

DISEÑO DEL SISTEMA DE ALCANTARILLADO SANITARIO PARA LA COLONIA LOS CERRITOS, ALDEA BUENA VISTA Y DISEÑO DEL BULEVAR PRINCIPAL DEL CENTRO UNIVERSITARIO DE LA VILLA DEL MUNICIPIO DE CHIMALTENANGO, DEPARTAMENTO DE CHIMALTENANGO

Darwin Alfredo Marroquín Guzmán

Asesorado por la Inga. Christa Classon de Pinto

Guatemala, enero de 2012

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA

DISEÑO DEL SISTEMA DE ALCANTARILLADO SANITARIO PARA LA COLONIA LOS
CERRITOS, ALDEA BUENA VISTA Y DISEÑO DEL BULEVAR PRINCIPAL DEL CENTRO
UNIVERSITARIO DE LA VILLA DEL MUNICIPIO DE CHIMALTENANGO, DEPARTAMENTO
DE CHIMALTENANGO

TRABAJO DE GRADUACIÓN

PRESENTADO A LA JUNTA DIRECTIVA DE LA FACULTAD DE INGENIERÍA
POR

DARWIN ALFREDO MARROQUÍN GUZMÁN

ASESORADO POR LA INGA. CHRISTA CLASSON DE PINTO

AL CONFERÍRSELE EL TÍTULO DE

INGENIERO CIVIL

GUATEMALA, ENERO DE 2012

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA

NÓMINA DE JUNTA DIRECTIVA

DECANO	Ing. Murphy Olympo Paiz Recinos
VOCAL I	Ing. Alfredo Enrique Beber Aceituno
VOCAL II	Ing. Pedro Antonio Aguilar Polanco
VOCAL III	Ing. Miguel Ángel Dávila Calderón
VOCAL IV	Br. Juan Carlos Molina Jiménez
VOCAL V	Br. Mario Maldonado Muralles
SECRETARIO	Ing. Hugo Humberto Rivera Pérez

TRIBUNAL QUE PRACTICÓ EL EXAMEN GENERAL PRIVADO

DECANO Ing. Murphy Olympo Paiz Recinos

EXAMINADOR Ing. Hugo Leonel Montenegro Franco

EXAMINADOR Ing. Silvio José Rodríguez Serrano

EXAMINADORA Inga. Christa del Rosario Classon de Pinto

SECRETARIO Ing. Hugo Humberto Rivera Pérez

HONORABLE TRIBUNAL EXAMINADOR

En cumplimiento con los preceptos que establece la ley de la Universidad de San Carlos de Guatemala, presento a su consideración mi trabajo de graduación titulado:

DISEÑO DEL SISTEMA DE ALCANTARILLADO SANITARIO PARA LA COLONIA LOS CERRITOS, ALDEA BUENA VISTA Y DISEÑO DEL BULEVAR PRINCIPAL DEL CENTRO UNIVERSITARIO DE LA VILLA DEL MUNICIPIO DE CHIMALTENANGO, DEPARTAMENTO DE CHIMALTENANGO

Tema que me fuera asignado por la Dirección de la Escuela de Ingeniería Civil, con fecha octubre de 2010.

Darwin Alfredo Marroquín Guzmán

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA

Guatemala, 19 de septiembre de 2011 REF.EPS.DOC.1213.09.11

Inga. Norma Ileana Sarmiento Zeceña de Serrano Directora Unidad de EPS Facultad de Ingeniería Presente

Estimada Ingeniera Sarmiento Zeceña.

Por este medio atentamente le informo que como Asesora—Supervisora de la Práctica del Ejercicio Profesional Supervisado (E.P.S.), del estudiante universitario **Darwin Alfredo Marroquín Guzmán** de la Carrera de Ingeniería Civil, con carné No. 200517982, procedí a revisar el informe final, cuyo título es "DISEÑO DEL SISTEMA DE ALCANTARILLADO SANITARIO PARA LA COLONIA LOS CERRITOS, ALDEA BUENA VISTA Y DISEÑO DEL BULEVAR PRINCIPAL DEL CENTRO UNIVERSITARIO DE LA VILLA DEL MUNICIPIO DE CHIMALTENANGO, DEPARTAMENTO DE CHIMALTENANGO".

En tal virtud, LO DOY POR APROBADO, solicitándole darle el trámite respectivo.

Sin otro particular, me es grato suscribirme.

Atentamente,

"Id y Enseñad a Todos"

ga. Christa Del Rosario Classo de Pinto

Asesora-Supervisora de EPS

lÁrea de Ingeniería Civil

ASESOR(A)-SUPERVISOR(A) DE EPS Unidad de Prácticas de Inpeniente y EPS

Facultad de Ingenieri

c.c. Archivo CDRCdP/ra

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA CIVIL www.ingenieria-usac.edu.gt

Guatemala, 23 de septiembre de 2011

Ingeniero
Hugo Leonel Montenegro Franco
Director Escuela Ingeniería Civil
Facultad de Ingeniería
Universidad de San Carlos

Estimado Ingeniero Montenegro.

Le informo que he revisado el trabajo de graduación DISEÑO DEL SISTEMA DE ALCANTARILLADO SANITARIO PARA LA COLONIA LOS CERRITOS, ALDEA BUENA VISTA Y DISEÑO DEL BULEVAR PRINCIPAL DEL CENTRO UNIVERSITARIO DE LA VILLA DEL MUNICIPIO DE CHIMALTENANGO, DEPARTAMENTO DE CHIMALTENANGO, desarrollado por el estudiante de Ingeniería Civil Darwin Alfredo Marroquín Guzmán, quien contó con la asesoría de la Inga. Christa del Rosario Classon de Pinto.

Considero este trabajo bien desarrollado y representa un aporte para la comunidad del área y habiendo cumplido con los objetivos del referido trabajo doy mi aprobación al mismo solicitando darle el trámite respectivo.

Atentamente,

ID Y ENSEÑAD A TODOS

Ing. Ratael Enrique Morales Ochoa Revisor por el Departamento de Hidráulica

FACULTAD DE INGENIERIA
DEPARTAMENTO
DE
HIDRAULICA
USAC

/bbdeb.

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE ÎNGENIERÎA ESCUELA DE ÎNGENIERÎA CIVIL www.ingenieria-usac.edu.gt

Guatemala, 21 de octubre de 2011

Ingeniero
Hugo Leonel Montenegro Franco
Director Escuela Ingeniería Civil
Facultad de Ingeniería
Universidad de San Carlos

Estimado Ingeniero Montenegro.

Le informo que he revisado el trabajo de graduación DISEÑO DEL SISTEMA DE ALCANTARILLADO SANITARIO PARA LA COLONIA LOS CERRITOS, ALDEA BUENA VISTA Y DISEÑO DEL BULEVAR PRINCIPAL DEL CENTRO UNIVERSITARIO DE LA VILLA DEL MUNICIPIO DE CHIMALTENANGO, DEPARTAMENTO DE CHIMALTENANGO, desarrollado por el estudiante de Ingeniería Civil Darwin Alfredo Marroquín Guzmán, quien contó con la asesoría de la Inga. Christa Classon de Pinto.

Considero este trabajo bien desarrollado y representa un aporte para la comunidad del área y habiendo cumplido con los objetivos del referido trabajo doy mi aprobación al mismo solicitando darle el trámite respectivo.

Atentamente,

ID Y ENSEÑAD A TODOS

Ing. Mario Estuardo Arriola Ávila Coordinador del Área de Topografía y Transportes

bbdeb.

UNIVERSIDAD DE SAN CARLOS

Guatemala, 26 de octubre de 2011 REF.EPS.D.988.10.11

Ing. Hugo Leonel Montenegro Franco Director Escuela de Ingeniería Civil Facultad de Ingeniería Presente

Estimado Ingeniero Montenegro Franco.

Por este medio atentamente le envío el informe final correspondiente a la práctica del Ejercicio Profesional Supervisado, (E.P.S) titulado "DISEÑO DEL SISTEMA DE ALCANTARILLADO SANITARIO PARA LA COLONIA LOS CERRITOS, ALDEA BUENA VISTA Y DISEÑO DEL BULEVAR PRINCIPAL DEL CENTRO UNIVERSITARIO DE LA VILLA DEL MUNICIPIO DE CHIMALTENANGO, DEPARTAMENTO DE CHIMALTENANGO" que fue desarrollado por el estudiante universitario Darwin Alfredo Marroquín Guzmán, quien fue debidamente asesorado y supervisado por la Inga. Christa Del Rosario Classon de Pinto.

Por lo que habiendo cumplido con los objetivos y requisitos de ley del referido trabajo y existiendo la aprobación del mismo por parte de la Asesora - Supervisora de EPS, en mi calidad de Directora apruebo su contenido solicitándole darle el trámite respectivo.

Sin otro particular, me es grato suscribirme.

Atentamente,

"Id v Enseñad a Todos"

Inga. Norma Heana Sarmiento Zecena de Serrano

Directora Unidad de EPS

NISZ/ra

DIRECCIONA de Estation de Impulsate y

- Greatest de lugarité

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA CIVIL www.ingenieria-usac.edu.gt

El director de la Escuela de Ingeniería Civil, después de conocer el dictamen de la Asesora Inga. Christa del Rosario Classon de Pinto y de la Coordinadora de E.P.S. Inga. Norma Ileana Sarmientos Zeceña, al trabajo de graduación del estudiante Darwin Alfredo Marroquín Guzmán, titulado DISEÑO DEL SISTEMA DE ALCANTARILLADO SANITARIO PARA LA COLONIA LOS CERRITOS, ALDEA BUENA VISTA Y DISEÑO DEL BULEVAR PRINCIPAL DEL CENTRO UNIVERSITARIO DE LA VILLA DEL MUNICIPIO DE CHIMALTENANGO, DEPARTAMENTO DE CHIMALTENANGO, da por este medio su aprobación a dicho trabajo.

