.

$$t = \frac{0.09 * (11)}{\sqrt{19.80}} = 0.222$$

$$C = \frac{1}{15\sqrt{0.222}} = 0.14$$

S = Depende el tipo de suelo a cimentar (resonancia del suelo), comprendida entre: $1.00 \le S \le 1.50$,

$$C*S \le 0.14$$

 $0.14*S \le 0.14$

$$S = 1$$

Entonces,

$$S*C = 0.14*1 = 0.14$$

Por lo tanto,

 $V_x = ZIKCSW$ $V_x = 0.50*1.40*0.67*1.14*W$

 $V_x = 0.065W$

Nota: hay que tomar en cuenta que el sismo no actua en una dimención determinada con respecto al edificio, port al razón se necesita evaluar el corte basal en las direcciones X y Y, con los valores resultantes se puede diseñar el edificio contra un sismo en cualquier dirección.

Determinación del corte basal sentido Y-Y

$$Z = 0.50$$

$$I = 1.40$$

$$K = 0.67$$

$$t = 0.67$$

 $t = \frac{0.09*(11)}{\sqrt{25.00}} = 0.198$

b = 25.00 mts.

$$C = \frac{1}{15\sqrt{0.198}} = 0.15 \Rightarrow usar C = 0.12$$

C*S ≤ 0.14

 $0.12*S \le 0.14$

$$S = 1.17$$

Entonces.

$$S*C = 0.12*1.17 = 0.14$$

Por lo tanto,

$$V_y = ZIKCSW$$

 $V_y = 0.50*1.40*0.67*0.14*W$
 $V_y = 0.065W$

Por lo tanto:

$$Vx = Vy = V = 0.065W$$

El peso total del edificio W se calcula a continuación:

Peso total de la estructura (W)

$$W_T = W_{N1} + W_{N2} + W_{N3}$$

Peso 1er. Nivel (W_{N1})

W1 = 266,728 kg.

Peso 2do. Nivel (W_{N2})

W1 =253,768 kg.

Peso 3er. Nivel (W_{N3})

W1 =233,705 kg.

$$W_T = W_{N1} + W_{N2} + W_{N3}$$

$$W_T = 266,728 + 253,768 + 233,705$$

 $W_T = 754,201 \text{ kg}.$

Por lo tanto,

V = 0.065 W

V = 0.065 * 754,201

 $V_{x-y} = 49,023.06 \text{ kg}.$

Fuerzas por nivel

Es la sumatoria de fuerzas que actúan en cada nivel de la estructura ($\sum F_{ni}$), más la fuerza adicional de la cúspide (F_t), es igual al corte basal equivalente estático (V).

Se usará la fórmula:

$$F_{ni} = \frac{(V - F_T) * W_{hi} * h_i}{\sum W_i * h_i}$$

 \mathbf{F}_{ni} = fuerza por nivel

V = corte basal

F_t = fuerza de techo

Si $t \ge 0.25$ entonces $F_t = 0.07^*t^*V$

Si $t \le 0.25$ entonces $F_t = 0$

W = peso propio de la estructura

Wi = peso propio de la estructura por nivel.

hi = altura media desde la cimentación al nivel considerado.

Solución:

Fuerza por nivel en ambos sentidos (X-Y)

Peso por altura del edificio.

Tabla I. Pesos y alturas por nivel

Nivel	W_{i}	h _i	W _i *h _i
1	266,728	5	1,333,640
2	253,768	8	2,030,144
3	233,705	11	2,570,755

ΣW_i*h_i **5,934,539**

$$F_1 = \frac{(49,023 - 0) *1,333,640}{5,934,539} = 11,016.70kg.$$

$$F_2 = \frac{(49,023 - 0) * 2,030,144}{5,934,539} = 16,770.25kg.$$

$$F_3 = \frac{(49,023 - 0) * 2,570,755}{5,934,539} = 21,236.05kg.$$

Distribución de cargas sísmicas por marcos.

La distribución de cargas sísmicas dependerá de la existencia o no de simetría estructural, ya que de existir excentricidades entre el C.R y el C.M. La capacidad torsional del edificio se verá afectada y por ello los marcos que tengan una mayor excentricidad; experimentaran una fuerza de marco (F_m) mayor, a los que posean menor excentricidad. Por ello deberán ser diseñados para soportar mayores cargas sísmicas

Cuando no existe simetría estructural, se deberán determinar los centros de masa y rigidez y la excentricidad del edificio; para poder calcular las fuerzas totales por marco F_m .

Sentido X-X

Centro de masa (CM)

$$CM_{x-x} = \frac{x}{2}$$

$$CM_{x-x} = \frac{19.8}{2}$$

$$CM_{x-x} = 9.9m$$

Centro de rigidez (CR)

$$CR_{x,y} = \frac{\sum K_d}{\sum K}$$

$$CR_{x,y} = \frac{1*21.27 + 1*14.8 + 1*9.8 + 1*4.8 + 1*0}{5*1}$$

$$CR_{x,y} = 10.13$$

Excentricidad (e)

$$e = CM - CR$$

$$e = 9.90 - 10.13$$

$$e = -0.23 \text{ m}.$$

Excentricidad mínima (emin)

emin = 5% altura del edificio

emin = 0.05 * 11.00

emin = 0.55 m.

Usar e mínimo (0.55 m.)

Sentido Y-Y

Centro de masa

$$CM_{y-y} = \frac{25}{2} = 12.5m.$$

Centro de rigidez

$$CR_{x,y} = \frac{1*25+1*20+1*15+1*5+1*0}{6*1} = 12.5m.$$

Excentricidad

$$e = 12.5 - 12.5 = 0$$

e = 12.5-12.5 = 0 no hay torción en Y.

Sentido X-X

Fuerzas por marco en cada nivel sentido X Tabla II.

Nivel	Macrcos	Ri	di	Ri*di	Ri*di2	FM'	FM"	FMniv
1	5	1	9.96	9.96	99.20	2203.34	245.29	2,449.00 kg.
2	5	1	9.96	9.96	99.20	3354.05	373.40	3,727.45 kg.
3	5	1	9.96	9.96	99.20	4247.21	472.8	4,720.00 kg.

 $F_1 = 2.45 \text{ Ton}$

 $F_2 = 3.73 \text{ Ton}$

 $F_3 = 4.72 \text{ Ton}$

Sentido Y-Y

Tabla III. Fuerzas por marco en cada nivel sentido Y

Nivel	livel Macrcos Ri di		Ri*di	Ri*di2	Ri*di2 FM'		FMniv	
1	6	1	12.5	12.5	156.25	1836.12	0.00	1,836.00 kg.
2	6	1	12.5	12.5	156.25	2795.04	0.00	2,795.04 kg.
3	6	1	12.5	12.5	156.25	3539.34	0.00	3,539.30 kg.

FM" = 0 esto por no haber excentricidad en Y.

 $F_1 = 1.84 \text{ Ton}$

 $F_2 = 2.80 \text{ Ton}$

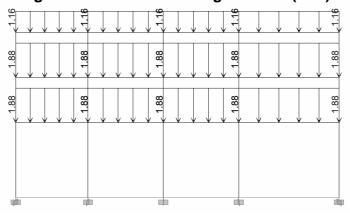
 $F_3 = 3.54 \text{ Ton}$

2.1.3.2.4 Fuerzas internas halladas con un método de análisis estructural

Método de análisis a utilizar

Existen varios paquetes de cómputo que trabajan resolviendo métodos iterativos con la potencia y rapidez que proporcionan los equipos de cómputo, en el mercado existe toda una gama de software a la venta, aunque también existen los de dominio público, entre ellos tenemos: Cálculo de estructuras (software de dominio público), *Paem, Staad pro, Sap 2000, Cadre pro 3d, Tabs – etabs*, etc.

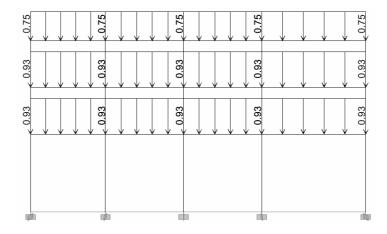
Ya habiendo determinado las cargas actuantes sobre la estructura podemos proceder al análisis estructural de la misma, este fue realizado con el *software* de dominio público el que se uso para este proyecto fue el ETABS.


Este es un programa que se ha desarrollado a partir del Método Matricial Elástico de Cálculo de Estructuras y, por tanto, los resultados que proporciona serán correctos siempre que se pueda suponer un comportamiento elástico del material que constituye la estructura analizada.

ETABS es un programa del análisis estructural finito, el concepto fundamental del programa es que trabaja fuera de una base de datos integrada. El concepto básico es que se crea un sólo modelo con cargas actuantes calculadas para analizar el edificio entero, calculando y analizando un solo marco.

• Análisis estructural de marcos dúctiles

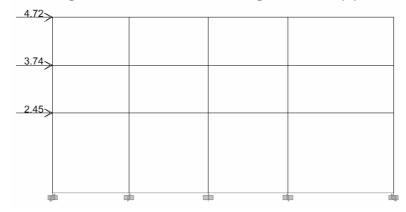
Sentido X-X,


Figura 8. Análisis con carga muerta (T-m)

Momentos finales con carga muerta En vigas

MAB	=	1.74	T-M	MFG	=	3.34	T-M	MKL	=	2.80	T-M
MBA	=	-2.89	T-M	MGF	=	-4.21	T-M	MLK	=	-4.47	T-M
MBC	=	3.01	T-M	MGH	=	4.47	T-M	MLM	=	4.60	T-M
MCB	=	-2.76	T-M	MHG	=	-4.31	T-M	MML	=	-4.18	T-M
MCD	=	2.76	T-M	MHI	=	4.33	T-M	MMN	=	4.14	T-M
MDC	=	-3.66	T-M	MIH	=	-4.94	T-M	MNM	=	-5.41	T-M
MDE	=	5.00	T-M	MIJ	=	7.50	T-M	MNO	=	7.63	T-M
MED	= En	-3.21	T-M	MJI	=	-6.07	T-M	MON	=	-5.32	T-M
		colum	ias								
MAF	=	-0.70	T-M	MFK	=	-0.70	T-M	MKP	=	-0.33	T-M
MFA	=	-1.00	T-M	MKF	=	-0.96	T-M	MPK	=	-0.20	T-M
MBG	=	0.11	T-M	MGL	=	0.10	T-M	MLQ	=	0.04	T-M
MGB	=	0.15	T-M	MLG	=	0.13	T-M	MQL	=	0.03	T-M
MCH	=	-0.03	T-M	МНМ	=	-0.02	T-M	MMR	=	-0.00	T-M
MHC	=	-0.03	T-M	MMH	=	-0.02	T-M	MRM	=	-0.01	T-M
MDI	=	-0.35	T-M	MIN	=	-0.41	T-M	MNS	=	-0.22	T-M
MID	=	-0.53	T-M	MNI	=	-0.61	T-M	MSN	=	-0.14	T-M
MEJ	=	1.17	T-M	MJO	=	1.21	T-M	MOT	=	0.62	T-M
MJE	=	1.72	T-M	MOJ	=	1.74	T-M	MTO	=	0.35	T-M

Figura 9. Análisis con carga viva (T-m)

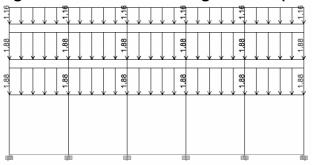


Momentos Finales con Carga viva

_''	V 1	gas

	MAB	=	0.89	T-M	MFG	=	1.50	T-M	MKL	=	1.23	T-M
	MBA	=	-1.58	T-M	MGF	=	-1.83	T-M	MLK	=	-1.96	T-M
	MBC	=	1.63	T-M	MGH	=	1.95	T-M	MLM	=	2.02	T-M
	MCB	=	-1.47	T-M	MHG	=	-1.90	T-M	MML	=	-1.84	T-M
	MCD	=	1.46	T-M	MHI	=	1.90	T-M	MMN	=	1.82	T-M
	MDC	=	-2.00	T-M	MIH	=	-2.14	T-M	MNM	=	-2.37	T-M
	MDE	=	2.70	T-M	MIJ	=	3.28	T-M	MNO	=	3.34	T-M
	MED _	=_	-1.66	T-M	MJI	=	-2.71	T-M	MON	=	-2.33	T-M
	E	n C	olumna	as								
	MAF	=	-0.25	T-M	MFK	=	-0.24	T-M	MKP	=	-0.11	T-M
	MFA	=	-0.35	T-M	MKF	=	-0.33	T-M	MPK	=	-0.07	T-M
	MBG	=	0.04	T-M	MGL	=	0.04	T-M	MLQ	=	0.01	T-M
ı	MGB	=	0.05	T-M	MLG	=	0.04	T-M	MQL	=	0.01	T-M
	мсн	=	-0.005	T-M	МНМ	=	-0.004	T-M	MMR	=	-0.000	T-M
	МНС	=	-0.01	T-M	MMH	=	-0.006	T-M	MRM	=	-0.004	T-M
	MDI	=	-0.12	T-M	MIN	=	-0.14	T-M	MNS	=	-0.07	T-M
	MID	=	-0.18	T-M	MNI	=	-0.21	T-M	MSN	=	-0.05	T-M
	MEJ	=	0.42	T-M	MJO	=	0.41	T-M	MOT	=	0.21	T-M
	MJE	=	0.59	T-M	MOJ	=	0.59	T-M	MTO	=	0.12	T-M

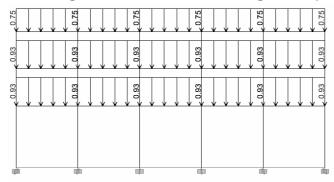
Figura 10. Análisis con carga sísmica (T)


Momentos finales con carga sísmica

-	vigas
-11	VICIAS
	VIGGO

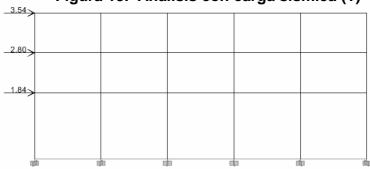
MAB	=	-1.32	T-M	MFG	=	-3.06	T-M	MKL	=	-5.84	T-M	
MBA	=	-1.05	T-M	MGF	=	-2.71	T-M	MLK	=	-4.80	T-M	
MBC	=	-0.94	T-M	MGH	=	-2.42	T-M	MLM	=	-3.91	T-M	
MCB	=	-0.97	T-M	MHG	=	-2.44	T-M	MML	=	-4.07	T-M	
MCD	=	-0.95	T-M	MHI	=	-2.46	T-M	MMN	=	-4.18	T-M	
MDC	=	-0.95	T-M	MIH	=	-2.51	T-M	MNM	=	-4.16	T-M	
MDE	=	-0.93	T-M	MIJ	=	-2.24	T-M	MNO	=	-4.08	T-M	
MED	= En c	-1.14 column	T-M	MJI	=	-2.50	T-M	MON	=	-4.96	T-M	
		Oldilli	as									
MAF	=	0.92	T-M	MFK		= 1.0	6 7 T-M	Mł	KP	=	4.32	T-M
MFA	=	1.23	T-M	MKF		= 2.2	24 T-M	MF	PK	=	5.45	T-M
MBG	=	1.07	T-M	MGL		= 1.9	94 T-M	ML	_Q	=	4.53	T-M
MGB	=	1.50	T-M	MLG		= 2.	74 T-M	MO	QL	=	5.57	T-M
MCH	=	1.09	T-M	MHM		= 1.9	92 T-M	MN	/IR	=	4.49	T-M
MHC	=	1.51	T-M	MMH		= 2.0	6 7 T-M	MF	RM	=	5.55	T-M
MDI	=	1.08	T-M	MIN		= 1.9	94 T-M	M	NS	=	4.52	T-M
MID	=	1.50	T-M	MNI		= 2.	73 T-M	MS	SN	=	5.56	T-M
MEJ	=	0.92	T-M	MJO		= 1.0	61 T-M	MC	TC	=	4.25	T-M
MJE	=	1.21	T-M	MOJ		= 2.	10 T-M	MΠ	ГО	=	5.41	T-M

Sentido Y-Y


Figura 11. Análisis con carga muerta (T-m)

Momentos finales con carga muerta En vigas

		.95.5									
MAB	=	1.86	T-M	MGH	=	3.55	T-M	MMN	=	3.07	T-M
MBA	=	-3.05	T-M	MHG	=	-4.54	T-M	MNM	=	-4.71	T-M
MBC	=	2.89	T-M	МНІ	=	4.31	T-M	MNO	=	4.44	T-M
MCB	=	-2.80	T-M	MIH	=	-4.33	T-M	MON	=	-4.28	T-M
MCD	=	2.81	T-M	MIJ	=	4.32	T-M	MOP	=	4.31	T-M
MDC	=	-2.81	T-M	MJI	=	-4.32	T-M	MPO	=	-4.31	T-M
MDE	=	2.80	T-M	MJK	=	4.33	T-M	MPQ	=	4.28	T-M
MED	=	-2.89	T-M	MKJ	=	-4.31	T-M	MQP	=	-4.44	T-M
MEF	=	3.05	T-M	MKL	=	4.54	T-M	MQR	=	4.71	T-M
MFE				MLK	=	-3.55	T-M	MRQ	=	-3.07	T-M
	En (column	nas								
MAG	=	-1.39	T-M	MGM	=	-1.31	T-M	MMS	=	-0.88	T-M
MGA	=	-1.72	T-M	MMG	=	-2.08	T-M	MSM	=	-0.51	T-M
MBH	=	0.12	T-M	MHN	=	0.08	T-M	MNT	=	0.07	T-M
MHB	=	0.10	T-M	MNH	=	0.20	T-M	MTN	=	0.03	T-M
MCI	=	-0.00	T-M	MIO	=	-0.00	T-M	MOU	=	-0.02	T-M
MIC	=	-0.01	T-M	MOI	=	-0.01	T-M	MUO	=	-0.01	T-M
MDJ	=	0.00	T-M	MJP	=	0.00	T-M	MPV	=	0.02	T-M
MJD	=	0.01	T-M	MPJ	=	0.01	T-M	MVP	=	0.01	T-M
MEK	=	-0.12	T-M	MKQ	=	-0.08	T-M	MQW	=	-0.07	T-M
MKE	=	-0.10	T-M	MQK	=	-0.20	T-M	MWQ	=	-0.03	T-M
MFL	=	1.39	T-M	MLR	=	1.31	T-M	MRX	=	0.88	T-M
MLF	=	1.72	T-M	MRL	=	2.08	T-M	MXR	=	0.51	T-M


Figura 12. Análisis con carga viva (T-m)

Momentos finales con carga viva En vigas

		•									
MAB	=	0.99	T-M	MGH	=	1.62	T-M	MMN	=	1.38	T-M
MBA	=	-1.71	T-M	MHG	=	-2.02	T-M	MNM	=	-2.11	T-M
MBC	=	1.62	T-M	MHI	=	1.93	T-M	MNO	=	1.99	T-M
MCB	=	-1.55	T-M	MIH	=	-1.95	T-M	MON	=	-1.92	T-M
MCD	=	2.81	T-M	MIJ	=	1.94	T-M	MOP	=	1.93	T-M
MDC	=	-2.81	T-M	MJI	=	-1.94	T-M	MPO	=	-1.93	T-M
MDE	=	1.55	T-M	MJK	=	1.95	T-M	MPQ	=	1.92	T-M
MED	=	-1.62	T-M	MKJ	=	-1.93	T-M	MQP	=	-1.99	T-M
MEF	=	1.71	T-M	MKL	=	2.02	T-M	MQR	=	2.11	T-M
MFE	_=	-0.99	T-M	MLK	=	-1.62	T-M	MRQ	=	-1.38	T-M
	En d	column	nas								
MAG	=	-0.75	T-M	MGM	=	-0.57	T-M	MMS	=	-0.40	T-M
MGA	=	-0.82	T-M	MMG	=	-0.93	T-M	MSM	=	-0.23	T-M
MBH	=	0.07	T-M	MHN	=	0.03	T-M	MNT	=	0.03	T-M
MHB	=	0.05	T-M	MNH	=	0.08	T-M	MTN	=	0.01	T-M
MCI	=	-0.00	T-M	MIO	=	-0.00	T-M	MOU	=	-0.01	T-M
MIC	=	-0.00	T-M	MOI	=	-0.00	T-M	MUO	=	-0.01	T-M
MDJ	=	0.00	T-M	MJP	=	0.00	T-M	MPV	=	0.01	T-M
MJD	=	0.00	T-M	MPJ	=	0.00	T-M	MVP	=	0.01	T-M
MEK	=	-0.07	T-M	MKQ	=	-0.03	T-M	MQW	=	-0.03	T-M
MKE	=	-0.05	T-M	MQK	=	-0.08	T-M	MWQ	=	-0.01	T-M
MFL	=	0.75	T-M	MLR	=	0.06	T-M	MRX	=	0.40	T-M
MLF	=	0.82	T-M	MRL	=	0.93	T-M	MXR	=	0.23	T-M

Figura 13. Análisis con carga sísmica (T)

Momentos finales con carga sísmica

Ln	VIAN	\sim
-11	viga	3

MAB	=	-0.78	T-M	MGH	=	-1.73	T-M	MMN	=	-3.31	T-M
MBA	=	-0.64	T-M	MHG	=	-1.56	T-M	MNM	=	-2.79	T-M
MBC	=	-0.57	T-M	МНІ	=	-1.46	T-M	MNO	=	-2.38	T-M
МСВ	=	-0.58	T-M	MIH	=	-1.46	T-M	MON	=	-2.44	T-M
MCD	=	-0.59	T-M	MIJ	=	-1.45	T-M	MOP	=	-2.49	T-M
MDC	=	-0.59	T-M	MJI	=	-1.45	T-M	MPO	=	-2.49	T-M
MDE	=	-0.52	T-M	MJK	=	-1.45	T-M	MPQ	=	-2.43	T-M
MED	=	-0.57	T-M	MKJ	=	-1.44	T-M	MQP	=	-2.37	T-M
MEF	=	-0.63	T-M	MKL	=	-1.54	T-M	MQR	=	-2.76	T-M
MFE	_=	-0.76	T-M	MLK	=	-1.69	T-M	MRQ	=	-3.27	T-M
	En (columr	nas								
MAG	=	0.62	T-M	MGM	=	1.04	T-M	MMS	=	2.21	T-M
MGA	=	0.43	T-M	MMG	=	0.61	T-M	MSM	=	3.54	T-M
MBH	=	0.93	T-M	MHN	=	1.60	T-M	MNT	=	2.78	T-M
MHB	=	0.89	T-M	MNH	=	1.82	T-M	MTN	=	3.85	T-M
MCI	=	0.90	T-M	MIO	=	1.55	T-M	MOU	=	2.70	T-M
MIC	=	0.86	T-M	MOI	=	1.67	T-M	MUO	=	3.80	T-M
MDJ	=	0.90	T-M	MJP	=	1.54	T-M	MPV	=	2.69	T-M
MJD	=	0.86	T-M	MPJ	=	1.66	T-M	MVP	=	3.79	T-M
MEK	=	0.92	T-M	MKQ	=	1.59	T-M	MQW	=	2.76	T-M
MKE	=	0.88	T-M	MQK	=	1.80	T-M	MWQ	=	3.83	T-M
MFL	=	0.60	T-M	MLR	=	1.03	T-M	MRX	=	2.19	T-M
MLF	=	0.42	T-M	MRL	=	0.59	T-M	MXR	=	3.50	T-M

2.1.3.2.5 Momentos últimos por envolvente de momentos

Es la representación de los esfuerzos máximos combinados, en donde se suponen los esfuerzos de la carga muerta, la carga viva y la carga de sismo, para esto el código ACI 318-99 propone las siguientes combinaciones:

Tabla IV. Combinaciones críticas

C ₁ =	1.4 CM + 1.7 CV
C ₂ =	0.75 (1.4 CM + 1.7 CV + 1.87 S)
C ₃ =	0.75 (1.4 CM + 1.7 CV - 1.87 S)
C ₄ =	0.9 CM + 1.43 S
C ₅ =	0.9 CM - 1.43 S

Tabla V. Resultados de envolvente de momentos (sentido X-X)

• (En vigas)

Tercer nivel

	VIGA AB				
	Combinación	M(-) izq	M(+)	M(-)der	
1)	1.4CM + 1.7CV	3.95	4.02	-6.73	
2)	0.75(1.4CM + 1.7CV + 1.87S)	4.81	-	-3.58	
3)	0.75(1.4CM + 1.7CV - 1.87S)	1.11	-	-6.52	
4)	0.9CM + 1.43S	3.45	-	-1.10	
5)	0.9CM - 1.43S	-0.32	-	-4.10	

	VIGA BC				
	Combinación	M(-) izq	M(+)	M(-) der	
1)	1.4CM + 1.7CV	6.99	3.45	-6.36	
2)	0.75(1.4CM + 1.7CV + 1.87S)	3.92	-	-6.13	
3)	0.75(1.4CM + 1.7CV - 1.87S)	6.56	-	-3.41	
4)	0.9CM + 1.43S	1.36	-	-3.87	
5)	0.9CM - 1.43S	4.05	-	-1.10	

	VIGA CD			
	Combinación	M(-) izq	M(+)	M(-)der
1)	1.4CM + 1.7CV	6.35	2.68	-8.52
2)	0.75(1.4CM + 1.7CV + 1.87S)	3.43	-	-7.73
3)	0.75(1.4CM + 1.7CV - 1.87S)	6.09	-	-5.06
4)	0.9CM + 1.43S	1.13	-	-4.65
5)	0.9CM - 1.43S	3.84	-	-1.94

	VIGA DE				
	Combinación	M(-) izq	M(+)	M(-)der	
1)	1.4CM + 1.7CV	11.59	7.54	-7.32	
2)	0.75(1.4CM + 1.7CV + 1.87S)	7.39	-	-7.09	
3)	0.75(1.4CM + 1.7CV - 1.87S)	10.00	-	-3.89	
4)	0.9CM + 1.43S	3.17	-	-4.52	
5)	0.9CM - 1.43S	5.83	-	-1.26	

Segundo nivel

	VIGA FG				
	Combinación	M(-) izq	M(+)	M(-)der	
1)	1.4CM + 1.7CV	7.23	4.93	-9.01	
2)	0.75(1.4CM + 1.7CV + 1.87S)	1.13	-	-10.55	
3)	0.75(1.4CM + 1.7CV - 1.87S)	9.71	-	-2.95	
4)	0.9CM + 1.43S	-1.37	-	-7.66	
5)	0.9CM - 1.43S	7.38	-	0.09	

	VIGA GH				
	Combinación	M(-) izq	M(+)	M(-)der	
1)	1.4CM + 1.7CV	9.57	4.80	-9.26	
2)	0.75(1.4CM + 1.7CV + 1.87S)	3.79	-	-10.37	
3)	0.75(1.4CM + 1.7CV - 1.87S)	10.57	-	-3.53	
4)	0.9CM + 1.43S	0.56	-	-7.37	
5)	0.9CM - 1.43S	7.48	-	-0.39	

	VIGA HI					
	Combinación	M(-) izq	M(+)	M(-)der		
1)	1.4CM + 1.7CV	9.31	4.28	-10.55		
2)	0.75(1.4CM + 1.7CV + 1.87S)	3.53	1	-11.44		
3)	0.75(1.4CM + 1.7CV - 1.87S)	10.43	-	-4.40		
4)	0.9CM + 1.43S	0.38	-	-8.04		
5)	0.9CM - 1.43S	7.41	-	-0.86		

	VIGA IJ					
	Combinación	M(-) izq	M(+)	M(-)der		
1)	1.4CM + 1.7CV	16.08	9.20	-13.11		
2)	0.75(1.4CM + 1.7CV + 1.87S)	8.92	-	-14.71		
3)	0.75(1.4CM + 1.7CV - 1.87S)	15.20	-	-4.95		
4)	0.9CM + 1.43S	3.55	-	-10.44		
5)	0.9CM - 1.43S	9.95	-	-0.49		

Primer nivel

	VIGA KL				
	Combinación	M(-) izq	M(+)	M(-)der	
1)	1.4CM + 1.7CV	6.01	5.34	-9.59	
2)	0.75(1.4CM + 1.7CV + 1.87S)	-3.68	1	-13.92	
3)	0.75(1.4CM + 1.7CV - 1.87S)	12.70		-0.46	
4)	0.9CM + 1.43S	-5.83	-	-10.89	
5)	0.9CM - 1.43S	10.87	-	2.84	

	VIGA LM				
	Combinación	M(-) izq	M(+)	M(-) der	
1)	1.4CM + 1.7CV	9.87	4.80	-8.98	
2)	0.75(1.4CM + 1.7CV + 1.87S)	1.92	-	-12.44	
3)	0.75(1.4CM + 1.7CV - 1.87S)	12.89		-1.03	
4)	0.9CM + 1.43S	-1.45	-	-9.58	
5)	0.9CM - 1.43S	9.73	-	2.06	

	VIGA MN					
	Combinación M(-)izq M(+) N					
1)	1.4CM + 1.7CV	8.89	3.97	-11.60		
2)	0.75(1.4CM + 1.7CV + 1.87S)	0.81	-	-14.54		
3)	0.75(1.4CM + 1.7CV - 1.87S)	12.53	•	-2.87		
4)	0.9CM + 1.43S	-2.25	-	-10.82		
5)	0.9CM - 1.43S	9.70	-	1.08		

	VIGA NO			
	Combinación	M(-) izq	M(+)	M(-)der
1)	1.4CM + 1.7CV	16.36	9.96	-11.41
2)	0.75(1.4CM + 1.7CV + 1.87S)	6.55	-	-15.51
3)	0.75(1.4CM + 1.7CV - 1.87S)	17.99	•	-1.60
4)	0.9CM + 1.43S	1.03	-	-11.88
5)	0.9CM - 1.43S	12.70	-	2.30

(En columnas) Tercer nivel

	COLUMNA AF			
	Combinación	M sup	Minf	
1)	1.4CM + 1.7CV	-1.41	-2.00	
2)	0.75(1.4CM + 1.7CV + 1.87S)	0.24	0.23	
3)	0.75(1.4CM + 1.7CV - 1.87S)	-2.34	-3.22	
4)	0.9CM + 1.43S	0.69	0.86	
5)	0.9CM - 1.43S	-1.95	-2.66	

	COLUMNA BG				
	Combinación	M sup		Minf	
1)	1.4CM + 1.7CV	0.22		0.30	
2)	0.75(1.4CM + 1.7CV + 1.87S)	1.67		2.33	
3)	0.75(1.4CM + 1.7CV - 1.87S)	-1.33		-1.88	
4)	0.9CM + 1.43S	1.63		2.28	
5)	0.9CM - 1.43S	-1.43		-2.01	

	COLUMNA CH			
	Combinación	M sup	Minf	
1)	1.4CM + 1.7CV	-0.05	-0.06	
2)	0.75(1.4CM + 1.7CV + 1.87S)	1.49	2.07	
3)	0.75(1.4CM + 1.7CV - 1.87S)	-1.57	-2.16	
4)	0.9CM + 1.43S	1.53	2.13	
5)	0.9CM - 1.43S	-1.59	-2.19	

	COLUMNA DI				
	Combinación	M sup	M inf		
1)	1.4CM + 1.7CV	-0.69	-1.05		
2)	0.75(1.4CM + 1.7CV + 1.87S)	0.99	1.32		
3)	0.75(1.4CM + 1.7CV - 1.87S)	-2.04	-2.89		
4)	0.9CM + 1.43S	1.23	1.67		
5)	0.9CM - 1.43S	-1.86	-2.62		

	COLUMNA EJ				
	Combinación	Msup	M inf		
1)	1.4CM + 1.7CV	2.35	3.41		
2)	0.75(1.4CM + 1.7CV + 1.87S)	3.05	4.26		
3)	0.75(1.4CM + 1.7CV - 1.87S)	0.47	0.86		
4)	0.9CM + 1.43S	2.37	3.28		
5)	0.9CM - 1.43S	-0.26	-0.18		

Segundo nivel

	COLUMNA FK			
	Combinación	M sup	Minf	
1)	1.4CM + 1.7CV	-1.39	-1.91	
2)	0.75(1.4CM + 1.7CV + 1.87S)	1.30	1.71	
3)	0.75(1.4CM + 1.7CV - 1.87S)	-3.38	-4.57	
4)	0.9CM + 1.43S	1.76	2.34	
5)	0.9CM - 1.43S	-3.02	-4.07	

	COLUMNA GL				
	Combinación	M sup		Minf	
1)	1.4CM + 1.7CV	0.21		0.25	
2)	0.75(1.4CM + 1.7CV + 1.87S)	2.88		4.03	
3)	0.75(1.4CM + 1.7CV - 1.87S)	-2.56		-3.66	
4)	0.9CM + 1.43S	2.86		4.04	
5)	0.9CM - 1.43S	-2.68		-3.80	

	COLUMNA HM			
	Combinación	M sup		Minf
1)	1.4CM + 1.7CV	-0.03		0.02
2)	0.75(1.4CM + 1.7CV + 1.87S)	2.67		3.76
3)	0.75(1.4CM + 1.7CV - 1.87S)	-2.72		-3.73
4)	0.9CM + 1.43S	2.73		3.84
5)	0.9CM - 1.43S	-2.76		-3.80

	COLUMNA IN		
	Combinación	M sup	M inf
1)	1.4CM + 1.7CV	-0.81	-1.21
2)	0.75(1.4CM + 1.7CV + 1.87S)	2.11	2.92
3)	0.75(1.4CM + 1.7CV - 1.87S)	-3.33	-4.74
4)	0.9CM + 1.43S	2.41	3.35
5)	0.9CM - 1.43S	-3.14	-4.45

	COLUMNA JO		
	Combinación	M sup	Minf
1)	1.4CM + 1.7CV	2.39	3.44
2)	0.75(1.4CM + 1.7CV + 1.87S)	4.05	5.52
3)	0.75(1.4CM + 1.7CV - 1.87S)	-0.46	-0.37
4)	0.9CM + 1.43S	3.39	4.57
5)	0.9CM - 1.43S	-1.21	-1.44

Primer nivel

	COLUMNA KP				
	Combinación	Msup	Minf		
1)	1.4CM + 1.7CV	-0.65	-0.40		
2)	0.75(1.4CM + 1.7CV + 1.87S)	5.57	7.34		
3)	0.75(1.4CM + 1.7CV - 1.87S)	-6.55	-7.94		
4)	0.9CM + 1.43S	5.88	7.61		
5)	0.9CM - 1.43S	-6.47	-7.97		

	COLUMNA LQ				
	Combinación	M sup	M inf		
1)	1.4CM + 1.7CV	0.07	0.06		
2)	0.75(1.4CM + 1.7CV + 1.87S)	6.41	7.86		
3)	0.75(1.4CM + 1.7CV - 1.87S)	-6.30	-7.77		
4)	0.9CM + 1.43S	6.51	7.99		
5)	0.9CM - 1.43S	-6.44	-7.94		

	COLUMNA MR				
	Combinación	Msup		Minf	
1)	1.4CM + 1.7CV	0.00		-0.02	
2)	0.75(1.4CM + 1.7CV + 1.87S)	6.30		7.77	
3)	0.75(1.4CM + 1.7CV - 1.87S)	-6.30		-7.80	
4)	0.9CM + 1.43S	6.42		7.93	
5)	0.9CM - 1.43S	-6.42		-7.95	

	COLUMNA NS				
	Combinación	Msup	Minf		
1)	1.4CM + 1.7CV	-0.43	-0.28		
2)	0.75(1.4CM + 1.7CV + 1.87S)	6.02	7.59		
3)	0.75(1.4CM + 1.7CV - 1.87S)	-6.66	-8.01		
4)	0.9CM + 1.43S	6.27	7.82		
5)	0.9CM - 1.43S	-6.66	-8.08		

	COLUMNA OT					
	Combinación	Msup	Minf			
1)	1.4CM + 1.7CV	1.23	0.69			
2)	0.75(1.4CM + 1.7CV + 1.87S)	6.88	8.11			
3)	0.75(1.4CM + 1.7CV - 1.87S)	-5.04	-7.07			
4)	0.9CM + 1.43S	6.64	8.05			
5)	0.9CM - 1.43S	-5.52	-7.42			

Tabla VI. Resultados de envolvente de momentos (Sentido Y-Y)

(En vigas) Tercer nivel

	VIGA BC				
	Combinación	M(-) izq	M(+)	M(-)der	
1)	1.4CM + 1.7CV	4.29	4.16	-7.18	
2)	0.75(1.4CM + 1.7CV + 1.87S)	2.12	-	-6.28	
3)	0.75(1.4CM + 1.7CV - 1.87S)	4.31	-	-4.49	
4)	0.9CM + 1.43S	0.56	-	-3.66	
5)	0.9CM - 1.43S	2.79	-	-1.83	

	VIGA BC			
	Combinación	M(-) izq	M(+)	M(-) der
1)	1.4CM + 1.7CV	6.80	3.22	-6.56
2)	0.75(1.4CM + 1.7CV + 1.87S)	4.30	-	-5.73
3)	0.75(1.4CM + 1.7CV - 1.87S)	5.90	-	-4.10
4)	0.9CM + 1.43S	1.79	-	-3.35
5)	0.9CM - 1.43S	3.42	-	-1.69

	VIGA CD			
	Combinación	M(-) izq	M(+)	M(-)der
1)	1.4CM + 1.7CV	8.71	3.33	-8.71
2)	0.75(1.4CM + 1.7CV + 1.87S)	5.71	-	-7.36
3)	0.75(1.4CM + 1.7CV - 1.87S)	7.36	-	-5.71
4)	0.9CM + 1.43S	1.69	-	-3.37
5)	0.9CM - 1.43S	3.37	-	-1.69

	VIGA DE			
	Combinación	M(-) izq	M(+)	M(-)der
1)	1.4CM + 1.7CV	6.56	3.22	-6.80
2)	0.75(1.4CM + 1.7CV + 1.87S)	4.19	-	-5.90
3)	0.75(1.4CM + 1.7CV - 1.87S)	5.65	-	-4.30
4)	0.9CM + 1.43S	1.78	-	-3.42
5)	0.9CM - 1.43S	3.26	-	-1.79

	VIGA EF				
	Combinación	M(-) izq	M(+)	M(-)der	
1)	1.4CM + 1.7CV	7.18	4.16	-4.29	
2)	0.75(1.4CM + 1.7CV + 1.87S)	4.50	-	-4.28	
3)	0.75(1.4CM + 1.7CV - 1.87S)	6.27	-	-2.15	
4)	0.9CM + 1.43S	1.84	-	-2.76	
5)	0.9CM - 1.43S	3.65	-	-0.59	

Segundo nivel

	VIGA GH				
	Combinación	M(-) izq	M(+)	M(-)der	
1)	1.4CM + 1.7CV	7.72	5.24	-9.79	
2)	0.75(1.4CM + 1.7CV + 1.87S)	3.37	-	-9.53	
3)	0.75(1.4CM + 1.7CV - 1.87S)	8.22	-	-5.15	
4)	0.9CM + 1.43S	0.72	-	-6.32	
5)	0.9CM - 1.43S	5.67	-	-1.86	

	VIGA HI				
	Combinación	M(-) izq	M(+)	M(-) der	
1)	1.4CM + 1.7CV	9.32	4.67	-9.38	
2)	0.75(1.4CM + 1.7CV + 1.87S)	4.94	-	-9.08	
3)	0.75(1.4CM + 1.7CV - 1.87S)	9.03	-	-4.99	
4)	0.9CM + 1.43S	1.79	-	-5.98	
5)	0.9CM - 1.43S	5.97	-	-1.81	

	VIGA IJ			
	Combinación	M(-) izq	M(+)	M(-)der
1)	1.4CM + 1.7CV	9.35	4.67	-9.35
2)	0.75(1.4CM + 1.7CV + 1.87S)	4.98	-	-9.04
3)	0.75(1.4CM + 1.7CV - 1.87S)	9.04	-	-4.98
4)	0.9CM + 1.43S	1.81	-	-5.96
5)	0.9CM - 1.43S	5.96	-	-1.81

	VIGA JK			
	Combinación	M(+)	M(-)der	
1)	1.4CM + 1.7CV	9.38	4.67	-9.32
2)	0.75(1.4CM + 1.7CV + 1.87S)	5.00	-	-9.01
3)	0.75(1.4CM + 1.7CV - 1.87S)	9.07		-4.97
4)	0.9CM + 1.43S	1.82	-	-5.94
5)	0.9CM - 1.43S	5.97	-	-1.82

	VIGA KL			
	Combinación	M(-) izq	M(+)	M(-) der
1)	1.4CM + 1.7CV	9.79	5.24	-7.72
2)	0.75(1.4CM + 1.7CV + 1.87S)	5.18	-	-8.16
3)	0.75(1.4CM + 1.7CV - 1.87S)	9.50	-	-3.42
4)	0.9CM + 1.43S	1.88	-	-5.61
5)	0.9CM - 1.43S	6.29	-	-0.78

Primer nivel

	VIGA MN			
	Combinación	M(-) izq	M(+)	M(-)der
1)	1.4CM + 1.7CV	6.64	5.58	-10.18
2)	0.75(1.4CM + 1.7CV + 1.87S)	0.34	-	-11.55
3)	0.75(1.4CM + 1.7CV - 1.87S)	9.63	-	-3.72
4)	0.9CM + 1.43S	-1.97	-	-8.23
5)	0.9CM - 1.43S	7.50	-	-0.25

	VIGA NO				
	Combinación	M(-) izq	M(+)	M(-) der	
1)	1.4CM + 1.7CV	9.60	4.58	-9.26	
2)	0.75(1.4CM + 1.7CV + 1.87S)	3.86	-	-10.36	
3)	0.75(1.4CM + 1.7CV - 1.87S)	10.54	-	-3.52	
4)	0.9CM + 1.43S	0.59	-	-7.34	
5)	0.9CM - 1.43S	7.40	-	-0.36	

	VIGA OP				
	Combinación	M(+)	M(-)der		
1)	1.4CM + 1.7CV	9.32	4.69	-9.32	
2)	0.75(1.4CM + 1.7CV + 1.87S)	3.49	-	-10.48	
3)	0.75(1.4CM + 1.7CV - 1.87S)	10.48	-	-3.49	
4)	0.9CM + 1.43S	0.32	-	-7.44	
5)	0.9CM - 1.43S	7.44	-	-0.32	

	VIGA PQ			
	Combinación	M(-) izq	M(+)	M(-)der
1)	1.4CM + 1.7CV	9.26	4.58	-9.60
2)	0.75(1.4CM + 1.7CV + 1.87S)	3.53	-	-10.52
3)	0.75(1.4CM + 1.7CV - 1.87S)	10.35	-	-3.88
4)	0.9CM + 1.43S	0.38	-	-7.39
5)	0.9CM - 1.43S	7.33	-	-0.61

	VIGA QR				
	Combinación	M(-) izq	M(+)	M(-) der	
1)	1.4CM + 1.7CV	10.18	5.58	-6.64	
2)	0.75(1.4CM + 1.7CV + 1.87S)	3.76	-	-9.57	
3)	0.75(1.4CM + 1.7CV - 1.87S)	11.51	•	-0.40	
4)	0.9CM + 1.43S	0.29	-	-7.44	
5)	0.9CM - 1.43S	8.19	-	1.91	

• (En columnas) Tercer nivel

	COLUMNA AG				
	Combinación	M sup		Minf	
1)	1.4CM + 1.7CV	-3.22		-3.79	
2)	0.75(1.4CM + 1.7CV + 1.87S)	-1.55		-2.24	
3)	0.75(1.4CM + 1.7CV - 1.87S)	-3.29		-3.44	
4)	0.9CM + 1.43S	-0.36		-0.92	
5)	0.9CM - 1.43S	-2.14		-2.15	

	COLUMNA BH				
	Combinación	M sup		Minf	
1)	1.4CM + 1.7CV	0.29		0.23	
2)	0.75(1.4CM + 1.7CV + 1.87S)	1.52		1.42	
3)	0.75(1.4CM + 1.7CV - 1.87S)	-1.09		-1.08	
4)	0.9CM + 1.43S	1.44		1.36	
5)	0.9CM - 1.43S	-1.22		-1.18	