Ing. Hugo Leonel Montenegro France

Guatemala, enero 2012

/bbdeb.

Universidad de San Carlos de Guatemala

DTG. 022.2012

El Decano de la Facultad de Ingeniería de la Universidad de San Carlos de Guatemala, luego de conocer la aprobación por parte del Director de la Escuela de Ingeniería Civil, al Trabajo de Graduación titulado: DISEÑO DEL SISTEMA DE ALCANTARILLADO SANITARIO PARA LA COLONIA LOS CERRITOS, ALDEA BUENA VISTA Y DISEÑO DEL BULEVAR PRINCIPAL DEL CENTRO UNIVERSITARIO DE LA VILLA DEL MUNICIPIO DE CHIMALTENANGO, DEPARTAMENTO DE CHIMALTENANGO, presentado por el estudiante universitario Darwin Alfredo Marroquín Guzmán, autoriza la impresión del mismo.

IMPRÍMASE:

Ing. Murphy Olympo Paiz Recinos Decano

Guatemala, 20 de enero de 2012

/gdech

ACTO QUE DEDICO A:

Dios

El presente se lo dedico al Ser Supremo por haberme permitido culminarlo con éxito, por concederme la sabiduría necesaria para iluminar mi mente, por dame la fuerza de voluntad para hacer las cosas como se saben hacer, con amor, profesionalismo y por el interés de adquirir nuevos conocimientos para la gloria de Él "Infinitas Gracias Dios"

Mis padres

Francisco Marroquín Guerra y Adela Guzmán Argueta; por darme la oportunidad de vivir, por su apoyo incondicional, moral, espiritual y económico a lo largo de toda mi vida. Por la más grande herencia que con tanto esfuerzo y sacrificio me han brindado. Porque por amor a ellos, es como he logrado las metas propuestas, y que al lograrlas, rindo justo tributo a su gran amor, sintiéndome satisfecho y orgulloso de que sean mis padres y de ser su hijo.

Mis hermanos

Por su apoyo incondicional, con quien convivo como una gran familia que tiene como fundamento el amor y el respeto, por alegrarse con mis logros y éxitos

Mis catedráticos

Por compartir con migo sus conocimientos en forma positiva, con la entrega y mística que los caracteriza, sin esperar nada a cambio, siendo recompensados únicamente con la satisfacción que da "El Deber Cumplido" impregnándole cariño sincero. Siéntanse seguros estimados catedráticos que sabremos regar la semilla del saber a donde quiera que vayamos, poniendo en alto a nuestra Universidad de San Carlos de Guatemala y a ustedes que son pilares que la sustentan.

Mis amigos

Por su interés y espontaneidad, al formar parte de las personas que le dan importancia al trabajo realizado con sacrificio, y que de una u otra manera, estuvieron involucrados en apoyarme, en la culminación de mi carrera. A todos en general muchas gracias

AGRADECIMIENTO A:

Dios Por todas sus bendiciones, la vida, su amor, la

sabiduría e inteligencia, y guiarme para escoger el

camino correcto hacia la senda del triunfo.

Mis padres Francisco Marroquín Guerra y Adela Guzmán

Argueta. Por el apoyo incondicional que recibí desde el inicio de mis estudios y por creer en mí,

para llegar a cumplir un sueño que ellos empezaron

un día dándome la oportunidad de estudio

Mis hermanos Héctor, Sandra, Erika, Mariela y Josué, por estar

siempre conmigo y apoyarme en mis metas durante

toda mi vida.

Mis catedráticos Por sus sabias enseñanzas muy agradecido a

quienes recordaré con cariño y respeto

Mi asesora Inga. Christa Classon, por guiarme en la difícil pero,

sabia tarea de formarme como profesional

responsable, edificando mi más grande respeto y

dedicación a nuestra profesión

Mis amigos A todos en general muchas gracias.

Carlos de Guatemala

La Universidad de San Por albergarme en el único y maravilloso ambiente, sembrando la semilla del saber que pronto brotará y nos convertirá en grandes triunfadores para un mejor mañana. Número uno en Guatemala.

La Facultad de Ingeniería

Por su participación en mi formación académica

La Municipalidad de Chimaltenango

Por permitirme desarrollar mi trabajo de Ejercicio supervisado y apoyo de la actual corporación municipal

ÍNDICE GENERAL

ÍND	ICE DI	E ILUSTF	RACIONES	i	VII
LIS	TA DE	SÍMBOL	os		XI
GL	OSARI	0			XV
RE:	SUME	١			XXIII
OB.	JETIVO	os			XXV
INT	RODU	CCIÓN			.XXVII
1.	FΔSI	E DE INV	FSTIGACI	ÓN	1
١.	1.1.			unicipio de Chimaltenango	
		1.1.1.		dades	
			1.1.1.1.	Ubicación y localización	
			1.1.1.2.	Accesos y comunicaciones	4
			1.1.1.3.	Topografía	
			1.1.1.4.	Población	5
			1.1.1.5.	Actividades económicas	8
			1.1.1.6.	Aspectos climáticos	9
		1.1.2.	Principal	es necesidades del municipio	10
			1.1.2.1.	Descripción de necesidades	10
			1.1.2.2.	Priorización de necesidades	10
2.	FASI	E DE SEF	RVICIO TÉ	CNICO PROFESIONAL	11
	2.1.	Diseño	del alcanta	arillado sanitario para la colonia los Cerritos,	
				l	
		2.1.1.		ión del proyecto	

2.1.2.	Consideraciones para el diseño de un sistema de			
	alcantarillado			
2.1.3.	Principios	Principios hidráulicos para diseño de alcantarillados		
	2.1.3.1.	Velocidad	de diseño	14
	2.1.3.2.	Tirante		17
	2.1.3.3.	Diámetros	mínimos	17
	2.1.3.4.	Dotación y	demanda	17
	2.1.3.5.	Período de	e diseño	18
	2.1.3.6.	Profundida	d de tubería	18
2.1.4.	Métodos e	estadísticos	para estimar población	18
	2.1.4.1.	Método de	incremento geométrico	19
	2.1.4.2.	Método de	incremento aritmético	19
	2.1.4.3.	Cálculo de	población futura del lugar	20
2.1.5.	Levantamiento topográfico			20
	2.1.5.1.	Planimetría		
	2.1.5.2.	Altimetría		21
2.1.6.	Caudal			21
	2.1.6.1.	Caudal sar	nitario	21
		2.1.6.1.1.	Caudal domiciliar	22
		2.1.6.1.2.	Caudal comercial	22
		2.1.6.1.3.	Caudal industrial	23
		2.1.6.1.4.	Caudal de infiltraciones	24
		2.1.6.1.5.	Caudal de conexiones ilícitas	25
		2.1.6.1.6.	Factor de caudal medio	26
		2.1.6.1.7.	Factor de flujo	26
		2.1.6.1.8.	Factor de caudal máximo	27
	2.1.6.2.	Caudal de	diseño	27
2.1.7.	Diseño de la red de alcantarillado			
	2.1.7.1.	Bases de d	diseño	28

		2.1.7.2.	Estimación	de la población futura	29
		2.1.7.3.	Cálculo hic	Iráulico	30
			2.1.7.3.1.	Cálculo de caudal	30
			2.1.7.3.2.	Diseño de la red	34
	2.1.8.	Desfogue)		41
	2.1.9.	Planos			41
	2.1.10.	Presupue	sto		42
	2.1.11.	Cronogra	ma de ejecu	ción e inversión	44
	2.1.12.	Evaluació	n preliminar	ambiental	45
		2.1.12.1.	Impacto ar	nbiental que será producido	45
		2.1.12.2.	Medidas de	e mitigación	50
	2.1.13.	Evaluació	n socioecor	oómica	53
		2.1.13.1.	Valor prese	ente neto	53
		2.1.13.2.	Tasa interr	na de retorno	55
2.2.	Diseño	de bulevar	principal del	Centro Universitario de La Villa	de
	Chimalte	enango			56
	2.2.1.	Descripci	ón del proye	ecto	56
	2.2.2.	Selección	de ruta		56
		2.2.2.1.	Interpretac	ión de mapa topográficos	57
	2.2.3.	Levantam	niento topogi	ráfico	58
		2.2.3.1.	Planimetría	i	58
		2.2.3.2.	Altimetría.		58
		2.2.3.3.	Secciones	transversales	58
	2.2.4.	Cálculo to	pográfico		59
		2.2.4.1.	Planimetría	i	59
		2.2.4.2.	Altimetría.		60
		2.2.4.3.	Secciones	transversales	62
		2.2.4.4.	Curvas de	nivel	63
	2.2.5.	Diseño g	eométrico d	e carretera	64

	2.2.5.1.	Determinación de volumen de tránsito		66
		2.2.5.1.1.	Tráfico promedio	66
	2.2.5.2.	Curvas hor	izontales	67
		2.2.5.2.1.	Alineamiento horizontal	68
		2.2.5.2.2.	Grado de curvatura	68
		2.2.5.2.3.	Longitud mínima	69
		2.2.5.2.4.	Longitud máxima	69
		2.2.5.2.5.	Longitud de la curva	69
		2.2.5.2.6.	Tangente	70
		2.2.5.2.7.	Subtangente	70
		2.2.5.2.8.	Cuerda máxima	71
		2.2.5.2.9.	External	71
		2.2.5.2.10.	Ordenada media	72
		2.2.5.2.11.	Distancia de visibilidad de	
			parada	72
		2.2.5.2.12.	Procedimiento de cálculo de	
			curva horizontal	74
	2.2.5.3.	Curva verti	cal	80
		2.2.5.3.1.	Alineamiento vertical	81
		2.2.5.3.2.	Diseño de curvas verticales	82
		2.2.5.3.3.	Visibilidad de parada	82
		2.2.5.3.4.	Cálculo de curvas verticales	84
		2.2.5.3.5.	Tangente	84
		2.2.5.3.6.	Procedimiento de cálculo de	
			curva vertical	84
2.2.6.	Movimien	to de tierra .		85
	2.2.6.1.	Diseño de s	sub-rasante	85
	2.2.6.2.	Correccion	es por curva vertical a	
		sub-rasante	e	89

	2.2.6.3. Cálculo de áreas de secciones				
		transversa	les	90	
	2.2.6.4.	Cálculo de	volúmenes	93	
2.2.7.	Carpeta de rodadura				
	2.2.7.1.	Tránsito		95	
		2.2.7.1.1.	Volumen de	tránsito95	
		2.2.7.1.2.	Clasificación	า97	
			2.2.7.1.2.1.	Tránsito liviano97	
			2.2.7.1.2.2.	Tránsito mediano98	
			2.2.7.1.2.3.	Tránsito pesado98	
		2.2.7.1.3.	Especificaci	ones de ejes de	
			camiones	98	
		2.2.7.1.4.	Carga máxii	ma utilizada en	
			Guatemala.	99	
	2.2.7.2.	Pavimento		99	
		2.2.7.2.1.	Tipos de pa	vimento100	
		2.2.7.2.2.	Elementos o	de pavimento10°	
			2.2.7.2.2.1.	Suelo de	
				fundación10	
			2.2.7.2.2.2.	Sub-rasante10	
			2.2.7.2.2.3.	Sub-base102	
			2.2.7.2.2.4.	Base104	
		2.2.7.2.3.	Diseño de p	avimento105	
			2.2.7.2.3.1.	Estudio de suelos. 105	
			2.2.7.2.3.2.	Dimensionamiento 109	
			2.2.7.2.3.3.	Juntas116	
2.2.8.	Obras especiales para diseño de carreteras				
	2.2.8.1.	Drenaje		119	
	2.2.8.2.	Obras de l	orotección	126	

2.2.9.	Mantenimiento del camino	129
2.2.10.	Planos	130
2.2.11.	Presupuesto	130
2.2.12.	Cronograma de ejecución e inversión	132
2.2.13.	Evaluación preliminar ambiental (EIA)	133
	2.2.13.1. Impacto ambiental	133
	2.2.13.2. Medidas de mitigación	137
CONCLUSIONES		141
RECOMENDACION	IES	143
BIBLIOGRAFÍA		145
ANEYOS		1/17

ÍNDICE DE ILUSTRACIONES

FIGURAS

1.	Ubicación y localización del municipio de Chimaltenango	3
2.	Cronograma de ejecución e inversión para drenaje sanitario	44
3.	Formas de determinar el valor presente neto	54
4.	Interpretación de levantamiento planimetrico	59
5.	Interpretación del levantamiento altimétrico	61
6.	Interpretación del levantamiento secciones transversales	62
7.	Elementos de una curva horizontal	67
8.	Giro mínimo para vehículos ligeros	78
9.	Giro mínimo para buses	79
10.	Tipos de curvas verticales	81
11.	Secciones típicas en vías terrestres	91
12.	Sección transversal	92
13.	Cálculo de volumen	93
14.	Interrelación aproximada de las clasificaciones de suelos y los	
	valores de soporte.	113
15.	Tipos de juntas	118
16.	Sección típica de cuneta.	124
17.	Cronograma de ejecución e inversión para el bulevar	132
	TABLAS	
I.	Accidentes orográficos del municipio.	4
II.	Accidentes hidrográficos del municipio.	5
III.	Velocidades máximas y mínimas de permisibles	15

IV.	Coeficiente de rugosidad.	16
V.	Dotación por tipo de comercio.	23
VI.	Cálculo de Caudal de Diseño.	37
VII.	Cálculo hidráulico	39
VIII.	Resumen de presupuesto.	42
IX.	Resumen de materiales.	43
X.	Identificación de actividades constructivas y acciones para	
	proyectos de drenajes sanitarios.	46
XI.	Impactos identificados en la etapa de construcción y operación	
	del sistema de drenaje	. 47
XII.	Clasificación de los impactos.	48
XIII.	Matriz de interacciones de componentes ambientales y	
	actividades de los proyectos de drenaje	49
XIV.	Medidas de mitigación según el medio y componente en donde	
	se producirá el impacto en proyectos de drenaje	50
XV.	Distancia de visibilidad de la parada	73
XVI.	Ancho de Giro Recomendable para Rotondas entre cunetas, g,	
	para Vehículos Pesados, en Metros	76
XVII.	Dimensiones de los vehículos de diseño (metros)	77
XVIII.	Radios mínimos de giro de los vehículos de diseño (metros)	77
XIX.	Dimensiones típicas de las bahías para el refugio de autobuses	
	en las carreteras regionales	80
XX.	Parámetro K _{LCV}	83
XXI.	Taludes recomendados para dibujo de secciones	90
XXII.	Clasificación de los suelos según el índice plástico	107
XXIII.	Categoría de tráfico en función de carga por eje	110
XXIV.	Valores de k sobre bases granulares	112
XXV.	Tipos de suelo de sub-rasante valores aproximados de K	114
XXVI.	TPDC permisibles. Carga por eje categoría 2	115

XXVII.	Algunos coeficientes de escorrentía utilizados en Guatemala	ı120
XXVIII.	Resumen del presupuesto.	130
XXIX.	Rendimiento.	131
XXX.	Precio de materiales.	131
XXXI.	Identificación de actividades constructivas y acciones para	
	proyectos de carreteras.	133
XXXII.	Impactos identificados en la etapa de construcción y operaci	ión
	de carreteras	134
XXXIII.	Clasificación de los impactos en carreteras.	135
XXXIV.	Matriz de interacciones de componentes ambientales y	
	actividades de los proyectos de carretera	136
XXXV.	Medidas de mitigación según el medio y componente en dor	nde
	se producirá el impacto en la construcción de carreteras	137
XXXVI.	Datos de curvas horizontales	139
XXXVII.	Datos de curvas verticales.	139

LISTADO SE SÍMBOLOS

Símbolo Significado

HA Altura de instrumento.

Δ Ángulo de cambio de dirección entre dos tangentes

horizontales.

ZN Ángulo vertical.

A Área.

AZ Azimut o ángulo horizontal medido desde el norte.

CBR California Bearning Radio.

Q_{com} Caudal comercial.

Q_{c.i.} Caudal de conexiones ilícitas.

Q_{dis} Caudal de diseño.

Q_{inf} Caudal de infiltraciones.

Q_{dom} Caudal domiciliar.Q_{ind} Caudal industrial.

C Coeficiente de escorrentía.

n Coeficiente de rugosidad.

x_p Coordenada parcial X.

yp Coordenada parcial Y.

X Coordenada X.Y Coordenada Y.Z Coordenada Z.

Yv Corrección vertical para curvas verticales.

C_{max} Cuerda máxima de la curva.

D Diámetro.

H Diferencia de alturas entre dos puntos.

A_{LCV} Diferencia de pendiente entre dos tangente en un

alineamiento vertical.

DH Distancia horizontal.

Lit. / hab / día Dotación expresada en litros por habitante al día.

E External.

Fqmax Factor de caudal máximo.Fqm Factor de caudal medio.

F.H. Factor de flujo instantáneo de Harmond.

f Factor de fricción lateral.

F.R. Factor de retorno.G Grado de curva.IP Índice plástico.

I Intensidad de Iluvia.

Hi Lectura de hilo inferior.

Hm Lectura de hilo medio.

Hs Lectura de hilo superior.

Lc Longitud de curva horizontal.

LCV Longitud de curva vertical.

L Longitud entre puntos de intersección del alineamiento

horizontal.

K Módulo de reacción del suelo.

MR Módulo de Ruptura del concreto.

OM Ordenada media.

K_{LCV} Parámetro para diseño de curvas verticales basado en la

distancia de visibilidad de parada.

S_{dis} Pendiente de diseño.

S Pendiente.

N Período de diseño en años.

P_f Población futura.P₀ Población inicial.

P Población.

PCA Portland Cement Association.

PC Principio de curva.

PI Punto de intersección horizontal.

PIV Punto de intersección vertical.

 $\mathbf{R}_{\mathbf{c}}$ Radio de curva. $\mathbf{R}_{\mathbf{H}}$ Radio hidráulico.

R Radio.

f'c Resistencia máxima a la compresión del concreto.

St Subtangente.

Tg Tangente.

r Tasa de crecimiento.

i Tasa de interés.

TIR Tasa interna de retorno.

t Tiempo.

y_h Tirante hidráulico

TPDA Tránsito promedio diario anual.

TPDC Tránsito promedio diario de camiones.

TPD Tránsito promedio diario.

π Valor de pi = 3.1416.VPN Valor presente neto.Vdis Velocidad de diseño.

V Velocidad.

GLOSARIO

AASHTO American Association of State Highway

and Transportation Officials.