	COLUMNA CI					
	Combinación	M sup		Minf		
1)	1.4CM + 1.7CV	0.00		-0.01		
2)	0.75(1.4CM + 1.7CV + 1.87S)	1.26		1.20		
3)	0.75(1.4CM + 1.7CV - 1.87S)	-1.26		-1.21		
4)	0.9CM + 1.43S	1.29		1.23		
5)	0.9CM - 1.43S	-1.29		-1.23		

	COLUMNA DJ				
	Combinación	M sup		Minf	
1)	1.4CM + 1.7CV	0.00		0.01	
2)	0.75(1.4CM + 1.7CV + 1.87S)	1.26		1.22	
3)	0.75(1.4CM + 1.7CV - 1.87S)	-1.26		-1.20	
4)	0.9CM + 1.43S	1.29		1.24	
5)	0.9CM - 1.43S	-1.29		-1.22	

	COLUMNA EK			
	Combinación	Msup	Minf	
1)	1.4CM + 1.7CV	-0.29	-0.23	
2)	0.75(1.4CM + 1.7CV + 1.87S)	1.08	1.07	
3)	0.75(1.4CM + 1.7CV - 1.87S)	-1.51	-1.40	
4)	0.9CM + 1.43S	1.21	1.17	
5)	0.9CM - 1.43S	-1.42	-1.35	

COLUMNA FL				
	Combinación	M sup	M inf	
1)	1.4CM + 1.7CV	3.22	3.80	
2)	0.75(1.4CM + 1.7CV + 1.87S)	3.26	3.44	
3)	0.75(1.4CM + 1.7CV - 1.87S)	1.57	2.26	
4)	0.9CM + 1.43S	2.11	2.15	
5)	0.9CM - 1.43S	0.39	0.95	

Segundo nivel

	COLUMNA GM				
	Combinación	Msup		Minf	
1)	1.4CM + 1.7CV	-2.80		-4.49	
2)	0.75(1.4CM + 1.7CV + 1.87S)	-0.64		-2.51	
3)	0.75(1.4CM + 1.7CV - 1.87S)	-3.56		-4.23	
4)	0.9CM + 1.43S	0.31		-1.00	
5)	0.9CM - 1.43S	-2.67		-2.74	

	COLUMNA HN				
	Combinación	Msup		Minf	
1)	1.4CM + 1.7CV	0.16		0.42	
2)	0.75(1.4CM + 1.7CV + 1.87S)	2.37		2.86	
3)	0.75(1.4CM + 1.7CV - 1.87S)	-2.12		-2.24	
4)	0.9CM + 1.43S	2.36		2.78	
5)	0.9CM - 1.43S	-2.22		-2.42	

	COLUMNA IO			
	Combinación	Msup	Minf	
1)	1.4CM + 1.7CV	0.00	-0.01	
2)	0.75(1.4CM + 1.7CV + 1.87S)	2.17	2.33	
3)	0.75(1.4CM + 1.7CV - 1.87S)	-2.17	-2.35	
4)	0.9CM + 1.43S	2.22	2.38	
5)	0.9CM - 1.43S	-2.22	-2.40	

	COLUMNA JP				
	Combinación	M sup	Minf		
1)	1.4CM + 1.7CV	0.00	0.01		
2)	0.75(1.4CM + 1.7CV + 1.87S)	2.16	2.34		
3)	0.75(1.4CM + 1.7CV - 1.87S)	-2.16	-2.32		
4)	0.9CM + 1.43S	2.20	2.38		
5)	0.9CM - 1.43S	-2.20	-2.36		

	COLUMNA KQ				
	Combinación	M sup	Minf		
1)	1.4CM + 1.7CV	-0.16	-0.42		
2)	0.75(1.4CM + 1.7CV + 1.87S)	2.11	2.21		
3)	0.75(1.4CM + 1.7CV - 1.87S)	-2.35	-2.84		
4)	0.9CM + 1.43S	2.20	2.39		
5)	0.9CM - 1.43S	-2.35	-2.75		

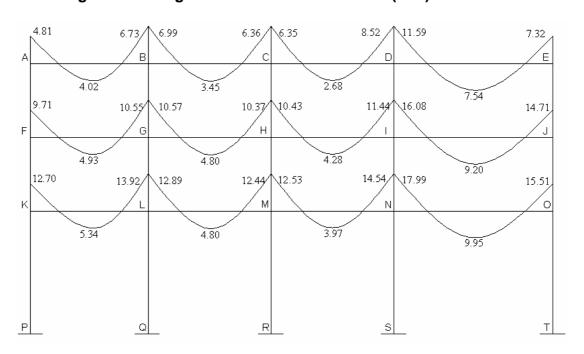
	COLUMNA LR				
	Combinación	M sup		Minf	
1)	1.4CM + 1.7CV	1.94		4.49	
2)	0.75(1.4CM + 1.7CV + 1.87S)	2.90		4.20	
3)	0.75(1.4CM + 1.7CV - 1.87S)	0.01		2.54	
4)	0.9CM + 1.43S	2.65		2.72	
5)	0.9CM - 1.43S	-0.29		1.03	

Primer nivel

	COLUMNA MS				
	Combinación	M sup		Minf	
1)	1.4CM + 1.7CV	-1.91		-1.11	
2)	0.75(1.4CM + 1.7CV + 1.87S)	1.67		4.14	
3)	0.75(1.4CM + 1.7CV - 1.87S)	-4.53		-5.79	
4)	0.9CM + 1.43S	2.37		4.60	
5)	0.9CM - 1.43S	-3.95		-5.52	

	COLUMNA NT				
	Combinación	Msup	Minf		
1)	1.4CM + 1.7CV	0.15	0.06		
2)	0.75(1.4CM + 1.7CV + 1.87S)	5.51	3.83		
3)	0.75(1.4CM + 1.7CV - 1.87S)	-5.29	-3.74		
4)	0.9CM + 1.43S	5.57	3.89		
5)	0.9CM - 1.43S	-5.44	-3.83		

	COLUMNA OU				
	Combinación	M sup		Minf	
1)	1.4CM + 1.7CV	-0.05		-0.03	
2)	0.75(1.4CM + 1.7CV + 1.87S)	3.75		5.31	
3)	0.75(1.4CM + 1.7CV - 1.87S)	-3.82		-5.35	
4)	0.9CM + 1.43S	3.84		5.43	
5)	0.9CM - 1.43S	-3.88		-5.44	


COLUMNA PV				
	Combinación	Msup	M inf	
1)	1.4CM + 1.7CV	0.05	0.03	
2)	0.75(1.4CM + 1.7CV + 1.87S)	3.81	5.34	
3)	0.75(1.4CM + 1.7CV - 1.87S)	-3.74	-5.29	
4)	0.9CM + 1.43S	3.86	5.43	
5)	0.9CM - 1.43S	-3.83	-5.41	

	COLUMNA QW				
	Combinación	Msup	M inf		
1)	1.4CM + 1.7CV	-0.15	-0.06		
2)	0.75(1.4CM + 1.7CV + 1.87S)	3.76	5.33		
3)	0.75(1.4CM + 1.7CV - 1.87S)	-3.98	-5.42		
4)	0.9CM + 1.43S	3.88	5.45		
5)	0.9CM - 1.43S	-4.01	-5.50		

COLUMNA RX					
	Combinación	Msup		Minf	
1)	1.4CM + 1.7CV	1.91		1.11	
2)	0.75(1.4CM + 1.7CV + 1.87S)	4.51		5.74	
3)	0.75(1.4CM + 1.7CV - 1.87S)	-1.64		-4.08	
4)	0.9CM + 1.43S	3.92		5.46	
5)	0.9CM - 1.43S	-2.34		-4.55	

2.1.3.2.6 Diagrama de momentos

Figura 14. Diagrama de momentos últimos (T-m) sentido X-X

Vigas

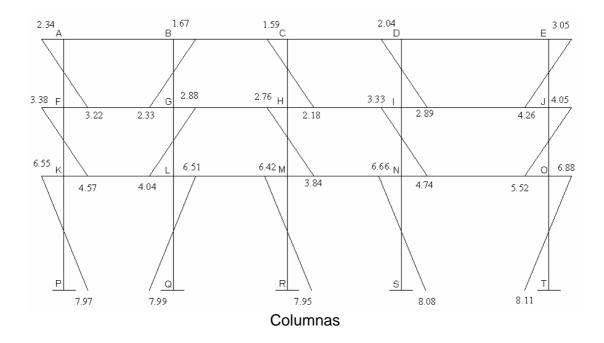
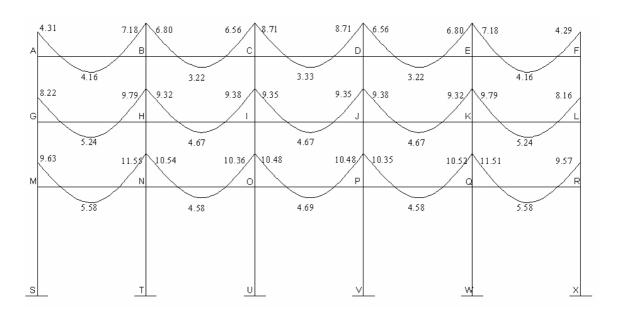
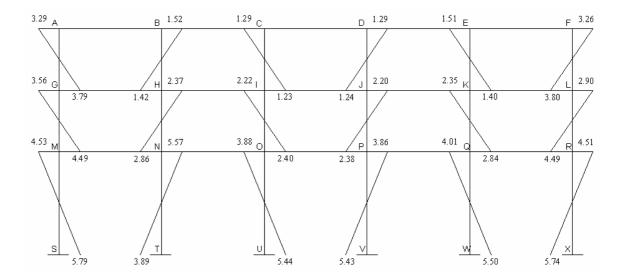




Figura 15. Diagrama de momentos últimos (T-m) sentido Y-Y

Vigas

Columnas

2.1.3.3 Dimensionamiento

2.1.3.3.1 Diseño de losas

Sistema vigueta y bovedilla

Los sistemas para losas de vigueta y bovedilla están formados por elementos estructurales (viguetas) y elementos de relleno no estructurales (bovedilla) estos elementos llevan, además, un refuerzo por temperatura, para absorber los esfuerzos provocados por cambios de temperatura y para proveer continuidad a la losa evitándose así el agrietamiento de esta; luego se funden 5 centímetros de concreto, como mínimo sobre el sistema de vigueta y bovedilla.

Viguetas

Son elementos estructurales en los sistemas de vigueta y bovedillas, están formados por un refuerzo diagonal (zig-zag), de acero, para proporcionar continuidad entre el patín (pastilla) precolado que, generalmente, tienen 5 centímetros de espesor y el resto de la fundición, para absorber los esfuerzos de compresión y formar con la fundición final una viga "T".

Las viguetas son elementos que trabajan a flexión, las cuales deben analizarse y diseñarse como vigas rectangulares o vigas en "T", según el comportamiento de las viguetas bajo la acción de carga y momento.

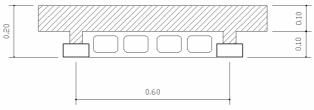
Análisis y diseño de losa

Figura 16. Losa típica

Datos:

$$F'_{c} = 210 \text{ Kg/cm}^{2}$$

$$F'_{y} = 2810 \text{ Kg/cm}^{2}$$


$$W_{bovedilla} = 15 \text{ Kg/u}$$

Carga Viva 200 Kg/m²

Longitud de losa 5 m.

Sección vigueta a usar = 5*13 cm.

Figura 17. Sección nervio típico, vigueta

Espesor (t) = 20 cm.

Peralte (d) = 17.5 cm.

• Integración de cargas

$$W_{losa} = 2,400*(0.05*0.60 + 0.10*0.10 = 96 \text{ kg/m}$$

$$W_{bovedilla} = 15kg*5u/m = 75 kg/m$$

$$W_{acabados} = 90*0.60 = 54 \text{ kg/m}$$

$$W_m = 225 \text{ kh/m}$$

$$W_v = 200^*0.60 = 120$$

$$W_u = 1.4W_m + 1.7W_v$$

$$W_u = 1.4*(225) + 1.7*(120)$$

 $W_u = 520 \text{ kg/m}$

• Diseño de refuerzo de los nervios

$$M_{u(+)} = \frac{wl^2}{8} \qquad M_{u(-)} = \frac{wl^2}{12}$$

$$M_{u(+)} = \frac{520*5^2}{8} = 1625.00 \text{ kg-m}$$
 $M_{u(-)} = \frac{520*5^2}{12} = 1083.33 \text{ kg-m}$

• Área de acero para Momento Positivo

b = 60 cm.

$$d = 17.5 \text{ cm.} \qquad \text{Mu} = 1625.00 \text{ kg-m}$$

$$As = \left(\frac{0.85 * f'c}{f_y}\right) * \left[b * d - \sqrt{(b * d)^2 - \frac{Mu * b}{0.003825 * f'c}}\right]$$

 $As = 3.78 \text{ cm}^2$

Determinar a y c

$$a = \frac{As * fy}{0.85 * f'c*b}$$
 $a = 0.99 \text{ cm.}$
 $c = \frac{a}{0.85}$ $c = 1.17 \text{ cm.}$

Trabaja como rectangular de sección b*d

Comprobación de As_{min}:

$$As_{\min} = \frac{14.1}{fy} * b * d$$

$$As_{\min} = \frac{14.1}{2810} * 60 * 12.5 * 0.40 = 2.11 \text{ cm}^2$$

 $As > As_{min}$

esta bien

Tabla VII. Comprobación del A_s corrido (momento positivo)

	33 % As(-)	As _{min.}	50 % As(-)	Usar
As se toma el	1.24	3.76	1.88	3 No. 4 corridas
mayor				

Área de acero para los momentos negativos

Trabaja como una viga rectangular de sección be*d:

Comprobación de As_{min}:

$$As_{\min} = \frac{14.1}{fy} * b * d$$

$$As_{\min} = \frac{14.1}{2810} * 10.5 * 12.5 = 0.66 \text{ cm}^2$$
As > As_{min} esta bien

Tabla VIII. Comprobación del A_s corrido (momento negativo)

	33 % As(-)	As min.	Usar
As se toma el	1.59	3.76	3 No. 4 corridas
mayor			

Por lo tanto el espesor de la losa será de 20 cm.

2.1.3.3.2 Diseño de Vigas

Las vigas son elementos estructurales sometidos a esfuerzos de compresión, tensión y corte. Los datos necesarios para su diseño son los momentos últimos y cortes últimos actuantes, y se toman del análisis estructural.

Para el diseño de las vigas se usarán los siguientes datos:

Base (b) =
$$25 \text{ cm}$$
.

Peralte efectivo (d) = 36 cm.

$$f'c = 210 \text{ kg/cm}^2$$

$$fy = 2,810 \text{ kg cm}^2$$

• Limites de acero

Para diseñar el acero longitudinal se tiene que establecer los límites donde éste debe de estar.

Área de acero mínimo (As_{min}):

$$As_{\min} = \frac{14.1}{f_{v}} * b * d$$

$$Ag = b*d$$

 $Ag = b*d = 25*36 = 900cm^2$

$$As_{\min} = \frac{14.1}{2,810} * 900 = 4.52cm^2$$

Área de Acero Máximo (As_{max}):

$$As_{\rm max} = \rho_{\rm max} * b*d$$

$$\rho_{\rm max} = 0.50 \rho_b \qquad \text{(zona sísmica)}$$

$$\rho_b = 0.85^2 * \frac{6090*f'c}{f_y*(6090+f_y)}$$

entonces,

$$\rho_b = 0.85^2 * \frac{6090 * 210}{2810 * (6090 + 2810)} = 0.03695$$

$$\rho_{\text{max}} = 0.50 * 0.03695 = 0.01847$$

$$As_{\text{max}} = 0.01847 * 25 * 36 = 16.63cm^2$$

$$As_{min} = 4.52 \text{ cm}^2$$

 $As_{max} = 16.63 \text{ cm}^2$

Para el área de acero necesario que cubra los momentos se tiene la formula siguiente:

$$As = \left(\frac{0.85 * f'c}{f_{y}}\right) * \left[b * d - \sqrt{(b * d)^{2} - \frac{Mu * b}{0.003825 * f'c}}\right]$$

Los resultados son los siguientes:

Tabla IX. Áreas de Acero Momentos Negativos (Sentido X-X)

VIGA	Momento (T-m)	As (cm²)	VIGA	Momento (T-m)	As (cm²)	VIGA	Momento (T-m)	As (cm²)
(A-B)	4.81	5.55	(F-G)	9.71	11.90	(K-L)	12.70	16.26
(B-A)	6.73	7.94	(G-F)	10.55	13.09	(L-K)	13.92	18.18
(B-C)	6.99	8.28	(G-H)	10.57	13.11	(L-M)	12.89	16.55
(C-B)	6.36	7.47	(H-G)	10.37	12.83	(M-L)	12.44	15.87
(C-D)	6.35	7.46	(H-I)	10.43	12.91	(M-N)	12.53	16.00
(D-C)	8.52	10.28	(I-H)	11.44	14.37	(N-M)	14.54	19.19
(D-E)	11.59	14.59	(I-J)	16.08	21.83	(N-O)	17.99	25.40
(E-D)	7.32	8.70	(J-I)	14.71	19.47	(O-N)	15.51	20.83

Tabla X. Áreas de Acero Momentos Positivos (Sentido X-X)

VIGA	Momento (T-m)	As (cm2)
(A-B)	4.02	4.60
(B-C)	3.45	As min
(C-D)	2.68	As min
(D-E)	7.54	8.99
(F-G)	4.93	5.70
(G-H)	4.80	5.54
(H-I)	4.28	4.91
(I-J)	9.20	11.20
(K-L)	5.34	6.20
(L-M)	4.8	5.54
(M-N)	3.97	4.54
(N-O)	9.95	12.24

Tabla XI. Áreas de Acero Momentos Negativos (Sentido Y-Y)

VIGA	Momento (T-m)	As (cm2)	VIGA	Momento (T-m)	As (cm2)	VIGA	Momento (T-m)	As (cm2)
(A-B)	4.31	4.95	(G-H)	8.22	9.88	(M-N)	9.63	11.79
(B-A)	7.18	8.52	(H-G)	9.79	12.02	(N-M)	11.55	14.53
(B-C)	6.80	8.03	(H-I)	9.32	11.37	(N-O)	10.54	13.07
(C-B)	6.56	7.73	(I-H)	9.38	11.45	(O-N)	10.36	12.82
(C-D)	8.71	10.54	(I-J)	9.35	11.41	(O-P)	10.46	12.96

(D-C)	8.71	10.54	(J-I)	9.35	11.41	(P-O)	10.48	12.99
(D-E)	6.56	7.73	(J-K)	9.38	11.45	(P-Q)	10.35	12.80
(E-D)	6.80	8.03	(K-J)	9.32	11.37	(Q-P)	10.52	13.04
(E-F)	7.18	8.52	(K-L)	9.79	12.02	(Q-R)	11.51	14.47
(F-E)	4.29	4.92	(L-K)	8.16	9.80	(R-Q)	9.57	11.71

Tabla XII. Áreas de Acero Momentos Positivos (Sentido Y-Y)

VIGA	Momento (T-m)	As (cm2)
(A-B)	4.16	4.77
(B-C)	3.22	As min
(C-D)	3.33	As min
(D-E)	3.22	As min
(E-F)	4.16	4.77
(G-H)	5.24	6.08
(H-I)	4.67	5.38
(I-J)	4.67	5.38
(J-K)	4.67	5.38
(K-L)	5.24	6.08
(M-N)	5.58	6.50
(N-O)	4.58	5.27
(O-P)	4.69	5.41
(P-Q)	4.58	5.27
(Q-R)	5.58	6.50

o Armado

(Vigas 1er. nivel.)

La viga mas critica es la **NO**, (de la envolvente se obtuvo)

Tabla XIII. Envolvente y Áreas de Acero (primer nivel)

	M(-) izq	M(+)	M(-) der	
	17.99 T-m	11.61 T-m	15.51 T-m	
As rec	25.40 cm ²	12.24 cm ²	20.83 cm ²	

Tabla XIV. Armado en viga (primer nivel)

	O 11 /				
	33 % As(-)	As _{min.}	Usar		
Cama Superior	8.38	4.52	4 No. 6 corridas, 3 No. 8 (bastones)		

	33 % As(-)	As _{min.}	50 % As(-)	50 % As(+)	Usar
Cama Inferior	8.38	4.52	12.70	6.12	2 No. 6 + 1 No. 4
					corridas, 2 No. 6
					(bastones)

(Vigas 2do. nivel.)

La viga mas critica es la IJ, (de la envolvente se obtuvo)

Tabla XV. Envolvente y áreas de acero (segundo nivel)

	M(-) izq	M(+)	M(-) der	
	16.08 T-m	9.20 T-m	14.71 T-m	
As rec	21.83 cm ²	11.20 cm ²	19.47 cm ²	

Tabla XVI. Armado en viga (segundo nivel)

	33 % As(-)	As _{min.}	Usar		
Cama Superior	Cama Superior 7.20 4.52		2 No. 6 + 2 No. 5 corridas, 2 No. 8 + 2 No. 5		
			(bastones)		

	33 % As(-)	As min.	50 % As(-)	50 % As(+)	Usar
Cama Inferior	7.20	4.52	10.92	5.60	2 No. 6 corridas, 2
					No. 6 (bastones)

(Vigas 3er. nivel.)

La viga mas critica es la **DE**, (de la envolvente se obtuvo)

Tabla XVII. Envolvente y áreas de acero (tercer nivel)

	M(-) izq	M(+)	M(-) der
	11.59 T-m	7.54 T-m	7.32 T-m
As rec	14.59 cm ²	8.99 cm ²	8.70 cm ²

Tabla XVIII. Armado en viga (tercer nivel)

	33 % As(-)	As _{min.}	Usar
Cama Superior	4.82	4.52	3 No. 6 corridas, 3 No. 5 (bastones)

	33 % As(-)	As min.	50 % As(-)	50 % As(+)	Usar
Cama Inferior	4.82	4.52	7.30	4.50	2 No. 6 corridas, 2 No. 6 + 1 No. 4
					(bastones)

Refuerzo por corte (estribos)

Vu = 11.27 T = 11,270 kg.

Corte Resistente (V_R):

$$V_{\rm R} = 0.85*0.53*\sqrt{f'c}*b*d$$

$$V_{\rm R} = 0.85*0.53*\sqrt{210}*25*36 = 5,875.53kg$$
 Vs = Vu Vs = 11,270

• Espaciamiento Máximo (S_{max})

$$S_{max} = d/2$$

 $S_{max} = 36/2 = 18$ cm.

$$S = \frac{2*Av*f_{y}*d}{Vs}$$

$$S = \frac{2*0.71*2810*36}{11,270} = 12.75cm$$

En el área de confinamiento los estribos deben estar distribuidos a cada $10~\rm cm$., fuera de la longitud de confinamiento los estribos deberán estar a $S_{\rm max}$, en este caso a cada $18~\rm cm$.

2.1.3.3.3 Diseño de columnas

Las columnas son elementos estructurales que están sometidas a cargas axiales y momentos flexionantes, para el diseño, la carga axial es el valor de todas las cargas últimas verticales que soporta la columna, esta carga se determina por áreas tributarias. Los momentos flexionantes son tomados del análisis estructural.

Se diseña la columna mas critica en cada nivel, de los valores obtenidos del análisis estructural, son los siguientes:

$$Mx = 5.84 \text{ ton}$$

Ag = 300 cm²

$$My = 5.57 \text{ ton}$$

• Determinación de la carga axial:

o Cálculo de carga axial (CU):

CU = 1.4CM + 1.7 CV

CU = 1.4 (0.12*2400)+100) + 1.7 (100)

CU = 543.20 + 170

 $CU = 713.20 \text{ kg/cm}^2$

o Factor de carga última (Fcu)

$$F_{cu} = \frac{CU}{(CV + CM)}$$

$$F_{cu} = \frac{713.20}{(388 + 100)} = 1.46$$

o Carga axial (Pu)

 $Pu = (A_{losas}^*CU) + (P_{viga}^*F_{cu})$

Pu = (25*713.20) + (0.25*0.40*5*2400*1.46)

Pu = 17,830 + 1,752

Pu = 19,582 kg. = 19.58 Ton

Previo al diseño de una columna, se evalúan los efectos de esbeltez para obtener los momentos y cargas de diseño.

Esbeltez de la columna:

$$E = \frac{KL_n}{r}$$

En donde.

E = esbeltez

K = factor de pandeo

 L_n = longitud libre

r = radio de giro, donde;

 $r = 0.30 \text{ h}_{\text{x}}$ ó $0.30 \text{ h}_{\text{y}}$ (el lado menor para columnas rectangulares) Cuando,

 $E\langle 21 \rangle$; no se magnifican momentos

 $21 \le E \le 100$; se magnifican momentos

 $E \ge 100$; no es recomendable construir

El valor de K se determina por la siguiente ecuación:

$$K = \frac{20 - \psi_{prom}}{20} \sqrt{1 + \psi_{prom}}$$
; cuando $\psi_{prom} < 2$,

$$K = 0.90\sqrt{1 + \psi_{prom}}$$
 ; cuando $\psi_{prom} \ge 2$,

$$\psi_{prom} = \frac{\psi_a + \psi_b}{2}$$

donde ψ_a y ψ_b corresponden a la sumatoria de rigideces en ambos extremos de apoyo de la columna y se expresan de la siguiente forma:

$$\psi_{a-b} = \frac{\sum EI/L_{col}}{\sum EI/L_{vigas}}$$

Extremo superior

$$\psi_a = \frac{0.20 + 0.30}{0.20 + 0.20} = 1.25$$

Extremo inferior

$$\psi_b = \frac{0.20 + 0}{\infty} = 0$$

Nota: son los mismos valores para sentido X y Y.

con esto se tiene

$$\psi_{prom} = \frac{1.25 + 0}{2} = 0.63$$

$$\Psi_{prom}$$
 < 2,

entonces,

$$K = \frac{20 - 0.63}{20} * \sqrt{1 + 0.63}$$

$$K = 0.9685 * 1.28 = 1.24$$

Por lo tanto,

$$E = \frac{1.24*3}{0.30*0.30} = 44.33$$
 (valor igual para el sentido Y)

 $21 \le E \le 100$; se magnifican momentos

• Magnificación de Momentos

La ecuación de magnificación de momentos es:

$$M_d = \delta M_u$$

Donde,

 M_u = Momento último

 δ = Magnificador de momentos

$$\delta = \frac{1}{1 - \frac{P_u}{\phi P_{cr}}}$$

donde:

 P_u = carga última actuante

 P_{cr} = carga crítica de pandeo (Euler)

 ϕ = factor de compresión (0.70 para estribos)

$$P_{cr} = \frac{\pi^2 EI}{\left(KL_n\right)^2}$$

donde:

E = modulo de Young

I = momento de inercia

K = factor de pandeo

 L_n = longitud libre entre apoyos

$$EI = \frac{E_c I_g / 2.5}{1 + \beta_d}$$

donde:

 E_c = módulo de elasticidad del concreto $(15100\sqrt{f'c})$

 $I_{\rm g}$ = momento de inercia centroidal de la columna

$$I_g = bh^3/12$$

 β_d = factor de flujo plástico

$$\beta_d = \frac{1.4CM}{1.4CM + 1.7CV} = \frac{CM_u}{C_u}$$
 $0 \le \beta_d \le 1$

$$\beta_d = \frac{543.20}{713.20} = 0.76$$

$$EI = \frac{\frac{15,100\sqrt{210}*(30*30^{3}/12)}{2.5}}{1+0.76}$$

$$EI = \frac{\frac{59081342.99}{1+0.76} = 3.35*10^{9} kg - cm^{2} = 335.70T - m^{2}$$

$$P_{cr} = \frac{\pi^2 * (335.70)}{(1.24*3)^2}$$

$$P_{cr} = \frac{3313.23}{13.84} = 239.40T$$

$$\delta = \frac{1}{1 - \frac{19.582}{0.70 * 239.40}}$$
$$\delta = \frac{1}{1 - 0.12} = \frac{1}{0.88} = 1.14$$

entonces, momento de diseño

Sentido X-X

$$M_d = \delta M_u$$

$$M_d = 1.14*(5.84) = 6.65T - m \approx 6,657kg - m$$

Sentido Y-Y

$$M_d = \delta M_u$$

$$M_d = 1.14 * (5.57) = 6.34T - m \approx 6,350kg - m$$

Para diseñar columnas tomando en cuenta su carga axial y los dos momentos actuantes se utilizara el método de Bressler.

El procedimiento es el siguiente:

• Cálculo de límites de acero:

Para el cálculo del refuerzo para columnas el área de acero debe de estar dentro de los siguientes limites 1% Ag \leq As \leq 6%Ag.

$$As_{min} = 0.01*(30*30) = 9 \text{ cm}^2$$

$$As_{max} = 0.06*(30*30) = 54 \text{ cm}^2$$

• Se propone armado (primer Nivel):

8 No. 8 =
$$8*(5.07) = 40.56 \text{ cm}^2$$

Para este método se usan los diagramas de iteración para diseño de columnas.

Valor de la grafica: (γ) relación entre un lado de la columna y el mismo lado sin recubrimiento.

 $h_{\text{núcleo}}/h_{\text{columna}}$ (γ)

$$\gamma_X = (0.30 - (2*0.03))/0.30 =$$
0.80

$$y_Y = (0.30 - (2*0.03))/0.30 = 0.80$$

con esto se obtiene,

$$\rho_u = \frac{A_s * f_y}{0.85 * f'c * Ag}$$

$$\rho_u = \frac{40.56 * 2810}{0.85 * 210 * (30 * 30)} = \frac{114,226.50}{160,650} = 0.81 \text{ (Valor de la grafica)}$$

Excentricidades:

$$e_{x-y} = \frac{M_u}{P_u}$$

$$e_x = \frac{6,657}{19,582} = 0.34$$

$$e_y = \frac{6,350}{19,582} = 0.32$$

Diagonales:

$$\frac{e_x}{h_x} = \frac{0.46}{0.30} = 1.13$$
 $\frac{e_y}{h_y} = \frac{0.34}{0.30} = 1.07$

Con los datos obtenidos, se busca en las tablas de diagramas de columnas los valores de los coeficientes K_x y K_y ,

los cuales son:

$$K_x = 0.32$$
 $K_y = 0.35$

con esto se calculan las cargas,

o Carga de resistencia de la columna a una excentricidad ex:

$$P'_{ux} = K_x * \phi * f'c * b * h$$

$$P'_{ux} = 0.32 * 0.70 * 210 * 30 * 30$$

$$P'_{ux} = 42,336kg$$
.

o Carga de resistencia de la columna a una excentricidad e_y:

$$P'_{uv} = K_v * \phi * f' c * b * h$$

$$P'_{ux} = 0.35*0.70*210*30*30$$

$$P'_{ux} = 46,305kg$$
.

o Carga axial de resistencia de la columna:

$$P'o = \phi(0.85 * f'c(Ag - As) + As * fy$$

$$P'o = 0.70(0.85*210(900-40.56)+40.56*2810$$

$$P'o = 187,168.55kg$$

o Carga de resistencia de la columna:

$$P'u = \frac{1}{\frac{1}{P'_{ux}} + \frac{1}{P'_{uy}} - \frac{1}{P'o}}$$

$$P'u = \frac{1}{\frac{1}{42,336} + \frac{1}{46,305} - \frac{1}{187,168.55}}$$

$$P'u = 25,079.17kg$$

$$P'_{u} > P_{u}$$

$$25,079.17 kg. > 19,582 kg.$$

Por lo tanto la carga que resiste es mayor a la actuante en la columna, entonces el armado propuesto si cumple, de no ser así se debe de aumentar el área de acero hasta que cumpla.

• Armado (Segundo Nivel): 6 No. 8 = 6*(5.07) = 30.42 cm²

Tabla XIX. Refuerzo de As Columna 2do. Nivel

14514 7474 140140120 40 710 001411114 2401 141701					
Pu	M _{ux}	M _{uy}			
19,582 kg.	4820	4060			
As	ρu	ex	ey		
30.42 cm ²	0.53	0.25	0.21		
Diag _x	Diag _y	K _x	K _y		
0.83	0.70	0.33	0.43		
P'ux	P'uy	P'o	P'u		
43,659	48,951	168,490.16	26,739.17		
P'u > Pu	26,739.17 >	19,582		Si cumple	

Armado (Tercer Nivel): $4 \text{ No. } 8 = 4*(5.07) = 20.28 \text{ cm}^2$

Tabla XX. Refuerzo de As Columna 3er. Nivel

Pu	M _{ux}	M _{uv}	
19,582 kg.	4,160	3,290	
As	ρu	ex	ey
20.28 cm ²	0.35	0.21	0.19
Diag _x	Diagy	K _x	K _y
0.70	0.63	0.35	0.39
P'ux	P'uy	P'o	P'u
46,305	51,597	149,811.17	29,152.93

P'u > Pu 29,152.93 > 19,582 Si cumple

• Acero transversal (estribos):

El procedimiento para proveer refuerzo a las columnas se describen a continuación:

o Requerimiento armado para confinamiento:

Se armará una longitud de confinamiento (L_o) a partir del rostro de la viga. La longitud de confinamiento será el valor mayor de las siguientes condiciones:

- El lado mayor de la columna
- L/6 de la altura libre de la columna
- 0.45 m o 18".

Para esto se tiene

- 0.30 m.
- 5/6 = 0.83 m.
- 0.45 m.

se usará 0.83 m que es el mayor.

El espaciamiento de la longitud de confinamiento (S_o), será el menor de las siguientes consideraciones:

- ¼ del lado menor de la columna
- 0.10 m
- El S_o calculado

El primer espaciamiento será igual a S_o/2

S_o esta dado por:

$$S_o = \frac{2A_v}{L_n \rho}$$

donde:

A_v = área varilla de estribo

L_n = longitud máxima no soportada por el estribo

 ρ = relación volumétrica

 ρ esta determinada por:

$$\rho = 0.45 \left[\frac{A_g}{A_{ch}} - 1 \right] * 0.85 \frac{f'c}{f_v},$$

donde:

 A_q = área varilla de estribo

A_{ch} = longitud máxima no soportada por el estribo

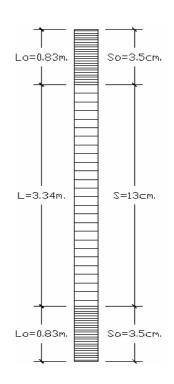
$$\rho = 0.45 \left[\frac{30^2}{24^2} - 1 \right] * 0.85 \frac{210}{2810}$$

 $\rho = 0.01608$

el espaciamiento (S_o) entre estribos en la zona de confinamiento es:

$$S_o = \frac{2 \cdot 0.71}{24 \cdot 0.01608}$$

$$S_o = 3.68cm. \approx 3.5cm.$$


Fuera de la longitud de confinamiento, los estribos tendrán el espaciamiento (S) siguiente:

S = d/2

S = 27/2 = 13.5 cm.

En este caso se tomo 13 cm.

Figura 18. Confinamiento de columna

2.1.3.3.4 Diseño de zapatas

2.1.3.3.4.1 Zapatas tipo 1

Los cimientos son elementos de la estructura destinados a recibir las cargas propias y las aplicadas a las mismas; estos a su vez transmiten la acción de las cargas sobre el suelo.

Los datos son obtenidos del análisis estructural y el del estudio de suelo realizado del lugar, estos son:

$$M_{ux} = 8.08 \text{ T-m}$$

$$M_{uv} = 5.74 \text{ T-m}$$

 $P_u = 43.75 \text{ Ton}$

Valor soporte del suelo $(V_s) = 30 \text{ T/m}^2$

Peso especifico del suelo (γ_s) = 1.04 T/m³

Peso especifico del concreto (γ_c) = 2.40 T/m³

Factor de carga última (F_{cu}) = 1.50

Desplante (D_f) = 1.50 m.

Espesor (t) Asumido = 0.40 m.

• Diseño de área de zapata:

Para el cálculo del área de la zapata se utilizan las cargas y momentos de servicio, los cálculos a efectuar son:

$$P' = \frac{P_u}{F_{cu}}$$

$$P' = \frac{43.75}{1.50} = 29.17Ton$$

$$M'_x = \frac{8.08}{1.50} = 5.38T - m$$

$$M'_y = \frac{5.74}{1.50} = 3.83T - m$$

$$M'_{x} = \frac{M_{X}}{F_{cu}}$$

$$M'_{y} = \frac{M_{Y}}{F_{cu}}$$

• Estimación del área de zapata (Az):

$$Az = \frac{1.5 * P'}{Vs}$$

$$Az = \frac{1.5 * 29.17}{30} = 1.46m^2$$

Se propone usar las dimensiones aproximadas, Zapata cuadrada $A_z = 1.25*1.25 = 1.56 \text{ m}^2$

• Revisión de presión sobre el suelo (q):

$$q = \frac{P}{Az} \pm \frac{M'x}{Sx} \pm \frac{M'y}{Sy}$$

donde,

$$P = P' + P_s + P_{col} + P_{cim}$$

$$P_s = \gamma_s * D_f * A_z$$

$$P_s = 1.04 * 1.50 * 1.56$$

$$P_{s} = 2.44T$$

$$P_{col} = \gamma_{con} * Sec_{col} * Alto$$

$$P_{col} = 2.40*(0.30*0.30)*4.50$$

$$P_{col} = 0.97T$$

$$P_{cim} = \gamma_{con} * t * A_z$$

$$P_{cim} = 2.40*0.40*1.56$$

$$P_{cim} = 1.50T$$

$$P = 29.17 + 2.44 + 0.97 + 1.50$$

$$P = 34.08T$$

$$S = \frac{1}{6} * b * h^2$$

$$S_x = S_y = \frac{1}{6} *1.25 *1.25^2 = 0.325$$

• Presiones del suelo por debajo de la zapatas

$$q = \frac{34.08}{1.56} \pm \frac{5.38}{0.325} \pm \frac{3.83}{0.325}$$

$$q_{\text{max}} = 50.17T / m^2 \qquad > \qquad \text{Vs}$$

$$q_{\text{min}} = -6.48T / m^2 \qquad < \qquad 0$$

Como la presión máxima excede el Vs, y con la presión mínima indica que existen presiones de tensión, se debe aumentar el área, es decir, se hace otra estimación de área, hasta que cumpla.

• Segunda estimación del área de zapata

Se propone una zapata cuadrad de 1.75*1.75 m.; con esto se tiene un área (A_z) de 3.06 m².

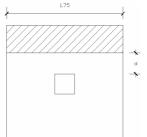
Entonces se tiene,

$$\begin{split} P_s &= 4.78T \\ P_{col} &= 0.97T \\ P_{cim} &= 2.94T \\ P &= 37.86T \\ S_x &= S_y = \frac{1}{6}*1.75*1.75^2 = 0.89 \\ q &= \frac{37.86}{3.06} \pm \frac{5.38}{0.89} \pm \frac{3.83}{0.89} \\ q_{\max} &= 22.71T/m^2 &< \text{Vs} \quad \text{no excede el valor soporte del suelo} \\ q_{\min} &= 2.03T/m^2 &> 0 \quad \text{no hay presiones por tensión} \\ \textbf{SI CUMPLE} \end{split}$$

• Presión ultima de diseño:

 $q_{disu} = q_{dis} * F_{cu}$

 $q_{disu} = 22.71*1.50$


$$q_{dis} = q_{max} = 22.71T / m^2$$

$$q_{disu} = 34.06T / m^2$$

• Diseño de espesor de zapata (t):

Para determinar el espesor de la zapata es necesario que resista tanto el corte simple o corte flexionante como el punzonamiento causado por la columna las cargas actuantes.

o Chequeo por corte simple

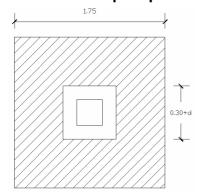
cálculo de peralte (d)

$$d = t - rec - \Phi/2$$

se asume un diámetro de varilla # 6.

$$d = 40 - 7.5 - (1.91/2)$$

d = 31.55 cm.


Cálculo del corte actuante

$$V_{act} = Area_{Ash} * q_{disu}$$

$$V_{act} = \left[1.75 * \left(\frac{1.75}{2} - \frac{0.30}{2} - 0.3155\right)\right] * 34.06$$

$$V_{act} = 24.41T$$

Cálculo del corte resistente

$$V_{R} = 0.85*0.53*\sqrt{f'c}*(b*d)/1000$$

$$V_{R} = 0.85*0.53*\sqrt{210}*(175*31.55)/1000$$

$$V_{R} = 36.04T$$

$$V_{R} > V_{act}$$
 si cumple

Chequeo por corte punzonante

área ashurada = área de punzonamiento d = 31.55 cm.

donde,

0.30 + d = 0.30 + 0.3155 = 0.6155 cm.

Cálculo del corte punzonante actuante

$$V_{act} = Area_{Ash} * q_{disu}$$

$$V_{act} = [(1.75)^{2} - (0.6155)^{2}] * 34.06$$

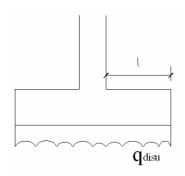
$$V_{act} = 91.40T$$

Cálculo del corte punzonante resistente

$$V_R = 0.85 * 1.06 * \sqrt{f'c} * (b_o * d) / 1000$$

en donde b_o es el perímetro de sección critica de punzonamiento.

$$b_o = 4(0.30+d) = 4*(0.30 + .3155) = 246.18$$
 cm.


$$V_R = 0.85 * 1.06 * \sqrt{210} * (246.18 * 31.55) / 1000$$

 $V_R = 101.40T$

$$V_R > V_{act}$$

si cumple

Diseño de Refuerzo:

Flexión en sentido X-X

Momento último actuante

$$Mu = \frac{wl^2}{2}$$

$$Mu = \frac{34.06 * \left(1.75 - \frac{1.75}{2} - \frac{0.30}{2}\right)^{2}}{2}$$

$$Mu = 8.95T - m$$

Área de acero

Se tiene,

Mu = 8.95 T-m

b = 100 cm

d = 31.55 cm

el área de acero se obtiene con la ecuación:

$$As = \left(\frac{0.85 * f'c}{f_y}\right) * \left[b * d - \sqrt{(b * d)^2 - \frac{Mu * b}{0.003825 * f'c}}\right]$$

$$As = 11.55cm^2$$

$$As_{min} = 14.1/fy*(b*d)$$

$$As_{min} = 15.83 \text{ cm}^2$$

Usar varillas No. 6

Espaciamiento (s):

S esta dada por:

$$S = \frac{Av}{As}$$

$$S = \frac{2.85}{15.83} = 0.18cm$$

Se colocaran a cada 0.15 m. por seguridad.

Flexión en sentido Y-Y

Nuevo peralte en sentido Y

$$d_{yy} = d_{xx} - \frac{\phi_x}{2} - \frac{\phi_y}{2}$$

$$d_{yy} = 31.55 - \frac{1.90}{2} - \frac{1.90}{2}$$

$$d_{yy} = 29.65cm$$

$$As = 12.28cm^2$$
 $S = 0.18cm$

Usar varillas No. 6 @ 0.15 m. en ambos sentidos.

2.1.3.3.4.2 Zapatas tipo 2

Las zapatas excéntricas tienen la particularidad que las cargas que recaen sobre ellas lo hacen de forma descentrada, por lo que producen momentos de vuelco que habrá que contrarrestar.

La base pude ser cuadrada o rectangular o cuadrada según sea el caso el diseño de diamante es el que se usara en el diseño.

Datos a utilizar:

$$Mx = 8.11 \text{ Ton}$$
 $My = 5.74 \text{ Ton}$ $Pu = 35.81 \text{ Ton}$ $Vs = 30.00 \text{ Ton/m}^2$

• Magnificación de cargas (Cu)

Cu = Pu * 1.05 Cu = 35.81 * 1.05 Cu = 37.60 Ton

Como existe una excentricidad de la carga que provocará flexión, se tomará un valor soporte del suelo menor a la real, $Vs = 20.00 \text{ Ton/m}^2$.