Aguas residuales Son las aguas que son retiradas de una

vivienda, comercio o industria, después

de haber sido utilizadas.

Alcantarillado Sistema formado por obras, accesorios,

tuberías o conductos, generalmente

cerrados, que no trabajan a presión y que

conducen aguas residuales.

Alineamiento horizontal El alineamiento horizontal es la

proyección sobre un plano horizontal del

eje de una carretera.

Alineamiento vertical El alineamiento vertical es la

representación del eje longitudinal de la

carretera en el plano vertical.

Altimetría Procedimientos utilizados para definir las

diferencias de nivel existentes entre puntos de un terreno o construcción, para

ello es necesario medir distancias

verticales ya sea directa o

indirectamente.

Base

Es la capa de material selecto que se coloca por encima de la sub-base y debajo de la carpeta de rodadura esta tiene un espesor no mayor a 35 centímetros ni menor a 10 centímetros.

Caudal

Volumen de agua que pasa por unidad de tiempo.

Carretera

Vía de tránsito público construida dentro de los límites del derecho de vía.

Colector principal

Es el conjunto de tubos el cual reúne todas el agua residuales tanto de las domiciliares como de cada uno de los ramales de la red de alcantarillado.

Conexiones domiciliares

Las conexiones domiciliares son construidas como parte de las obras de arte del sistema de drenajes, por medio de las cuales cada vivienda se conecta a la red para descargar sus aguas servidas.

Contracuneta

Cuneta natural construida en los taludes de corte principalmente.

Cota invert

Es la cota referida a un banco de marca, de la parte inferior del diámetro interno de la tubería instalada.

Cuerda máxima

Es la distancia en línea recta desde el Principio de curva (PC) al Principio de tangente (PT).

Cuneta

Son canales abiertos que se calculan por el método de Manning, se colocan paralelamente a uno o ambos lados del camino, sirven para evacuar el agua que cae en la sección de corte en una carretera.

Curva horizontal

Las curvas horizontales son empleadas para unir dos tangentes y suavizar los cambios de dirección en una carretera, éstas se calculan y se proyectan, según las especificaciones del camino y requerimiento de la topografía.

Curvas de nivel

Las curvas de nivel, llamadas también isohipsas, son líneas que indican puntos de misma altura sin interceptarse con otras.

Densidad poblacional

En la cantidad de población por una área determinada.

Dotación y demanda

Término que se utiliza para designar la cantidad de agua que una persona necesita por día para satisfacer sus

necesidades.

External

Es la distancia que medida desde el punto de intersección (PI) hasta el centro de la curva.

Gavión

Son obras construidas con la finalidad de proveer estabilidad contra la ruptura de macizos de tierra o roca y evitar el colapso de los mismos ocasionado por el peso propio o cargas externas.

Glorieta

La glorieta es una intersección que dispone de una isleta central, circular y que permite a los vehículos que penetran a la intersección por cualquiera de los ramales, abandonar la misma por el ramal elegido mediante un giro en el sentido antihorario alrededor de dicha isleta.

Grado de curvatura

El grado de curvatura está definido como el ángulo obtenido de un arco de

circunferencia de 20 m de longitud.

Hombro

Los hombros o espaldones, que son las franjas de carretera ubicadas contiguas a los carriles de circulación y que, en conjunto con éstos, constituyen la corona o sección comprendida entre los bordes de los taludes o cunetas.

IGN

Instituto Geográfico Nacional.

INFOM

Instituto Nacional de Fomento Municipal.

INSIVUMEH

Instituto de Sismología, Vulcanología, Meteorología e Hidrología.

Juntas

Estas son construidas generalmente en pavimento rígidos el objetivo principal es de controlar los esfuerzos del concreto, debido a su expansión y contracción, estos esfuerzos se producen por los cambios de temperatura en el ambiente, además de no permitir la formación de grietas irregulares de la losa de concreto.

Longitud de curva

Es la distancia sobre el arco que describe la curva, medida desde el principio de curva (PC) hasta el principio de tangente (PT).

Modulo de ruptura

Está definido como el esfuerzo máximo de tensión en la fibra extrema de una viga de concreto, por experimentación se estima entre un 10% a un 20 % de su resistencia a la compresión este determina la fuerza de flexión.

Muro de contención

Estructura de mampostería u otro método constructivo que tienen como finalidad resistir las presiones laterales causadas por el material retenido.

Ordenada Media

Es la distancia que hay entre el punto medio de la curva y el punto medio de la cuerda máxima.

Pavimento

Se denomina pavimento a la estructura compuesta por distinta capas principalmente la sub-base, la base y carpeta de rodadura que se coloca sobre la sub-rasante de la carretera.

Periodo de diseño

Periodo durante el cual la estructura diseñada prestara un servicio eficiente.

Planimetría

Procedimientos utilizados para definir la

ubicación de los puntos del terreno o construcción, referenciados desde un eje coordenado.

Pozos de visita

Son estructuras de concreto o mampostería, usualmente cilíndricas, que permiten el acceso de personas a su interior con la finalidad de brindar mantenimiento preventivo o correctivo a la red de drenajes.

Rasante

El trazo vertical que determina el nivel superior, sobre la línea central, que se proyecta construir a lo largo de la carretera. Muestra la elevación y la pendiente del trazo proyectado.

Sub-base

Es la primera capa de la estructura principal del pavimento está compuesta de material selecto que se coloca encima de la sub-rasante, este debe tener un espesor de 10 a 70 centímetros dependiendo las características de la sub-rasante.

Sub-rasante

Es la capa de terreno de una carretera que soporta la estructura del pavimento y que se extiende hasta una profundidad en que no le afecte la carga de diseño que corresponde a la estructura prevista.

Subtangente

Es la distancia que hay desde el principio de curva (PC) hasta el punto de intersección, por la simetría que debe tener la curva esta distancia es igual a la distancia que hay entre el punto de intersección (PI) y el principio de tangente (PT).

Superficie de rodadura

Área destinada a la circulación de vehículos o la capa sobre la cual se aplican directamente las cargas de tránsito.

Tangente

La tangente horizontal es la distancia medida desde el final de una curva hasta el principio de la siguiente, está definida por la dirección que describe y por su longitud.

Tráfico

Es el flujo de vehículos que transitan en una carretera por unidades de tiempo.

Velocidad de diseño

Es la velocidad máxima a que un vehículo puede transitar con seguridad, en una carretera trazada con diferentes parámetros.

RESUMEN

Como una respuesta a las necesidades que aquejan las comunidades del municipio de Chimaltenango la Universidad de San Carlos a través del Ejercicio Profesional Supervisado (EPS) proporciona apoyo técnico - profesional para proyectos específicos.

El presente trabajo de graduación está dividido en dos fases.

La primera fase es de investigación en el cual se presenta todas las características del municipio.

La segunda fase es de apoyo técnico-profesional en el cual se presenta el estudio técnico para la construcción del sistema de alcantarillado sanitario para la colonia Los Cerritos de la aldea Buena Vista y diseño del bulevar principal para en centro universitario.

El estudio técnico de estos proyectos consiste en una primera parte de un estudio bibliográfico en donde se describen todas las consideraciones, principios y métodos que se utilizaron para el diseño de estos proyectos, la segunda parte consiste en el diseño, elaboración de planos y cálculo de presupuesto, por último se realizó un estudio de impacto ambiental y sus medidas de mitigación.

Tanto el sistema de alcantarillado como el bulevar cumplen con las normas y especificaciones que se deben cumplir en Guatemala.

OBJETIVOS

Generales

Proporcionar a la comunidad el estudio técnico de proyectos de infraestructura para que realicen las gestiones de financiamiento de los mismos.

Diseñar el alcantarillado sanitario para la colonia Los Cerritos de la aldea Buena Vista y diseño del bulevar principal del Centro Universitario de Chimaltenango.

Específicos

- 1. Desarrollar una investigación tipo monográfica y diagnóstica, para determinar las características del municipio de Chimaltenango y específicamente las de la colonia Los Cerritos de la aldea Buena Vista.
- 2. Diseñar el alcantarillado sanitario para la colonia Los Cerritos de la aldea Buena Vista.
- Diseñar el bulevar principal para el Centro Universitario de Chimaltenango.
- 4. Aplicar las normas y estándares que exigen los códigos de construcción en cuanto al diseño de alcantarillados y carreteras.

INTRODUCCIÓN

Como resultado del Ejercicio Profesional Supervisado (EPS) de la Facultad de Ingeniería de la Universidad de San Carlos de Guatemala, en coordinación con la unidad técnica de planificación de la Municipalidad de Chimaltenango y representantes comunitarios se presenta el siguiente trabajo de graduación en cual está orientado a solucionar los problemas de proyectos de infraestructura en cuanto a estudios técnico-profesional.

Ante la necesidad que presentan la sociedad guatemalteca para obtener un mejor nivel de vida, el presente trabajo responde a la solicitud del Consejo Comunitario de Desarrollo (COCODE), que funciona en la colonia Los Cerritos de la aldea Buena Vista, municipio de Chimaltenango, departamento de Chimaltenango de diseñar el sistema de alcantarillado sanitario el cual beneficiará directamente a 118 familias que forman parte de la colonia y otras 15 familias más que se encuentran por donde se conducirá el desfogue.

Así también es este trabajo se presenta en diseño del bulevar principal del centro universitario para el cual se están haciendo las gestiones de financiamiento necesarias, el cual no solo beneficiara al municipio si no a toda la región.

1. FASE DE INVESTIGACIÓN

1.1. Monografía del municipio de Chimaltenango

Chimaltenango es un municipio lleno de colorido y tradición, en su plaza central se conserva una de las pocas fuentes del período colonial.

Es uno de los pueblos más grandes de Guatemala indica además que en éste se reúnen toda clase de comerciantes, y se celebran corridas de toros y carreras de caballos, y que en música es superior a muchos municipios.

La etimología proviene del náhuatl chimal que significa escudo broquel o rodela y tenango que significa lugar amurallado. Por haber sido una plaza militar fortificada se supone que se le ha dado su nombre actual con traducción de: muralla de escudos o rodelas. Chimaltenango era un poblado importante del reino cakchiquel rodeado de murallas de donde le provino el nombre indígena de Bocob con la misma significación etimológica. Como Bocob figura en documento de indígenas que relatan su conquista en los siglos XIV y XV.

1.1.1. Generalidades

Chimaltenango es la cabecera del municipio y es el nombre del departamento, el municipio de Chimaltenango es el más evolucionado de los 16 que componen el depártame

nto. Tiene una extensión territorial de aproximadamente 212 km² y está dividido en 20 fincas, 3 aldeas, 14 caseríos, 1 paraje. 1 parcelamiento, 1 labor, 15 colonias y 6 lotificaciones, el casco urbano tiene 8 zonas. Lugares

comunales y recreación; campos de foot-ball, canchas de bascket-ball, parque Nacional los Aposentos, parque central.

1.1.1.1. Ubicación y localización

El municipio de Chimaltenango se encuentra ubicado en el departamento de Chimaltenango, situado a 54 km. de la ciudad capital.

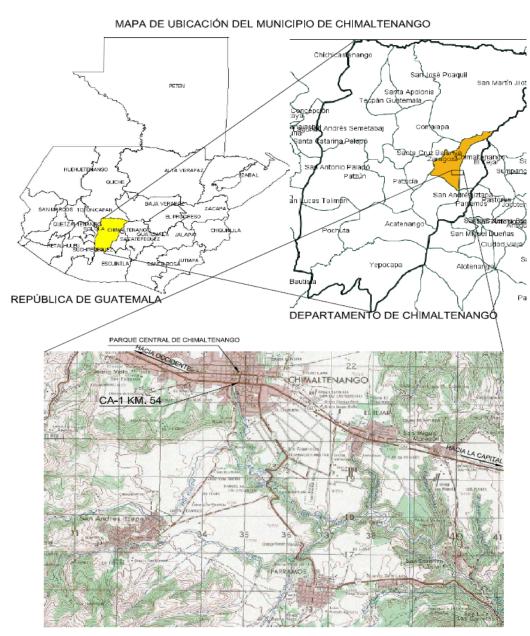
El banco de marca ubicado en el parque central por el Instituto Geográfico Militar indica que el municipio se encuentra en las siguientes coordenadas geográficas.

Altitud 1819 metros sobre el nivel del mar (SNM).

Latitud norte de 14ª 39' 38"

Longitud oeste de 90ª 49' 10"

Colindancias Físicas


Norte San Martín Jiotepeque.

Sur San Juan Sacatepequez.

Este San Andrés Itzapa y Parramos.

Oeste San Juan Comalapa y Zaragoza.

Figura 1. Ubicación y localización del municipio de Chimaltenango

Fragmento de la hoja cartográfica 2059 IV, serie E754 de la edición 2-NGA, actualización fotoplanimétrica en 2006, del Instituto Geográfico Nacional

Fuente: elaboración propia apoyado por el programa SIG.

1.1.1.2. Accesos y comunicaciones

Chimaltenango tiene dos carreteras principales una de ellas la carretera Interamericana la cual conduce al Occidente y Altiplano, la otra es la carretera que conduce a Sacatepéquez (la Antigua Guatemala).

1.1.1.3. Topografía

El departamento completo se desarrolla sobre la Cordillera de los Andes, la cual le da un aspecto quebrado, lleno de profundos barrancos, montañas y valles pequeños y fértiles.

Pero para el municipio su topografía es generalmente plana, encontrándose cerros, barrancos, lomas, colinas, que se han formado por rocas volcánicas, piedras, y pómez, esto presenta una gran variedad de suelos como lo son los suelos arenosos, suelos francos arcillosos, suelos francos, suelos limosos.

Tabla I. Accidentes orográficos del municipio

ACCIDENTES OROGRÁFICOS		
CERROS	LOMAS	
Alto	De Pérez	
Itzapa	El Durazno	
	El Retiro	
	Larga	

Fuente: elaboración propia.

Tabla II. Accidentes hidrográficos del municipio

ACCIDENTES HIDROGRÁFICOS			
RÍOS	RIACHUELOS	QUEBRADAS	
Chajalgüech	Bola de Oro	De Muñoz	
Chalcayá	La Felicidad	De San Jacinto	
Guacalate	Matuloj	Del Rastro	
Pixcayá	Ciénaga Grande		
Santo Domingo	Las Colinas		
	Ojo de Agua		
	El Rosario		
	Las Violetas		
	San Rafael		
	Pachipup		

Fuente: elaboración propia.

1.1.1.4. Población

Según los datos proporcionados por el Instituto de Estadística Nacional en su XI censo, la población total del municipio de Chimaltenango hasta el 2001 asciende a 59 016 habitantes de los cuales el sexo femenino supera en 746 al sexo masculino.

Su densidad de población está estimada por Km.² en 279 personas para el 2001 y una tasa de crecimiento anual de 2,9%.

Servicio de agua entubada: el agua potable en el municipio de Chimaltenango es bastante abundante lo que falta es saber administrarla adecuadamente a toda la población en general.

En un 95% de las personas que viven en el casco urbano poseen su título de agua potable, en el área rural lo que existen son llena cántaros, y los mismos son abastecidos por tanques depósitos que poseen algunas aldeas como lo son: aldea Buena Vista, aldea Monte de los Olivos, Santa Isabel y otros.

Servicio de alcantarillado pluvial: la población de Chimaltenango cuenta con un 36% de las calles con alcantarillado debido a que se han pavimentado.

Servicio de drenaje: el drenaje en el caso urbano se encuentra en un aproximado del 90% de la población, pero los ramales no tienen ningún tipo de tratamiento para aguas servidas mucho menos una planta de tratamiento.

El 10% restante que no tiene drenaje en sus hogares son las personas de escasos recursos, y se observa en lugares como aldea Buena Vista que existe una red de drenaje, pero está prevista para 10 años, o menos, ya que la población está creciendo considerablemente por las personas que provienen de otros municipios, aldeas, departamentos y países. Dicha red de drenaje podría sofocarse en cualquier momento, ya que es pequeña, y con las aguas pluviales incrementa el riesgo de que se sofoque en un tiempo más corto.

Lugar donde desfogan: los drenajes desfogan según el sector y estos sectores son: barranco de Matuloj, aquí desfogan los drenajes de la parte norte, colonia Socobal desfoga la parte sur, y el Tejar se conecta con parte central.

Existen algunas comunidades que no cuentan con drenajes y por lo cual las personas sacan aguas negras a las calles sin importarles los focos de contaminación, para las demás personas y para los niños que hay en dichas comunidades, cuando la Municipalidad o el Ministerio de Salud Pública, les recomienda hacer algo al respecto a las aguas negras, las personas se molestan y tienen el pretexto de decir que no tienen el suficiente dinero como para hacer una fosa séptica o en algunos casos conectarse al drenaje.

Recolección de desechos sólidos: en la cabecera de Chimaltenango existe un tren de aseo el cual es privado (es una asociación de recolectores de basura) trabaja toda el área urbana, en dicho tren de aseo se encuentran afiliados un aproximado del 90% de la población y el cual pasa toda la semana recogiendo las bolsas de basura.

En dicha recolección de desechos sólidos las personas colocan desde desechos domésticos hasta desechos de construcción, por otro lado el tren de aseo recolecta los desechos de las clínicas, hospitales privados, laboratorios y todos los centros asistenciales.

Disposición final: el destino final de los desechos sólidos es un barranco ubicado en la 4ta. Av. final de la zona 3 de Chimaltenango, en dicho basurero no se da ningún tratamiento a los desechos, existe un grado de contaminación por el mal uso de los desechos que se llevan a lugar, a tal punto que existe una cantidad elevada de llantas, las cuales en algunos casos se queman, al mismo tiempo los desechos sólidos son quemados, y con esto se produce una columna densa de humo que se visualiza a grandes distancias.

1.1.1.5. Actividades económicas

La actividad económica de esta población radica básicamente en los siguientes tipos de producción.

Producción agrícola: esta es la base de la economía para este departamento en general siendo los productos de mayor producción los siguientes: maíz, frijol, caña de azúcar, café, trigo, verduras, variedad de frutas y cultivo de flores y claveles.

Los habitantes de la localidad acostumbran sembrar las verduras en los meses de marzo, abril y mayo, cosechan en los meses de noviembre y diciembre estas se cultivan durante toda la época del año mientras que las frutas una vez al año en cualquier época.

Las áreas boscosas son de tipo conífera, en su mayoría los árboles son aprovechados para la construcción de viviendas y otros utilizan la madera para la fabricación de muebles, así mismo explotan la madera para la venta y consuma en el lugar.

Producción pecuaria: existen pequeñas crianzas de ganado bovino, ovino, caprino y porcino. Actualmente se está implementando la cunicultura o crianza de conejos.

La crianza de ganado vacuno, caballar, bovino, porcino y aves de corral es muy común en todo el departamento, lo cual sirve para obtener algunas ganancias así como también para el consumo propio.