• Predimencionamiento

$$A = \frac{Cu}{Vs}$$
 $A = \frac{37.60}{20}$ $A = 1.88m^2$ $L = \sqrt{A}$ $L = \sqrt{1.88}$ $L = 1.37m$

En este caso se usaran dimensiones de 1.50 x 1.50 m.

 La carga centrada en la columna, se encuentra a una distancia e del centro

$$e = \frac{L}{2} - \frac{col}{2}$$

$$e = \frac{1.50}{2} - \frac{0.30}{2}$$
$$e = 0.60$$

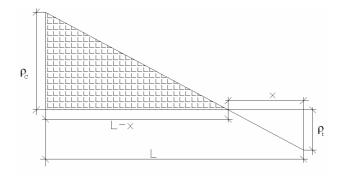
 Si se aplican dos fuerzas iguales a Cu y de sentido contrario, en el centro de gravedad de la base, ellas combinadas con Pu de la columna provocan esfuerzos, estos son:

Compresión Máxima (σ_c):

$$\sigma_{c} = \frac{Cu}{A} * \left(1 + \frac{6 * e}{L} \right)$$

$$\sigma_{c} = \frac{37.60 * 1000}{150 * 150} * \left(1 + \frac{6 * 60}{150} \right)$$

$$\sigma_{c} = 5.68 kg / cm^{2}$$

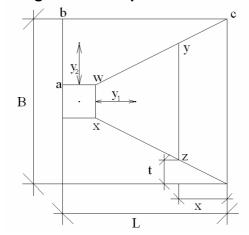

Tensión Máxima (σ_t):

$$\sigma_{t} = \frac{Cu}{A} * \left(1 - \frac{6 * e}{L} \right)$$

$$\sigma_{t} = \frac{37.60 * 1000}{150 * 150} * \left(1 - \frac{6 * 60}{150} \right)$$

$$\sigma_{t} = -2.34 kg / cm^{2}$$

Figura 19. Esfuerzos en el terreno



• El punto donde cambia el esfuerzo de compresión al de tensión el cual se encuentra a una distancia "x", para hallar este valor se aplica relación de triángulos.

$$\frac{\sigma_c}{L-x} = \frac{\sigma_t}{x}$$
, despejando x, se tiene: $x = \frac{\sigma_t * L}{\sigma_t + \sigma_c}$

$$x = \frac{2.34 * 1.50}{2.34 + 5.68}$$
$$x = 0.44m.$$

Figura 20. Zapata de lindero

Para hallar la distancia t se utiliza la siguiente formula:

$$t = \frac{x * B}{2}$$

$$t = \frac{0.44 * 1.50}{2}$$

$$t = 0.22m.$$

• Esfuerzo en el eje de inversión (σ_{eje}):

$$\sigma_{eje} = \frac{\sigma_c * \frac{L}{2} - x}{L - x}$$

$$\sigma_{eje} = \frac{5.68 * \frac{1.50}{2} - 0.44}{1.50 - 0.44} = 1.66 \text{ kg/cm}^2$$

• Altura del diamante (h):

$$h = \tan(30^\circ) * (L - col)$$

 $h = \tan(30^\circ) * (1.50 - 0.30) = 0.70 \text{ m}.$

• La resultante de los esfuerzos en el trapecio wxyz será:

$$P_{1} = \sigma_{eje} \left[\frac{wx + yz}{2} \right] (h)$$

$$P_{1} = 1.66 \left[\frac{30 + 106}{2} \right] (70) = 7,901.60 \text{ kg.}$$

Esta fuerza está aplicada al centro de gravedad del trapecio wxyz, cuya distancia a la sección wx es:

$$y_1 = \left(\frac{h}{3}\right) \left[\frac{2*yz + wx}{yz + wx}\right]$$
$$y_1 = \left(\frac{70}{3}\right) \left[\frac{2*106 + 30}{106 + 30}\right] = 41.52 \text{ cm.}$$

• Momento P1 con respecto a ab es:

$$M_1 = P_1 * y_1$$

$$M_1 = \frac{7901.60 * 41.52}{100} = 3,280.74 \text{ kg} - \text{m}$$

Calcular esfuerzo medio de compresión:

$$\sigma_{MC} = \frac{\sigma_c}{2}$$
 $\sigma_{MC} = \frac{5.68}{2}$
 $\sigma_{MC} = 2.84 kg / cm^2$

El esfuerzo medio esta repartido en la superficie awcd, cuya área es:

$$A = col\left(\frac{B - wx}{2}\right) + \left\lceil \frac{(B - wx) + (B - yz)}{4} \right\rceil * h$$

$$A = 30 \left(\frac{150 - 30}{2} \right) + \left[\frac{(150 - 30) + (150 - 106)}{4} \right] * 70 = 4,670 \text{ cm}^2$$

 Resultante P₂, aplicada al centro de gravedad de la superficie awcd es:

$$P_2 = A * \sigma_{MC}$$
 $P_2 = 4670 * 2.84$ $P_2 = 13,262.82kg$.

La distancia a la sección aw al centro de gravedad de la superficie awcd es:

$$y_2 = \left(\frac{ab}{3}\right) \left[\frac{2*bc + aw}{bc + aw}\right]$$
$$y_2 = \left(\frac{60}{3}\right) \left[\frac{2*150 + 30}{150 + 30}\right] = 36.67 \text{ cm}.$$

• Momento según la fuerza P2 será:

$$M_2 = P_2 * y_2$$

$$M_2 = \frac{1,3262.82 * 36.67}{100} = 4,863.47 \text{ kg} - \text{m}$$

Para el cálculo del acero de refuerzo se utiliza el mayor de los momentos de M_1 y M_2 , en este caso es $M_2 = 4,863.47$

Área de acero (As):

$$As = \left(\frac{0.85 * f'c}{f_y}\right) * \left[b * d - \sqrt{(b * d)^2 - \frac{Mu * b}{0.003825 * f'c}}\right]$$
Con Mu = 4,863.47 b = 100 cm. d = 75.83 cm.
$$As = \left(\frac{0.85 * 210}{2810}\right) * \left[100 * 75.83\sqrt{(100 * 75.83)^2 - \frac{4863 * 100}{0.003825 * 210}}\right]$$

$$As = 2.54cm^2$$

• Área de acero mínimo (As_{min}):

$$As = \frac{14.1}{f_y} *b*d$$

$$As = \frac{14.1}{2810} *100*75.83$$

$$As = 38.05cm^2$$

Se toma el mayor As_{min} = **38.05 cm²**, **con varillas No. 6**

No de varillas a utilizar:

$$Var * eje = \frac{As}{AreaVarilla}$$

$$Var * eje = \frac{38.05}{2.85} = 13.35 \text{ Var.}$$

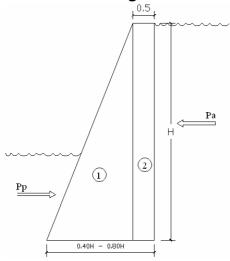
Espaciamiento entre varillas:

$$S = \frac{b - rec}{Var * eje}$$
$$S = \frac{100 - 7.5}{8} = 11.50cm$$

Por seguridad se usará una separación de 10 cm.

Usar varillas No. 6 @ 0.10 m. en ambos sentidos.

Para la base de la zapata con diamante, se calcula con la diferencia entre los momentos de análisis estructural y el mayor obtenido en el diamante,


$$Mx = 8,110 - 4,863.47 = 3,246.53 T - m.$$

 $My = 5,740 - 3,280.74 = 2,459.26 T - m.$

Tabla XXI. Datos base de zapata tipo 2

Zapata	Datos	Dimensiones	Corte (T)	Refuerzo
	Mx = 3,246.47 kg-m.	A = 1.50 m.	Simple	$Mu_x = 4.70 \text{ T-m}$
	IVIX = 3,240.47 Kg-III.	A = 1.50 III.	$Va_x = 11.15$	$As_{rec} = 5.98 \text{ cm}^2$
	My = 2,459.26 kg-m	B = 1.50 m.	$Va_v = 11.15$	$As_{min} = 15.83 \text{ cm}^2$
Tipo 2		D = 1.30 III.	$Vr_{x} = 30.90$	No. 6 @ 0.15 m.
1100 2	Pu = 35.81 Ton	$A = 2.25 \text{ m}^2$	$Vr_x = 30.90$	$Mu_y = 4.70 \text{ T-m}$
		A = 2.23 III	Punzonante	$As_{rec} = 12.28 \text{ cm}^2$
	Fcu = 1.50	t = 0.40	Va = 48.89	$As_{min} = 15.83 \text{ cm}^2$
			Vr = 101.40	No. 6 @ 0.15 m.

2.1.3.3.5 Diseño de muro de contención

Figura 21. Muro de contención por gravedad.

Datos.

H = 5 m.
h = 2 m
b = 0.50H = 0.5*5 = 2.50 m.
Vs = 30 T/m²

$$\Phi$$
 = 26.27°
 γ c = 2.40 T/m³
 γ s = 1.04 T/m³

• Coeficientes de Empuje:

Activo (Ka)

$$Ka = \frac{1 - sen\phi}{1 + sen\phi}$$

$$Ka = \frac{1 - sen(26.27^{\circ})}{1 + sen(26.27^{\circ})} = 0.39$$

Pasivo (Kp)

$$Ka = \frac{1 + sen\phi}{1 - sen\phi}$$

$$Ka = \frac{1 + sen(26.27^{\circ})}{1 - sen(26.27^{\circ})} = 2.59$$

Cargas Totales

Activo (Pa)

$$Pa = \frac{1}{2} * \gamma_s * H^2 * Ka$$

$$Pa = \frac{1}{2} *1.04 *(5)^2 *0.39$$

$$Pa = 5.02T$$

Pasiva (Pp)

$$Pa = \frac{1}{2} * \gamma_s * h^2 * Kp$$

$$Pa = \frac{1}{2} *1.04 *(2)^2 *2.59$$

$$Pa = 5.38T$$

• Momento de Volteo (Mv):

$$Mv = \frac{1}{3} * H * Pa$$

$$Mv = \frac{1}{3} * 5 * 5.02$$

$$Mv = 8.37T - m$$

Tabla XXII. Datos para el diseño del muro.

Figura	Área	Peso esp.	Peso	Brazo	Momento
1	5	2.4	12	1.33	15.96
2	2.5	2.4	6	2.25	13.5
	2.0	۷.٦	- 3	2.20	10.0

$$\Sigma WT = 18 T$$
 $\Sigma MR = 29.46 T-m$

• Chequeo por Volteo:

$$F_{sv} = \frac{\sum M_R}{\sum M_V}$$
 > 3

$$F_{sv} = \frac{29.46}{8.37}$$

$$F_{sv} = 3.52$$
 > 3

Si chequea

• Chequeo por deslizamiento

$$F_{SD} = \frac{\mu * W_T}{P_a}$$
 > 1.50

$$\mu = 0.90 * \tan \phi$$

$$\mu = 0.90 * \tan(26.27^{\circ})$$

$$\mu = 0.44$$

$$F_{SD} = \frac{0.44*18}{5.02}$$

 $F_{SD} = 1.59$

1.50

si chequea

Excentricidad

$$e = \frac{l}{2} - a$$

$$a = \frac{\sum M_R - \sum M_V}{W_T}$$

$$a = \frac{29.36 - 8.37}{18}$$

$$a = 1.17$$

$$e = \frac{2.50}{2} - 1.17$$

$$e = 0.08$$

esto quiere decir que la presión máxima ocurre en la punta.

Presiones

$$q = \frac{W_T}{b*l} \pm \frac{W_T*e}{S}$$

$$S = \frac{1}{6} * b^2 * l$$

$$S = \frac{1}{6} * 2.50^2 * 1$$

$$S = 1.04$$

$$q_{\text{max}} = \frac{18}{(2.5*1)} + \frac{18*0.08}{1.04} = 8.56T.$$
 < Vs

$$q_{\min} = \frac{18}{(2.5*1)} - \frac{18*0.08}{1.04} = 5.84T.$$
 > 0

Si chequea, esto quiere decir que las dimensiones del muro son correctas.

2.1.4 Presupuesto

Para la elaboración del presupuesto del edificio municipal, se tomaron aspectos como, precios de materiales cotizados en el municipio; los salarios de mano de obra, tanto calificada como no calificada se aplicaron los que la municipalidad asigna para casos similares. En cuanto a indirectos se aplicó el 30%.

Tabla XXIII. Presupuesto

No.	DESCRIPCIÓN	CANTIDAD	HNIDAD	COSTO UNIT.	TOTAL
110.	DEGGIAN GIGIN	GAITTIDAD	ONIDAD	OIIII.	TOTAL
0	TRABAJOS PRELIMINARES				
0.1	cerramiento perimetral	92	ml	Q320.00	Q29,440.00
	Construcción de bodega				
0.2	8.00x8.00m.	64	m2	Q250.00	Q16,000.00
0.3	limpieza general	730	m²	Q15.00	Q10,950.00
0.4	Corte del terreno	213	m3	Q120.00	Q25,560.00
	TOTAL				Q81,950.00
1	CIMENTACIÓN				
	excavación	250	m3	Q35.00	Q8,750.00
1.1	ZAPATAS				
	Zapata Z-1 de 0.40 x 1.75 x 1.75	18	unidad	Q780.00	Q14,040.00
	Zapata Z-2 de 0.40 x 1.50 x 1.50	12	unidad	Q670.00	Q8,040.00
1.2	Muro de contención				
	Por Gravedad	150	m3	Q300.00	Q45,000.00
	TOTAL				Q75,830.00
2	LEVANTADO DE MUROS				
	muro pineado de block de				
2.1	0.19x0.15x0.39	1290	m²	Q160.00	Q206,400.00
2.2	muros de covintec	12	m²	Q115.00	Q1,380.00
2.3	muros de vitroblock 0,20X0,20	15	m²	Q175.00	Q2,625.00
	TOTAL				Q210,405.00
3	LOSA/ENTREPISO				
3.1	vigueta y bovedilla	1422	m²		
3.2	entrepiso 1	465	m²	Q950.00	Q441,750.00
3.3	entrepiso 2	680	m²	Q950.00	Q646,000.00
3.4	losa final	277	m²	Q950.00	Q263,150.00
	TOTAL				Q1,350,900.00
4	COLUMNAS				
4.1	columnas	250	ml	Q420.00	Q105,000.00
	TOTAL				Q105,000.00

5	PISO				
5.1	piso cerámico	995	m²	Q120.00	Q119,400.00
5.2	torta de concreto 0.10cm	340	m²	Q95.00	Q32,300.00
	TOTAL				Q151,700.00
6	VIGAS				
6.1	viga tipo - V1-	292	ml	Q375.00	Q109,500.00
6.2	viga tipo - V2-	360	ml	Q305.00	Q109,800.00
6.3	viga tipo - V3-	157	ml	Q275.00	Q43,135.00
	TOTAL				Q262,435.00
7	GRADAS	60	m²	Q600.00	Q36,000.00
	TOTAL				Q36,000.00
8	ILUMINACIÓN				
8.1	cableado THN calibre 10	1237	ml	Q75.00	Q92,775.00
8.2	interruptores simples	41	unidad	Q75.00	Q3,075.00
8.3	interruptores dobles	9	unidad	Q85.00	Q765.00
8.4	lámparas en pared	14	unidad	Q135.00	Q1,890.00
8.5	lámparas en techo	13	unidad	Q155.00	Q2,015.00
8.6	reflectores dobles	15	unidad	Q170.00	Q2,550.00
8.7	lámparas tipo 2x40 Watts	223	unidad	Q325.00	Q72,475.00
	TOTAL				Q175,545.00
9	AGUA POTABLE				
9.1	Inst. de agua potable	170	ml	Q120.00	Q20,400.00
	TOTAL				Q20,400.00
10	DRENAJE				
		140	ml	Q110.00	Q15,400.00
	tubería de 4"	51	ml	Q175.00	Q8,925.00
	inodoros de porcelana I.S.	15	unidad	Q950.00	Q14,250.00
10.5		1	unidad	Q1,000.00	Q1,000.00
10.6	lavamanos de porcelana I,S.	14	unidad	Q600.00	Q8,400.00
	TOTAL				Q47,975.00
11	VENTANERIA				
11.1	ventana v-1	75.20	m²	Q550.00	Q41,360.00
11.2		4	m²	Q550.00	Q2,200.00
	ventana v-3	2.6	m²	Q550.00	Q1,430.00
	ventana v-4	4.00	m²	Q550.00	Q2,200.00
11.5		16	m²	Q550.00	Q8,800.00
11.6		37	m²	Q550.00	Q20,350.00
11.7		5	m²	Q550.00	Q2,750.00
11.8	ventana v-9	6.8	m²	Q550.00	Q3,740.00
4.5	TOTAL	1			Q82,830.00
12	ACABADOS	0		000.00	0000 000 00
12.1	repello + cernido	2500	m²	Q80.00	Q200,000.00
12.2	alizado en columna	250	m ²	Q75.00	Q18,750.00
12.3	blanqueado en corniza	186	m²	Q90.00	Q16,740.00
12.4	fachaleta rustica	17	m ²	Q100.00	Q1,700.00

12.5	azulejo nacional	111	m²	Q90.00	Q9,990.00
12.6	pintura	2500	m²	Q30.00	Q75,000.00
	TOTAL				Q322,180.00
13	HERRERIA				
13.1	puerta de metal de 2.10 x 0.90	8	unidad	Q1,000.00	Q8,000.00
	TOTAL				Q8,000.00
14	CARPINTERIA				
14.1	puerta de madera mdf 2.10 x 0.90	28	unidad	Q730.00	Q20,440.00
14.2	puerta de madera para inodoros	7	unidad	Q600.00	Q4,200.00
	TOTAL				Q24,640.00
15	FUERZA				
15.1	tomacorrientes polarizados 110v	93	unidad	Q100.00	Q9,300.00
15.2	entubado pvc 3/4"	450	ml	Q50.00	Q22,500.00
15.3	alambrado	900	ml	Q95.00	Q85,500.00
15.4	tablero de distribución 12 polos	1	unidad	Q600.00	Q600.00
15.5	acometida	1	unidad	Q3,600.00	Q3,600.00
	TOTAL				Q121,500.00
	Costos Directos=				Q3,077,290.00

Costos Indirectos=	30%	Q923,187.00
TOTAL		Q4,000,477.00

2.2 Diseño de la carretera hacia la zona agrícola El Hato

2.2.1 Descripción del proyecto

Se realizará el diseño geométrico y de pavimentación del tramo carretero de la zona agrícola El Hato, pues en este lugar es donde la mayoría de la población tiene una producción agrícola muy grande, este tramo está ubicado en la carretera que del municipio de Santa María de Jesús conduce hacia Palín.

El tipo de carretera a diseñar será G, con un ancho promedio de calzada de 6 metros, incluyendo cunetas, drenajes transversales, base y carpeta de rodadura, la longitud total de esta carretera es de 2+962 kilómetros.

2.2.2 Preliminar de campo

2.2.2.1 Selección de ruta

La selección de ruta es muy importante, pues es el paso en el cual se determina por donde pasará la línea central de la carretera, en los tramos donde no es posible determinar un cambio de línea en campo es indispensable utilizar los mapas cartográficos.

En este caso la selección de ruta la definió el camino existente, para el trazo se tomó en cuenta la fisonomía del terreno, las pendientes máximas y mínimas, tratando de tener el menor movimiento de tierras posible.

2.2.3 Derecho de vía

Es el área de terreno que el Estado suministra para ser usada en la construcción de la carretera, sus estructuras, trabajos complementarios y futuras ampliaciones.

Por ser una carretera tipo G el ancho minino es de 6 metros por lo que para efectos de derechos de vía, los propietarios de los terrenos, cedieron 1 metro a cada lado, para cumplir con el requisito, actualmente tiene un ancho de 4 metros.

2.2.4 Selección del tipo de carretera

Por las condiciones de la carretera existente y derecho de vía para este proyecto se decidió diseñar una carretera tipo G, en la que tendrá un ancho de rodadura de 5.00 m., hombros y cunetas de 0.50 m. en ambos lados, haciendo un ancho total de 6 m.

2.2.5 Levantamiento topográfico preliminar

2.2.5.1 Planimetría

El levantamiento topográfico planimétrico, se realizó como una poligonal abierta utilizando el método de conservación de azimut, con orientación de estación a estación de 180 grados.

Entre estación y estación se dejaron marcas de estacas en la línea central y referencias a un lado de las mismas, en las cuales se marcó el kilometraje que tiene la estaca, ejemplo: 0+020, 0+040, 0+060 etc.

Para la realización de los trabajos de planimetría y señalización en campo de la topografía se utilizó el equipo siguiente:

• Teodolito modelo T-2 Trípode

Plomada Cinta Métrica

• Estacas (para marcar la línea central).

En el apéndice se presentan los planos, en los cuales se puede observar la planimetría del proyecto.

Tabla XXIV. Libreta de Campo (Planimetría)

Estación	P. O.		Distancia		
Estacion	F. O.	Grado	Minuto	Segundo	Distancia
E-0					
0	1	349	55	50	9.75
1	2	331	20	53	7.89
2	3	13	34	36	7.21
3	4	29	8	21	91.00
4	5	23	42	12	14.20

2.2.5.2 Altimetría

El levantamiento topográfico de altimetría se realizó de acuerdo a una nivelación de primer orden con bancos de marcas ubicados en lugares donde pudieran ser replanteados, el método utilizado fue de una nivelación compuesta.

Para la realización de los trabajos de altimetría se utilizó el equipo siguiente:

- Nivel de precisión marca Sokia
- Trípode
- Estadía

En el apéndice se presentan los planos, en los cuales se puede observar la altimetría del proyecto.

Tabla XXV. Libreta de campo (altimetría)

Est	VA (+)	HI	VI (-)	PV	COTA
вм	0.875				100.00
0+000			0.11		
0+020			1.443		
0+040			1.728		
0+060			1.6		
0+080	3.785			0.735	

2.2.5.3 Secciones transversales

Estas se realizan a lo largo de la carretera, en cada punto de nivelación, con el fin de definir las curvas de nivel en el derecho de vía, la alturas se miden con un nivel de mano, en cada cambio de pendiente, sirven para definir: la orilla de la carretera, la cuneta, el principio del talud, la corona del talud la contra cuneta y el terreno natural, definiendo así la topografía del lugar.

La información debe obtenerse dentro de una franja de 6 metros, a cada lado de la línea central, el modelo de libreta de campo lo podemos observar en el apéndice.

Los trabajos de seccionamiento se realizaron con el equipo siguiente:

- Nivel de mano
- Estadía
- Cinta métrica

Tabla XXVI. Libreta de secciones

Izquierda			ESTACIÓN			Derecha
-6	-4	-2	0	2	4	6
-0.09	-0.14	-0.24	0+000	0.03	0.26	0.26
0.92	0.89	0.44	0+020	0.06	-0.08	-0.41
0.41	0.21	0.3	0+140	0.29	0.19	0.23
0.47	0.47	0.19	0+220	0.42	0.59	0.64

2.2.6 Cálculo Topográfico preliminar

2.2.6.1 Cálculo planimétrico

Para el cálculo se aplicó el método Pensilvania, dando como resultado las coordenadas totales de la línea central preliminar.

Tabla XXVII. Coordenadas parciales y totales

Estación	P. O.	ΔΧ	ΔΥ	х	Y
E-0				0	0
0	1	-1.7047	9.5998	-1.7047	9.5998
1	2	-3.7831	6.9239	-5.4878	16.5236
2	3	1.6925	7.0085	-3.7953	23.5322
3	4	44.3108	79.4830	40.5155	103.0152
4	5	5.7084	13.0021	46.2239	116.0172
5	6	2.2070	12.0089	48.4309	128.0261

2.2.6.2 Cálculo altimétrico

Para el cálculo de las cotas se partió de un valor asumido (cota) en este caso fue cien (100), y luego aplicando fórmulas para el cálculo de la altura de instrumento y la cota de nivelación, se obtuvieron los datos necesarios para representar gráficamente el perfil.

Fórmulas

Altura del Instrumento (HI):

HI = Cota + VA VI = Vista intermedia

 $Cota_{Niv} = HI - VI$ VA = Vista atrás

 $Cota_{Niv} = HI - PV$ PV = Punto de vuelta

Tabla XXVIII. Cálculo de cotas

Est	VA (+)	н	VI (-)	PV	СОТА
ВМ	0.875	100.875			100.00
0+000		100.875	0.11		100.77
0+020		100.875	1.443		99.43
0+040		100.875	1.728		99.15
0+060		100.875	1.6		99.28
0+080	3.785	103.925		0.735	100.14
0+100		103.925	2.927		101.00

2.2.6.3 Cálculo de Secciones transversales

El cálculo de las cotas de sección transversales, requiere que se conozcan las cotas del eje central ya que a estas se les suman o restan los datos de la libreta de campo.

Tabla XXIX. Cálculo de niveles de secciones

Izquierda			Estación			Derecha
-6	-4	-2	0	2	4	6
-0.09	-0.14	-0.24	0+000	0.03	0.26	0.26
100.67	100.62	100.52	100.76	100.79	101.02	101.02
0.92	0.89	0.44	0+020	0.06	-0.08	-0.41
100.35	100.32	99.87	99.43	99.49	99.35	99.02
0.41	0.21	0.3	0+140	0.29	0.19	0.23
103.73	103.53	103.62	103.32	103.61	103.51	103.55

2.2.7 Dibujo preliminar

2.2.7.1 Planimétrico

Esta es la representación gráfica en planta de la carretera, se dibuja en un plano cartesiano por medio de las coordenadas totales de las estaciones.

Para el efecto se aplicó el programa Autocad, dibujada la línea central en planta sirvió para el cálculo de los azimut y distancias de la línea de localización.

2.2.7.2 Altimétrico

En el dibujo de planta se colocaron los niveles de cada estación a lo largo de la línea preliminar. Estos servirán para dibujar los perfiles de diseño, ya que la línea de localización o línea central de la carretera no pasa exactamente por la línea preliminar de topografía, pero con la interpolación de curvas a nivel se puede dibujar el perfil de la línea de localización.

2.2.8 Diseño de localización

2.2.8.1 Diseño de sub-rasante de preliminar

Esta sub-rasante se diseñará sobre el perfil de preliminar, por medio de escuadras; en cada cambio de pendientes, se determinará la longitud de curva vertical mínima con base a la velocidad de diseño y a las pendientes.

El objetivo de esta sub-rasante es fijar una línea base, a la cual se tratará de ajustar el perfil de la línea final de localización, al diseñar sobre le perfil, se obtiene una nueva sub-rasante que cumple con los requisitos de balance en le movimiento de tierras. Lo principal en este diseño es que no se exceda la pendiente longitudinal máxima permitida que es el 18 %.

Teniendo el perfil dibujado del terreno a una escala horizontal 1:5,000 y vertical 1:1,000; se utilizan escuadras y se juega con la pendiente mas adecuada para el diseño de localización y así balancear el movimiento de tierras.

2.2.8.2 Diseño de línea de localización

La línea de localización se diseña de acuerdo a la topografía del terreno, en la cual se ubican puntos fijos. Cuando el levantamiento se hace para rehabilitar una carretera, la línea de localización coincide con la preliminar en algunos tramos en tanto donde se hacen algunas modificaciones no coinciden.

El diseño se realiza con un juego de escuadras, un compás, un juego de curvas de diseño y las especificaciones. Se realiza la primera aproximación, tratando en lo posible, de seguir la línea fijada por la curva de la sub-rasante trasladada del perfil a la planta.

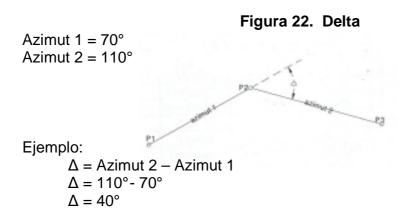
Las curvas de diseño deben adaptarse lo mejor posible a las características del terreno y a la curva de la sub-rasante. Con las escuadras se unen las curvas por medio de tangentes, se mueve constantemente las escuadras y curvas hasta que el proyecto parezca lógico.

Se debe tener especial cuidado de que las tangentes tengan una longitud no menor de la suma de las dos mitades de las longitudes de espirales correspondientes y que la longitud de curva sea cuando menos igual a la longitud de espiral.

De los cálculos de la línea preliminar, se tiene las coordenadas de los puntos de intersección (PI), para realizar estos cálculos se debe colocar en la planta las coordenadas totales de los PI de preliminar, además se deben colocar los rumbos y distancias de la línea preliminar.

En la mayoría de los diseños horizontales existirán casos donde la línea de localización coincida con la línea de preliminar, además cuando sea necesario se recurrirá a efectuar medidas gráficas para relacionar la línea de localización diseñada con la línea de preliminar colocada en el campo. Para el cálculo final es importante usar relaciones de triángulos, ley de senos y cósenos, intersecciones o alguna otra relación trigonométrica que proporcione un dato para seguir con el cálculo.

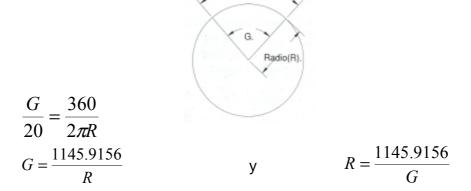
Luego de calcular las coordenadas de todos los puntos de intersección de localización, se procede a calcular las distancias y los rumbos entre los puntos de intersección. Entre cada dos rumbos existirá un delta (Δ) que al calcularse variará respecto a la ubicación del cuadrante donde se encuentre el azimutal.


2.2.8.3 Cálculo de elementos de curva horizontal

Para el cálculo de elementos de curva es necesario tener las distancias entre los (PI) de localización, los deltas (Δ) y el grado de curva (G) que será colocado por el diseñador.

Cálculo de delta (Δ).

Entre dos azimuts existe un delta o diferencia angular, la forma de calcularlo es restando el azimut 2 del azimut 1. El Δ sirve para escoger el tipo


de curvatura que se utilizará mientras mas grande es el Δ se utiliza un grado de curvatura mayor.

Grado de curvatura (G)

Es el ángulo central que subtiende un arco de circunferencia de 20 metros.

Figura 23. Grado de curvatura

El grado máximo de curvatura que puede tener una curva, es el que permite a un vehículo recorrer con seguridad la curva con sobre elevación máxima a la velocidad del proyecto.

Una vez escogida la curva, se calculan sus elementos, entre los que se encuentra al radio (R), la longitud de curva (Lc), la subtangente (St), el Principio de curva (PC), la cuerda máxima (CM), la ordenada media (Om), el external (E),

el centro de la curva, el punto de intersección (PI), como se muestra en la figura siguiente:

Punto de Interseccion (PI)

Tambilio de Conta

Superiori de Interseccion (PI)

Cuerda Maxima (CM)

Radio (R)

Padio (R)

Radio (R)

Figura 24. Elementos de una curva vertical

• Longitud de curva (Lc)

Es la distancia desde el principio de curva (PC) hasta el principio de tangente (PT), medida a lo largo de la curva, según la definición por arco de 20 m.

$$\frac{Lc}{(2\pi)R} = \frac{\Delta}{360}$$

$$Lc = \frac{(2\pi)(R)(\Delta)}{360}$$
 o
$$Lc = \frac{20(\Delta)}{G}$$

Ejemplo:

De la primera curva del proyecto, se tiene $\Delta = 47^{\circ}35'01" = 47.5836$, $G = 47^{\circ}$

$$Lc = \frac{20(\Delta)}{G} = \frac{20(47.5836)}{47} = 20.25 \text{ m}.$$

• Sub-tangente (St)

Es la distancia entre el principio de curva (PC) y el punto de intersección (PI), ya que la curva es simétrica la distancia entre el punto de intersección (PI) y el principio de tangente (PT) es igual, en curvas circulares simples que forma un ángulo de 90° con el radio.

$$St = R * \tan\left(\frac{\Delta}{2}\right)$$

Ejemplo:

De la primera curva, se tiene $\Delta = 47^{\circ}35'01" = 47.5836$, $G = 47^{\circ}$, R = 24.38 m.

$$St = R * \tan\left(\frac{\Delta}{2}\right) = 24.38 * \tan\left(\frac{47.5836}{2}\right) = 10.75 \text{ m}.$$

Cuerda máxima (Cm)

Es la distancia en línea recta desde el principio de curva (PC) al principio de tangente (PT).

$$Cm = 2 * R * Sen\left(\frac{\Delta}{2}\right)$$

Ejemplo:

De la primera curva, se tiene $\Delta = 47^{\circ}35'01'' = 47.5836$, $G = 47^{\circ}$, R = 24.38 m.

$$Cm = 2 * R * Sen\left(\frac{\Delta}{2}\right) = 2 * 24.38 * Sen\left(\frac{47.5836}{2}\right) = 19.67 \text{ m}.$$

• External (E)

Es la distancia entre el punto de intersección (PI) al punto medio de la curva.

$$E = \frac{R * \left(1 - \cos\left(\frac{\Delta}{2}\right)\right)}{\cos\left(\frac{\Delta}{2}\right)} = R * \sec\left(\frac{\Delta}{2}\right) - 1$$

Ejemplo:

De la primera curva, se tiene $\Delta = 47^{\circ}35'01'' = 47.5836$, $G = 47^{\circ}$, R = 24.38 m.

$$E = R * \sec\left(\frac{\Delta}{2}\right) - 1 = 24.38 * \sec\left(\frac{47.5836}{2}\right) - 1 = 2.26 \text{ m}.$$

• Ordenada media (Om)

Es la distancia radial entre le punto medio de la cuerda máxima y el punto medio de la curva.

$$Om = R * \left(1 - \cos\left(\frac{\Delta}{2}\right)\right)$$

Ejemplo:

De la primera curva, se tiene $\Delta = 47^{\circ}35'01'' = 47.5836$, $G = 47^{\circ}$, R = 24.38 m.

$$Om = R * \left(1 - \cos\left(\frac{\Delta}{2}\right)\right) = 24.38 * \left(1 - \cos\left(\frac{47.5836}{2}\right)\right) = 18.83 \text{ m}.$$

Los estacionamientos se calculan con base a las distancias entre los PI de localización, se calcula una estación para cada PI, se resta la estación del PI menos la subtangente, se ubicará el principio de la curva (PC); al sumar el PC, mas la longitud de curva, se ubicará el principio de tangente (PT) al final de la curva, y así se calculan los demás datos de las siguientes curvas.

Para la curva No.1 se tiene:

$$PC = PI - St$$

$$PC = 15.49 - 10.75$$

$$PC = 0+004.75$$

PT = PC + Lc

PT = 0+004.75 + 20.25

PT = 0+024.99

2.2.8.4 Determinación de curva vertical

Son utilizadas en el perfil de la subrasante, sirven para unir la pendiente de entrada con la de salida y para suavizar los cambios de pendiente, puesto que a través de su longitud, se efectúa un cambio gradual de concavidad, proporcionando una operación segura y confortable en el manejo del vehículo.

Cuando la diferencia de pendientes es menor al 0.5%, no es necesario proyectar una curva vertical, pues el cambio de pendiente es muy pequeño y se pierde durante la construcción.

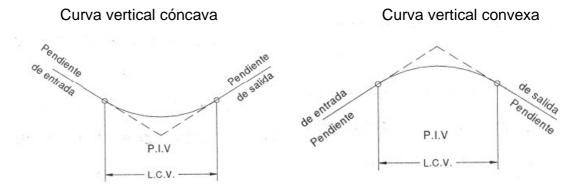
Existen varios tipos de curvas verticales, la que usa la Dirección General de Caminos de Guatemala, es la parabólica simple, debido a la facilidad del cálculo y adaptabilidad a las condiciones necesarias de operación.

Para el diseño deben considerarse las longitudes mínimas permisibles de las curvas, con el fin de evitar traslape entre las mismas y permitir mejor visibilidad al conductor. Para el cálculo de las curvas se debe tener en cuenta lo siguiente:

Longitud mínima

La longitud mínima de las curvas verticales se calcula con la expresión siguiente:

 $L = k^*A$


donde,

L = Longitud mínima de la curva vertical en metros.

A = Diferencia algebraica de las pendientes de las tangentes verticales, en porcentaje.

k = Parámetro de la curva, cuyo valor mínimo se especifica en la figura siguiente:

Figura 25. Tipo de curvas verticales

La longitud mínima de las curvas verticales en ningún caso deberá ser menor a lo indicado en la siguiente tabla:

Tabla XXX. Valores de "K", según velocidad de diseño.

Velocidad de Diseño	Valor de K según tipo de Curva				
K.P.H	Cóncava	Convexa			
10	1	0			
20	2	1			
30	4	2			
40	6	4			
50	9	7			
60	12	12			
70	17	19			
80	23	29			
90	29	43			
100	36	60			

Ejemplo de diseño de curva vertical.

Datos:

$$% P. ent = -0.27\%$$

Cálculo:

$$A = (-0.27 - 13.62)$$

$$A = -13.89$$

$$K = 2$$

LCV = k*A

LCV = 2*13.62

LCV = 27.78 m.

2.2.9 Movimiento de tierras

2.2.9.1 Diseño de la subrasante

El diseño de la subrasante en el perfil de localización se realiza por tanteos, los cuales disminuirán únicamente de acuerdo con la experiencia del diseñador. El movimiento de tierras deberá ser un factor importante a la hora del trazo de las tangentes verticales, pues cuando este es menor, influye en la economía de la carretera; el balance de masas es uno de los criterios que se tienen que utilizar, pues, con este, se busca en un tramo de 500 metros, balancear los cortes con los rellenos para no tener material de préstamo, es recomendable que los cortes queden pendiente arriba de los rellenos, con el fin de facilitar el transporte del material, entre los aspectos que hay que tener en cuenta cuando se diseña el alineamiento vertical están los siguientes:

Ancho de sección típica

Se escogió el tipo "G" de la Dirección General de Caminos. Con este ancho, según tablas, se pueden observar en las secciones los cortes y rellenos que genera el movimiento de tierras, y permitirá ver si en alguna sección, los taludes no se pueden hacer debido a viviendas, roca, monumentos, postes etc.

Alineamiento horizontal

Este es importante pues a partir de este alineamiento se dibuja el perfil actual de la carretera. En el alineamiento horizontal se indican los azimut, distancias, curvas horizontales, principios de curvas, principios de tangencia, longitudes de curva etc., que son los que definen el caminamiento de la carretera.

Puntos obligatorios

Tanto en el alineamiento horizontal como en el vertical, existen puntos obligatorios, que están definidos por las elevaciones obligatorias que debe tener un estacionamiento, como en el caso de un puente existente, en el que la

subrasante deberá pasar por este punto, debido a que el puente no puede variar su posición, otros puntos obligatorios son nacimientos de agua, para los cuales se deben construir las obras de protección necesarias, terreno rocoso, crecientes de ríos, en las cuales se determina la creciente máxima y la altura final del puente, para definir la sub-rasante, casas a la orilla de la carretera, etc.

En este proyecto no se encontró ningún tipo de puntos o lugares donde sea necesaria que pase por ahí un estacionamiento o la línea central.

• Pendiente máxima

Cuando en tramos se presente una pendiente grande es recomendable que se deje la mayor al principio para tratar de suavizarla en el final, a fin de evitar que los vehículos pierdan velocidad al estar cargados. Si la pendiente es larga se recomienda hacer un descanso en medio de tangentes, para lograr avance.

La dirección General de Caminos tiene especificados valores para pendientes, los cuales dependen del tipo de carretera, para carretera tipo G la pendiente máxima permitida es del 18%.

Para este proyecto la pendiente máxima fue de 13.62 %

• Pendiente mínima

En tramos de relleno no hay una pendiente mínima, pues el agua se drena por el bombeo de la carretera, cuando la sección transversal sea de corte se recomienda una pendiente mínima de 0.5%, para que el agua que cae en la cuneta pueda ser drenada hasta el cabezal de descarga.

Datos de tipo de suelo

Para resolver los problemas que se presentan en puntos específicos de la carretera es importante conocer el tipo de suelo y darle la solución necesaria, como en el caso de material rocoso, material arcilloso, pantanos, arenas, etc.

En este caso se realizó ensayos al suelo, las cuales fueron Análisis Granulométrico, Límites, Ensayo de Compactación y el C.B.R., para determinar el tipo, los resultados fueron:

Descripción del suelo: Arena limosa color café oscuro

Clasificación: S.C.U.: SM P.R.A.: A-2-4

Material no plástico

Densidad seca máxima: 1,431 t/m³

Humedad optima: 24.6%

Condiciones topográficas

La Dirección General de Caminos clasifica tres tipos de terreno de acuerdo con la topografía, la que puede ser terreno llano, terreno ondulado, terreno montañoso. Para el caso del proyecto, la mayor parte del terreno es ondulado.

Curvas verticales

Debe evitarse curvas verticales cóncavas en corte, pues en estas se forman depósitos de agua que será difícil drenar. Se deben evitar depresiones pequeñas en la subrasante que puedan ocultar los vehículos, es recomendable que los cambios sean graduales. Para simplificar los cálculos es aconsejable colocar los puntos de intersección verticales en estaciones exactas.

Resumen del Movimiento de Tierras

Para el movimiento de tierras se tuvo el siguiente resultado:

Total de corte: 3,631.20 m³

Total de relleno: 2,860.00 m³ Desperdicio: 771.20 m³

2.2.9.2 Dibujo de secciones transversales

Este consiste en realizar los trazos de las secciones transversales que a lo largo de la carretera se vaya dando dependiendo de la topografía del terreno, regularmente se realiza a cada 20 metros, o dependiendo del la situación del terreno, estas secciones se utilizará para el cálculo del volumen de corte o relleno que se den a lo largo de la carretera.

2.2.9.3 Dibujo de secciones típicas

Depende del tipo de la carretera, es decir, del diseño de la sección típica.

Sección típica en tangente

Consiste en plotear la diferencia entre la subrasante y el nivel, arriba o debajo de la sección transversal, según sea el caso.

A partir de este punto se debe trazar la sección típica, con el uso de dos escuadras; dibujar la mitad de la típica, a ambos lados de la línea central, con la inclinación de la típica de 3% (bombeo normal) a ambos lados.

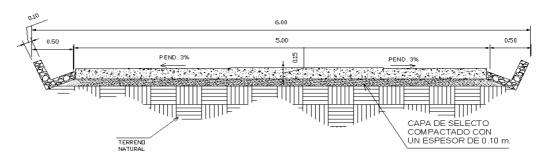


Figura 26. Sección típica en tangente

Sección típica en curva

Es plotear la diferencia como se mencionó colocándose a la izquierda o derecha, de acuerdo con el valor del corrimiento de la curva. El peralte indica la inclinación de la sección típica; cuando el peralte es menor de 3% y la curva es hacia la izquierda, el lado izquierdo de la sección típica, permanece con el 3% y el lado derecho de la sección se suma o resta el peralte con el porcentaje calculado en esa estación para el lado hacia donde va la curva.

Al sobreancho se le suma el ancho de la sección de lado hacia donde va la curva. Si el ancho de la típica se midió a partir de la línea central, se resta el corrimiento del lado opuesto a la curva. Cuando la curva va hacia la derecha, el procedimiento es a la inversa.

En casos en que el peralte sea mayor de 3% se inclina toda la sección típica hacia el lado donde va la curva, de acuerdo con el porcentaje calculado en cada estación.

0.50 5.00 0.50 PEND. 3%

Figura 27. Sección típica en curva

• Dibujo de taludes

Consiste en el trazo de líneas inclinadas en los extremos de la sección de terracería, que coincidan con la sección transversal.

La inclinación del talud de la carretera está en función de las propiedades de los materiales. Sin embargo, cuando no se tienen mayores datos y para fines de estimación de volúmenes de movimiento de tierras, se recomienda usar la tabla siguiente:

Tabla XXXI. Relación para dibujo de taludes

Corte									
Altu	Н	-	V						
0 -	3	1	-	1					
3 -	7	1	-	2					
>	7	1	_	3					

Relleno								
Altur	а	Η	-	V				
0 -	3	2	-	1				
> -	3	3	-	2				

2.2.9.4 Cálculo de áreas de secciones transversales

Para el cálculo de las áreas se tiene que tener dibujadas las secciones transversales de la línea de localización en estaciones a cada 20 metros, al introducirle la sección típica que fue escogida, ya que con sus taludes se delimitaran las áreas de corte y relleno.