Artesanías: tejidos, para éstos las mujeres utilizan los telares de pie y de cintura para su creación, la cestería, bolsas, canastos, canastas y variedad de recipientes, los que se hacen de mimbre, vara y carrizos, que son fibras duras y largas que facilitan el entretejido de las fibras, también tiene producción de artículos metálicos como balcones, faroles, tocadores, aldabones y lámparas. El manejo del metal, es una tradición familiar, que se ha transmitido de generación en generación, además se explota, el cuero de animales para la fabricación de accesorios.

1.1.1.6. Aspectos climáticos

Según los datos proporcionados por el Instituto Nacional de Sismología Vulcanología Meteorología e Hidrología, INSIVUMEH y la estación experimental del Instituto de Ciencia y Tecnología Agrícola ICTA ubicada en La Alameda, Chimaltenango, el municipio tiene las siguientes características climáticas.

Con mediciones promedio mensuales – anuales en los últimos 5 años (desde enero de 2006 a julio de 2010) se ha estimado que la temperatura máxima varia de 18,5 °C y 24,7 °C y las temperaturas mínimas varían de 11,6 °C y 13,2 °C.

La precipitaciones promedio anual es de 1024,1 mm, determinado con datos registrados desde enero 1982 hasta septiembre 2010 pero teniendo las mayores precipitaciones en los últimos año como el 2010 con una precipitación de 1684,8 mm.

El viento con una dirección Este constante y una velocidad de 4 a 4,8 km/h desde el 2006 al 2008 teniendo mayores variaciones en los dos últimos años,

en el 2009 con dirección Norte y velocidad de 7,7 km/h y en el 2010 con una dirección Sur y velocidad de 5,7 km/h.

1.1.2. Principales necesidades del municipio

1.1.2.1. Descripción de necesidades

La población guatemalteca, posee necesidades básicas que se deben cubrir, de acuerdo a un diagnóstico realizado en el municipio de Chimaltenango, se determinó que las áreas que requieren mayor atención son: el saneamiento; ya que por lo general y más en áreas rurales, las comunidades no cuentan con sistema de recolección de aguas negras y éstas escurren a flor de tierra contaminando, y brindando ambientes adecuados para que se desarrollen enfermedades, que en algunos casos pueden ser fatales para los seres humanos.

Por otro lado se tiene la infraestructura vial que según las descripción de los pobladores en época de invierno algunos caminos son intransitables.

1.1.2.2. Priorización de necesidades

Se brindará apoyo técnico profesional a la comunidad El Cerrito de la aldea Buena Vista, que ha solicitado el estudio para la construcción del sistema del alcantarillado para drenaje sanitario.

De la misma manera se brindará apoyo en el diseño de la infraestructura del centro universitario La Villa de Chimaltenango específicamente en el diseño del bulevar principal de dicho centro universitario.

2. FASE DE SERVICIO TÉCNICO PROFESIONAL

2.1. Diseño del alcantarillado sanitario para la colonia Los Cerritos, aldea Buena Vista

2.1.1. Descripción del proyecto

Después de haber realizado un diagnóstico de las necesidades del municipio de Chimaltenango se pudo determinar que la mayor parte del casco urbano ya cuenta con sistema de alcantarillado sanitario para la recolección de las agua negras, aunque la mayor parte de estas aguas negras no tiene ningún tipo de tratamiento, pero no es así para gran parte de las comunidades del área rural de este municipio, ya que estas no cuentan con un mecanismo adecuado en el manejo de aguas negras, motivo por el cual los vecinos expulsan las aguas a flor de tierra, produciendo esto, un alto grado de contaminación del medio ambiente, que da como efecto la creación de enfermedades que pueden ser evitadas al construir un sistema de drenaje adecuado.

Este proyecto consiste en realizar el estudio técnico y el diseño para la construcción del alcantarillado sanitario en la colonia Los Cerritos de la aldea Buena Vista, del municipio de Chimaltenango, este proyecto beneficiará directamente a 118 familias que forman parte de la colonia y otras 15 familias más que se encuentran por donde se desfogará las aguas.

El proyecto tiene una longitud de aproximadamente 1800 metros lineales el cual se diseñará con tubería de PVC, el diseño consiste en: diseño del colector principal, pozos de visita y conexiones domiciliares.

2.1.2. Consideraciones para el diseño de un sistema de alcantarillado

En todo proyecto debe considerarse ciertos criterios básicos para su diseño y planificación, para un proyecto de alcantarillado se enumeran los siguientes.

- Se comenzará por definir cuándo debe implementar un sistema de alcantarillado; existen muchos criterios para definir qué sistema de saneamiento es conveniente utilizar en una comunidad pero principalmente se definen tres para un sistema de alcantarillado:
 - Cuando se tiene un sistema de abastecimiento de agua potable
 - Cuando lo permite la topografía del terreno de donde se recolectaran las aguas que se quieren drenar
 - > Cuando el proyecto es factible
- Ubicación: en este aspecto se toma en cuenta la ubicación geográfica y política, y los accesos o vías de comunicación con el lugar.
- Población: principalmente el número de habitantes y su densidad, el número de servicios que se conectaran al sistema, sus principales actividades, los centros de venta de materiales, sus precios, así como disponibilidad de mano de obra y salarios.
- Estado sanitario: abastecimiento de agua potable (fuente, sistema de conducción, tipo de tratamiento, ubicación de la red de distribución, número de servicios conectados a la red, dotación por habitante), sistema

de disposición sanitaria de excretas (letrinas, fosas sépticas, tanques), sistema de recolección de basura, tipo de viviendas.

- Clima: principalmente debe de estudiarse las precipitaciones del lugar y las estaciones (en qué mes es la época seca), la temperatura, % humedad y demás aspectos climatológicos.
- Área: debe estudiarse el área poblada pero también el área no poblada y que podría conectarse al sistema.

2.1.3. Principios hidráulicos para diseño de alcantarillados

Cuando se comienza a diseñar se debe considerar: a) ubicación de los pozos de visita y b) las conexiones domiciliares entre cada pozo de visita.

Pozos de visita: los pozos de visita son estructuras construidas de cualquier material siempre que este sea impermeable, usualmente de concreto o mampostería y de forma cilíndrica, su principal función es brindar mantenimiento preventivo o correctivo a la red de drenajes cuando esta lo requiera.

Se construirán pozos de visita en los siguientes casos.

- En tramos iníciales
- En las intersecciones de tuberías colectoras
- En cambios de dirección
- En cambios de pendiente
- En cambios de diámetro

- A distancias no mayores de 100 metros en línea recta en diámetros de hasta 24"
- A distancias no mayores de 300 metros en línea recta en diámetros superiores a 24"

Conexiones domiciliares: las conexiones domiciliares son construidas como parte de las obras de arte del sistema de drenajes, por medio de las cuales cada vivienda se conecta a la red para descargar sus aguas servidas.

Están integradas por las candelas domiciliares, la tubería que conduce el agua de las candelas al colector principal, la pendiente de la tubería debe ser de 2 % conectada a 45 grados con respecto al eje horizontal del colector principal siguiendo la dirección del flujo y se conecta a la mitad superior del colector.

Teniendo estos dos conceptos claros podemos establecer algunos principios o recomendaciones para el buen funcionamiento de un sistema de alcantarillado los cuales se enumeran a continuación.

2.1.3.1. Velocidad de diseño

En el diseño hidráulico de un alcantarillado lo ideal es tener excavaciones mínimas y no requerir de la utilización de equipo de bombeo, pero esto no siempre se puede lograr debido a las características topográficas de cada región. Con el objeto de asegurar el buen funcionamiento de la tubería y de las estructuras del sistema y brindar una solución óptima es necesario tener en consideración los límites permisibles para velocidades de conducción en dicho sistema.

Tabla III. Velocidades máximas y mínimas de permisibles

MATERIAL DEL TUBO	VELOCIDAD PERMISIBLE		
MATERIAL DEL TODO	Mínima (m/s)	Máxima (m/s)	
Concreto	0,6	2,5	
PVC	0,4	3,5	

Fuente: elaboración propia según las normas del INFOM

Cálculo de velocidad: La velocidad del caudal se puede determinar por medio de relaciones hidráulicas, siendo la más común la fórmula de Manning, la cual es la siguiente:

$$V = \frac{1}{n} R_H^{2/3} S^{1/2}$$

Donde

V = velocidad del flujo, en m/s

n = coeficiente de rugosidad, sin dimensional

R_H = radio hidráulico, en m.

S = pendiente, en m/m

Para el sistema métrico

$$V = \frac{0,03429}{n} D^{2/3} S^{1/2}$$

Donde

V = velocidad del flujo, en m/s

n = coeficiente de rugosidad, sin dimensional

D = diámetro de la tubería (pulgadas)

S = pendiente, en m/m

El coeficiente de rugosidad varía dependiendo del tipo de material del que este hecha la tubería.

Tabla IV. Coeficiente de rugosidad

MATERIAL	n
Tubo de cemento< 24"	0,015
Tubo de cemento> 24"	0,013
Tubo de PVC	0,009
Tubo de metal corrugado	0,021

Fuente: Edwin Enrique Catalán Armas, Fase iii drenajes barrio la Ciénaga, Gualán, Zacapa. Pág. 19

Si se aplica el principio de continuidad para encontrar la fórmula del caudal entonces se tiene.

$$Q = V * A$$

Entonces

$$Q = V(\pi R^2) \rightarrow R = \left(\frac{D}{2}\right)^2$$

$$Q = V * \pi \frac{D^2}{4}$$

Donde

V = velocidad del flujo, en m/s

D = diámetro de la tubería (metros)

2.1.3.2. Tirante

En el diseño de alcantarillas los tirantes se miden sobre el eje vertical de la tubería indicando la profundidad de flujo, medido desde la cota invert de la tubería hasta la superficie del líquido.