Uno de los métodos utilizados en el medio es el gráfico, el cual permite medir las áreas, por medio de un planímetro graduado, para la realización de la medida de las secciones que deben estar dibujadas en papel milimetrado. El procedimiento será marcar las áreas para delinearlas con el planímetro, partiendo de un punto y llegando a ese mismo en la dirección de las agujas del reloj; esto dará un área en metros cuadrados. Otro método consiste en obtener coordenadas de los puntos que delimitan las áreas de corte y relleno, encontrando por medio de determinantes el área, este fue el método utilizado, con ayuda de Autocad.

2.2.9.5 Cálculo de volúmenes

Se calculan entre estaciones, regularmente a cada 20 metros, cuando las dos secciones que se desea obtener el volumen se encuentran en corte o relleno es posible hacerlo con el volumen de un prisma irregular que es la semisuma de las áreas externas por la distancia entre las estaciones.

LINEA CENTRAL $V=rac{A_1+A_2}{2}*d$

Figura 28. Volumen de movimiento de tierras

donde,

 $V = \text{volumen } A_1 = \text{área 1}$ $A_2 = \text{área 2}$ d = distancia

Tabla XXXII. Ejemplo de cálculo de movimiento de tierras

	AREAS VOLUMEN		VOLUMEN ACUMULADO			
ESTACIÓN .	Metros C	'uadrados	Metros	Metros Cubicos		Cubicos
ESTACION	CORTE	RELLENO	CORTE	RELLENO	CORTE	RELLENO
1+500	0.302	5.163	4.570	10.517	0574.646	710 770
1+520	0.000	5,351	4.536	10.513	2571.646	319.732
			0.155	11.911	2571.801	331.644
1+540	0.010	6.561	17.100	11.342	2588,901	342.985
1+560	1.130	4.781				
1+560	4.263	0.000	80.890	4.781	2669.791	347.766
1+200	4.200		63.946	0.404	2733.737	348.170
1+600	0.000	0.404	40.404	0.440	0744440	740.040
1+620	0.694	0.038	10.404	0.442	2744.140	348.612
11320	0.007	0.000	20.452	0.067	2764.593	348.679

2.2.10 Drenajes

Estos son colocados en la carretera para evitar el deterioro, debido a que al filtrarse el agua en el pavimento dañará el material existente en la subrasante provocándole daños. Su función es eliminar el agua o la humedad de la carretera, porque cuando ello ocurre se encarece el costo de mantenimiento de la misma, la forma de evacuar el agua es conduciéndola por medio de los drenajes.

La vida útil de la carretera depende mucho de los drenajes, estos evitan derrumbes o deslizamientos, para que funcione eficientemente, deben de tener mantenimiento constante. En carreteras existen los drenajes transversales (tuberías, puentes, badenes, etc.) y longitudinales (cunetas y contra cunetas).

2.2.10.1 Ubicación de drenajes

Consiste en recorrer el tramo en estudio para determinar información como lo es:

- Tipo de corriente
- Sentido y pendiente media
- Condiciones de aguas altas
- Vegetación de la cuenca como clase de cultivos

- Esviaje
- Parámetros cuantificables como perímetro, área y forma de lecho
- Probables canalizaciones de entrada y salida
- Determinación de tramos de subdrenajes
- Puntos de erosión.

2.2.10.2 Diseño de cunetas

Son canales abiertos que se calculan por el método de Manning, se colocan paralelamente a uno o ambos lados del camino, sirven para evacuar el agua que cae en la sección de corte en una carretera, en pendientes fuertes se deben proteger de escurrimiento y acción destructiva del agua por medio de disipadores de energía

De acuerdo con la topografía se diseñaron aliviaderos de las cunetas, ya que según la forma del terreno, se colocarán tuberías transversales. Los detalles de las cunetas utilizadas en el diseño del proyecto se observan en los planos respectivos.

2.2.10.3 Diseños de drenajes transversales

Son las tuberías que se colocan para aliviar el agua que viene en las cunetas o de arroyos. Se encuentran a lo largo de la carretera, son necesarias en un tramo en corte, sirven para conducir agua al otro lado de la carretera. La dimensión de la tubería a colocar se hace con el método de Manning. El drenaje transversal tiene las siguientes partes:

Caja recolectora de caudal: recibe el agua proveniente de la ladera de la carretera para trasladarla a la tubería,

Muro cabezal de salida: protege la tubería y el relleno de la carretera para que no se erosione, adicional a estas partes, si la pendiente del terreno en corte, es muy fuerte se colocan disipadores de energía al final de la tubería,

servirán para que el agua que desfoga no erosione el suelo y provoque hundimientos.

2.2.10.4 Cálculo de áreas de descarga por método racional

El estudio hidrológico sirve para determinar el tipo de estructura necesario para drenar un punto determinado de la carretera.

Por medio del estudio hidrológico se determinan, las obras de arte de una carretera como: puentes, alcantarillas, bóvedas, cunetas contra cunetas, etc.

Para el efecto se deberá realizar una inspección de campo, y de preferencia llevar un Sistema Global de Posicionamiento (G. P. S) para ubicar con exactitud los puntos donde será necesario colocar los drenajes. En la inspección de campo se deberá anotar todos los pasos de agua existentes con sus coordenadas y anotar los datos necesarios como: creciente máxima (visual) condiciones del lecho (ancho, angosto, rocoso, arenoso, piedra suelta, tamaño) vegetación de la cuenca (clase de cultivos, monte bajo o alto, bosque) esviaje con respecto de la carretera parámetros cuantificables como longitud, perímetro, área y dibujar forma del lecho, socavación, si lleva rocas grandes y árboles, puntos de erosión, etc.

En el presente estudio se utilizó el método racional, donde se asume que el caudal máximo para un punto dado, se alcanza cuando el área tributaria está contribuyendo con su escorrentía superficial durante un periodo de precipitación máxima. Para lograr esto, la tormenta máxima (de diseño) debe prolongarse durante un período igual o mayor que el que necesita la gota de agua más lejana, para llegar hasta el punto considerado (tiempo de concentración).

Para el cálculo se utilizaron las siguientes fórmulas:

$$Q = \frac{CIA}{360}$$

donde,

Q = Caudal de diseño en m³/ seg.

A = área drenada de la cuenca en hectáreas

l= Intensidad de Iluvia en mm/hora

C = Coeficiente de escorrentía (consultar Tabla)

La intensidad de Iluvia la proporciona el INSIVUMEH, según la región en estudio, la intensidad de Iluvia está dada por la fórmula siguiente:

$$I = \frac{a}{t+b}$$

donde,

l= Intensidad de Iluvia en mm/hora.

a y b = Varían en cada región, datos proporcionados por INSIVUMEH.

t = Tiempo de concentración en minutos

El tiempo de concentración esta dada por la siguiente formula:

$$t = \left[\frac{0.886 * L^3}{H} \right]^{0.385} * 60$$

donde,

t = Tiempo de concentración en minutos

L =Longitud del cauce principal en km.

H = Diferencia de elevación entre los puntos extremos del cauce principal en metros.

Fórmulas auxiliares (Manning):

$$V = \frac{1}{n} * R^{2/3} * S^{1/2}$$

donde,

V = velocidad

R = Radio hidráulico

S = Pendiente

$$Q = V * A \Rightarrow Q = \frac{1}{n} * R^{2/3} * S^{1/2} * A$$

donde,

Q = Caudal

A =área de tubería circular (m^2)

$$A = \frac{\pi * D^2}{4}$$

donde.

D = diámetro

n = coeficiente de rugosidad

Coeficientes de Rugosidad para tuberías de concreto.

$$n = 0.013 \Phi > 24$$
"

$$n = 0.015 \Phi < 24$$
"

Coeficientes de Rugosidad para tuberías de P.V.C.

n = 0.009

Ejemplo en el kilómetro 0+139

Cálculo de tubería

Datos:

Área a drenar (A) = 15 hectáreas.

Longitud de cause (L) = 700 m. = 0.70 km.

Diferencia de elevaciones (H) = 95 m.

Pendiente (S) = 0.13

Coeficiente de escorrentía (C) = 0.4

Tiempo de concentración

$$t = \left[\frac{0.886 * L^3}{H} \right]^{0.385} * 60 = \left[\frac{0.886 * 0.70^3}{95} \right]^{0.385} * 60 = 6.57 \text{ min.}$$

Los valores de a y b los proporcionó el INSIVUMEH, para el cálculo de intensidad de lluvia en mm/hora.

$$I = \frac{a}{t+b} = \frac{8537}{6.57 + 48.56} = 154.82 \text{ mm/hora}$$

Se calcula el caudal que pasa por el punto de estudio

$$Q = \frac{CIA}{360} = \frac{(0.4)(154.82)(15)}{360} = 2.58 \text{ m}^3/\text{seg}.$$

El diámetro de la tubería necesaria para desfogar el caudal es:

$$Q = \frac{1}{n} * R^{2/3} * S^{1/2} * A = \frac{1}{n} * \frac{D^{2/3}}{4^{2/3}} * S^{1/2} * \frac{\pi D^2}{4}$$

Despejando D, se obtiene,

$$D = \left[\frac{Q * 4^{5/3} * n}{S^{1/2} * \pi} \right]^{3/8} = \left[\frac{2.58 * 4^{5/3} * 0.013}{0.02^{1/2} * \pi} \right]^{3/8} = 0.90 \text{ m}.$$

Si se usa un tubo de 36" (0.9144 m.), este drenará 2.64 m³/seg.; pero con este diámetro la tubería estaría trabajando en un 97% de su capacidad, entonces se optó por usar un tubo de 40" (1.016 m.), este drena 3.54 m³/seg., y la capacidad a la que trabaja es de un 73%.

2.2.11 Pavimento

2.2.11.1 Selección del tipo de pavimento.

Los pavimentos se dividen en rígidos y flexibles, esta es la más conocida y generalizada clasificación.

- -Pavimentos flexibles: Son aquellos que tienen una base flexible o semi rígida, sobre la cual se coloca una capa de rodamiento formada por una mezcla bituminosa de alquitrán o asfalto.
- -Pavimentos rígidos: son aquellos en los cuales la capa de rodamiento está formada por concreto hidráulico, con o sin refuerzo. En algunos casos, estos pavimentos podrán llevar una carpeta de desgaste formada por una mezcla bituminosa.

Características de las capas de un pavimento

Terreno de fundación (sabrasante): de su capacidad soporte depende, en gran parte, el espesor que debe tener un pavimento, si es pésimo, o sea que tenga un alto contenido de material orgánico, debe desecharse y sustituirse por otro de mejor calidad. Si es malo y se halla formado por suelo fino, limoso o arcilloso, susceptible de saturación, deberá colocarse una sub-base granular de material seleccionado antes de poner la base y capa de rodamiento.

Cuando el terreno de fundación sea regular o bueno y esté formado por suelo bien graduado que no ofrezca peligro a la saturación, o por un material de granulometría gruesa, posiblemente no requiera la capa de súb base, en nuestro caso, no es necesaria, pues el terreno de fundación es arenoso.

• Análisis de carga

Las cargas utilizadas por rueda en calles son de 4,500 Kg. o sea 10,000 libras, de acuerdo a ello se diseñan los espesores del pavimento. Para el diseño del pavimento existen diversos métodos, como los basados en las características físicas del terreno de fundación.

Base

Esta Capa tiene por finalidad absorber los esfuerzos transmitidos por las cargas de los vehículos, repartiéndolos al terreno de fundación o subrasante.

Las bases pueden ser granulares o bien estar formadas por mezclas bituminosas o mezclas con cemento u otro material ligante.

El material que se emplee en la base deberá llenar los siguientes requisitos:

Ser resistente a los cambios de humedad y temperatura.

No presentar cambios de volumen que sean perjudiciales.

El porcentaje de desgaste, según el ensayo de abrasión con la maquina de los ángeles, debe ser inferior a.50.

La fracción del material que pase el tamiz Núm. 40, debe tener un límite líquido menor de 25% y un índice de plasticidad inferior a 6.

La fracción que pasa por el tamiz No. 200, no debe exceder de %, y en ningún caso de los 2/3 de la fracción que pase el tamiz # 40.

La graduación del material de la base debe hallarse dentro de los límites indicados en la figura 7.

El CBR debe ser superior a 50%.

Por lo general, para la capa de base se emplea piedra triturada, grava o mezcla estabilizadas de suelo cemento, suelo bituminoso.

Cuando se empleen bases de suelo-cemento, el agua y el cemento Pórtland deberán estar conformes con las especificaciones vigentes y el suelo que se utilice deberá tener la siguiente graduación.

50% o más debe pasar el tamiz Núm. 4

15% - 100% debe pasar el tamiz Núm. 40 menos del 50% debe pasar el tamiz Núm. 200

El límite líquido no debe ser mayor del 40%, y el índice plástico no mayor de 18.

El porcentaje de cemento que se emplea en las mezclas de suelo cemento varía, generalmente, entre 6 y 15, por volumen de mezcla compactada.

• Capa de rodamiento

Si la capa está formada por una mezcla bituminosa, de asfalto o alquitrán, su función primordial será proteger la base impermeabilizando la superficie, para evitar así posibles infiltraciones del agua de lluvia, que podría saturar parcial o totalmente las capas inferiores. Además, evita que se desgaste o se desintegre la base debido al tránsito de los vehículos. La capa de rodamiento contribuye, en cierto modo a aumentar la capacidad soporte del pavimento, especialmente si su espesor es apreciable (mayor de 3").

Para este proyecto en particular se eligió diseñar pavimento rígido, de concreto hidráulico sin refuerzo.

2.2.11.2 Diseño de pavimento

Dimensionamiento del espesor de losas para un pavimento rígido.

La Portland Cement Association (PCA) ha elaborado dos métodos para el cálculo del espesor de pavimentos rígidos, el método de capacidad y el método simplificado. El método de capacidad es el procedimiento de diseño aplicado cuando hay posibilidades de obtener datos de distribución carga-eje del tránsito. El método simplificado de diseño, es aplicado cuando no es posible obtener datos de carga por eje, usando tablas basadas en distribución compuesta de tránsito clasificado en diferentes categorías de carreteras y tipos de calles. Las tablas de diseño están calculadas para una vida útil proyectada del pavimento de veinte años y se basan solamente en el tránsito estimado en la vía.

El método simplificado de diseño sugiere un diseño basado en experiencias generales de comportamiento del pavimento, hechos a escala natural, sujetos a ensayos controlados de tránsito, la acción de juntas y hombros de concreto. Este método asume que el peso y tránsito de camiones en ambos carriles varía de 1 a 1.3 según sea el uso de la carretera, para prevenir sobrecargas de los camiones.

El procedimiento de cálculo del espesor de las losas de concreto, por el método simplificado de la PCA es el siguiente.

- Determinar la categoría de la vía según los criterios de la tabla XXXIII
- Establecer el tipo de junta a utilizar (tipo dovela o de trabe por agregados)
- Decidir incluir o excluir hombros o bordillos en el diseño
- Determinar el módulo de ruptura del concreto

- Determinar el módulo de reacción "K" de la subrasante
- Determinar el volumen de tránsito promedio diario de camiones o su porcentaje del tránsito promedio diario de vehículos
- Determinar el espesor de losa según la tabla de diseño determinada con los parámetros anteriores

El método simplificado, incluye en el análisis solamente al tránsito promedio diario de camiones (TPDC), el cual incluye solo camiones de seis llantas y unidades simples de tres ejes, excluyendo pickups, paneles y otros tipos livianos. Sólo se utiliza el número de ejes simples o tandem esperado para la vida útil del proyecto.

Los datos que toma en cuenta el procedimiento, se estiman según la siguiente descripción.

Tránsito.

El factor más importante en el diseño de espesores de pavimento es el número y peso de las cargas por eje. Este es derivado de las estimaciones de TPD y de TPDC en ambas direcciones. En este punto se tendría que recurrir al análisis del tránsito promedio diario anual tanto al final como al inicio del período de diseño. Sin embargo este análisis solamente es posible si se tienen datos sobre el volumen y categoría de tránsito clasificado para la vía.

La Dirección General de Caminos, por medio de su Departamento de Estadística es la encargada de hacer los recuentos de tránsito clasificado en las carreteras de todo el país. Sin embargo las estaciones de conteo se ubican en carreteras de interés nacional.

La información sobre el tránsito de vehículos es recabada por medio de hojas para recuentos de tránsito clasificado. Estos recuentos deben ser hechos en forma periódica durante ciertos días y meses del año, durante años consecutivos para determinar el crecimiento del número de vehículos. Al hacerse estos recuentos se obtienen datos confiables para el diseño de

proyectos viales. Esto lleva a la conclusión que así como son importantes los censos de población y de vivienda para la implementación de servicios a la población, lo son los censos de paso de vehículos para el diseño de carreteras.

Para este proyecto, la carretera hacia la zona agrícola El Hato, se clasifica en la categoría 2, definida como calles colectoras, carreteras rurales y secundarias. (Ver tabla No. XXXIII).

• Tipo de juntas.

Según la forma en que se han diseñado las juntas, éstas podrán transmitir la carga del tránsito de una losa hacia la siguiente. Las tablas de diseño de la PCA incluyen dos tipos de junta, del tipo dovela y del tipo de trabe por agregado. La junta tipo dovela es aquella que fue diseñada para la transmisión de carga de una losa hacia la siguiente, mientras que la del tipo de trabe por agregados son hechas solamente para garantizar la continuidad del pavimento.

La junta tipo dovela se logra haciendo un detalle macho-hembra en el concreto en el sentido longitudinal. Este detalle requiere más trabajo, pero garantiza una disminución en el espesor de la losa.

La junta de trabe por agregados se construye insertando una barra de acero para hacer la interconexión entre dos losas separadas. Este tipo de junta es más sencillo en su construcción pero requiere de espesores más altos de la losa de concreto.

Par este proyecto, la junta seleccionada es del tipo dovela, tipo machohembra, por las ventajas que ofrece este tipo de junta.

Hombros o bordillos

El uso de hombros o bordillos de concreto es recomendable por el hecho de ser útil en reparación o prevención de accidentes en la carretera, además de reducir el espesor de la losa en algunos casos en una pulgada o más. La función del hombro es servir como viga lateral para aumentar la resistencia del concreto a esfuerzos de flexión, disminuyendo grandemente el efecto de la tensión en el concreto.

El diseño de este proyecto contempla la integración hombros, para disminuir el espesor de la losa de concreto.

Módulo de ruptura del concreto.

Debido al paso de vehículos por encima de las losas de concreto, en éstas se producen esfuerzos de flexión y compresión. Los esfuerzos de compresión son tan mínimos que no influyen en el grosor de la losa. En cambio los promedios de esfuerzos de flexión y de las fuerzas de flexión son mucho mayores y por eso son usados estos valores para el diseño de espesores de los pavimentos rígidos. La fuerza de flexión está determinada por el módulo de ruptura del concreto (MR), el cual está definido como el esfuerzo máximo de tensión en la fibra extrema de una viga de concreto.

La resistencia a la tensión del concreto es relativamente baja. Una buena aproximación para la resistencia a la tensión será dentro de un diez a un veinte por ciento de su resistencia a la compresión.

Es más difícil medir la resistencia a la tensión que la resistencia a la compresión debido a los problemas de agarre de las máquinas de prueba.

El módulo de ruptura se mide llevando a la falla vigas de concreto simple de 6 plg2 (3x2 plg), con un claro de 18 plg y cargadas en sus dos tercios del claro. El proceso para determinar el módulo de ruptura, será llevado a cabo según norma ASTM C-78

La prueba del módulo de ruptura es comúnmente hecha en períodos de 7, 14, 28, y 90 días. Los resultados de las pruebas a los 7 y 14 días son usados como parámetro de comparación de los requerimientos de especificación para el control del trabajo y para determinar cuándo el pavimento puede ser abierto al tráfico. Los resultados de las pruebas de 28 días son usados para el diseño de espesores de carreteras, y el resultado de la prueba de 90 días sirve para el diseño de supercarreteras y aeropistas.

El modulo de ruptura del concreto se estimó con el quince por ciento de la resistencia estimada del concreto ante un esfuerzo de compresión, f"c, por lo que el valor aproximado se toma 0.15*4000 PSI = 600 PSI.

Módulo de reacción K de la subrasante.

El módulo de reacción de la subrasante es la propiedad de apoyo que ofrece la subrasante al tránsito y se define como la pendiente de la gráfica carga-deformación obtenida en el campo por el ensayo del disco (norma ASTM D-U96), cuyo resultado estará en kg/cm3. Las tablas XXXIV y XXXV fueron determinadas por la PCA siguiendo las normas ASTM.

Dichas tablas fueron obtenidas para bases no tratadas y para bases de suelo cemento, para diferentes espesores de base. Generalmente obtener el módulo de reacción de la subrasante es difícil por no decir imposible, primero por la carencia del equipo necesario para la prueba, el cual es muy especial y costoso, y en segundo porque la subrasante no ha sido construida todavía, y esto hace imposible colocar el aparato de prueba.

Dado las limitaciones del ensayo, el valor K es usualmente estimado por correlación de una prueba más simple como la clasificación del tipo de suelo según el sistema SCU (Sistema Unificado de Clasificación de suelos, bajo el punto de vista de la ingeniería), según el sistema PRA (Public Road Administration) o en función de su número CBR. De cualquier forma de las

anteriores se obtienen valores muy estimativos, siendo más aproximado el último.

El módulo de reacción de la subrasante, según el estudio de suelos, se determinó un CBR de la subrasante de 10. Con este dato se localiza el valor del modulo de reacción de la subrasante en la tabla XXXIV el cual equivale a un modulo de reacción de la subrasante de 200 lb/plg³.

• Tránsito promedio diario (TPDA).

Este valor es determinado por conteos periódicos del tránsito.

Del total de vehículos que pasan por la vía (TPDA) se determina el tránsito de camiones (TPDC), el cual será el parámetro a manejar en las tablas de diseño. El tránsito servirá para dos propósitos principales, catalogar la vía (según la tabla XXXIII) y localizar el número de vehículos tipo pesado en las tablas de diseño.

Una vez determinados todos los anteriores parámetros, el paso final será situarlos en las tablas de diseño para determinar el espesor de diseño (tabla XXXVI).

Par el caso de este proyecto se tiene una categoría de vía 2 y juntas doveladas, la tabla de diseño a utilizar es la XXXVI se busca en el lado derecho por incluir bordillo el diseño de la losa. El soporte subrasante-subbase tiene un carácter alto, al buscar en el sector correspondiente a un módulo de ruptura de 600 psi, y el valor que contenga al tránsito promedio diario de camiones de 50, el espesor que dicta la tabla corresponde a 5.5 pulgadas, (aproximadamente 14 centímetros), por lo que, por factor de seguridad y exactitud en la construcción se dejan quince centímetros como espesor de losa.

Como criterio en el diseño, por haber sido sobreestimado el valor del tránsito promedio diario de vehículos y su paso de camiones se considera que este valor de espesor es adecuado y seguro.

Tabla XXXIII. Categorías de cargas por eje

Carga por eje			Máxima carga por eje	
categoría	Descripción		TPDC	(kip)
Tandem		TPD	% Por día	Eje sencillo Eje
1	Calles residenciales, carreteras rurales	200 a 800	1 a 3 Arriba de 25	22 36
2	Calles colectoras, carreteras rurales, carreteras principales	700 a 5000	5 a 18 De 40 a 1000	26 44
3	Calles arteriales y carreteras primarias	3000 a 12000 (2 carriles)	8 a 30 De 500 a 5000	30 52
4	Calles arteriales, carreteras primarias y supercarreteras	3000 a 20000 (4 carriles)	8 a 30 De 1500 a 8000	34 60

Tabla XXXIV. Valores de K para diseño sobre bases no tratadas (de PCA)

Valor de K de la				
subrasante	Espesor 4 plg		Espesor 12 plg	
(lb./plg)				
50	65	75	85	110
100	130	140	160	190
200	200	230	270	320
300	320	330	370	430

Tabla XXXV. Valores de K para diseño sobre bases de suelo cemento (de PCA)

Valor de K de la	Valores de K sobre la base (lb./pul ²)							
subrasante	Espesor 4 plg	Espesor 6 plg	Espesor 9 plg	Espesor 12 plg				
(lb./plg)								
50	170	230	310	390				
100	280	400	520	640				
200	470	640	830					

Tabla XXXVI. TPDC permisible, carga por eje categoría 2 pavimentos con juntas doveladas.

	Concreto sin hombro o bordillo						Co	ncreto sin	hombro o	bordillo	
Espe	sor de losa	S	oporte subra	asante-sub	base	Espesor de losa		S	oporte subr	asante-su	bbase
	(plg)	Bajo	Medio	Alto	Muy Alto		(plg)	Bajo	Medio	Alto	Muy Alto
	5.5				5		5		3	9	42
MR	6		4	12	59	MR	5.5	9	42	120	450
650	6.5	9	43	120	400	650	6	96	380	970	3400
PSI	7	80	320	840	3100	PSI	6.5	710	2600		
	7.5	490	19000				7	4200			
	8	25000									
	6				11		5			1	8
MR	6.5		8	24	110	MR	5.5	1	8	23	98
600	7	15	70	190	750	600	6	19	84	220	810
PSI	7.5	110	440	1100		PSI	6.5	160	620	1500	5200
	8	590	2300				7	1000	3600		
	8.5	2700									
	6.5				19		5.5			3	17
MR	7		11	4	150	MR	6	3	14	41	160
550	7.5	19	84	34	890	550	6.5	29	120	320	1100
PSI	8	120	470	230		PSI	7	210	770	1900	
	8.5	560	2200	1200			7.5	1100	4000		
	9	2400									

Referente a la capa de base del pavimento, la PCA da mayor importancia a la uniformidad de apoyo que al grado de resistencia del suelo, considerando que la losa de concreto tiene una gran capacidad de distribución de las cargas impuestas por el tránsito. Con frecuencia los materiales que forman parte de la subrasante presentan características favorables que pueden sustituir las funciones de la base y por lo tanto, ésta se hace innecesaria.

El valor de la base del pavimento, puede ser estimada, por las características y consideraciones del método, para este proyecto se consideró un valor de 4 plg como mínimo (10 cm.), dado por la tabla XXXVII.

Tabla XXXVII. Espesores estimados de bases según su uso

Tipo de base	Usos	Espesor (cm.)
Granular	Carretera	10 – 15
Estabilizada	Carretera	10 – 15
Granular	Aeropuerto	15 – 30
Estabilizada	Aeropuerto	15 – 30

Resumen del Proyecto.

Se diseñó una carretera de 2.96 km. de longitud, con un ancho de calzada de 5 metros con cuneta en ambos lados, donde se trabajo una pendiente maxima de 13%; con el diseño de cabezales para el drenage en puntos seleccionados; se eligió el diseño de pavimento rígido con una base de 10 cm. y una carpeta de rodadura de 15 cm.

2.2.12 Elaboración de planos

Los planos finales deben contener todos los detalles de la planta y del perfil del terreno. Para este proyecto se elaboraron planos que contienen la planta y perfil del tramo carretero; en planta se colocaron los datos necesarios de las curvas horizontales, las longitudes de tangentes y el kilometraje de cada principio de tangente y de curva; en el perfil se especifican los diferentes niveles de cada punto, cambio de pendientes y curvas verticales.

Para completar el juego de planos se incluyen los planos de secciones típicas, tablas y detalles como drenajes, cunetas y juntas.

2.2.13 Presupuesto

Para la elaboración del presupuesto de la carretera hacia la zona agrícola El Hato, se aplicaron los mismos criterios del caso del edificio municipal, la cual queda de la siguiente manera:

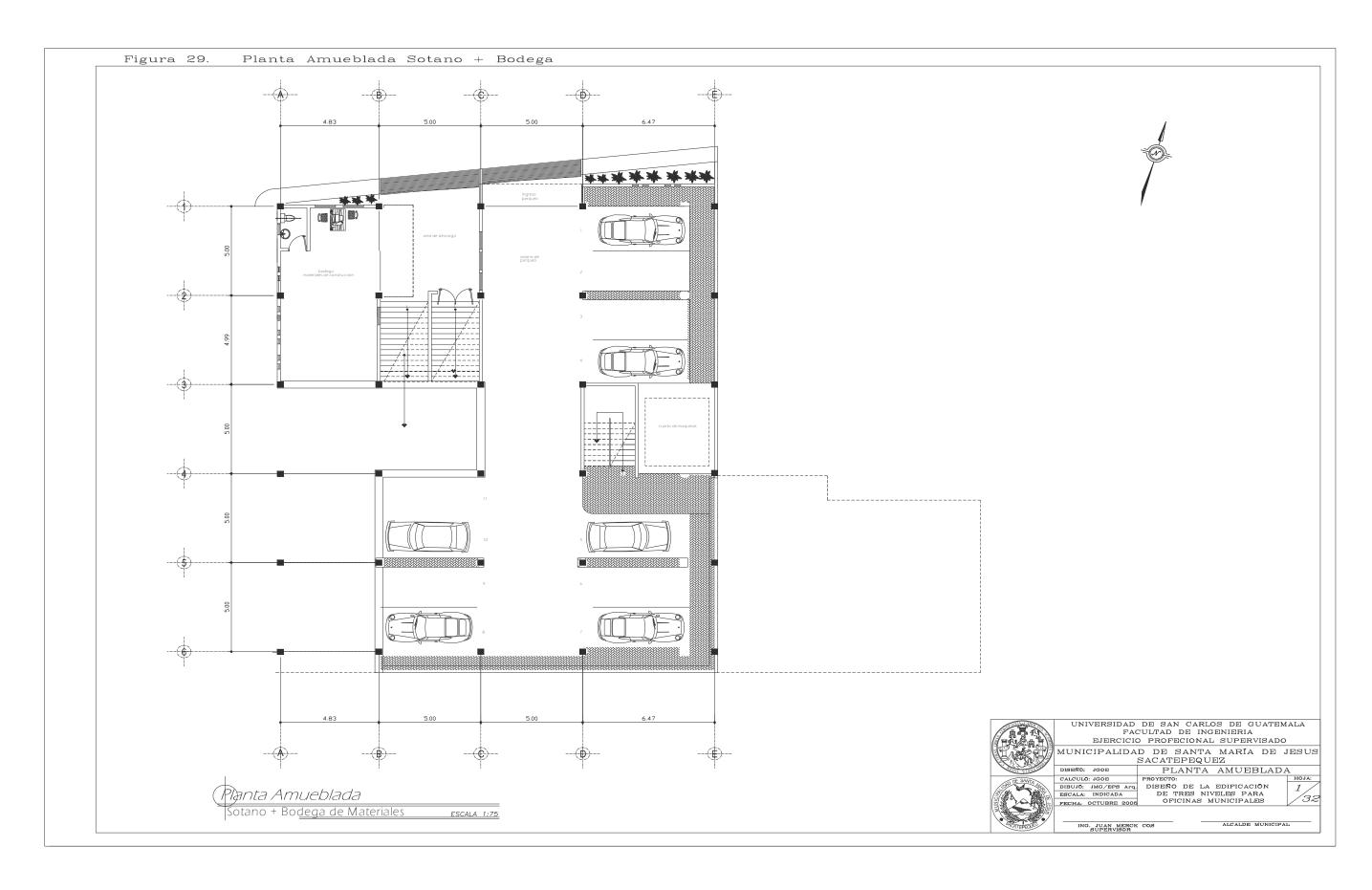
Tabla XXXVIII. Costo Total

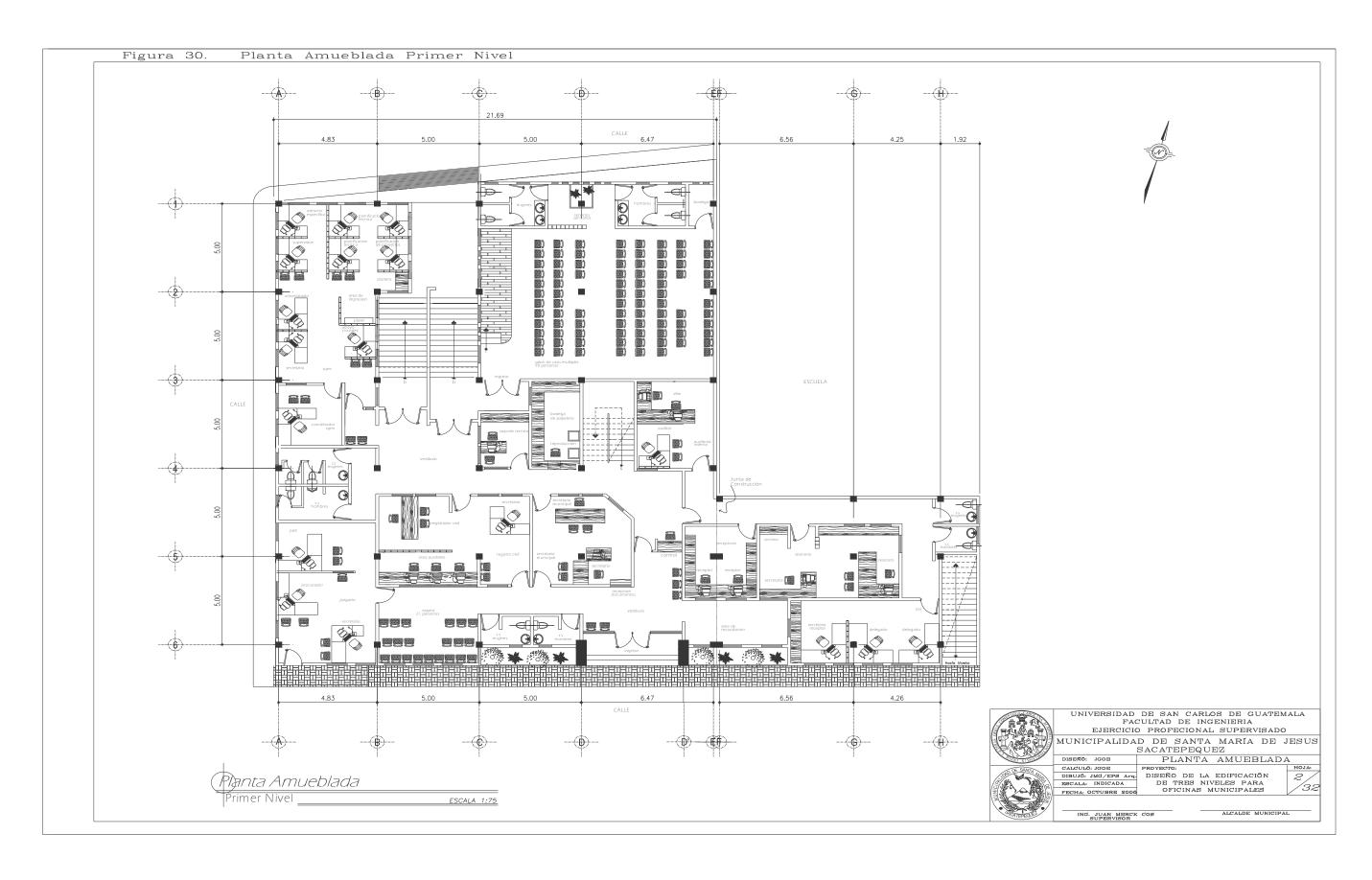
	d l	PRESUPUESTO	To To		
	CARRETERA HACIA LA ZONA AGRICOLA "EL HATO"	LA ZONA	AGRICOLA "	EL HATO"	
	MUNICIPIO DE SANTA MARÍA DE JESÚS, SACATEPÉQUEZ	MARÍA DI	E JESÚS, SAC	ATEPÉQUEZ	
No.	RENGLÓN DE TRABAJO	UNIDAD	UNIDAD CANTIDAD	COSTO	MONTO TOTAL
-	TRABAJOS PRELIMINARES				
1.1	Limpia, Chapeo y Destronque	Ha.	2.96	03,130.00	09,271.06
2	MOVIMIENTO DE TIERRA				
2.1	Corte de Material no Clasificado	m3	3,631.20	015.29	055,518.22
2.2	Relleno	m3	2,860.00	031.30	089,522.69
æ	CONFORMACIÓN DE SUBRASANTE				
3.1	Afmaniento de subrasante	m^2	17,773.14	04.20	Q74,591.71
4	DRENAJES				
4.1	Transversales de 30" T. C.	ım	08.00	0736.75	Q72,201.30
w	CUNETAS				
5.1	Cunetas Revestidas	ım	2,962.19	078.90	0233,717.23
9	CARPETA DE RODADURA				
6.1	Conformación de base (selecto10cm)	m3	1,777.31	Q77.73	Q138,142.09
6.2	Fundición de losa de Concreto (15 cm.)	m^2	14,810.95	0185.61	Q2,749,046.51
7	CABEZALES Y CAJAS				
6.1	Cabezales y Cajas Concreto Ciclópeo	m3	38.50	Q796.02	Q30,646.62
	MONTO TOTAL				Q3,452,657.42

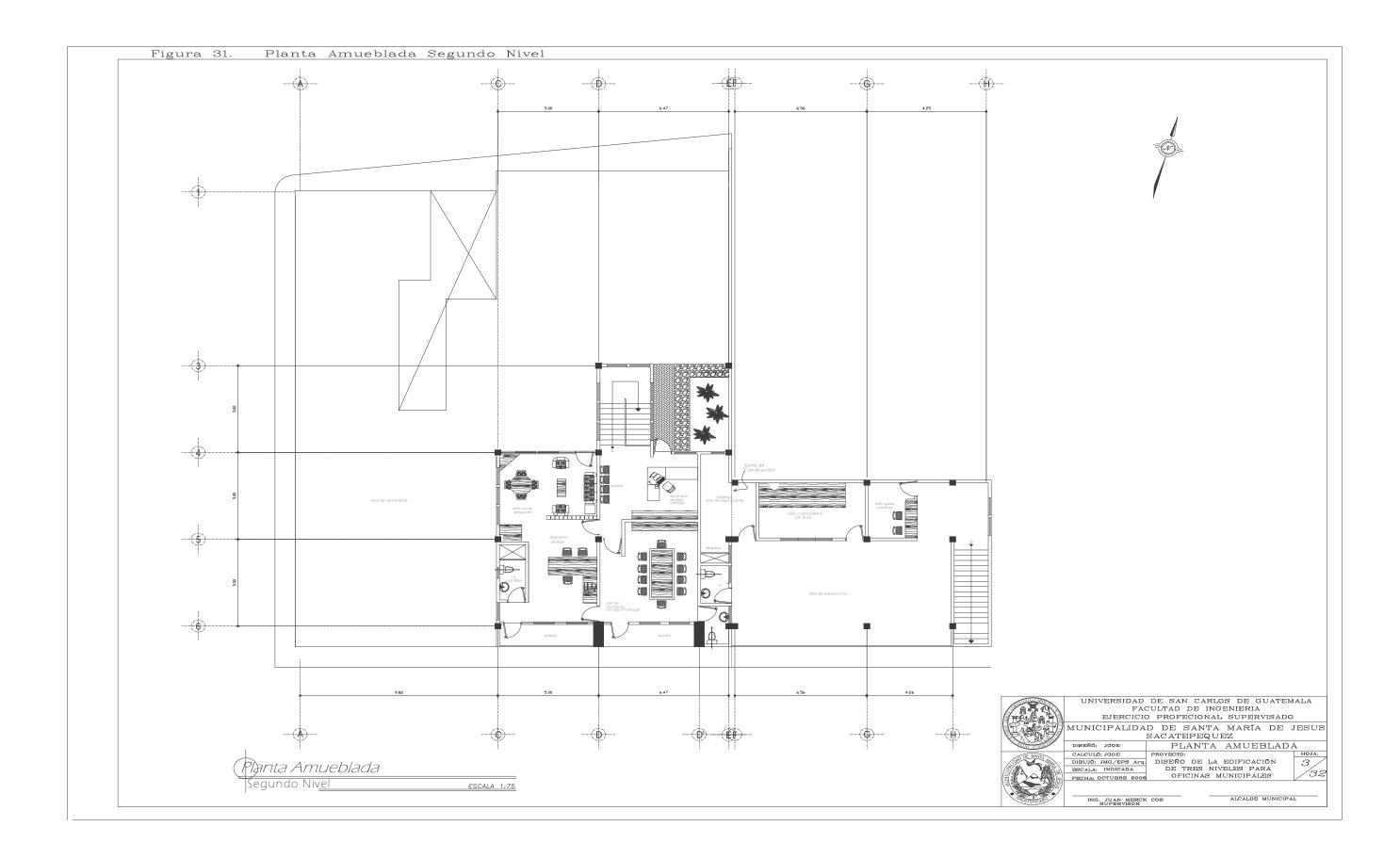
CONCLUSIONES

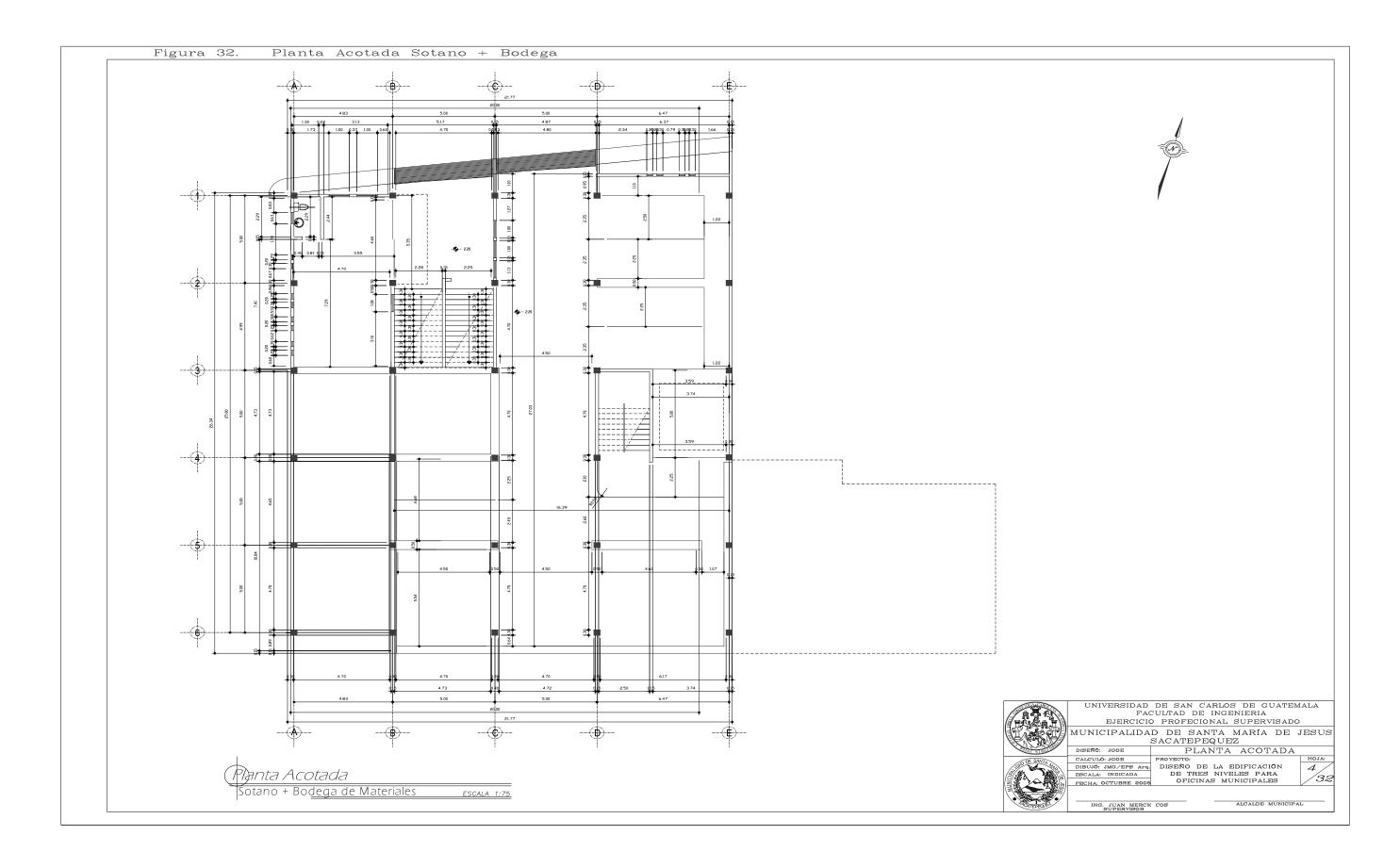
- La ejecución de los proyectos, edificación de tres niveles para oficinas municipales y carretera hacia la zona agrícola El Hato, beneficiará a los pobladores de Santa María de Jesús, con la cual se dará un paso al desarrollo integral de esta comunidad y se mejorará el nivel de vida de los pobladores.
- 2. El proyecto del edificio para oficinas municipales, contará con una apropiada funcionalidad arquitectónica y estructural, pues se optó por un sistema de marcos dúctiles de concreto reforzado, por ser un sistema muy utilizado en nuestro medio y, así, reunir condiciones necesarias para que funcione adecuadamente.
- 3. Se seleccionó diseñar una carretera de tipo G, ya que es la que más se adapta a las condiciones topográficas de la región, teniendo pendientes adecuadas que para el proyecto fue de 13.62%, velocidad de diseño de 20 km/h, y curvas mejoradas con radio de 24.38 m.
- 4. Se optó por diseñar pavimento rígido pues es el que presenta la solución mas adecuada para el proyecto y por ser muy utilizado en la región y el mantenimiento es mínimo a lo largo del período de diseño.

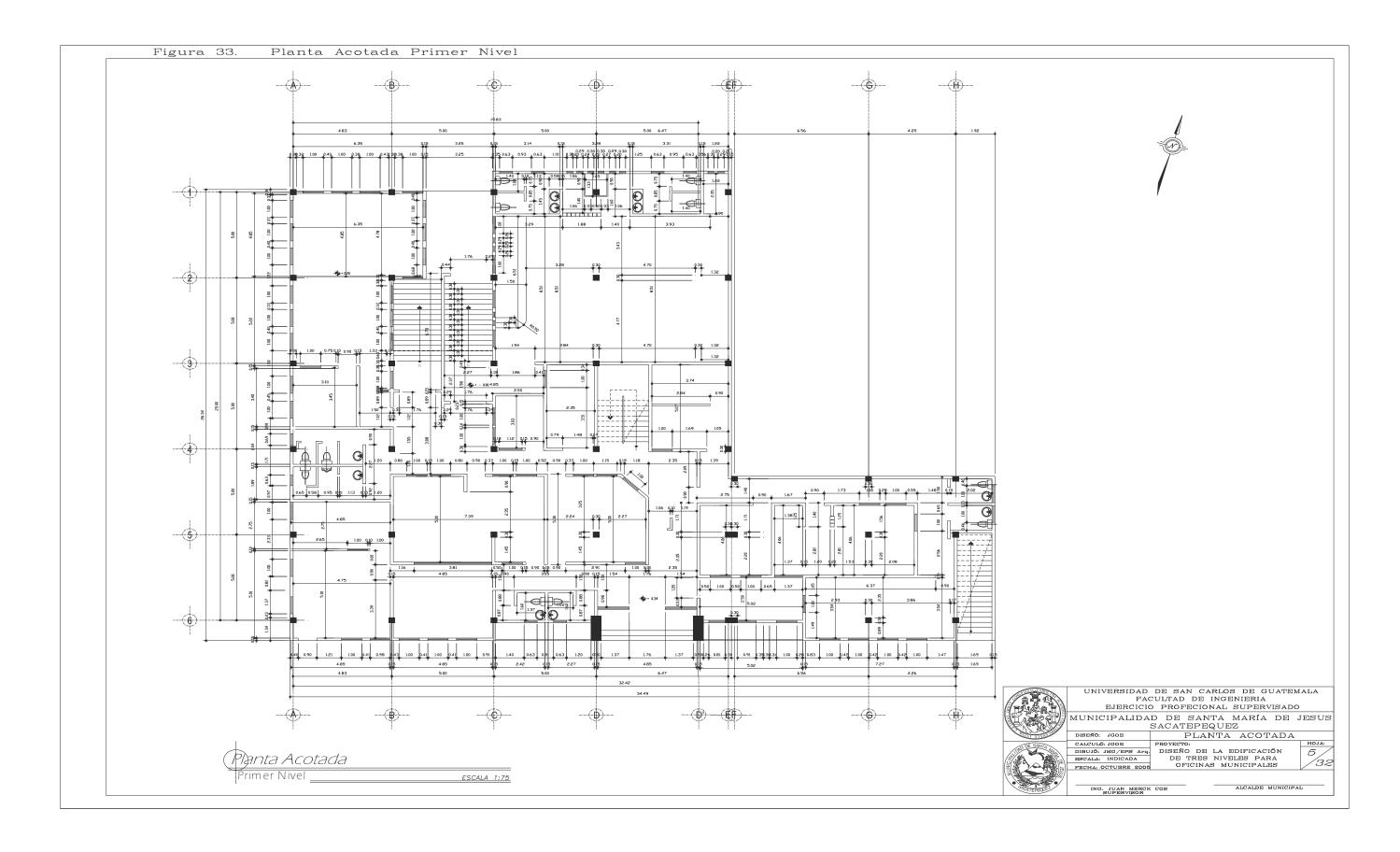
RECOMENDACIONES

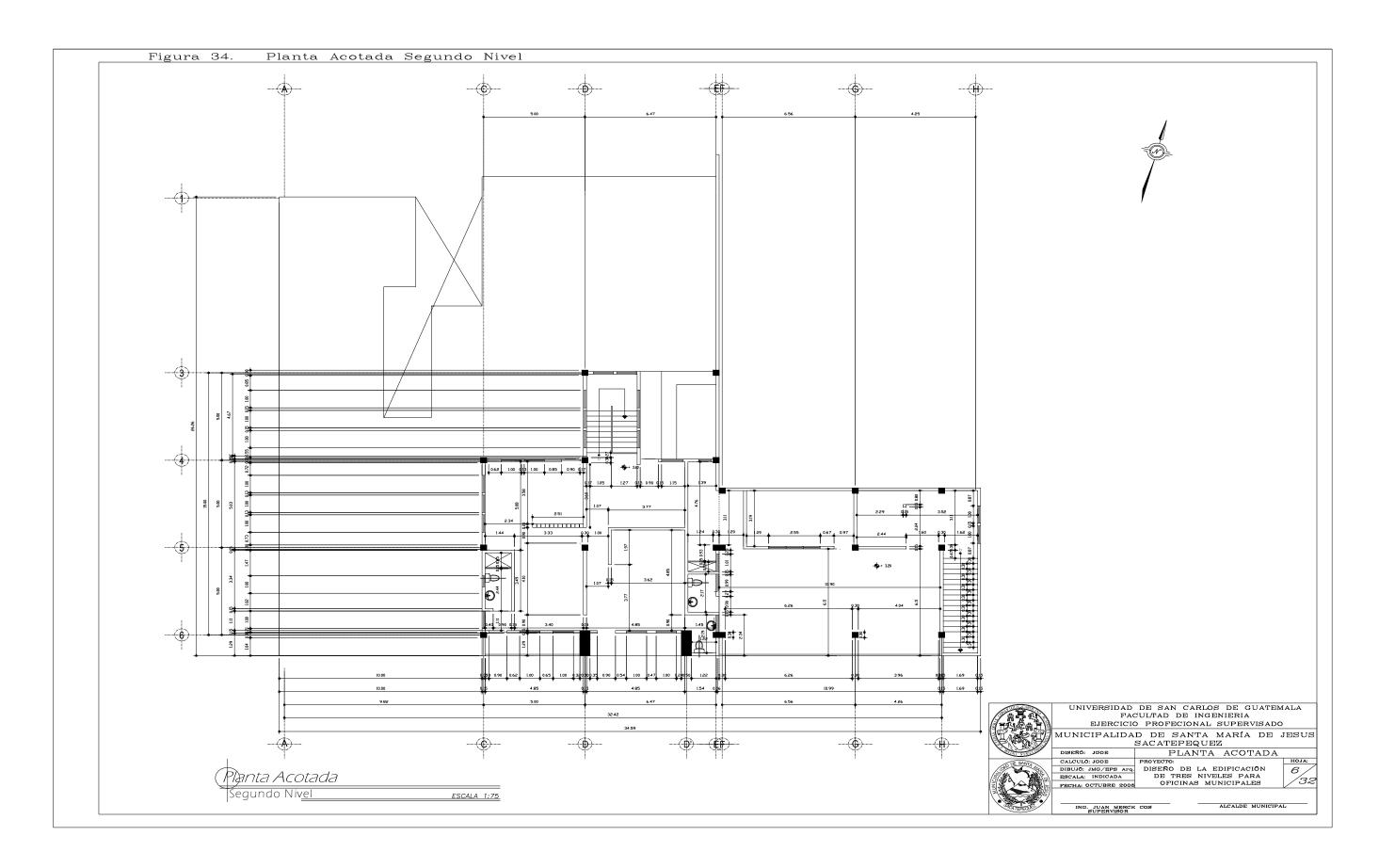

- 1. A la Municipalidad de Santa María de Jesús,
 - Gestionar ante diferentes instituciones tanto gubernamentales como no gubernamentales el financiamiento para la ejecución de los proyectos, en el menor tiempo posible.
 - Organizar tanto a los usuarios directos de la carretera como a los indirectos, a fin de que se le provea el mantenimiento, el cual deberá ser permanente.
 - 3. Que se efectúe la supervisión técnica en la construcción del edificio municipal y la carretera, a través de un profesional de la ingeniería civil, para que se cumplan con las especificaciones técnicas y todo lo contenido en planos constructivos.

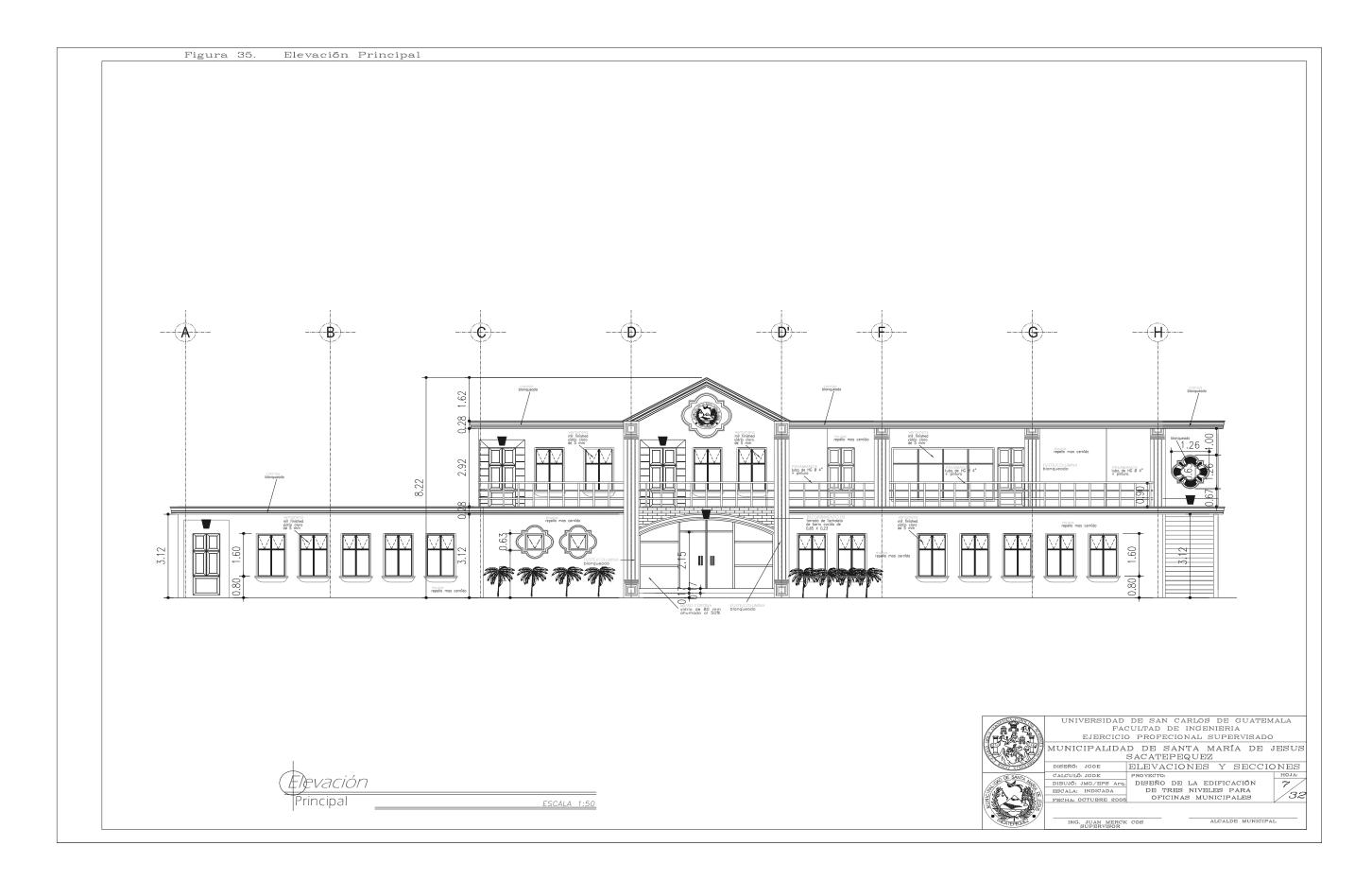

BIBLIOGRAFÍA

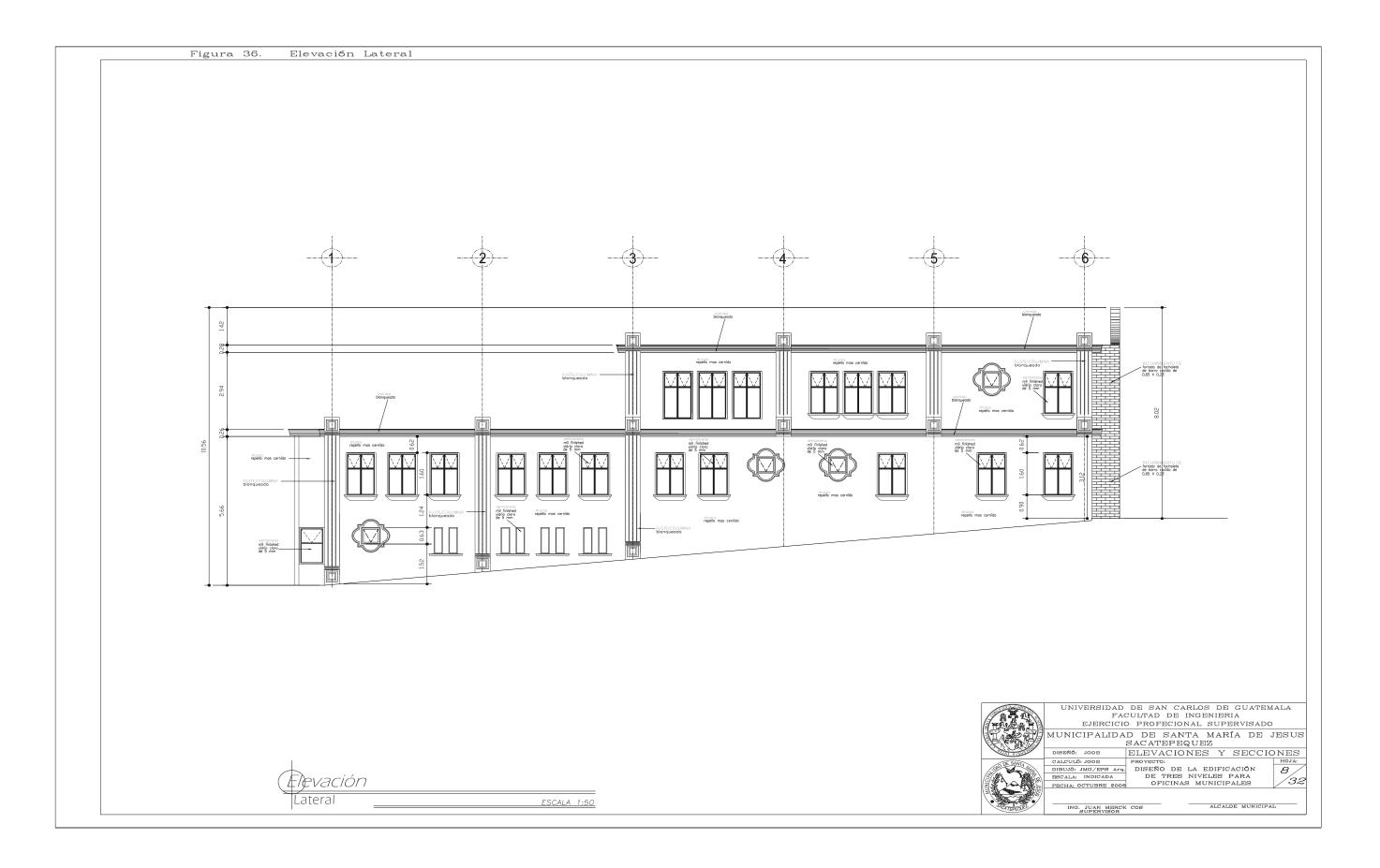

- 1. YLLESCAS PONCE, Álvaro Danilo. Diseño del tramo carretero comprendido desde el entronque del kilómetro 171+400 carretera interamericana (CA-1), hacia el casería Nuevo Xetinamit, del municipio de Nahualá departamento de Sololá. Tesis de graduación de Ingeniero Civil, Facultad de Ingeniería, Universidad de San Carlos de Guatemala. Guatemala, agosto de 2003.
- 2. LIGORRIA LEAL, Byron Darío. Diseño de salón de usos Múltiples y carretera hacia comunidad Chamisun, del municipio de San Juan Chamelco, departamento de Alta Verapaz. Tesis de graduación de Ingeniero Civil, Facultad de Ingeniería, Universidad de San Carlos de Guatemala. Guatemala, marzo de 2004.
- Curso de Concreto Armado I y II, apuntes de curso Ingeniería Civil, Universidad de San Carlos de Guatemala, Facultad de Ingeniería, Guatemala, 2003.
- 4. Curso de Diseño Estructural, apuntes de curso Ingeniería Civil, Universidad de San Carlos de Guatemala, Facultad de Ingeniería, Guatemala, 2004.
- 5. Curso de Vías Terrestres I, apuntes de curso Ingeniería Civil, Universidad de San Carlos de Guatemala, Facultad de Ingeniería, Guatemala 2002.

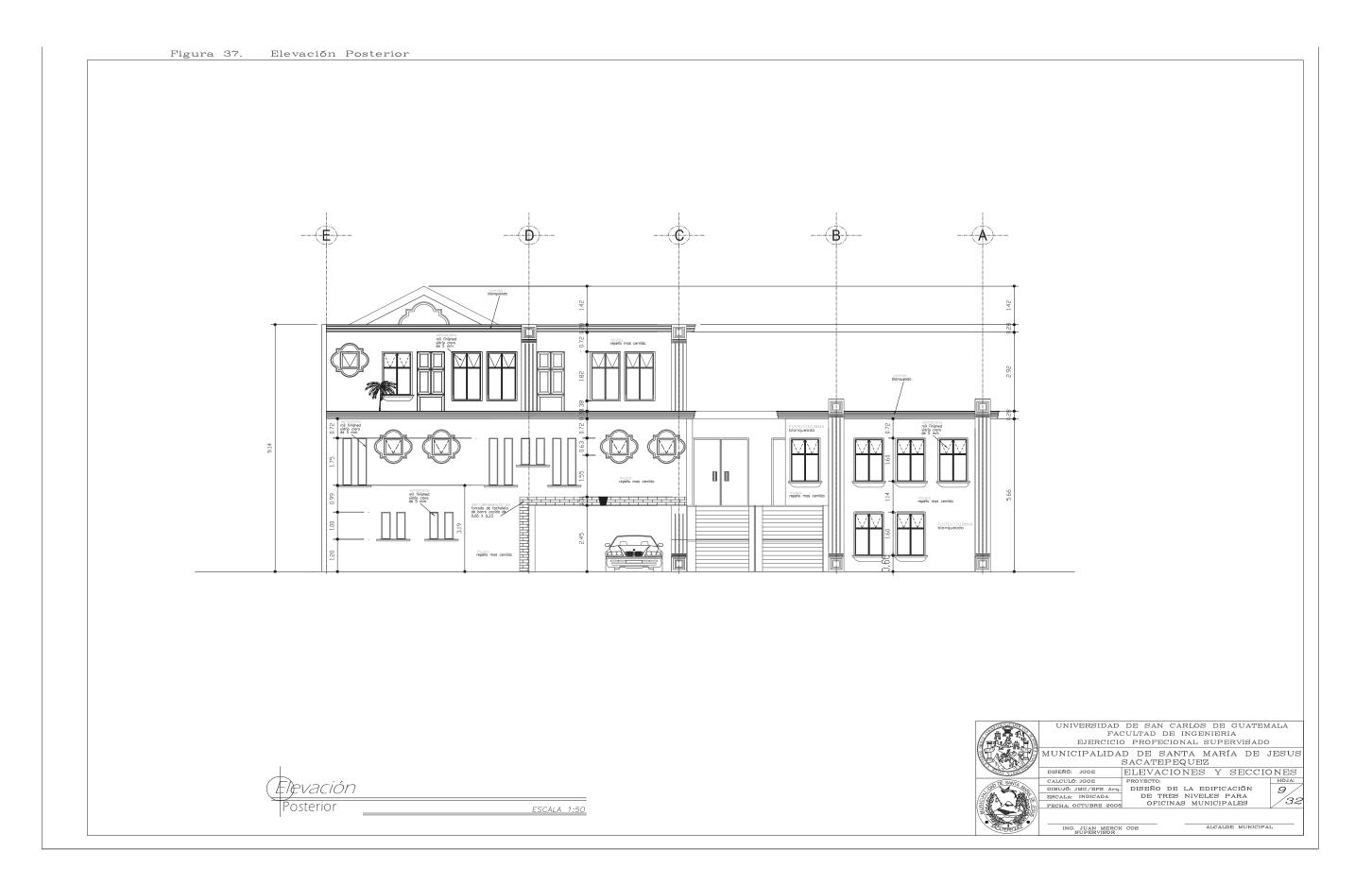

- Dirección General de Caminos. ESPECIFICACIONES GENERALES PARA CONSTRUCCIÓN DE CARRETERAS Y PUENTES, Ministerio de Comunicaciones, Infraestructura y Vivienda República de Guatemala, diciembre 2000.
- 7. MEJIA GÓMEZ, Hugo Abad. Diseño del pavimento rígido para dos vías de acceso principal al municipio de el Progreso, departamento de Jutiapa. Tesis de graduación de Ingeniero Civil, Facultad de Ingeniería, Universidad de San Carlos de Guatemala. Guatemala, mayo de 1996.