Idealmente la relación entre el tirante y el diámetro de la tubería debe ser:

$$0.1 \le y_h/D \le 0.75$$

Donde

 y_h = profundidad de flujo, medido desde la cota invert de la tubería hasta la superficie del líquido

D = diámetro de la tubería

2.1.3.3. Diámetros mínimos

El diámetro mínimo a utilizar en los alcantarillados sanitarios será: en el colector principal, de 8" para tubos de concreto o de 6" para tubos de PVC. En las conexiones domiciliares, el diámetro mínimo será de 6" en concreto y de 4" en PVC. La candela de registro domiciliar será de un diámetro mínimo de 12".

2.1.3.4. Dotación y demanda

En un sistema de alcantarillado sanitario se entiende por dotación y demanda a la cantidad de agua que necesitan y que se asigna a cada uno de los habitantes que utilizarán dicho sistema, esta depende de varios factores principalmente de: tipo de abastecimiento de agua potable, tipo de vivienda y de las características propias de la población en estudio.

Este parámetro se mide en It/hab/día. Debido a los factores mencionados para la comunidad de Los Cerritos de la aldea Buena Vista del municipio de Chimaltenango, Chimaltenango se tomará una dotación de 125 It/hab/día.

2.1.3.5. Período de diseño

INFOM recomienda que los sistemas de alcantarillado sean proyectados para llenar adecuadamente su función durante un período entre 30 y 40 años a partir de la fecha en que se elabore el diseño.

Por esta razón el período de diseño será de 31 años, tomando en cuenta un año que probablemente tardarán las gestiones previas a la ejecución del proyecto.

2.1.3.6. Profundidad de tubería

Según las recomendaciones INFOM para evitar que las cargas vivas, como el paso de vehículos, dañen las tuberías la diferencia mínima entre la altura del terreno y la altura de coronamiento de la tubería sea de 1,00 metros.

2.1.4. Métodos estadísticos para estimar población

Existen diferentes métodos para estimar a población futura de una comunidad entre los más utilizados se enumeran los siguientes.

Aunque en realidad la estimación de la población depende directamente de las características especificas del poblado en estudio.

2.1.4.1. Método de incremento geométrico

Es uno de los métodos más usados para estimar las poblaciones futuras, para este método es necesario tener el censo actual de la población y su tasa de crecimiento. La fórmula de este método es la siguiente:

$$P_f = p_0(1+r)^N$$

Donde

P_f = población futura

P₀ = población actual

r = tasa de crecimiento

 N = diferencia de años entre el último censo y el final del período de diseño

2.1.4.2. Método de incremento aritmético

Para este método es necesario tener los datos de por lo menos dos censos de la población. Su fórmula es:

$$P_f = p_0 + (p_0 + p_1) * \frac{t}{t_1}$$

Donde

P_f = es la población futura

 P_0 = es la población actual

P₁ = es la población del censo anterior al actual

t = es el tiempo entre la fecha actual y la futura

t₁ = es el tiempo entre la fecha del censo anterior y el actual

2.1.4.3. Cálculo de población futura del lugar

Utilizando el método del incremento geométrico.

Datos

Población presente 133 familias*5 = 665 habitantes

Densidad de población 5 habitantes por familia

Censo 1991 44 616 habitantes

2001 59 016 habitantes

Período de diseño: 30 años + 1 de trámites

$$r = \left(\frac{P_f}{P_o}\right)^{\frac{1}{N}} - 1 \rightarrow r = \left(\frac{59016}{44616}\right)^{\frac{1}{10}} - 1 \rightarrow r = 2.84\%$$

$$P_f = p_0 (1 + r)^N$$

$$P_f = 665(1 + 0.0284)^{31} = 1584 \text{ habitantes}$$

2.1.5. Levantamiento topográfico

En los levantamientos topográficos de poblaciones, se debe tomar en cuenta la ubicación exacta de las calles, de las zonas edificadas y no edificadas, alineamientos municipales, todas las calles pavimentadas anotando su clase y estado, parques públicos, escuelas, campos de deportes y todas aquellas estructuras naturales y artificiales que guarden relación con el proyecto a realizarse. Tanto el levantamiento de la población como el de la línea de

descarga se debe de tener en cuenta, la quebradas, zanjas, cursos de aguas, elevaciones, depresiones, etc.

2.1.5.1. Planimetría

Para la planimetría se utilizó un teodolito marca T1 apoyado con medición de distancias por medio de una cinta métrica de 50 m de largo y una plomada.

2.1.5.2. Altimetría

Para la altimetría se utilizó un nivel de precisión, realizando medidas a cada 10 m de distancia, apoyado con una cinta métrica de 50 m de longitud y un estadal de 4 m de altura.

2.1.6. Caudal

El caudal determina la cantidad de flujo que correrá por la tubería del sistema de alcantarillado.

2.1.6.1. Caudal sanitario

El caudal sanitario se considera como la cantidad total de flujo que se introducirá al sistema este se calcula sumando el caudal domiciliar, caudal comercial, caudal industrial, caudal de infiltraciones y caudal de conexiones ilícitas,

$$Q_s = Q_{dom} + Q_{com} + Q_{ind} + Q_{inf} + Q_{c.i.}$$

2.1.6.1.1. Caudal domiciliar

Es el caudal producido por las actividades diarias en una vivienda, esta se considera como el total de la dotación del agua potable multiplicado por un factor de retorno, que es un porcentaje, varia del 70 al 95% dependiendo el tipo de residencia para el que se está proyectando.

$$Q_{dom} = \frac{(\text{\# hab}) * (dotacion) * (F.R.)}{86 \text{ 400 seg.}}$$

Donde

Q_{dom} = caudal domiciliar

hab = número de habitantes

Dotación = lts/hab/día

F.R. = factor de retorno

86 400 seg = segundos en un día

2.1.6.1.2. Caudal comercial

Es el caudal producido por las actividades diarias de los diferentes comercios de la comunidad, este se calcula asignando una dotación al comercio dependiendo del tipo de comercio su fórmula es:

$$Q_{com} = \frac{(\# com) * (dotación)}{86 400 seg.}$$

Donde

 Q_{com} = caudal comercial

com. = número de comercios

Dotación = Its/com/día

86 400 seg = segundos en un día

Tabla V. Dotación por tipo de comercio

Tipo de comercio	Dotación Its/com/día								
Tipo de comercio	De	Α							
Pequeño	1200	1600							
Mediano	1700	3000							
Grande	3200	\rightarrow							

Fuente: elaboración propia.

Este caudal no se tomará en cuenta debido a que en la colonia no existen comercios.

2.1.6.1.3. Caudal industrial

Es el caudal producido por las actividades diarias de las diferentes industrias de la comunidad, esta se calcula asignando una dotación que puede ser pequeña y que varía de 12 000 a 18 000 lts/ind/día o grande que es mayor a los 18 000 lts/ind/día su fórmula es:

$$Q_{ind} = \frac{(\#~ind)*(dotaci\acute{o}n)}{86~400~seg.}$$

Donde

Q_{ind} = caudal industrial

ind = número de industrias

Dotación = Its/ind/día

86 400 seg = segundos en un día

2.1.6.1.4. Caudal de infiltraciones

Existen diferente criterios para calcular el caudal de infiltraciones, uno de ellos es asignando una dotación por cada kilometro de tubería, que incluya; la tubería del colector principal y de las conexiones domiciliares, esta dotación puede ser de 16 000 a 18 000 lts/km/día.

$$Q_{inf} = \frac{(dotaci\acute{o}n)*(km~tub)}{86~400~seg.}$$

Entonces

$$Q_{inf} = \frac{(dotaci\acute{o}n)*(m\;tub+\#\;casas*6\;)/1000}{86\;400\;seg.}$$

Donde

Q_{inf} = caudal de infiltraciones

Dotación = lts/km/día

casas = número de casas

m tub = metros de tubería colector principal

86 400 seg = segundos en un día

INFOM recomienda que este sea calculado en base a la localización de la tubería con respecto al nivel freático y el diámetro de la tubería, establece los siguientes parámetros por cada kilómetro de tubería construida.

- a) Para tuberías que quedarán sobre el nivel freático.
 - Tuberías de cemento: Q_{inf} = 0,025 x diámetro en pulgadas

Tuberías de P.V.C.: Q_{inf} = 0,01 x diámetro en pulgadas

b) Para tuberías que quedarán bajo el nivel freático.

• Tuberías de cemento: Qinf = 0,15 x diámetro en pulgadas

Tuberías de P.V.C.: Qinf = 0,02 x diámetro en pulgadas

2.1.6.1.5. Caudal de conexiones ilícitas

Este caudal se deriva principalmente de conexiones de aguas pluviales, riegos de jardines y patios las cuales son introducidas al sistema sanitario.