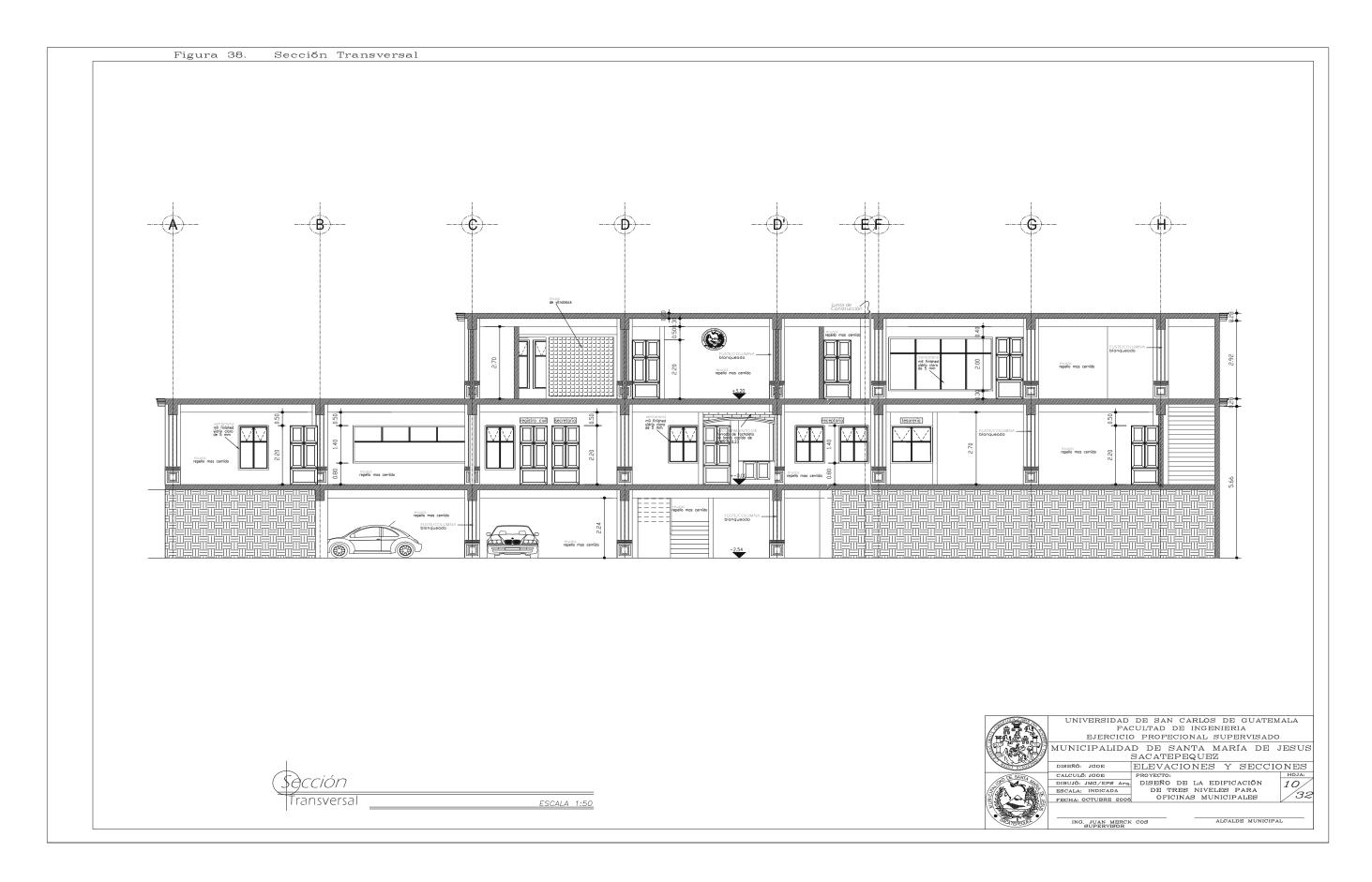

APÉNDICES

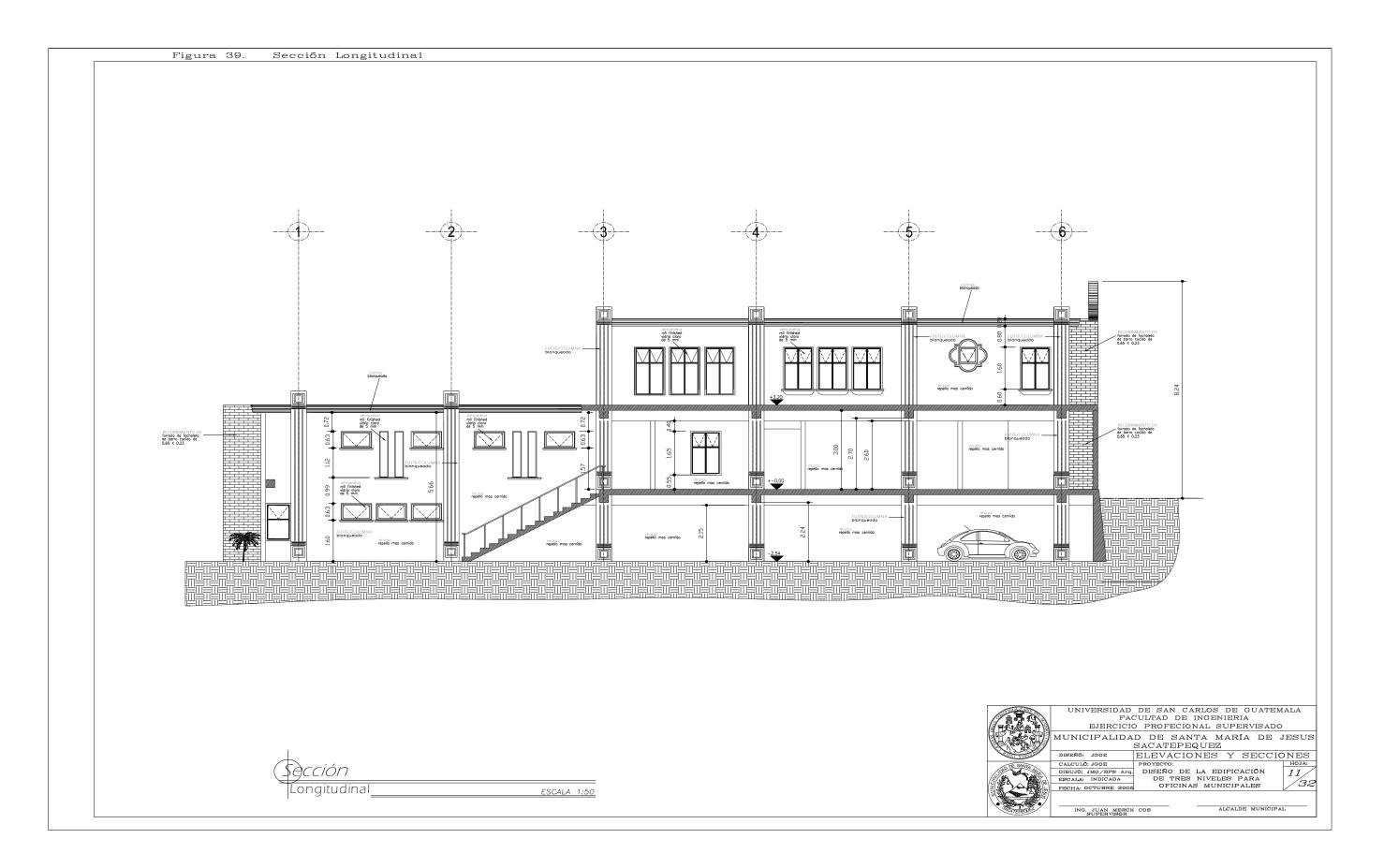


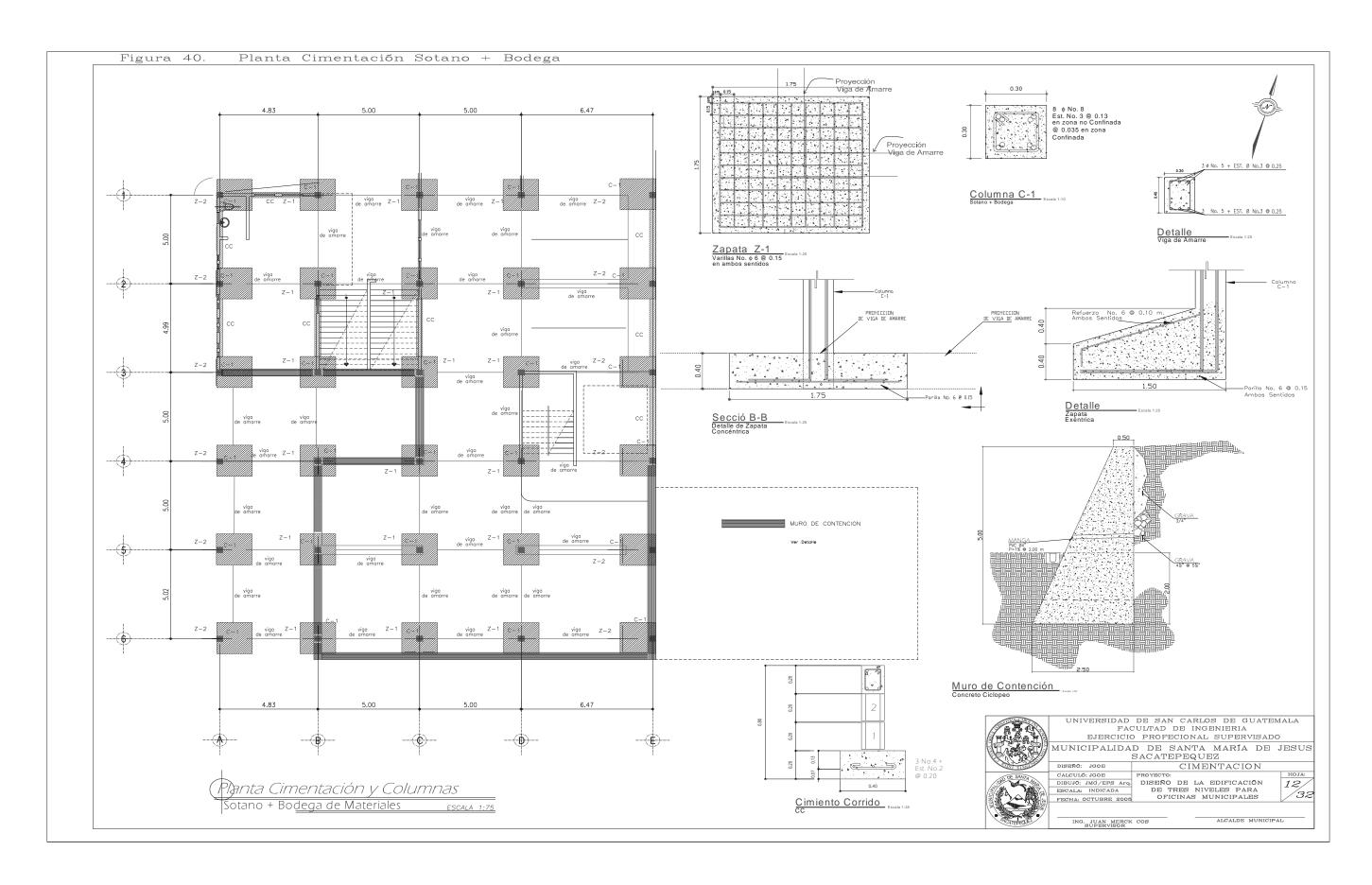


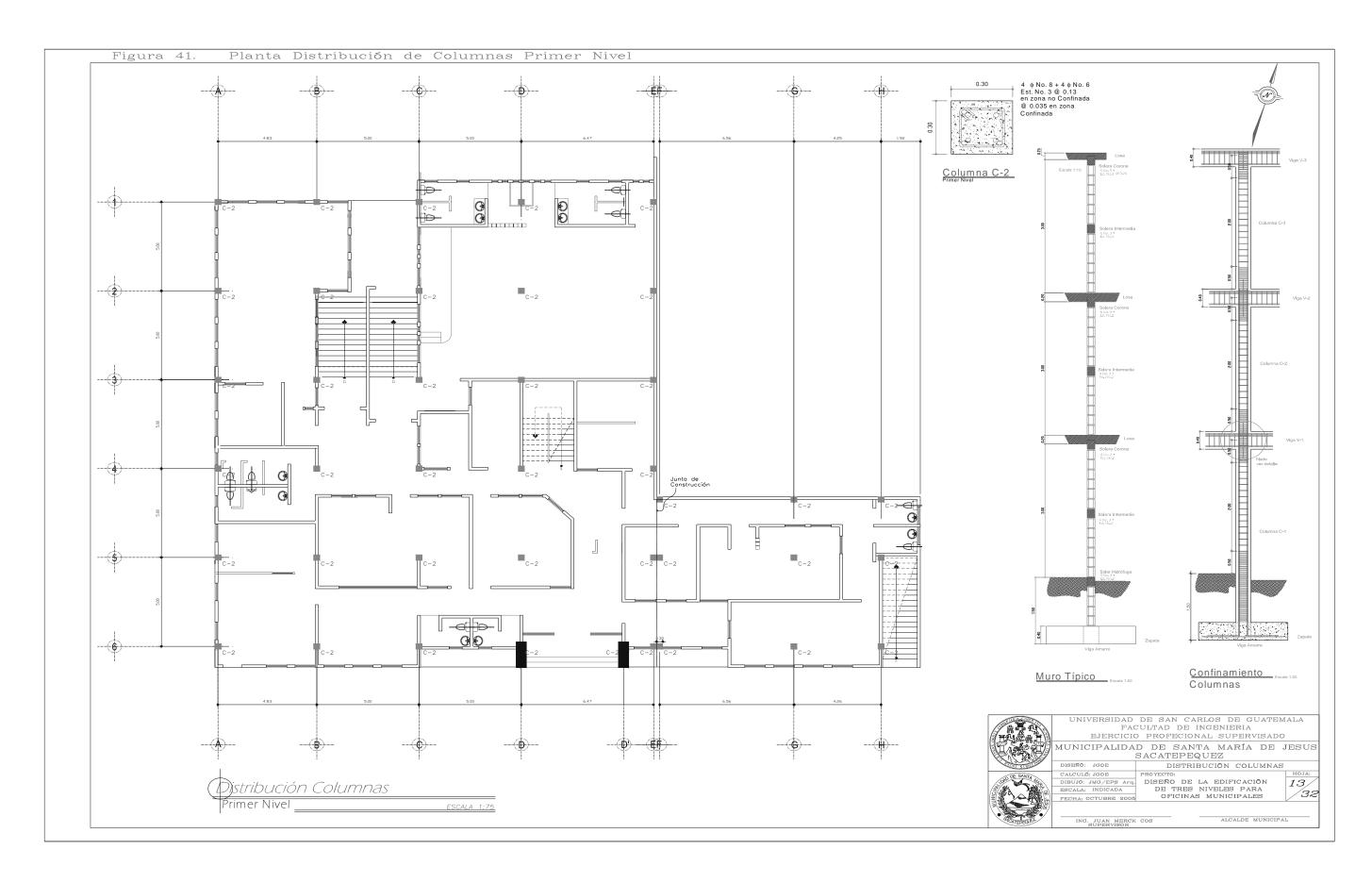


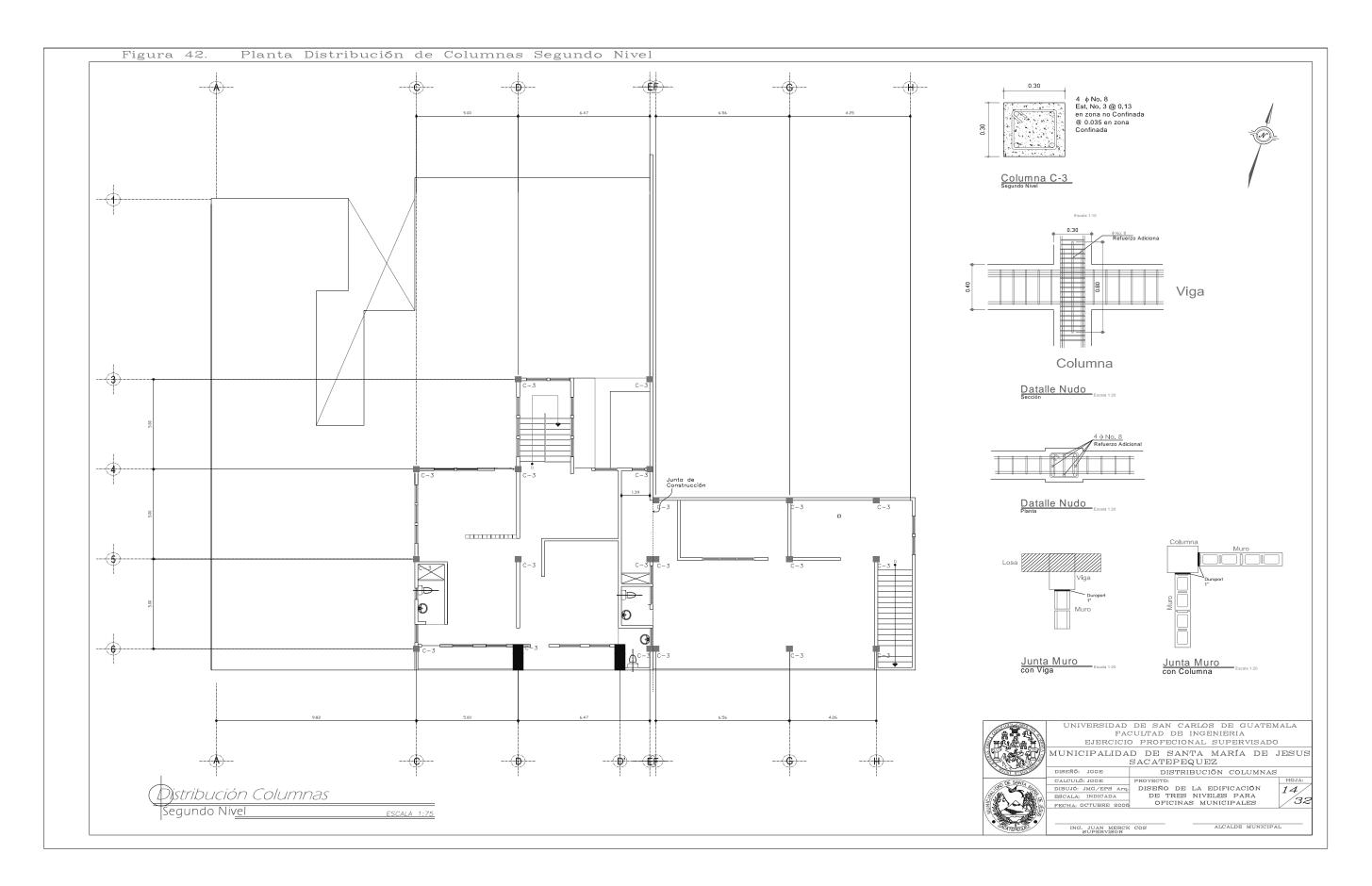


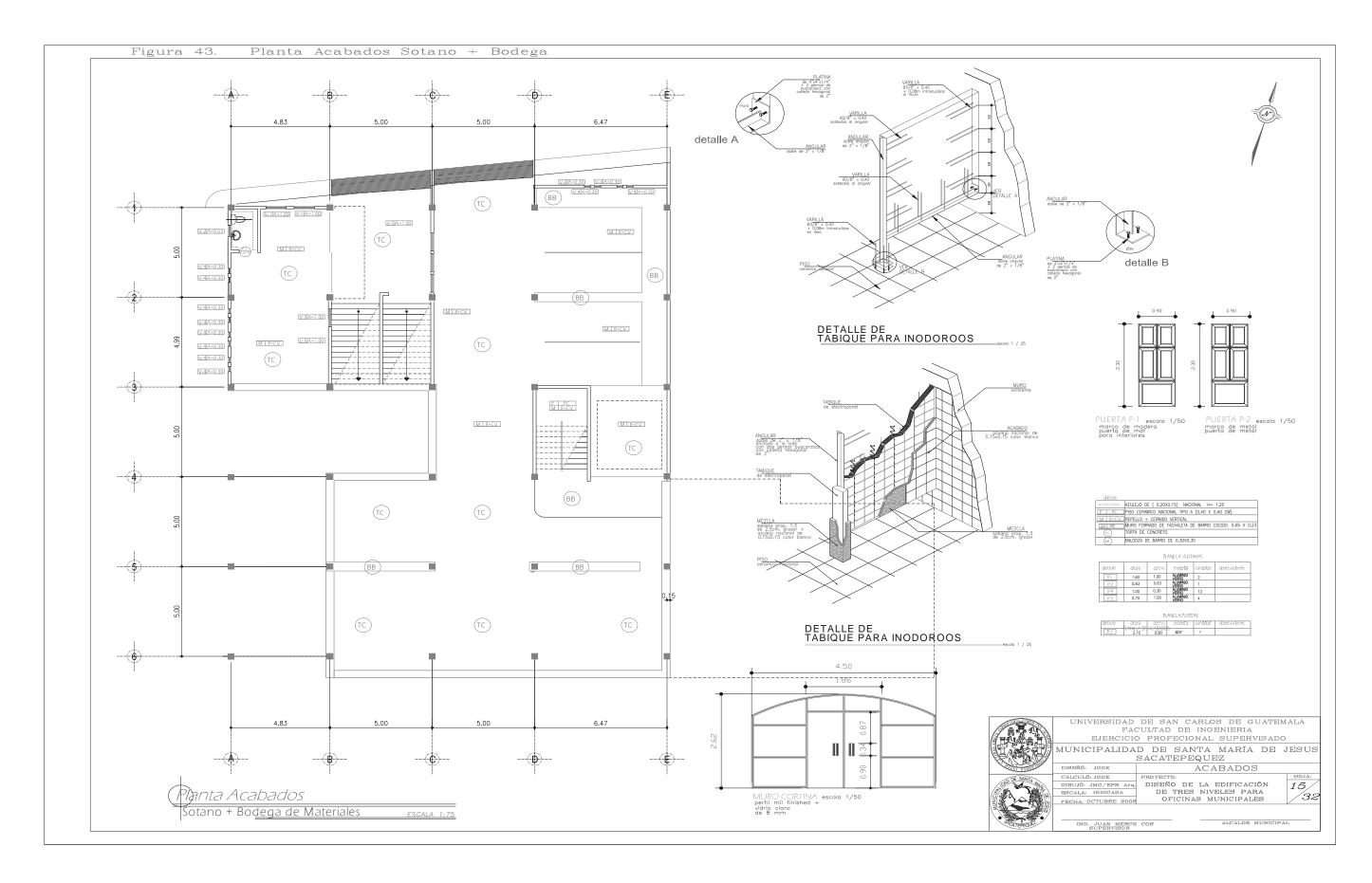


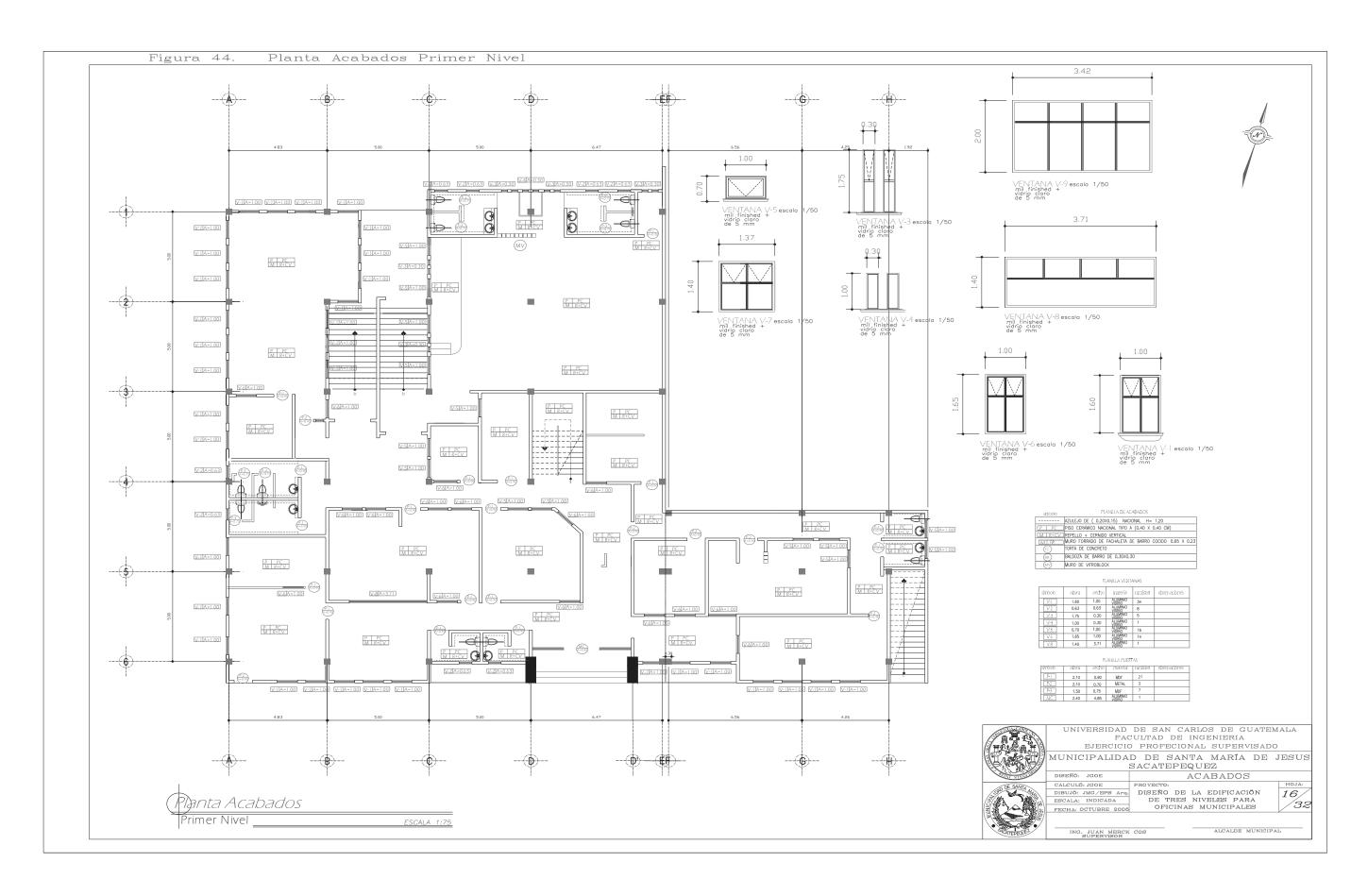


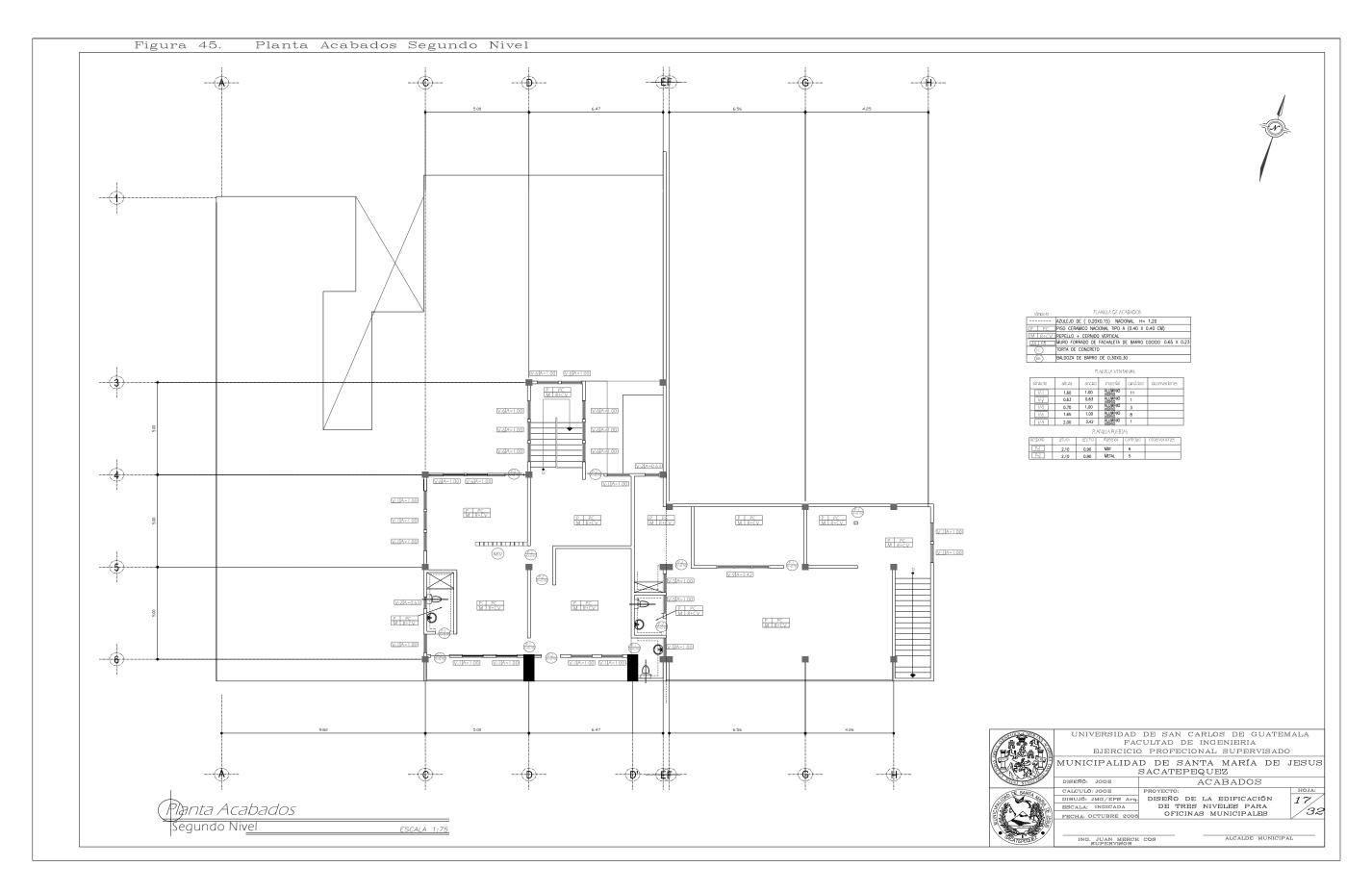


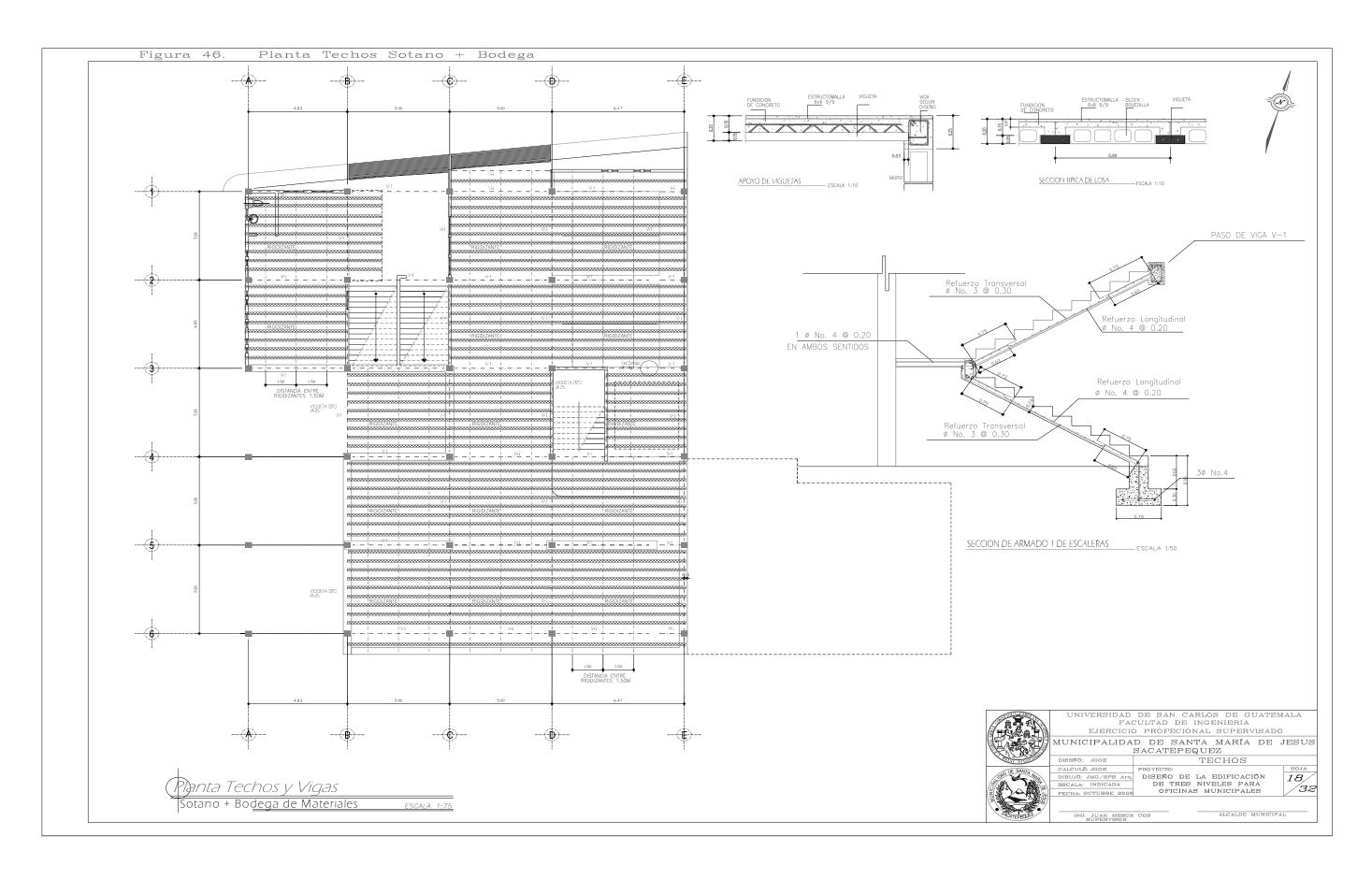


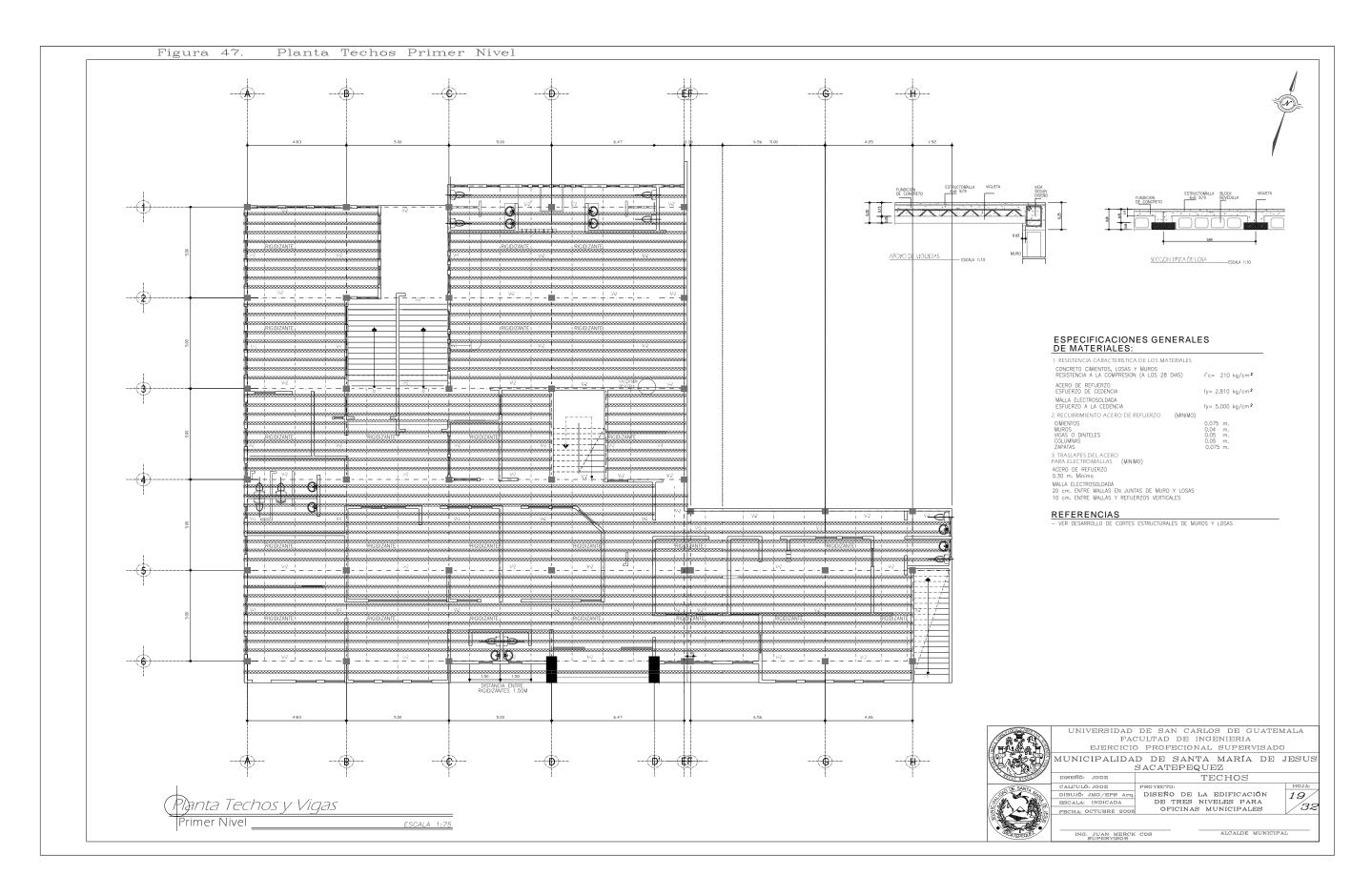


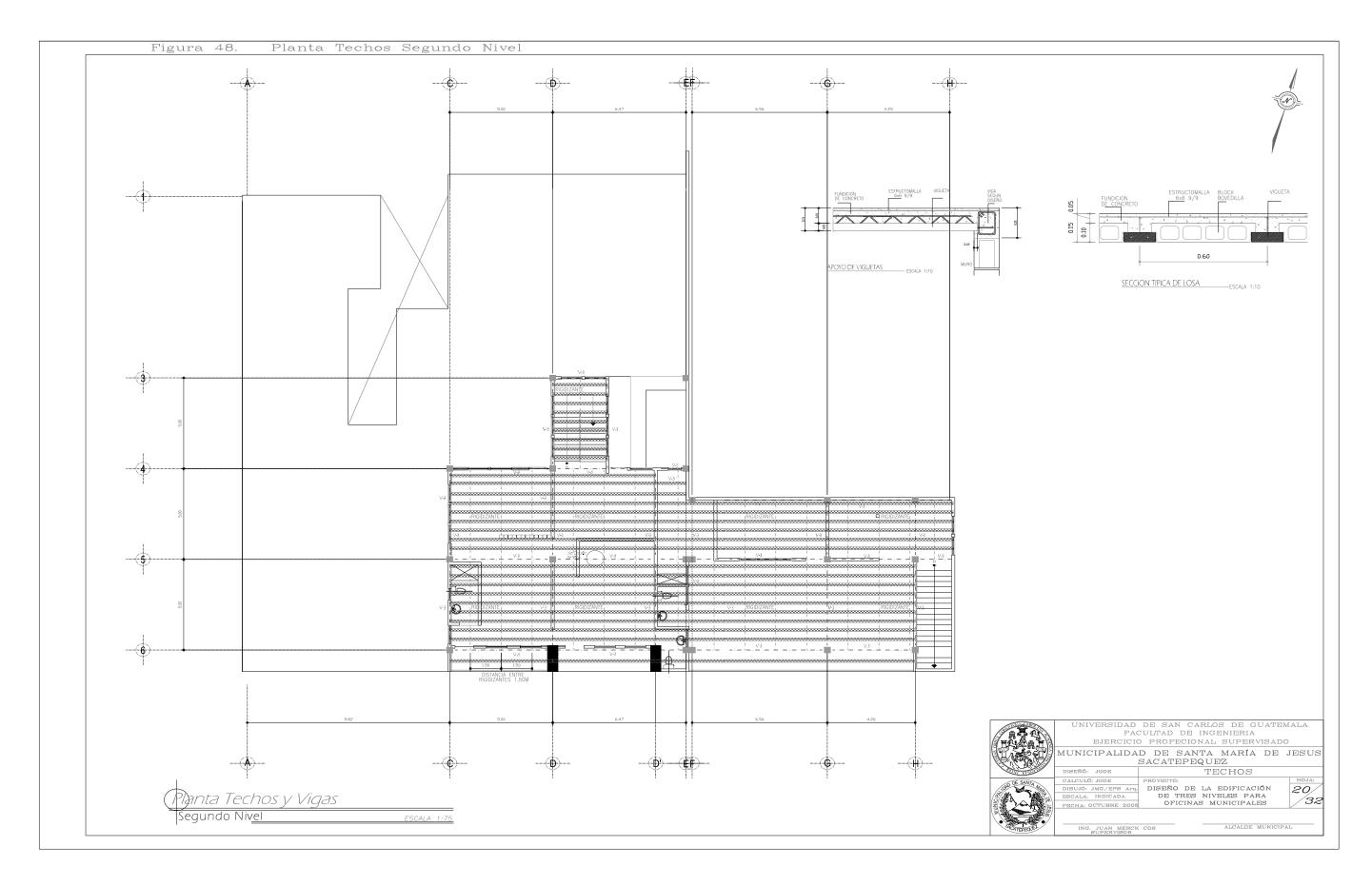


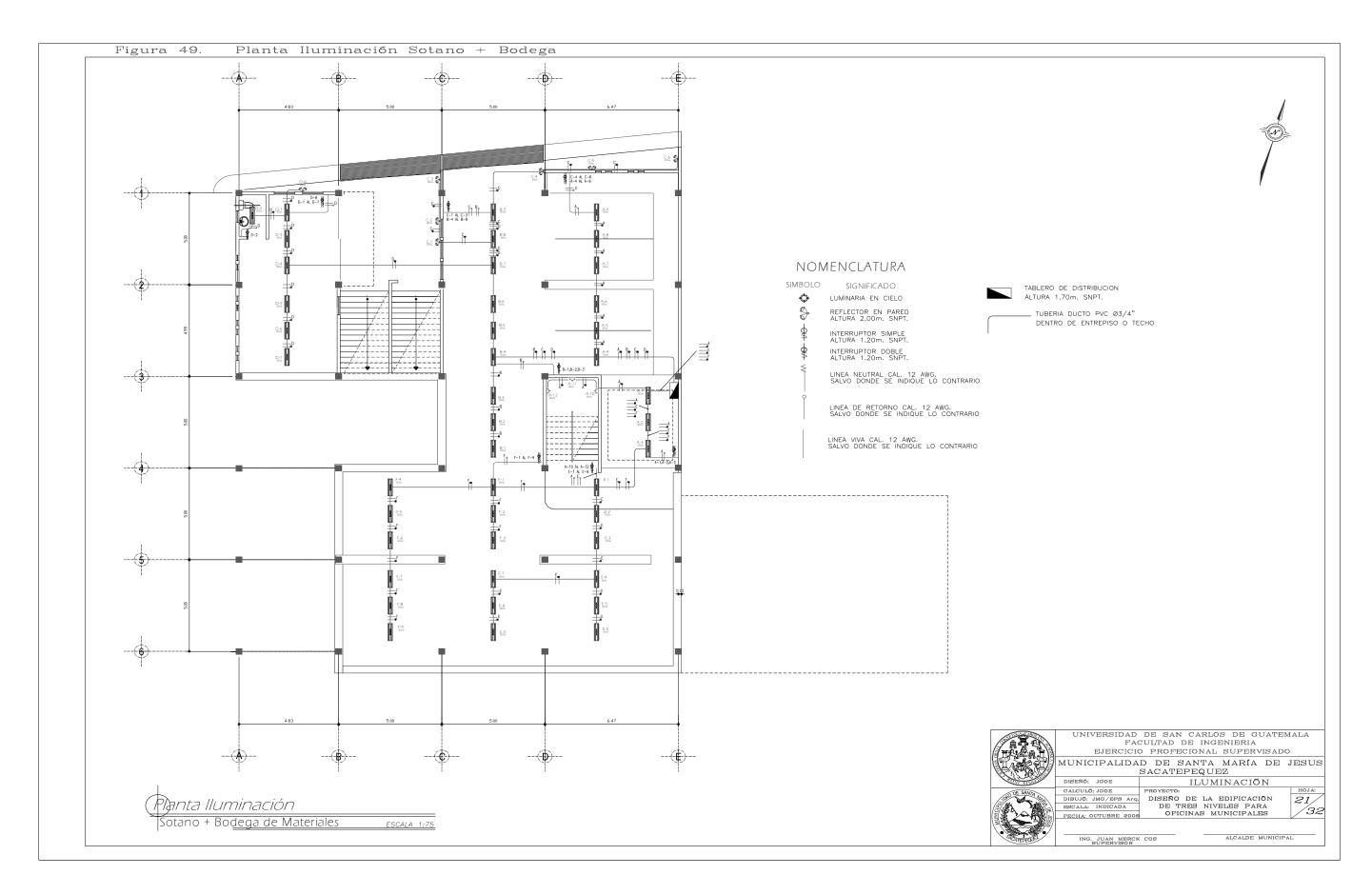


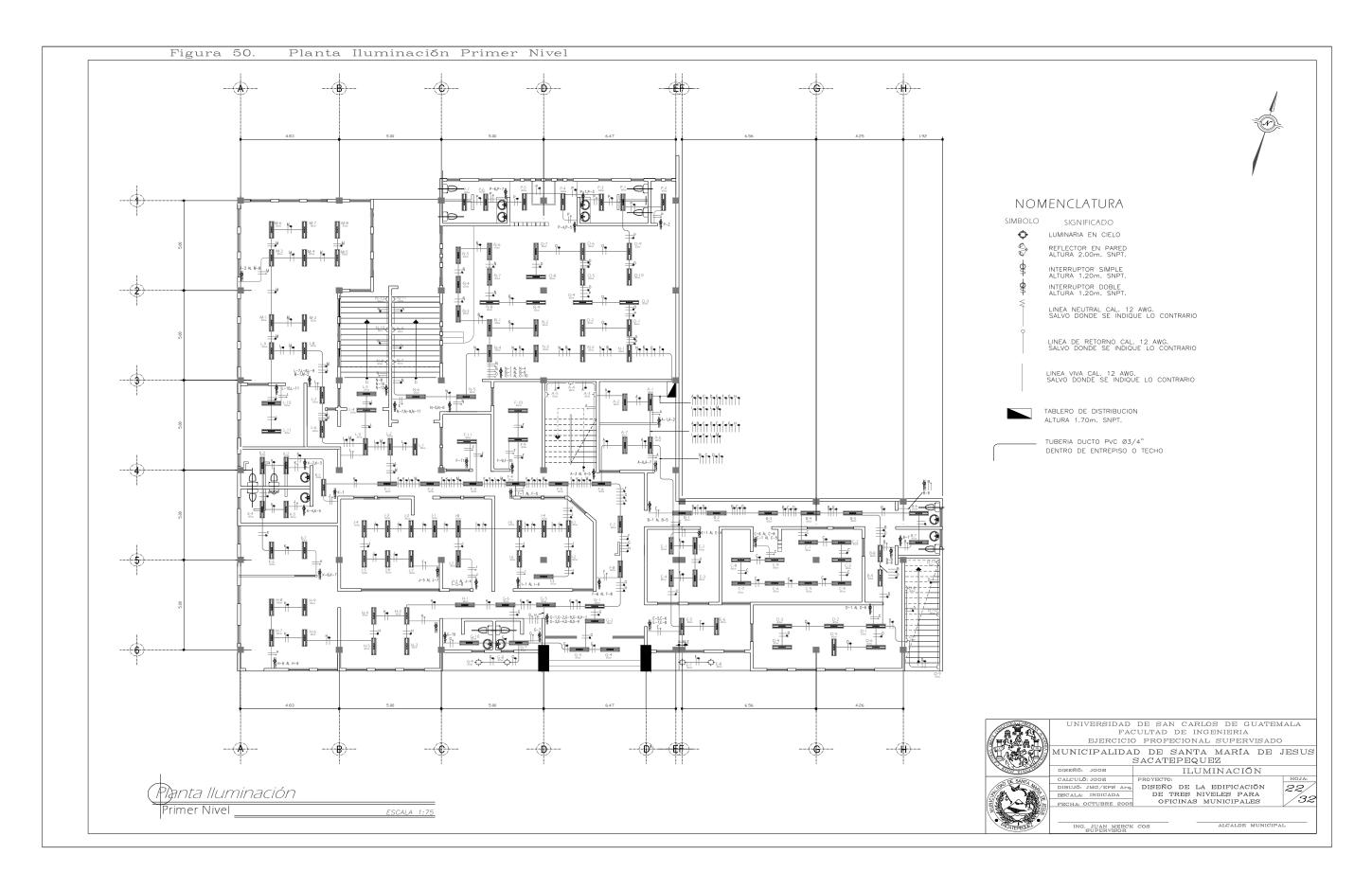


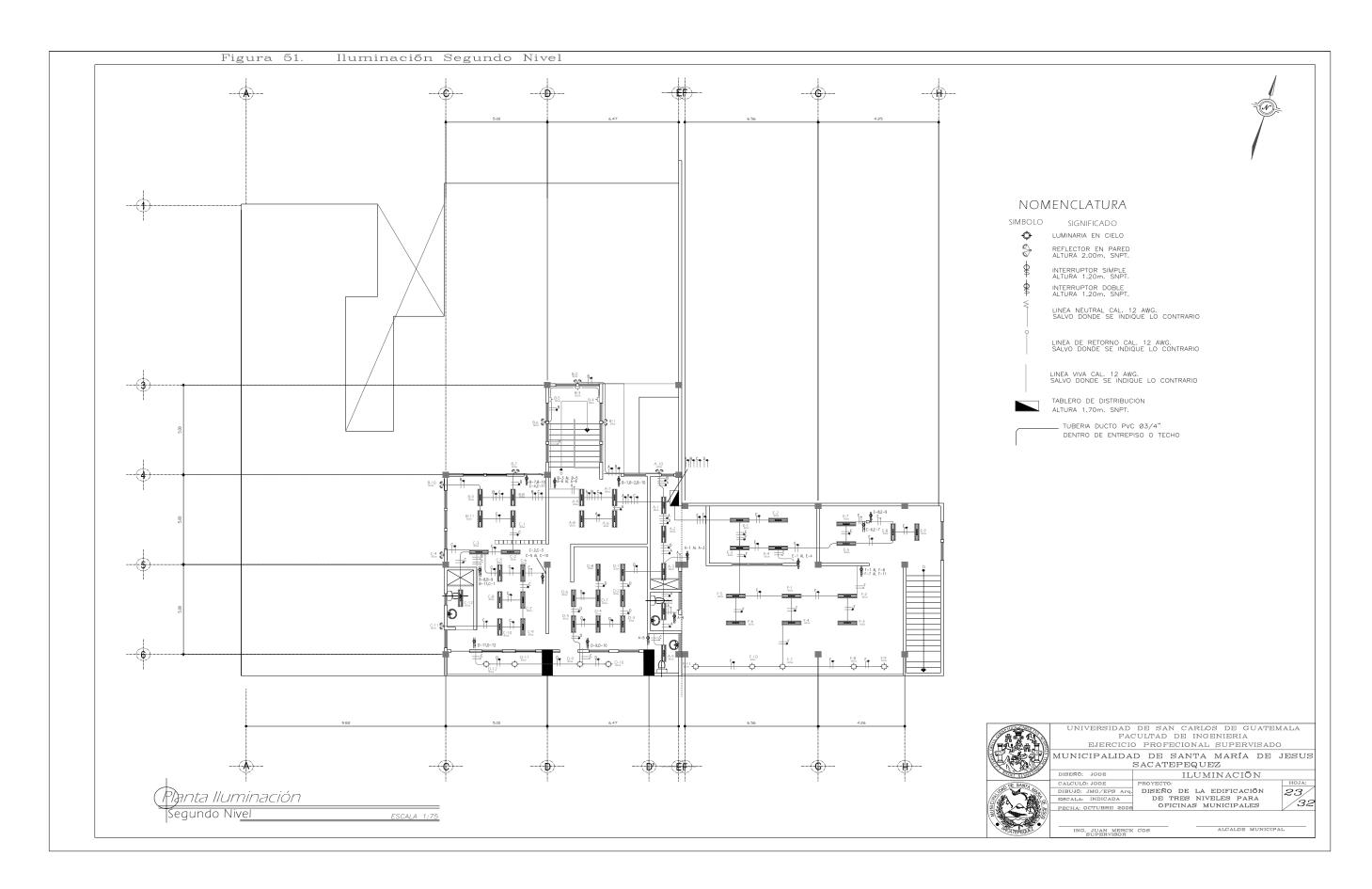


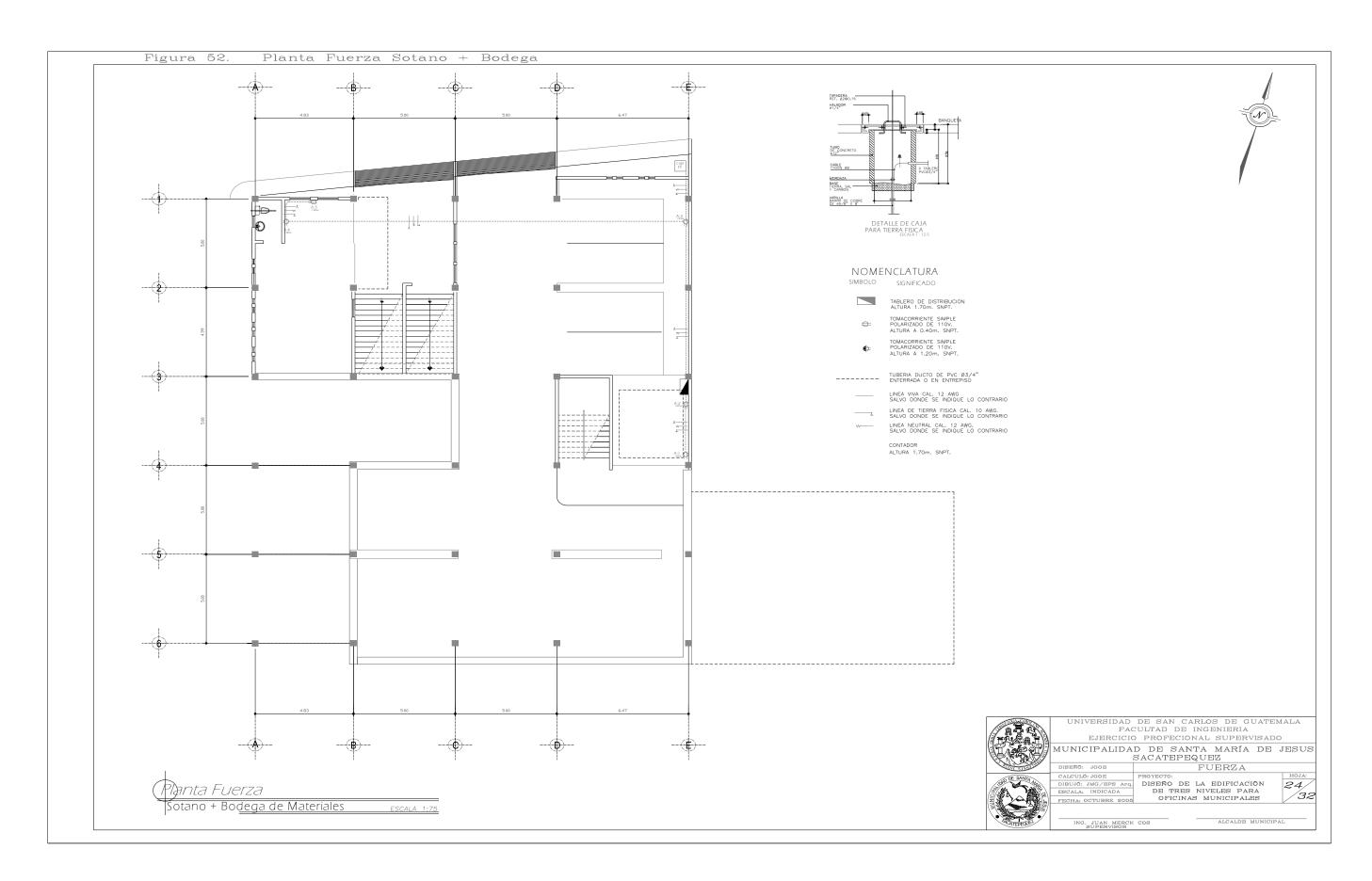


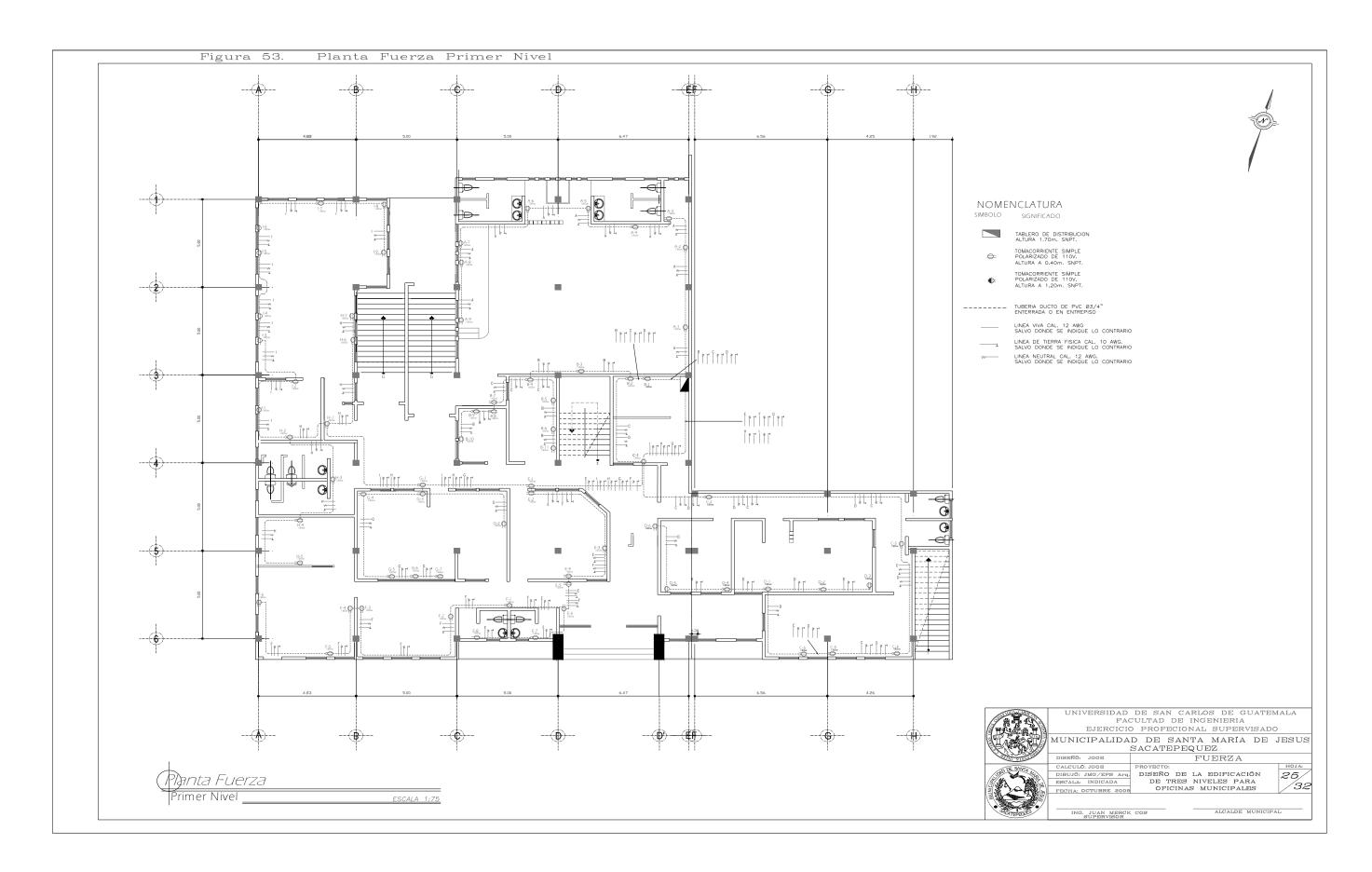


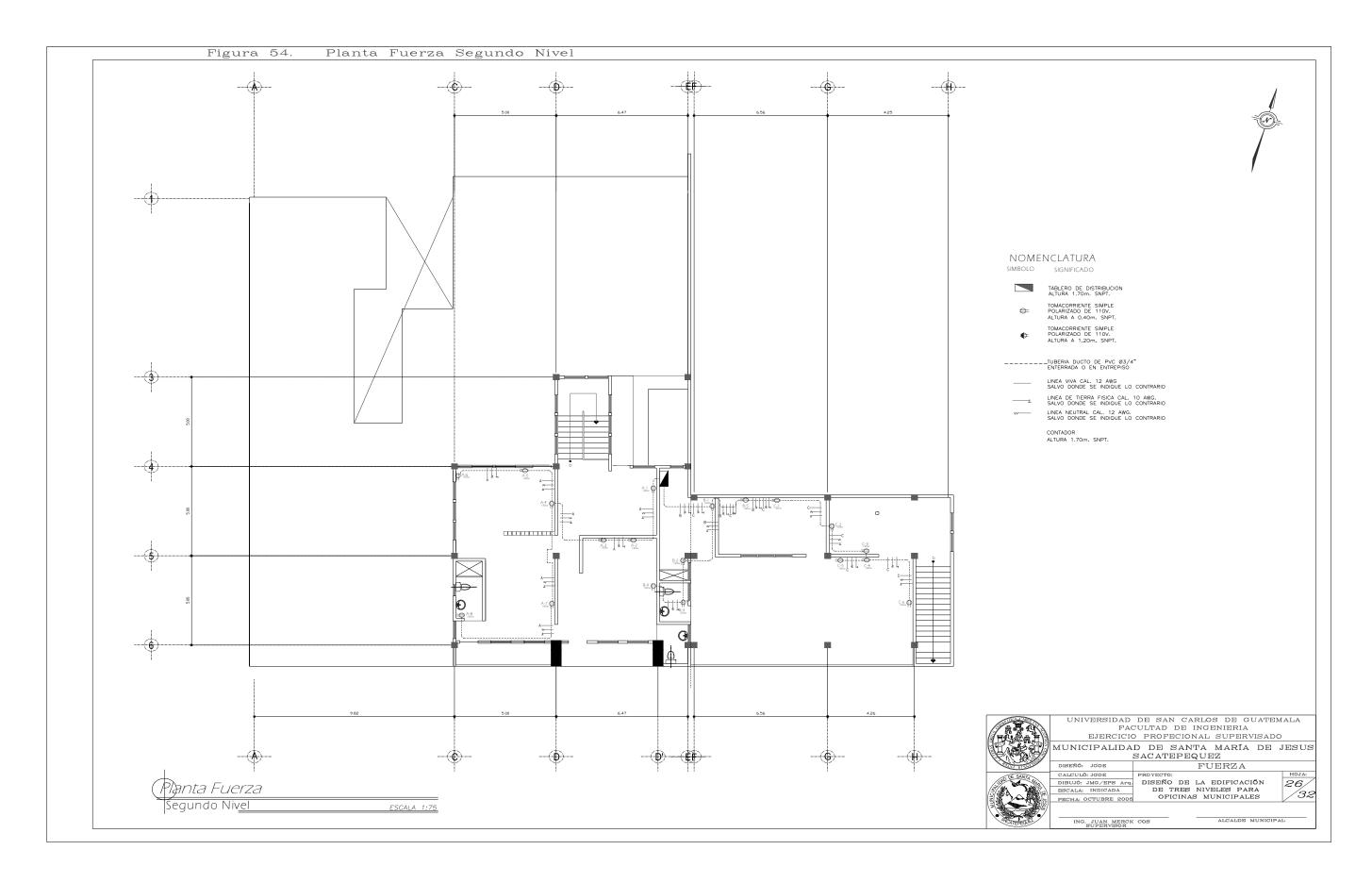


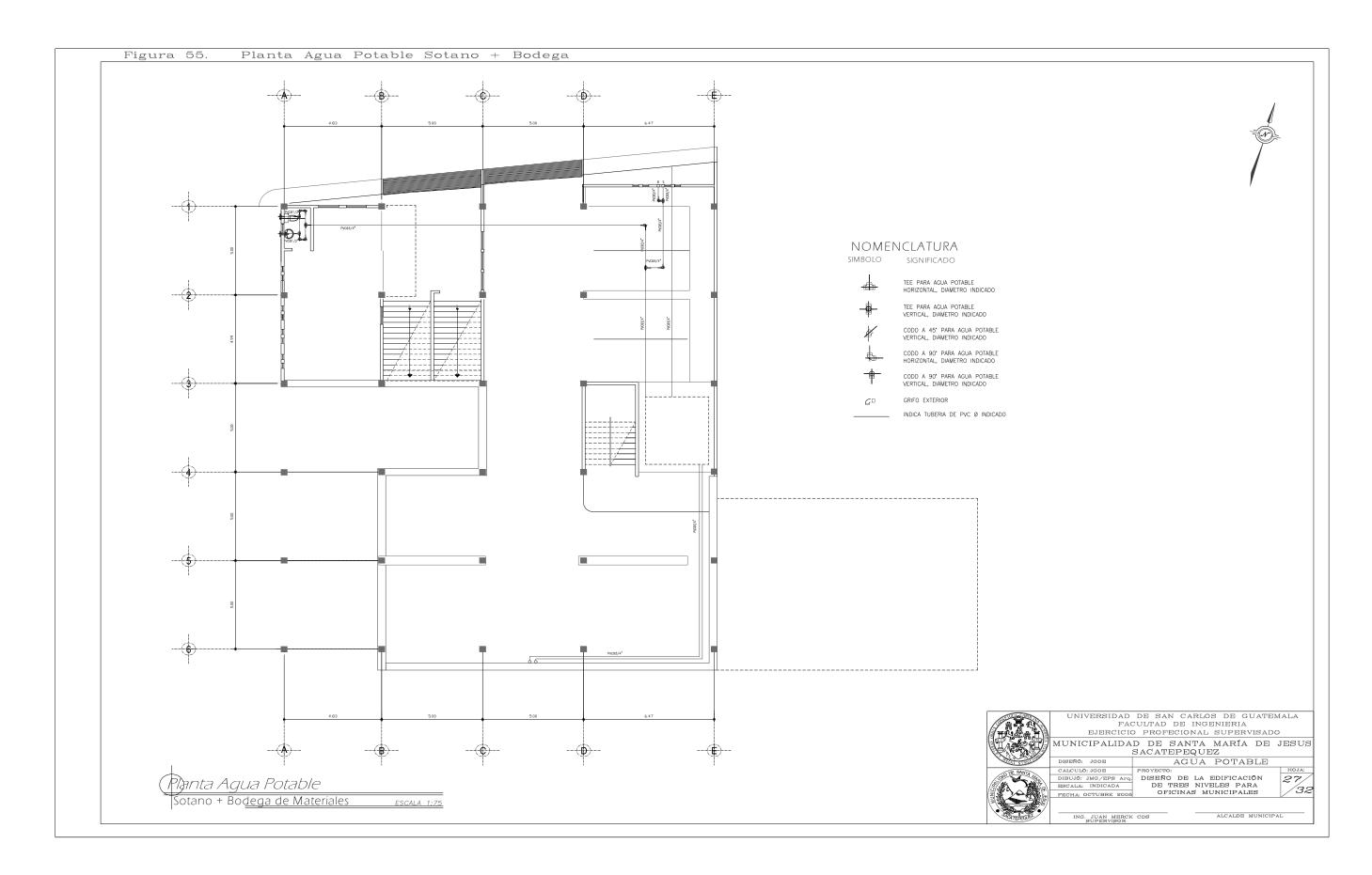


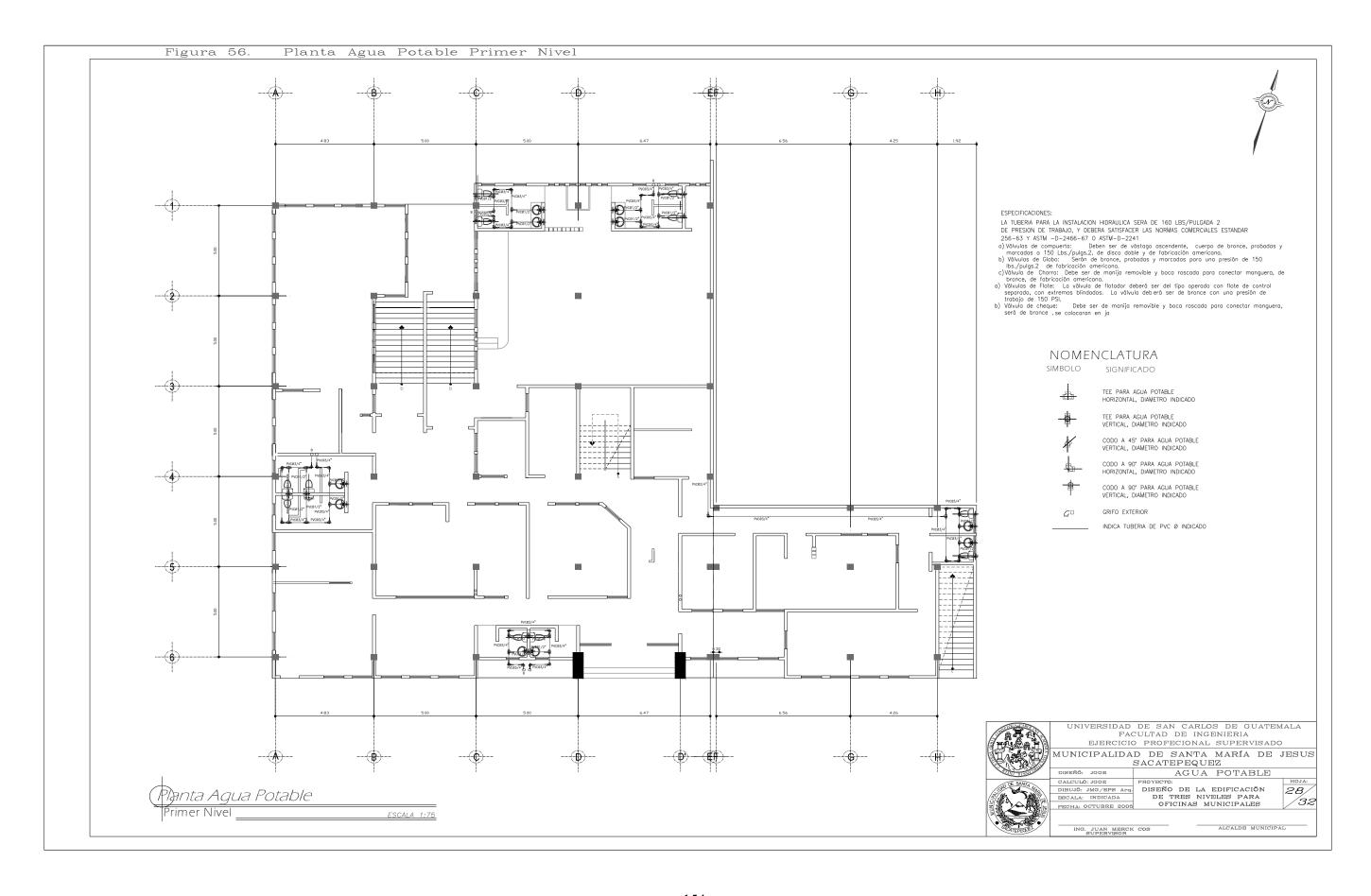


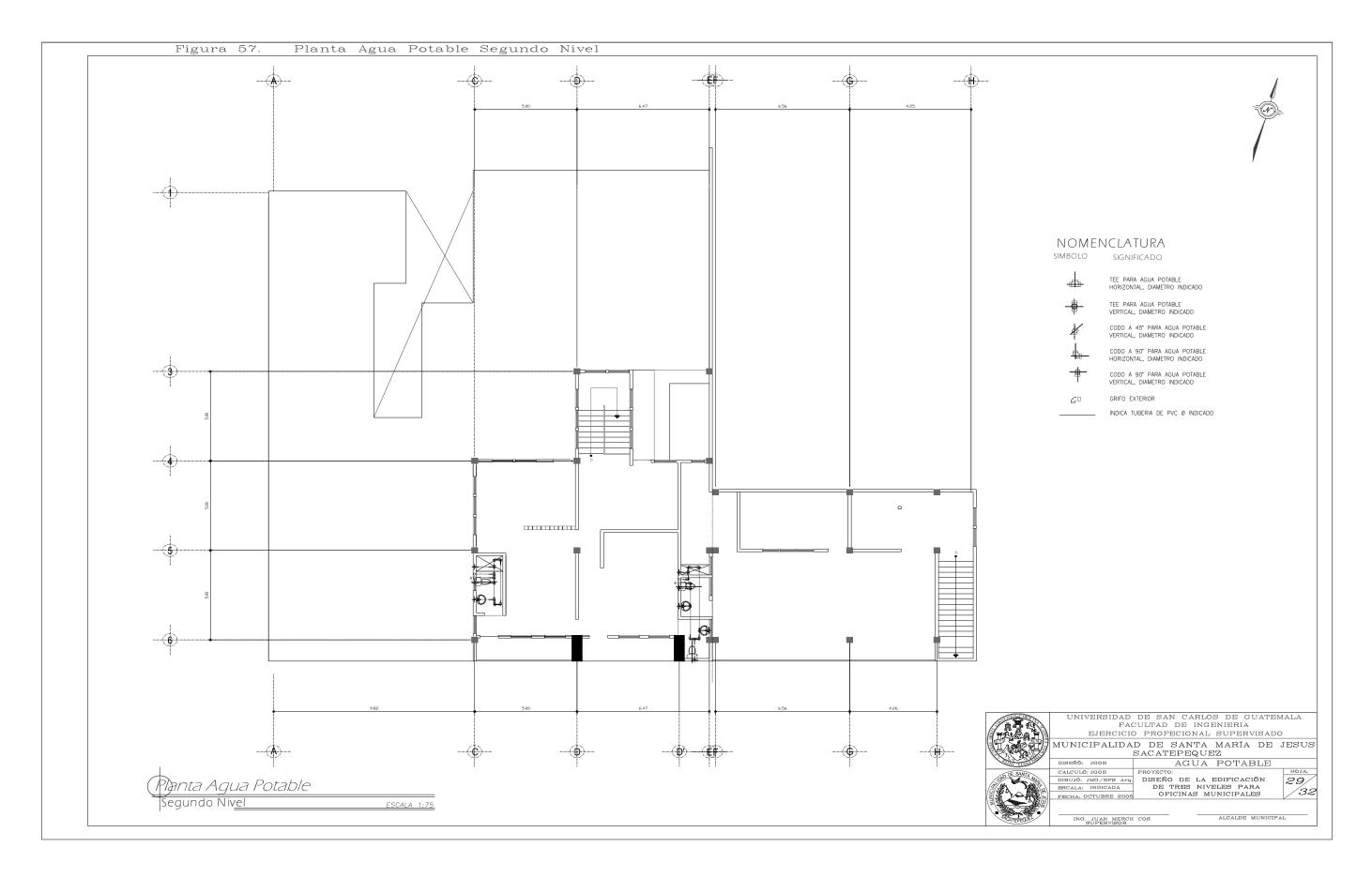


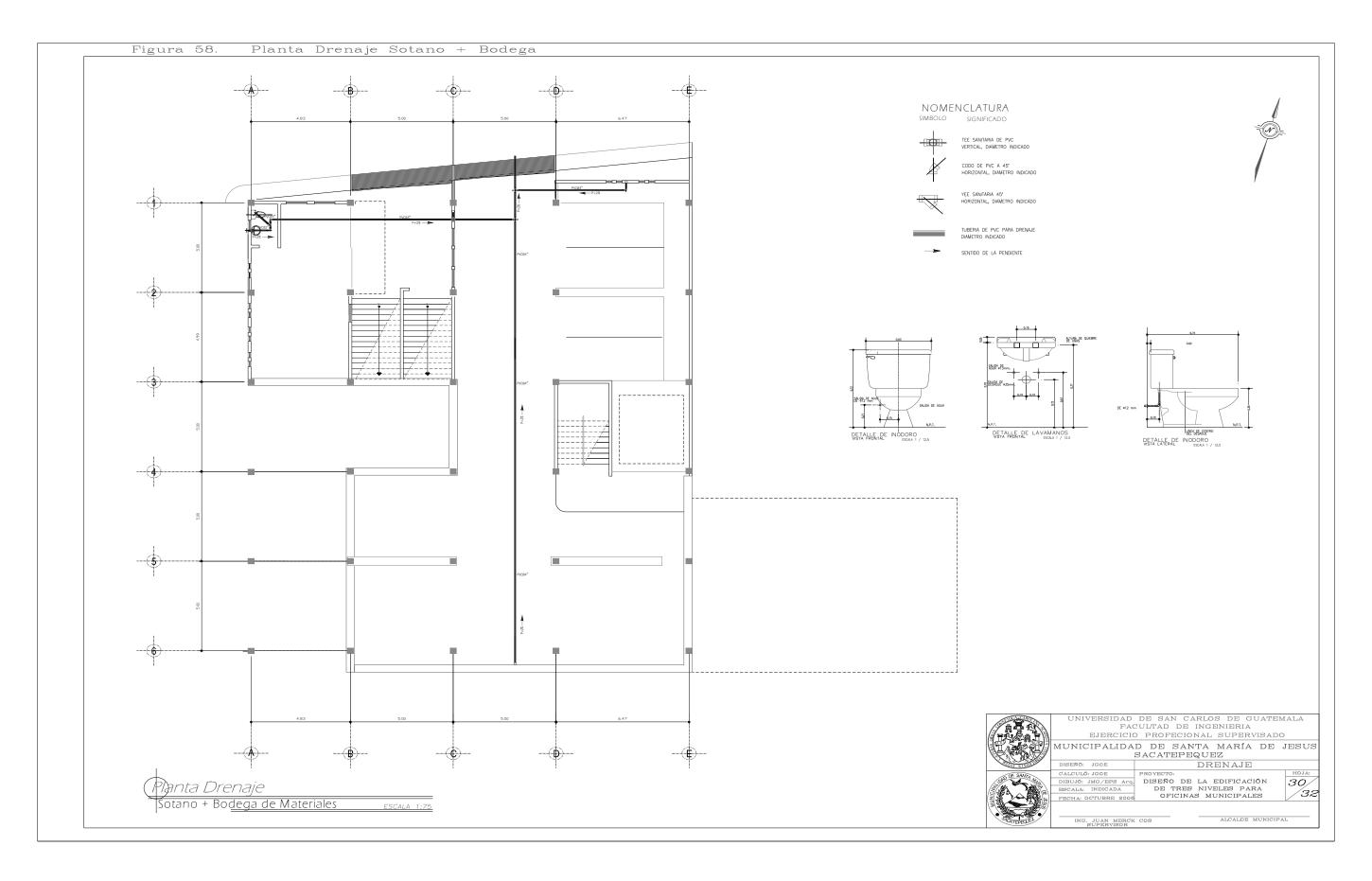


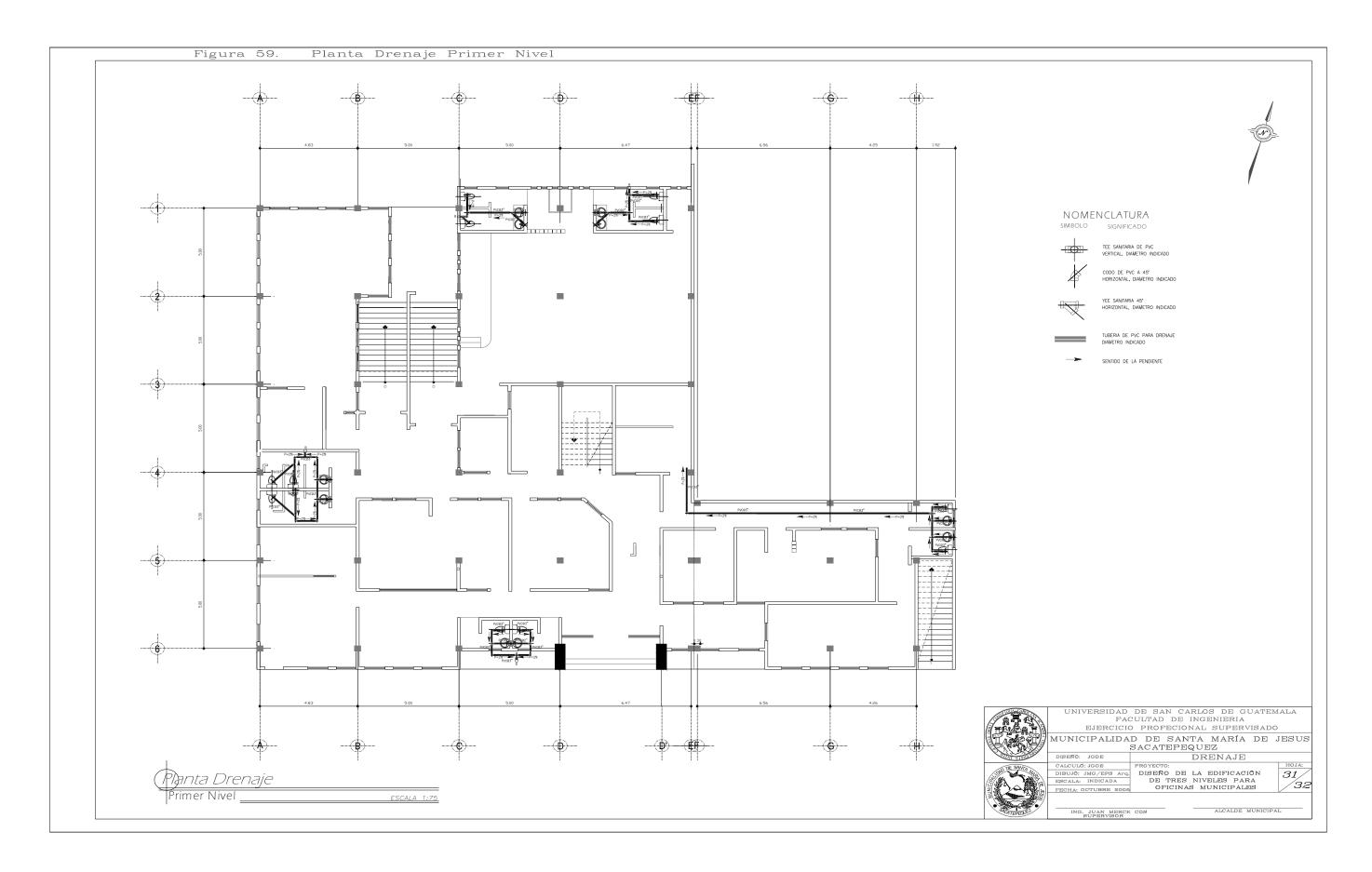


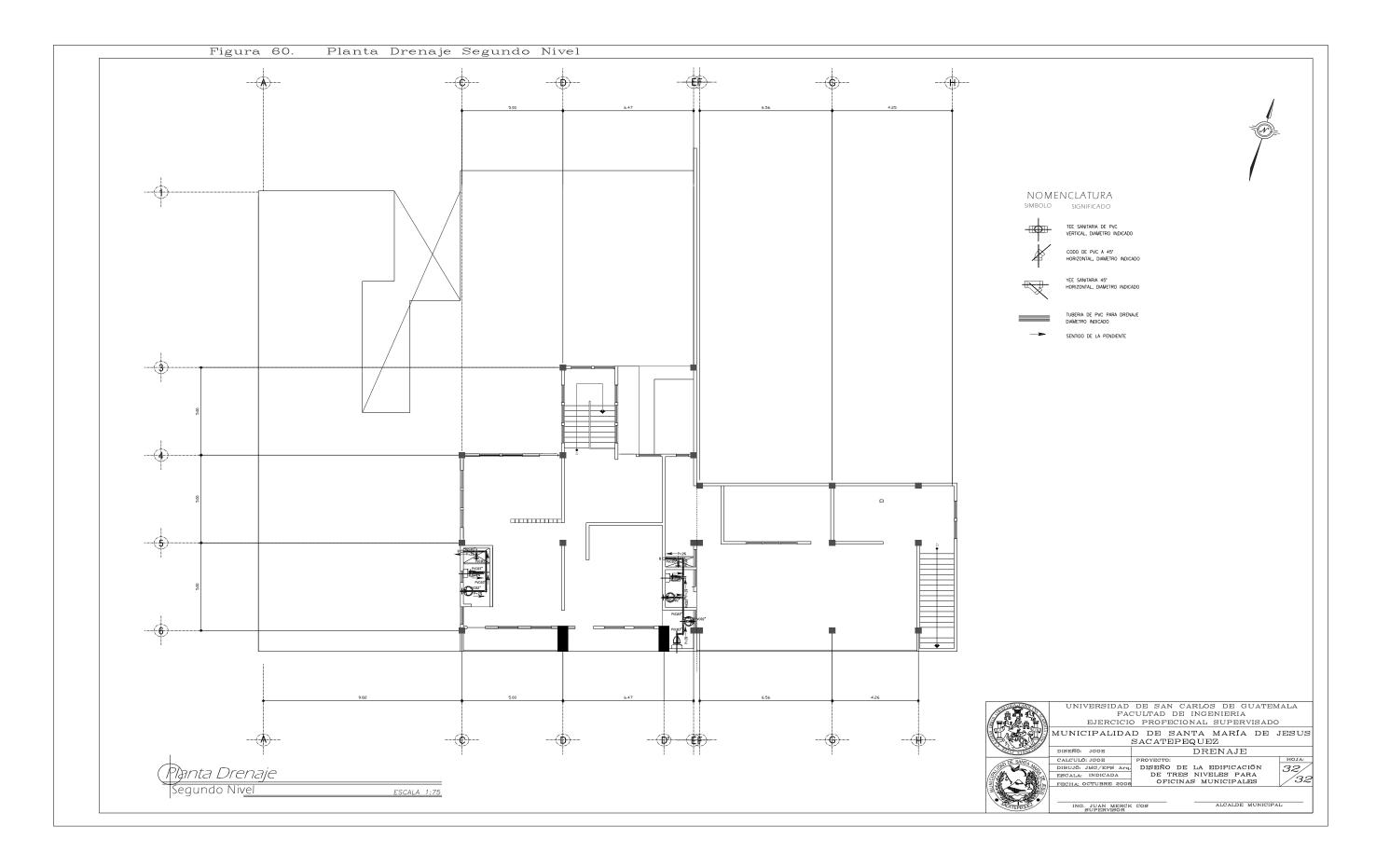


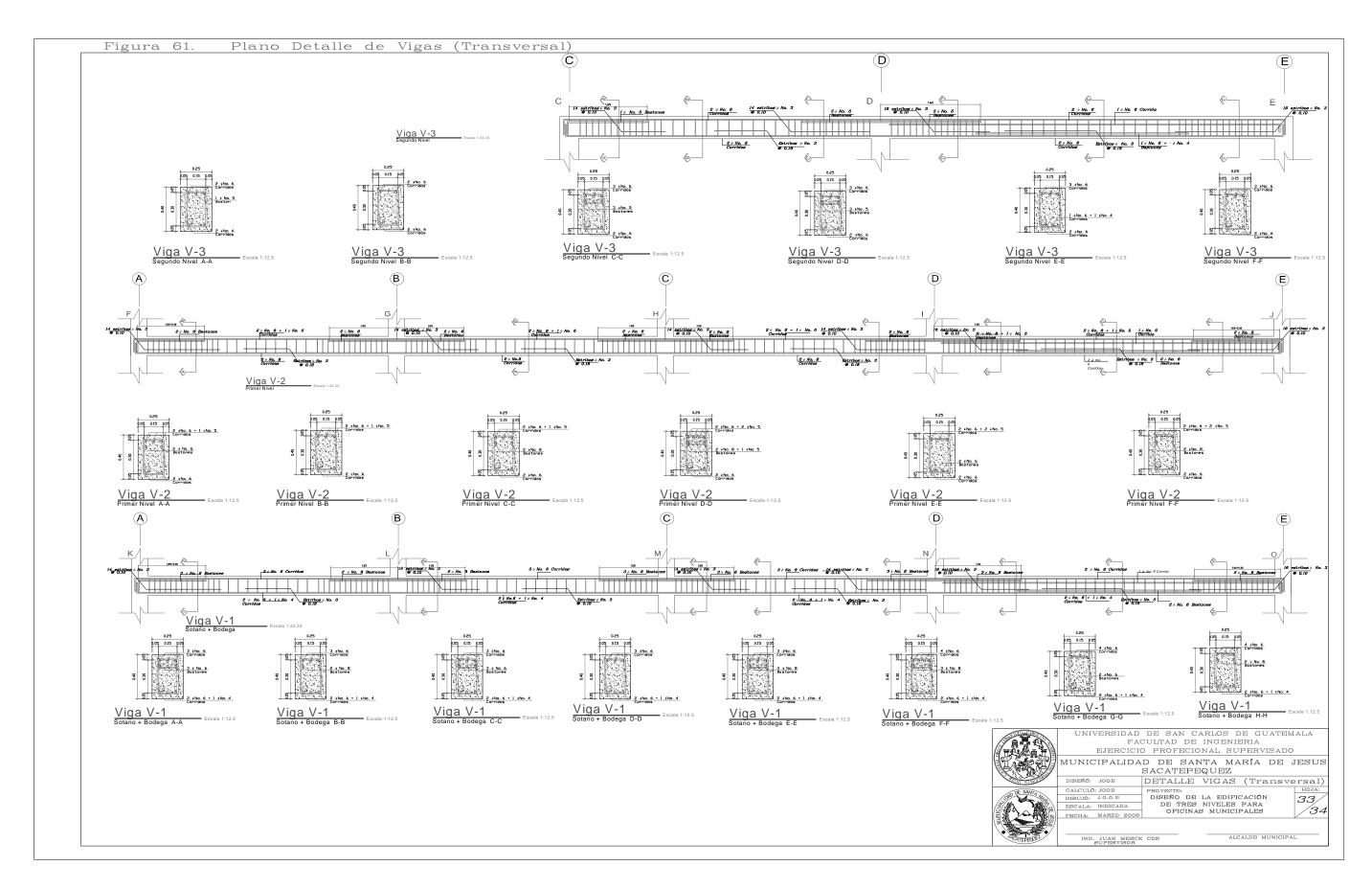


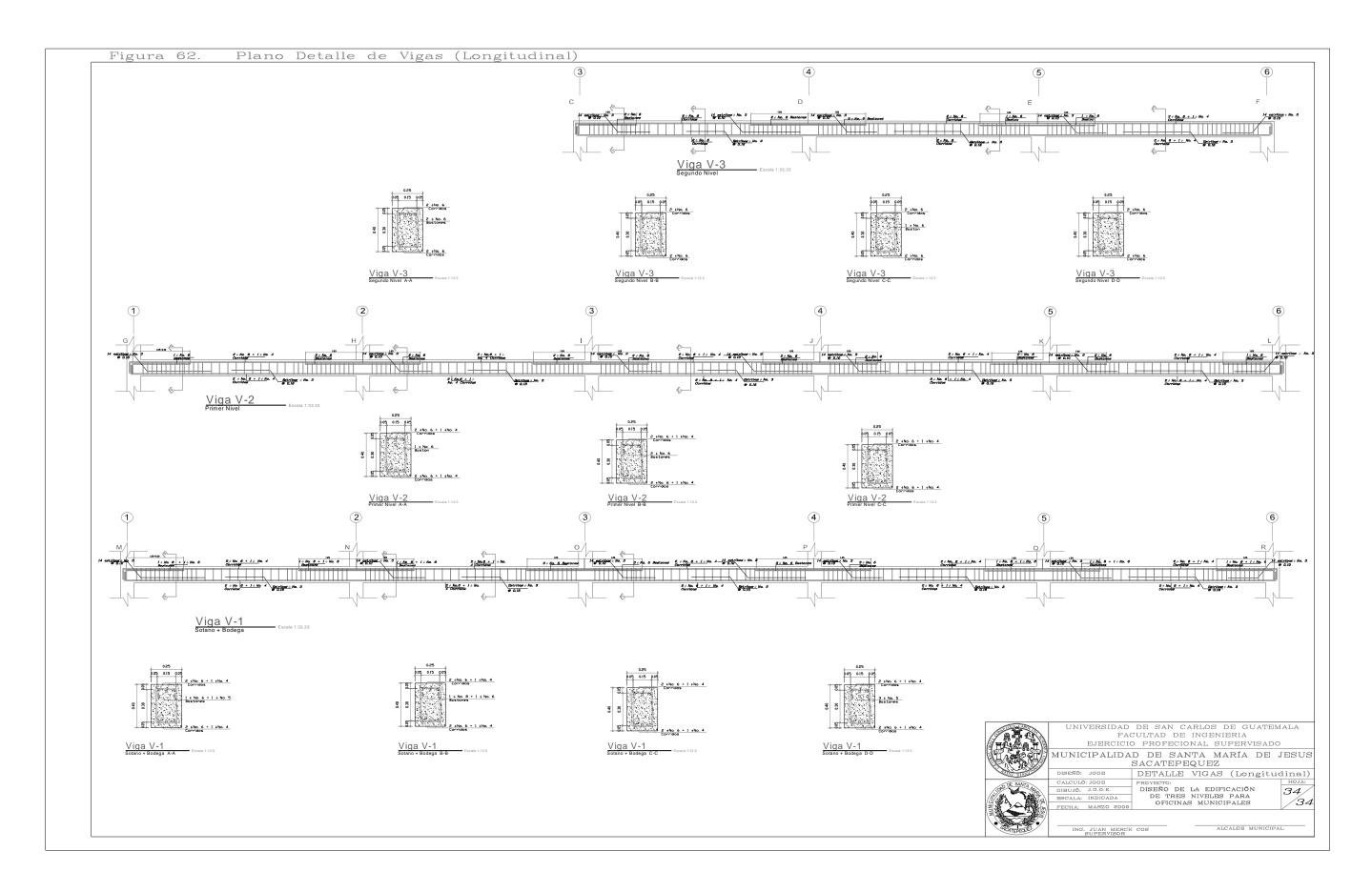


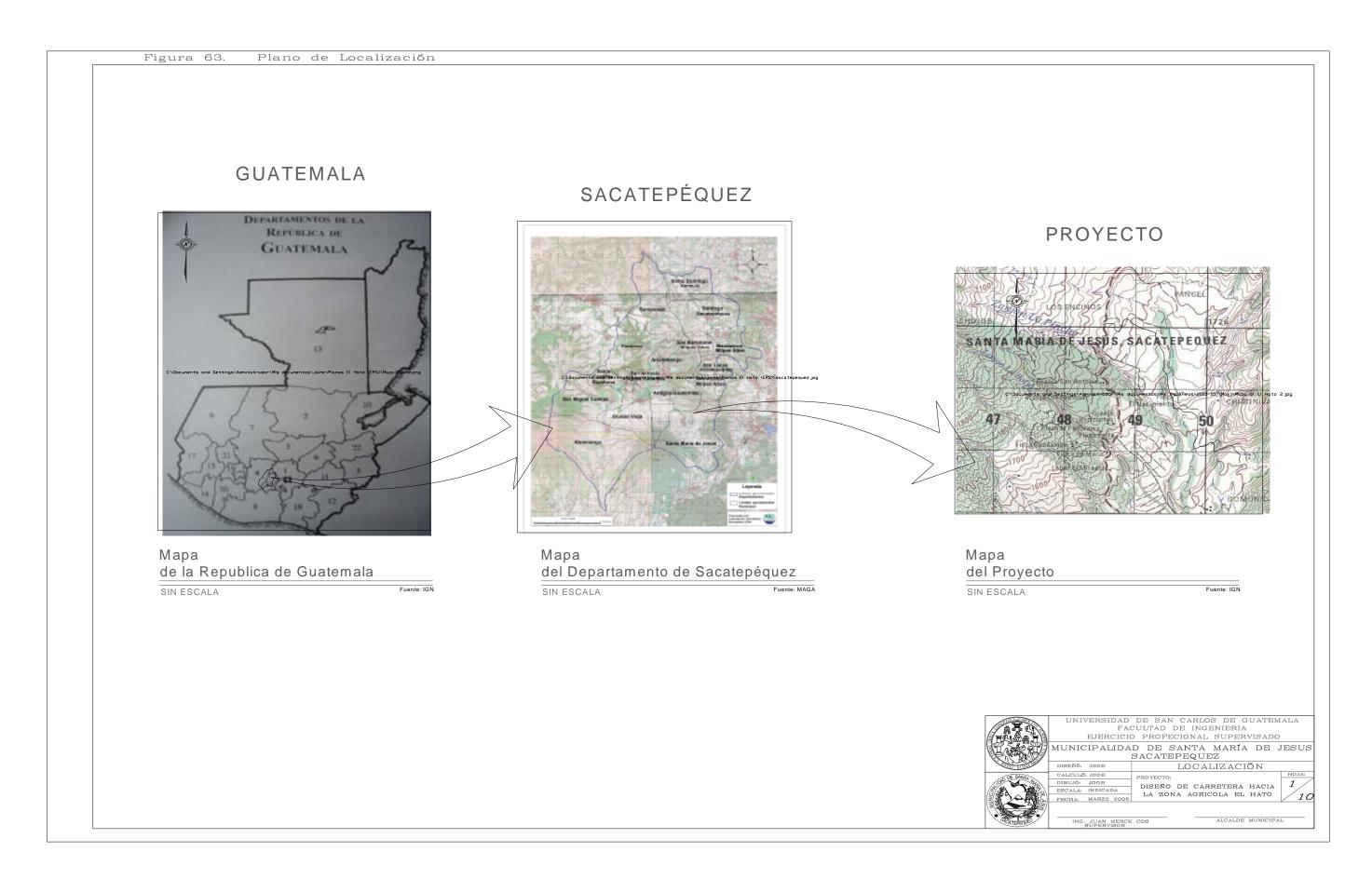


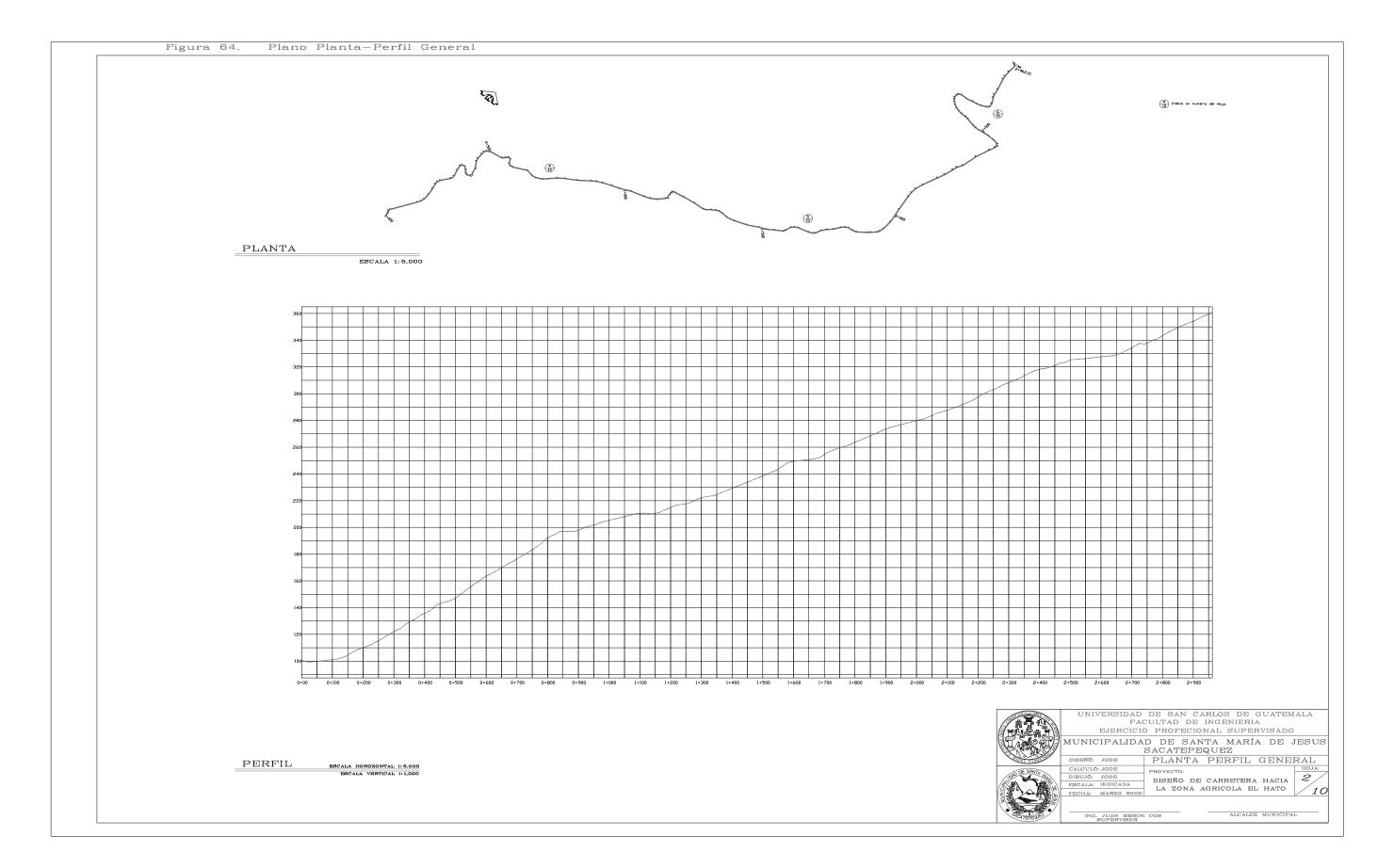


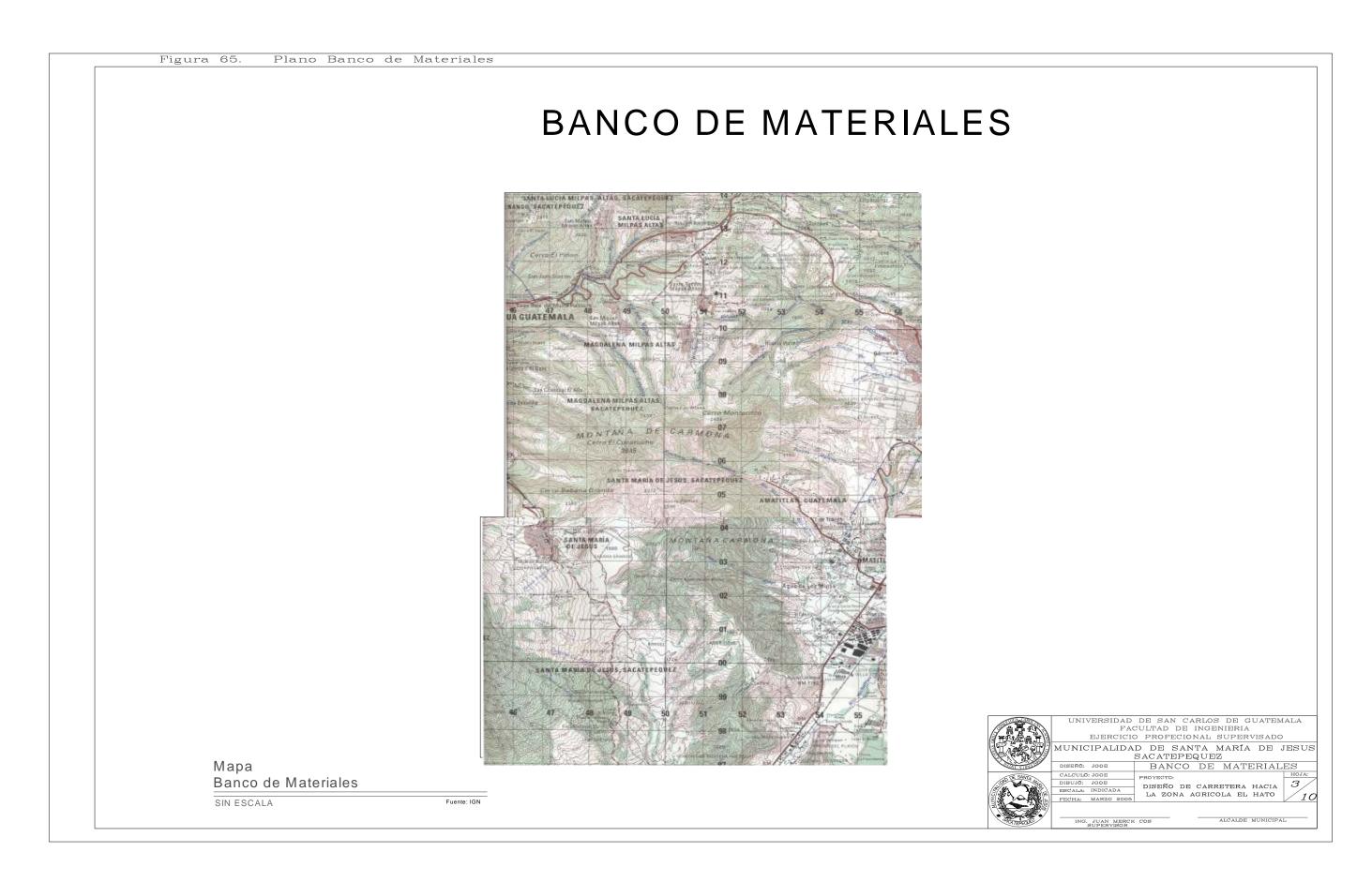


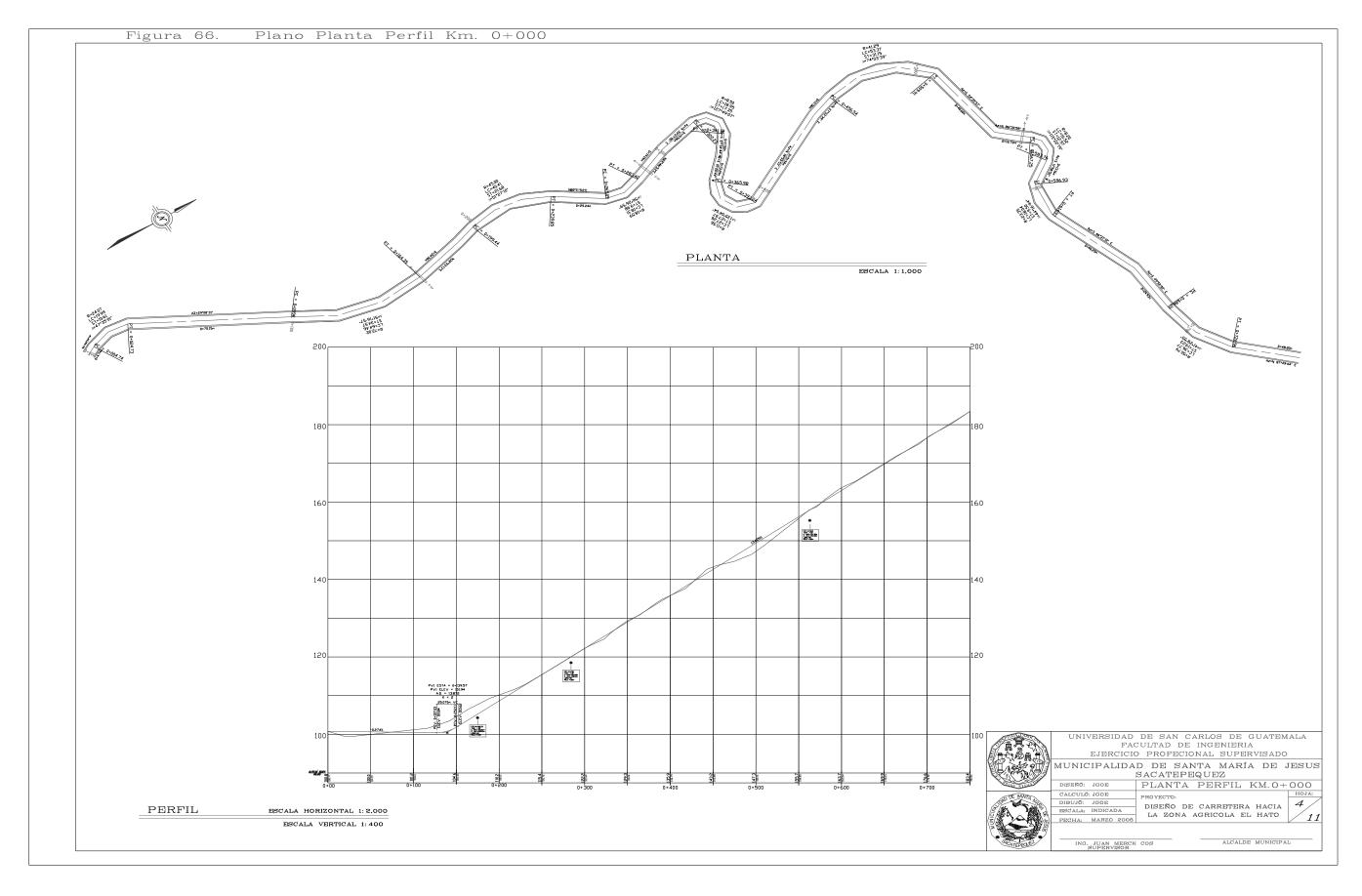


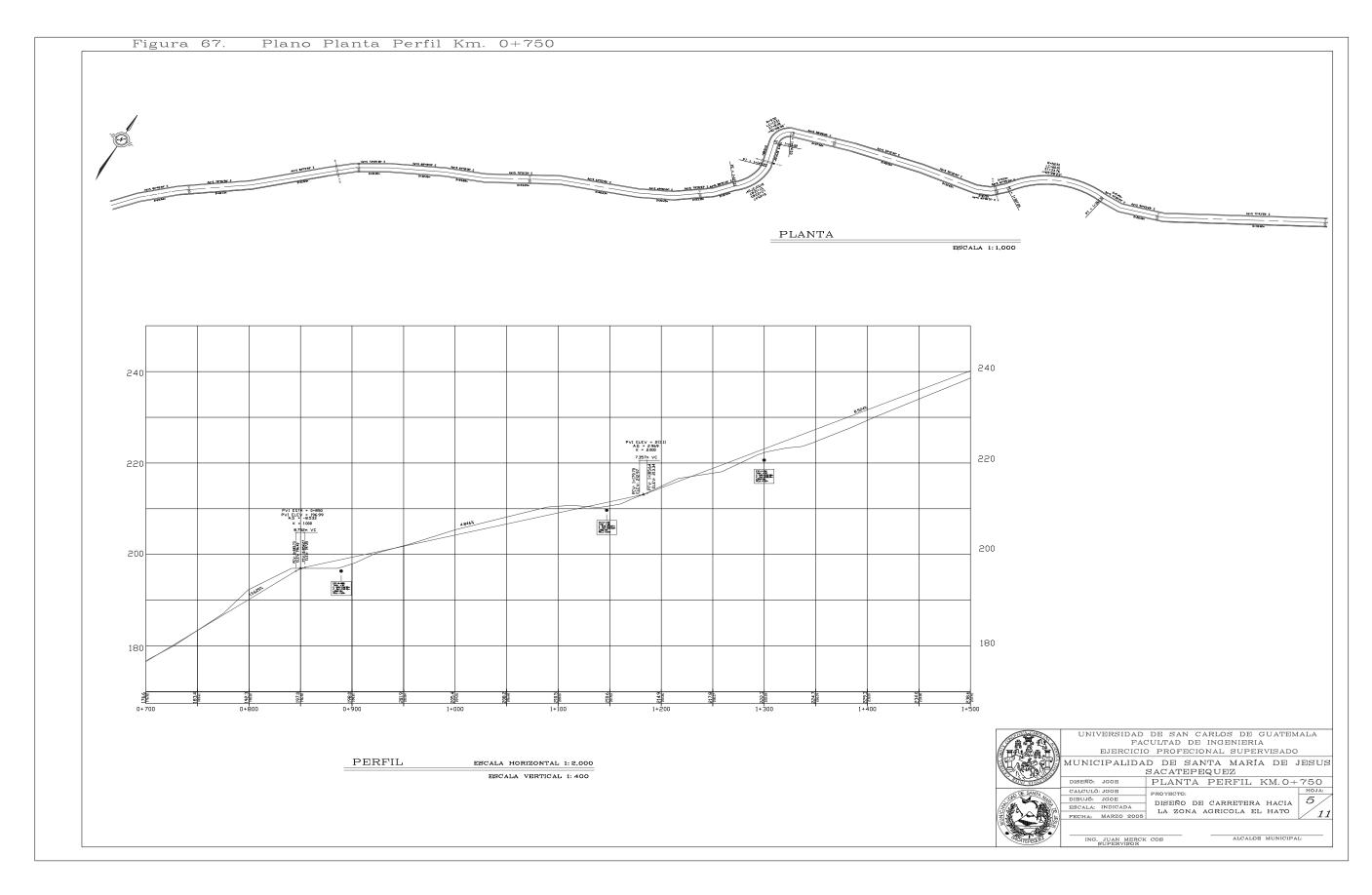


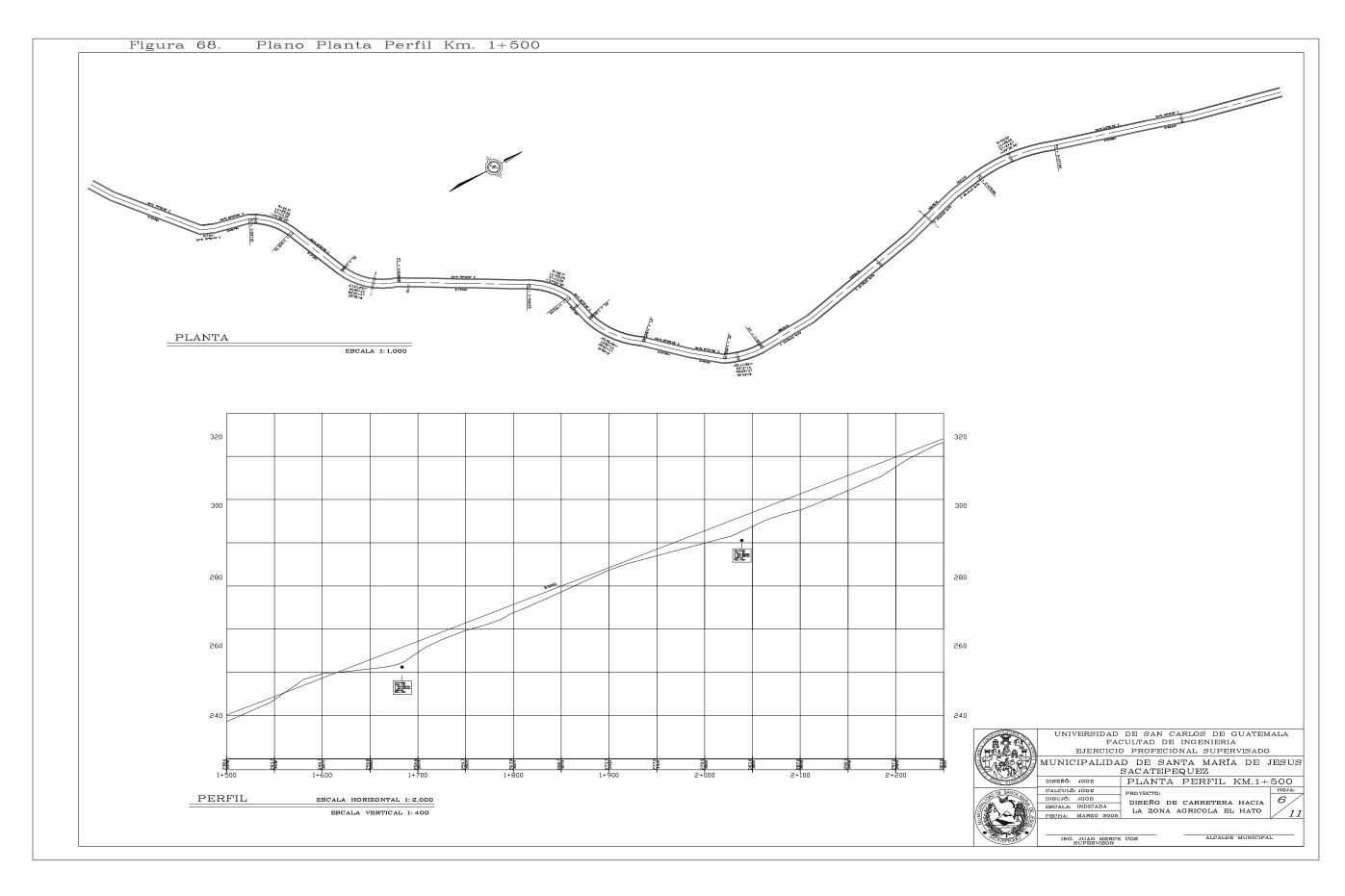


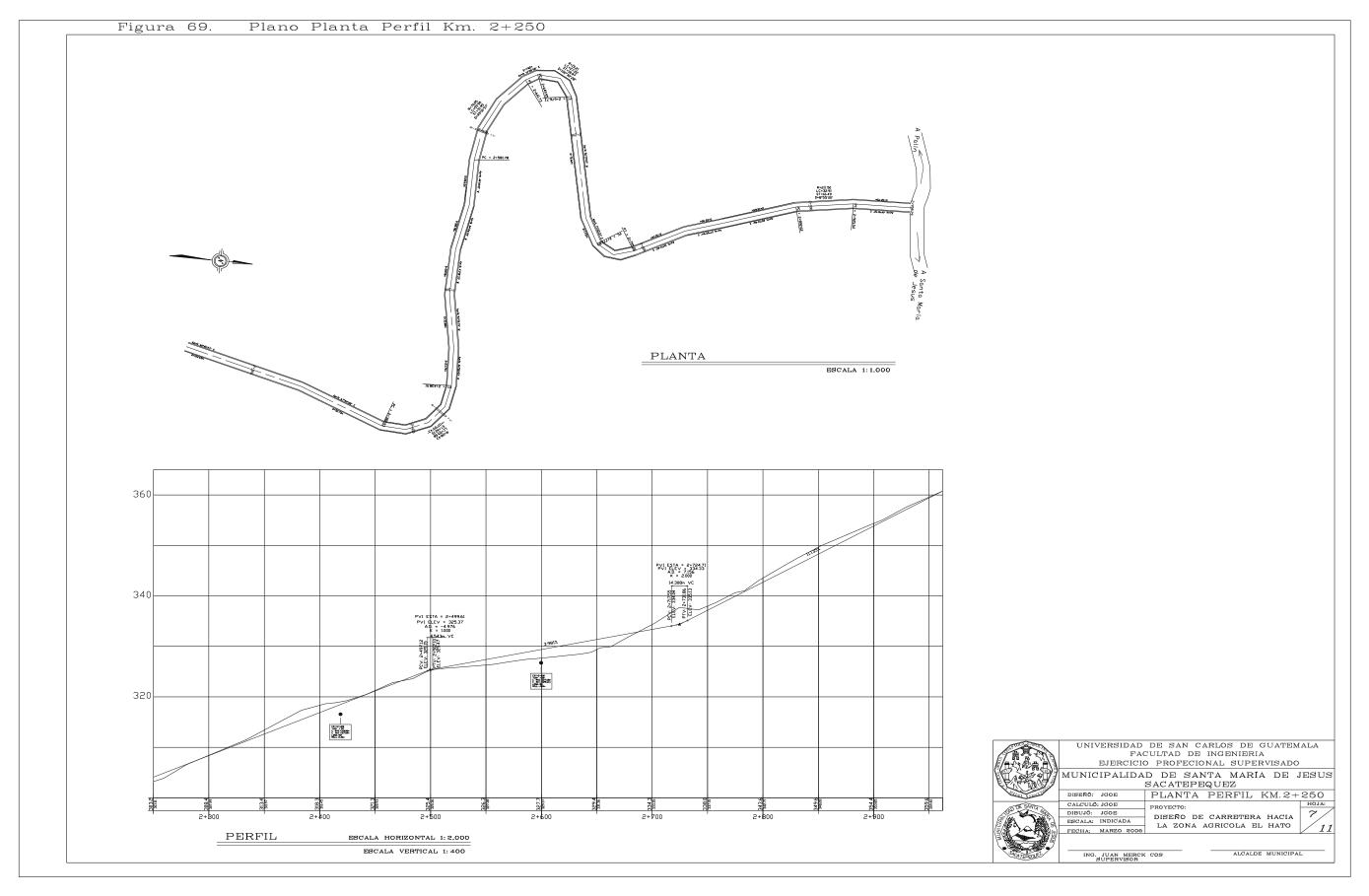


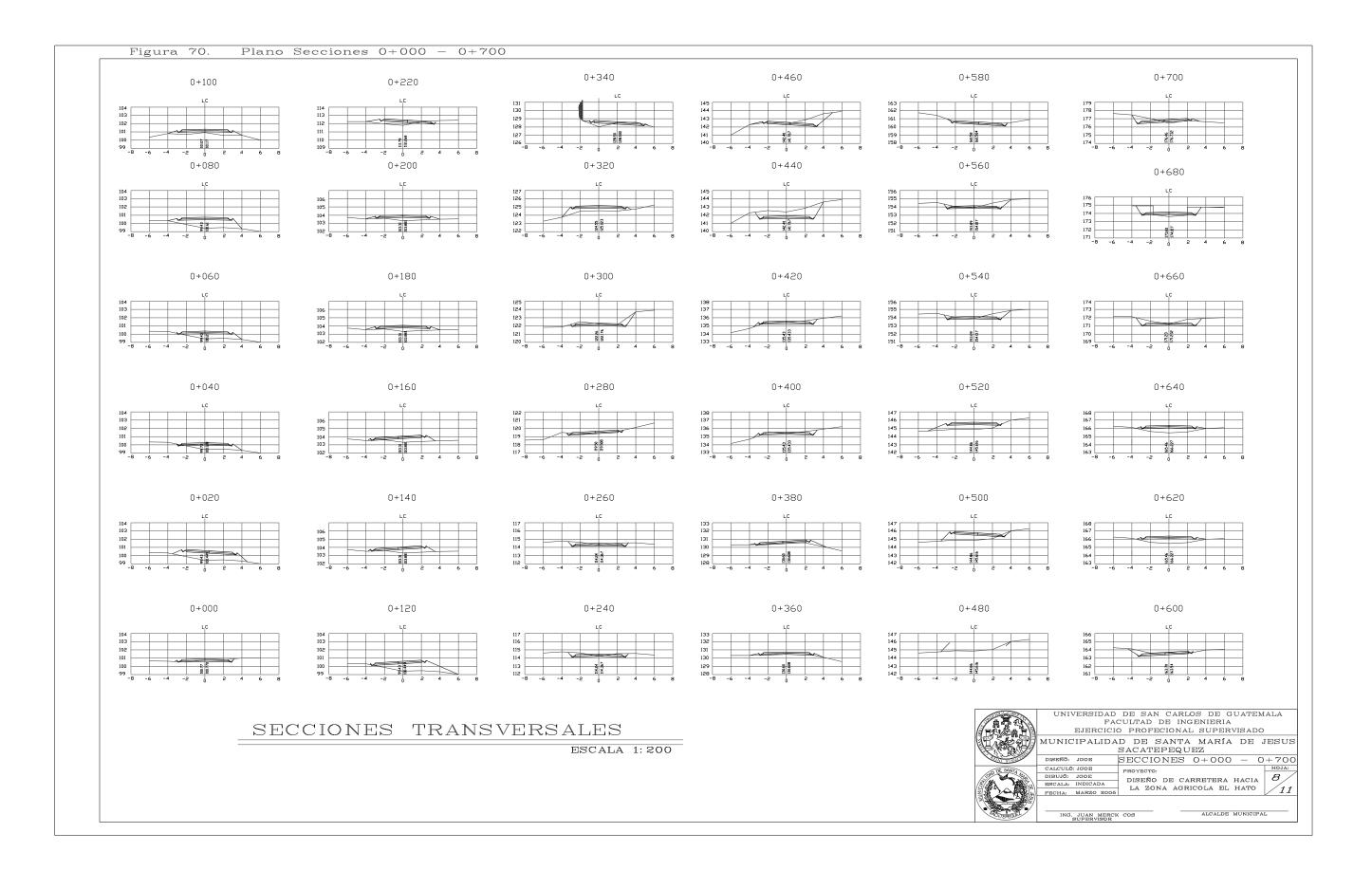


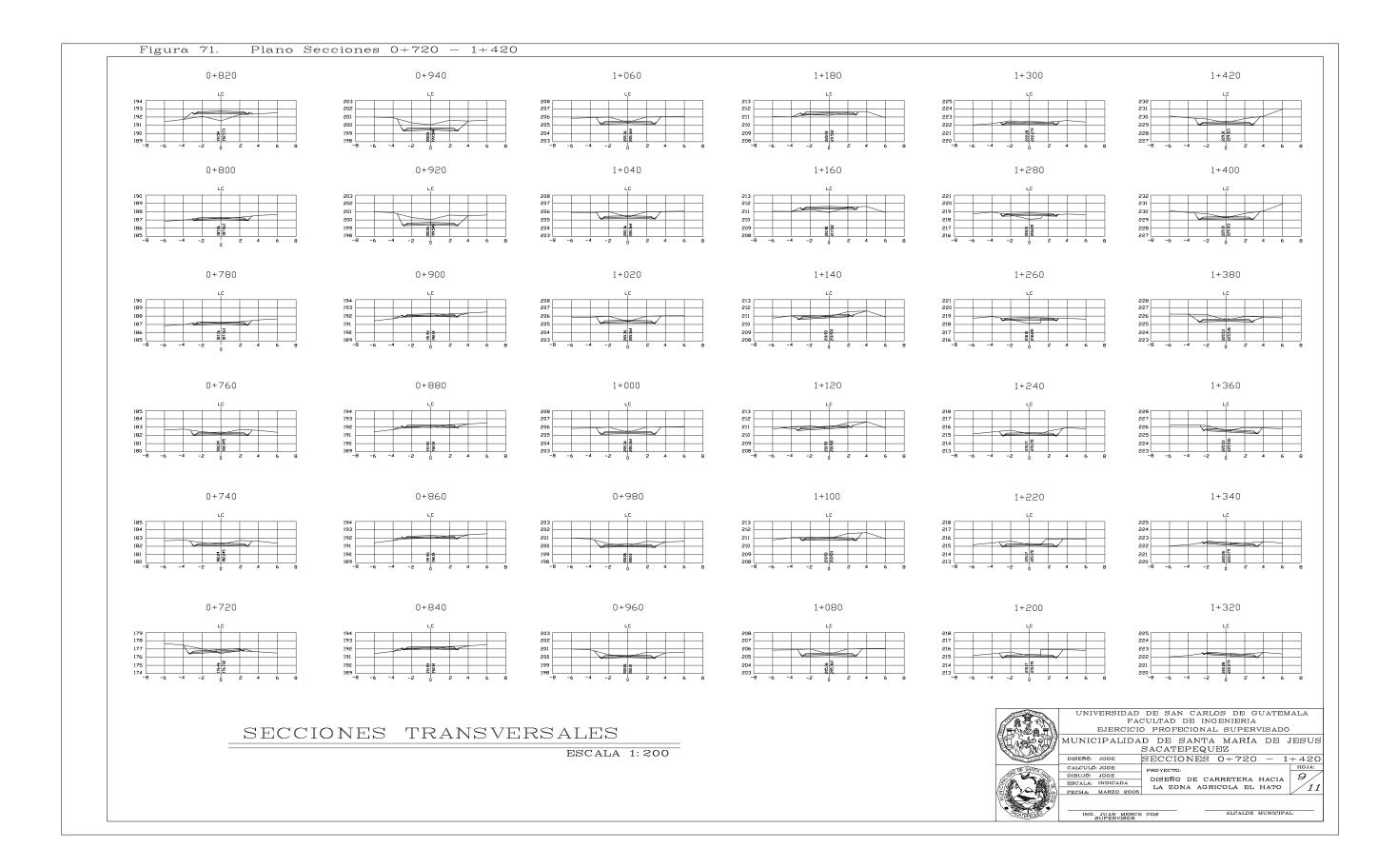


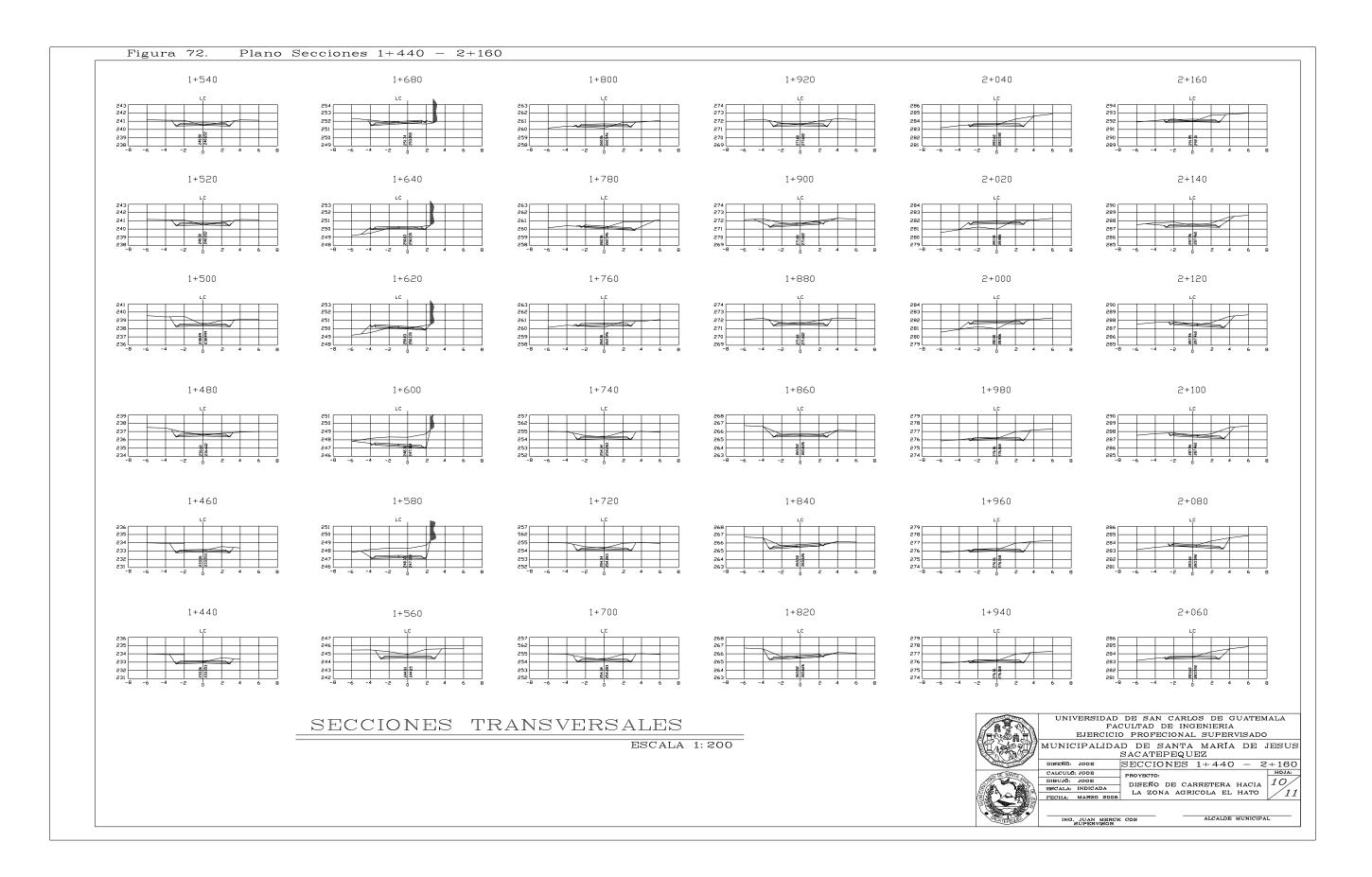












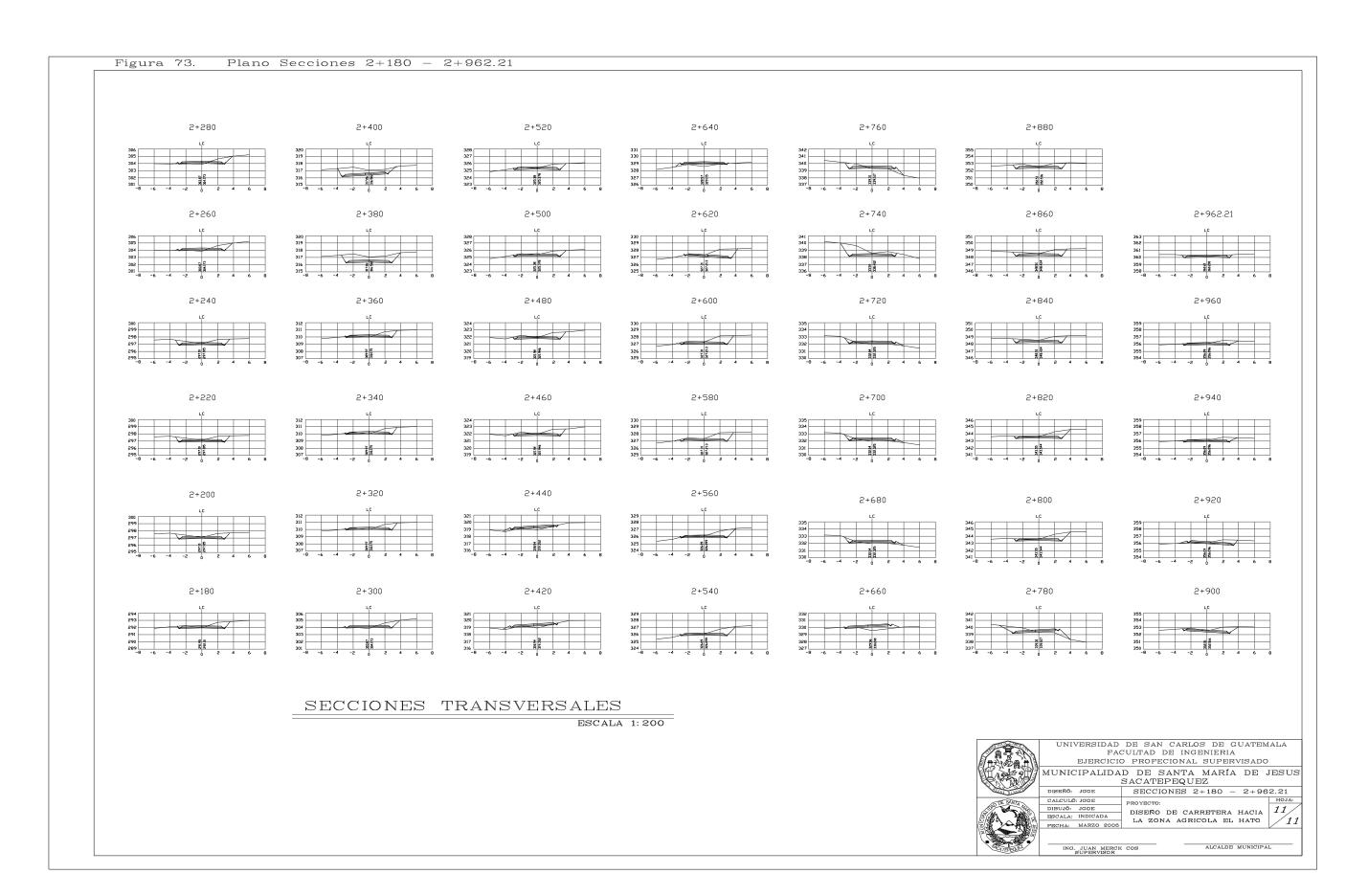
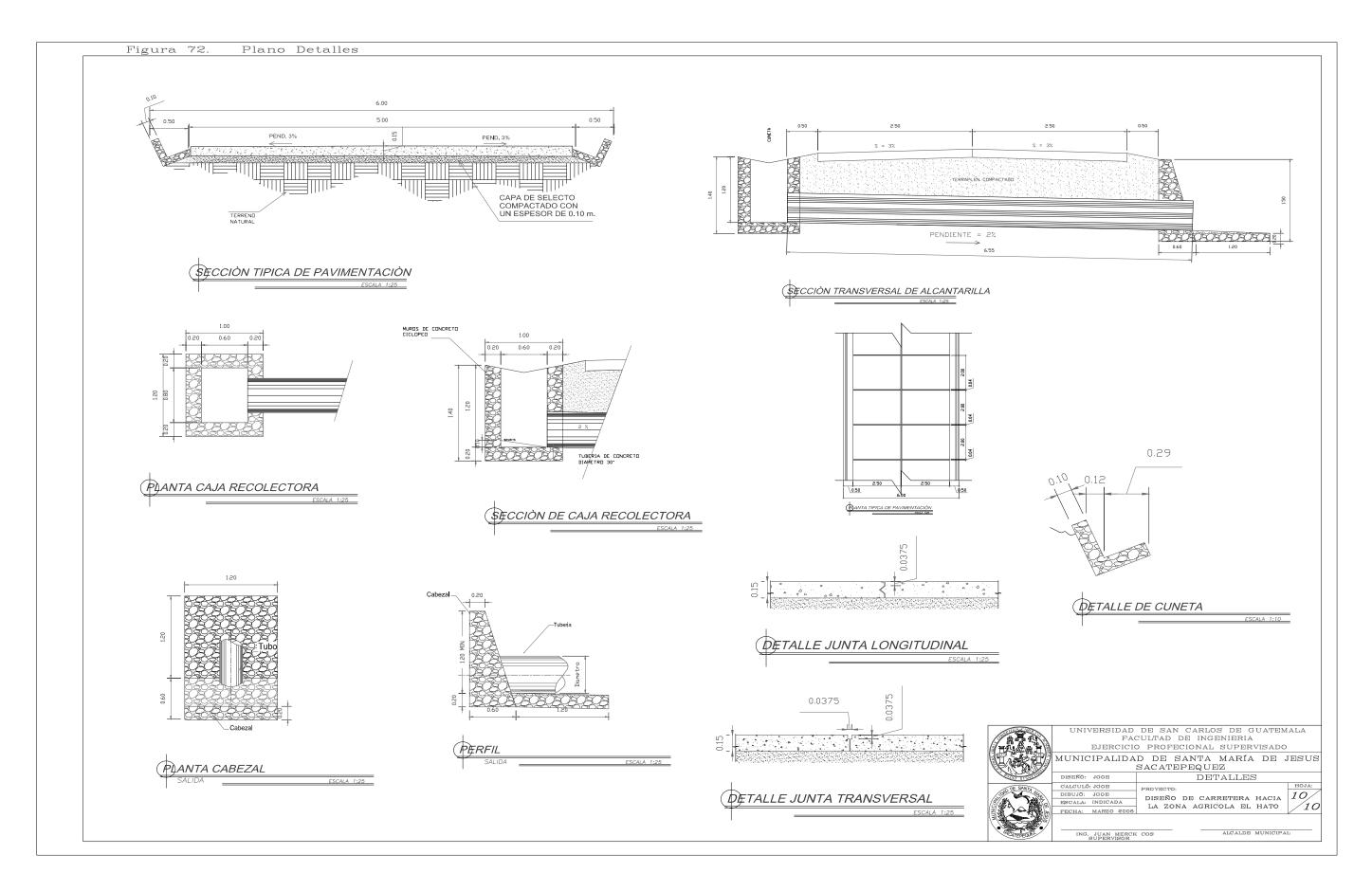


Figura 71. Plano Tablas

MOVIMIENTO DE TIERRAS

ESTACI Ö N		EAS Tuadrados		UMEN	VOLUMEN ACUMULADO Metros Cubicos	
	CORTE	RELLENO		Cubicos	CORTE	
0+000	0.000	0.416	CORTE	RELLENO		RELLENO
0+020	0.000	11,111	0.000	11.527	0.000	11.527
0+040	0.000	6.499	0.000	17.611	0.000	29.138
0+060	0.436	4,180	6.547	10.680	6.547	39.818
0+080	0.436	4,180	13.095	8.361	19.642	48,179
0+100	0.342	4.180	11.671	8.361	31.313	56.540
0+100	0.000	9.952	5.124	14.133	36.436	70.673
			0.000	16.163	36.436	86.836
0+140	0.000	6.211	27.937	6.913	64.374	93.749
0+160	1.862	0.703	47.496	3.366	111.869	97.115
0+180	1.304	2.663	23.665	6.888	135.534	104.003
0+200	0.274	4.225	4,106	11.355	139.640	115.358
0+220	0.000	7.130	0.043	7.874	139.683	123.233
0+240	0.003	0.744	5.005	0.777	144.688	124.009
0+260	0.331	0.033	22.508	0.101	167,196	124,110
0+280	1,170	0.068				
0+300	1.241	0.473	36.157	0.541	203.352	124.651
0+320	0.000	8.219	18,610	8,692	221,962	133,342
0+340	1.142	0.682	17.132	8.900	239.094	142.243
0+360	0.231	2.166	20.601	2.848	259.695	145.090
0+380	0.613	0.287	12.657	2.453	272.352	147.543
0+400	0.938	0.900	23.264	1,187	295.616	148.730
0+420	0.000	6.554	14,076	7,454	309.692	156,185
0+440	1.534	0.345	23.012	6.899	332.704	163.084
			27.412	4.870	360,116	167.954
0+460	0.293	4.525	4.399	8.793	364.516	176.747
0+480	0.000	4.268	5.791	7.861	370.307	184.607
0+500	0.386	3.593	7.629	3.754	377.936	188.362
0+520	0.123	0.161	6.720	0.184	384.656	188.545
0+540	0.325	0.023	29.831	0.023	414,487	188.568
0+560	1.663	0.000	28.756	0.142	443.244	188,710
0+580	0.254	0.142	3.807	2.010	447.051	190.720
0+600	0.000	1,869				
0+620	0.000	2.616	0.000	4.485	447.051	195.204
0+640	0.000	0.691	0.000	3.307	447.051	198.511
0+660	0.195	0.152	2.923	0.843	449.974	199,355
0+680	0.003	1.186	2.975	1.338	452.949	200.693
0+700	0.000	1,449	0.052	2.635	453.001	203.327
0+720	0.000	3.375	0.000	4,824	453.001	208.151
0+740	0.000	0.568	1.491	3.944	454.492	212.095
			10,435	1,513	464.927	213.608
0+760	0.596	0.945	11.545	2.518	476.472	216.125
0+780	0.173	1.573	3.058	3.965	479.529	220.090
0+800	0.030	2.392	140.639	2.392	620.168	222.482
0+820	9.345	0.000	498.633	0.000	1118.801	222,482
0+840	23.897	0.000	611,443	0.000	1730.244	222.482
0+860	16.866	0.000	327.908	0.037	2058.152	222.519
0+880	4.994	0.037	81.905	1.678	2140.057	224.197
0+900	0.466	1.641	23.791	1.798	2163.848	225.995
0+920	1.120	0.157				
0+940	0.222	0.746	20.125	0.902	2183.973	226.897
0+960	0.311	0.353	7.993	1.098	2191.966	227.996
0+980	0.397	0.389	10.625	0.741	2202.590	228.737
1+000	0.063	0.466	6,894	0.854	2209.484	229.591
1+020	0.153	0.093	3.236	0.559	2212.720	230.150
1+040	0.151	0.000	4.562	0.093	2217.283	230.244
1+060	0.335	0.415	7.295	0.415	2224.578	230.658
		0.438	16.482	0.853	2241.060	231.511
1+080	0.764		12.853	1,694	2253,913	233,205
1+100	0.093	1.256	27.185	1.256	2281.098	234.461
1+120	1.719	0.000	27.682	0.739	2308.780	235.200
1+140	0.127	0.739	1.898	2.322	2310.678	237.522
1+160	0.000	1.582	0.000	4.655	2310.678	242.177
1+180	0.000	3.073	5.536	3.105	2316.214	245.282
1+200	0.369	0.033	69.534	0.033	2385.748	245.262
1+220	4.267	0.000			2477.401	245.315
1+240	1.844	0.000	91.653	0.000		
1+260	0.000	1.653	27.656	1.653	2505.057	246.968
1+280	0.021	0.558	0.311	2.211	2505.368	249.178
1+300	0.000	3.196	0.311	3.754	2505.679	252.933
1+320	0.539	0.546	8.083	3.742	2513,762	256.675
1+340	0.339	0.343	12.218	0.889	2525.981	257.564
			12.897	0.344	2538.878	257.908
1+360	0.584	0.000	10.143	1.630	2549.020	259.538
1+380	0.092	1.629	3.818	5.580	2552.839	265,118
1+400	0.163	3.950	4.490	7.936	2557.329	273.053
1+420	0.137	3.985	3,338	8,058	2560.667	281,111
1+440	0.086	4.073	1.596	8.721	2562.263	289.833
1+460	0.021	4.648	0.310	9.436	2562.263	299.268
		4.788		, p,+30	2002.073	∠33.∠00

	AREAS		VOLUMEN		VOLUMEN ACUMULADO	
ESTACIÓN -	Metros Cuadrados		Metros Cubicos		Metros Cubicos	
	CORTE	RELLENO	CORTE	RELLENO	CORTE	RELLENC
1+500	0.302	5.163	4.536	10.513	2571.646	319.732
1+520	0.000	5.351 6.561	0.155	11,911	2571.801	331,644
1+560	1,130	4,781	17.100	11.342	2588.901	342.985
1+560	4.263	0.000	80.890	4,781	2669.791	347.766
1+600	0.000	0.404	63.946	0.404	2733.737	348.170
1+620	0.694	0.038	10.404	0.442	2744.140	348.612
1+640	0.670	0.029	20.452	0.067	2764.593	348.679
1+660	0.000	4.096	10.050	4.125	2774.643	352.803
1+680	0.000	15.014	0.002	19.110	2774.645	371.914
1+700	0.678	0.308	10.170 40.929	15.323	2784.815 2825.743	387.236 387.544
1+720	2.051	0.000	34.485	0.308 3.225	2860.229	390.769
1+740	0.248	3.225	4.320	4.268	2864.548	395.037
1+760	0.040	1.043	0.593	2.808	2865.142	397.844
1+780	0.000	1,765	3.772	2.084	2868.913	399.928
1+800	0.251	0.319	4.120	14.403	2873.033	414.331
1+820	0.023	14.084	0.640	30.160	2873.673	444.491
1+840	0.019	16.076	2.184	31.959	2875.857	476.450
1+860	0.126	15.884	4.390	39.834	2880.247	516.284
1+880	0.167	23.950	2.698	46.562	2882.944	562.846
1+900	0.013	22.612	7.273	46.228	2890.217	609.075
1+920	0.472	23.616	8.173	47.917	2898.390	656.992
1+940	0.073	24.301 24.290	1.099	48.591	2899.490	705.583
1+980	0.000	26.787	0.000	51.077	2899.490	756.660
2+000	0.000	29.475	0.000	56.262	2899.490	812.922
2+020	0.000	31,448	0.000	60.923	2899.490	873.845
2+040	0.000	26.468	0.000	57.916	2899.490	931.761
2+060	0.000	21.658	0.000	48.125	2899.490	979.886
2+080	0.317	18.468	4.753	40.126	2904.243	1020.012
2+100	0.024	19.130	5.116	37.598	2909.359	1057.610
2+120	0.220	20.260	3.664	39.390	2913.023	1096.999
2+140	0.276	23.497	7.448	43.756	2920.471	1140.755
2+160	0.093	24.023	5.537	47.520	2926.008	1188.275
2+180	0.000	26.010	1.391	50.033	2927.399	1238.308
2+200	0.252	26.359	3.773	52.369	2931.172	1290.676
2+220	1.230	27.624	22.224	53.983	2953.396	1344.659
2+240	1,141	27.750	35.559	55.374 63.331	2988.956	1400.033
2+260	0.000	35.581	17.109 15.642	71.047	3006.064 3021.706	1463.365 1534.411
2+280	1.043	35.465	21.955	76.664	3043.661	1611.075
2+300	0.421	41.199	7.560	83.248	3051.221	1694.323
2+320	0.083	42.049	1,779	94.587	3053.000	1788.910
2+340	0.035	52.538	13.851	103.347	3066.851	1892.257
2+360	0.888	50.810	44.302	99.980	3111.153	1992.237
2+380	2.066	49,170	35.195	114,159	3146.347	2106.396
2+400	0.281	64.989	4.211	146.636	3150.558	2253.033
2+420	0.000	81.647	0.000	122.627	3150.558	2375.660
2+440	0.000	40.979	7.038	83.004	3157.596	2458.663
2+460	0.469	42.024	9.556	43.261	3167,152	2501.924
2+480	0.168	1.237	12.709	1.678	3179.861	2503.602
2+500 2+520	0.679	0.441	23.277	0.929	3203.139	2504.53
2+520	0.872	0.489	25.291	0.890	3228.430	2505.42
2+540	0.656	0.398	22.039	0.800	3250.469	2506.22
2+580	1.131	0.082	26.795	0.480	3277.265	2506.70
2+600	0.677	0.462	27,114	0.544	3304,379	2507,244
2+620	0.059	1.807	11.031	2.269	3315.410	2509.513
2+640	0.000	3.606	0.878	5.414	3316.288	2514.927
2+660	0.000	10.498	0.000	14.104	3316.288	2529.03
2+680	0.000	1.350	0.001	11.848	3316.289	2540.879
2+700	0.492	0.201	7.384	1.551	3323.673	2542.430
2+720	8.133	0.000	129.380	0.201	3453.053	2542.632
2+740	1.545	0.124	145.166	0.124	3598.219	2542.756
2+760	0.040	1,445	23.762	1.569	3621.980 3622.577	2544.325
2+780	0.000	2.974	0.597	4.419 18.443	3622.577	2548.748 2567.188
2+800	0.001	15.469	2.498	29.971	3625.089	2597.188
2+820	0.166	14.502	3.481	28.859	3628.569	2626.018
2+840	0.066	14.357	1.353	28.105	3629.922	2654.123
2+860	0.024	13.748	0.656	27.533	3630.578	2681.656
2+880	0.020	13.785	0.375	27.340	3630.953	2708.995
2+900	0.005	13.555	0.107	45.341	3631.060	2754.336
2+920	0.002	31.786	0.078	68.724	3631.138	2823.060
2+940	0.003	36.939	0.051	36.939	3631.189	2859.999
2+960	0.000	0.000	0.000	0.000	3631.189	2859.999


TOTAL CORTE: 3,631.20 M3 TOTAL RELLENO: 2,860.00 M3

TUBERIAS						
ESTACIÓN	TUBERIA	LONGITUD	CAJA Y DESFOGE			
0+139.57	1 Ø 30"	8.00 MT/S.	X			
0+164.23	1 0 30"	8.00 MTS.	X			
0+290.00	1 0 30"	8.00 MTS.	X			
0+460.00	1 0 30"	8.00 MT/S.	X			
0+563.00	1 0 30"	8.00 MTS.	X			
0+723.00	1 0 30"	8.00 MT;S.	X			
0+888.00	1 0 30"	8.00 MT/S	X			
1+148.00	1 0 30"	8.00 MTS.	X			
1+300.00	1 0 30"	8.00 MTS.	Х			
1+500.00	1 0 30"	8.00 MT;S.	X			
1+680.00	1 0 30"	8.00 MT/S.	Х			
2+040.00	1 0 30"	8.00 MT;S.	X			
2+250.00	1 0 30"	8.00 MT/S.	X			
2+420.00	1 0 30"	8.00 MT/S.	X			
2+600.00	1 0 30"	8.00 MTS.	X			
2+724.71	1 0 30"	8.00 MTS.	X			

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERIA EJERCICIO PROFECIONAL SUPERVISADO

ING. JUAN MERCK COS ALCALDE MUNICIPAL SUPERVISOR