Puede determinarse mediante diferentes criterios, uno de ellos establece que como mínimo, se debe de considerar como el 10 % de caudal domiciliar.

$$Q_{c.i} = 0.10 * Q_{com}$$

Donde

Q_{c.i.} = caudal de conexiones ilícitas

Q_{dom} = caudal domiciliar

Puede determinarse también mediante el método racional.

$$Q_{c.i.} = \frac{CIA}{360} * 1000$$

Donde

Q_{c.i.} = caudal de conexiones ilícitas (lts/seg)

C = coeficiente de escorrentía

2.1.6.1.6. Factor de caudal medio

Este factor regula la aportación de caudal en la tubería para evitar que se sobrediseñe o no se diseñe con la capacidad suficiente el sistema, este es un factor promedio que resulta ser constante para toda la población y para todo el sistema. Para calcular este valor se divide el caudal sanitario dentro del número de habitantes de la población futura.

$$Fqm = \frac{Q_s}{P_f}$$

Este factor debería estar entre 0,002 - 0,005.

Entonces

si fqm < 0,002 entonces se usa 0,002 si fqm > 0,005 entonces se usa 0,005

2.1.6.1.7. Factor de flujo

También conocido como el factor de Harmon debido a que por lo general se calcula con la fórmula de Harmon, este representa la probabilidad de que todos los artefactos sanitarios, que se encuentran conectados al sistema sean utilizados simultáneamente y regula las aportaciones por uso doméstico para las horas pico, es por ello que se calcula en base a la población en cada tramo del sistema.

$$F.H. = \frac{18 + \sqrt{P/1000}}{4 + \sqrt{P}/1000}$$

Donde

F.H. = factor de flujo

P = población

2.1.6.1.8. Factor de caudal máximo

Este factor se calcula únicamente para simplificar el cálculo del caudal de diseño se determina multiplicando el factor de caudal medio por el factor de flujo o factor de Harmon.

$$Fqmax = Fqm * F.H.$$

Donde

Fqmax= factor de caudal máximo

Fqm = factor de caudal medio

F.H. = factor de flujo

2.1.6.2. Caudal de diseño

Este caudal también se conoce como caudal máximo se calcula multiplicando el factor de caudal medio por el factor de Harmon por la población, este es el caudal que se utilizará para diseñar la red alcantarillados.

$$Q_{dis} = Fqm * F.H.* poblacion.$$

$$Q_{dis} = Fqmax * poblacion.$$

2.1.7. Diseño de la red de alcantarillado

Para demostrar cómo se realiza el cálculo para diseño de alcantarillado, se diseñará un tramo al azar de todo el sistema, el cálculo es el mismo en todos los tramos del sistema.

2.1.7.1. Bases de diseño

Proyecto: alcantarillado sanitario

Tipo de Sistema: por gravedad

Densidad de vivienda: 5 habitantes / casa Dotación de agua potable: 125 Lit / hab / día

Factor de retorno: 75 %

Población presente tramo D-E 590

Censo 1991 44 616 habitantes

2001 59 616 habitantes

Período de diseño: 30 años

Factor de caudal medio: 0,002 Lit / hab / día

Longitud del tramo 25 m

Tipo de tubería: PVC

Coeficiente de rugosidad (n): 0,009

Velocidad mínima 0,3 m/s Velocidad máxima 5,0 m/s

Fórmula de cálculo fórmula de Manning

Diámetro mínimo 6"

Cotas del tramo

Cota inicial 100,2 Cota final 100,0

2.1.7.2. Estimación de la población futura

Método geométrico.

$$r = \left(\frac{P_f}{P_o}\right)^{\frac{1}{N}} - 1 \rightarrow r = \left(\frac{59016}{44616}\right)^{\frac{1}{10}} - 1 \rightarrow r = 2,84\%$$

$$P_f = p_0(1+r)^N$$

$$P_f = 590(1+0.0284)^{31}$$

La colonia Los Cerritos de la aldea Buena Vista, del municipio de Chimaltenango tiene la característica de estar delimitada por otras comunidades y por un parte aguas y no tiene para donde extenderse es por esta razón que la proyección a futuro se realizó con el número total de de lotes más un 20% de algunos lotes que se fraccione o se dupliquen por algún motivo.

 $P_f = 1405$ habitantes

Para la parte del desfogue la estimación de la población futura se realizó mediante aplicación de áreas tributarias y lotes típicos de la región ya que el colector pasará por terrenos que aun no están habitados. Para estimar la población futura en cada tramo se relacionó el área tributaria y la longitud de cada tramo.

Según lo anterior la población futura para el tramo D-E se estima en 1415 habitantes.

2.1.7.3. Cálculo hidráulico

2.1.7.3.1. Cálculo de caudal

Caudal sanitario.

$$Q_s = Q_{dom} + Q_{com} + Q_{ind} + Q_{inf} + Q_{c.i.}$$

Caudal domiciliar.

$$Q_{dom} = \frac{(\text{\# hab}) * (dotacion) * (F.R.)}{86 \ 400 \ seg.}$$

Actual

$$Q_{dom} = \frac{(590) * (125) * (0,75)}{86 \ 400 \ seg.} = 0,6402 \ lts/seg$$

Futuro

$$Q_{dom} = \frac{(1415) * (125) * (0,75)}{86400 \text{ seg.}} = 1,5354 \text{ lts/seg}$$

Caudal comercial y caudal industrial.

$$Q_{com} = \frac{(\#\ com)*(dotacion)}{86\ 400\ seg.} \qquad Q_{ind} = \frac{(\#\ ind)*(dotacion)}{86\ 400\ seg.}$$

Estas dos aportaciones de caudales no serán tomadas en cuenta debido a que en el lugar no existe ningún comercio ni industria.

Caudal de infiltraciones.

Actual

$$Q_{inf} = \frac{(15\ 000)*(25+118*6)/1000}{86\ 400\ seg.} = 0,1273\ lts/seg$$

Futuro

$$Q_{inf} = \frac{(15\ 000) * (25 + 566 * 6)/1000}{86\ 400\ seg.} = 0,2991\ lts/seg$$

Caudal de conexiones ilícitas.

$$Q_{c,i} = 0.10 * Q_{dom}$$

Actual

$$Q_{c.i} = 0.10 * 0.6402 = 0.06402 lts/seg$$

Futuro

$$Q_{c.i} = 0.10 * 1.5354 = 0.1535 lts/seg$$

Entonces el caudal sanitario es:

Actual

$$Q_s = 0.6402 + 0.1273 + 0.06402 = 0.8315 \ lts/seg$$

Futuro

$$Q_s = 1,5354 + 0,2991 + 0,1535 = 1,988 \, lts/seg$$

Factor de caudal medio.

Este factor es constante para todo el sistema y debe estas entre $0,002 \ge Fqm \le 0,005$.

$$Fqm = \frac{Q_{sanitario}}{P_{futuara}}$$

$$Fqm = \frac{1,988}{1415} = 0,0014$$

Como este factor es constante si lo calculamos con la población actual el resultado debería ser igual.

$$Fqm = \frac{0,8315}{590} = 0,0014$$

Como el *Fqm* es 0,0014 y este es menos a 0,002 se tomará como 0,002. Entonces:

$$Fqm = 0.002$$

Factor de flujo.

$$F.H. = \frac{18 + \sqrt{P}}{4 + \sqrt{P}}$$
 donde $P = Poblacion/1000$

Actual

$$F.H. = \frac{18 + \sqrt{590/1000}}{4 + \sqrt{590/1000}} = 3,94$$

Futuro

$$F.H. = \frac{18 + \sqrt{1415/1000}}{4 + \sqrt{1415/1000}} = 3,70$$

Factor de caudal máximo.

$$Fqmax = Fqm * F.H.$$

Actual

$$Fqmax = 0.002 * 3.94 = 0.00788$$

Futuro

$$Fqmax = 0.002 * 3.70 = 0.0074$$

Caudal máximo o caudal de diseño.

Este es el caudal que se utilizará para el diseño se la red de alcantarillado.

$$Q_{dis} = Fqmax * poblacion.$$

Actual

$$Q_{dis} = 0.00788 * 590 = 4.6492 lts/seg$$

Futuro

$$Q_{dis} = 0.0074 * 1415 = 10.4646 lts/seg$$

2.1.7.3.2. Diseño de la red

Para el cálculo hidráulico del sistema se realizará mediante la fórmula de Manning y las tablas provenientes de las relaciones hidráulicas.

Cálculo de la pendiente (s)

Pendiente natural %

$$S = \left(\frac{cota\ final - cota\ inicial}{distancia\ horizontal}\right) * 100$$

$$S = \left(\frac{100,0 - 100,2}{25}\right) * 100 = -0.80\%$$

Lo ideal es que toda la tubería siga la pendiente natural, pero, esto por lo general nunca se logra, entonces se puede cambiar la pendiente siempre que esta cumpla con las condiciones de velocidad y tirante.

Entonces pendiente de diseño.

$$S_{dis} = 0.25\%$$

Cálculo de velocidad.

Velocidad a sección llena

$$V = \frac{0.03429}{n} D^{2/3} S^{1/2}$$

$$D = 8$$
"
 $S_{dis} = 0.25\% = 0.0025$

$$V = \frac{0,03429}{0,009} (8)^{2/3} (0,0025)^{1/2} = 0,762 \text{ m/seg}$$

Cálculo del caudal.

Caudal a sección llena

$$Q = V*\pi*\frac{D^2}{4}$$

$$D = 8$$
" = 0,2032 m
 $S_{dis} = 0,25\% = 0,0025$

$$Q = 0.762 * \pi * \frac{0.2032^2}{4} = 0.02471 \frac{m^3}{seg} = 24.71 lts/seg$$

Relación de caudales

Actuales

$$\frac{Q_{\text{dis}}}{Q} = \frac{4,6446}{24,71} = 0,18796$$

Futuras

$$\frac{Q_{\text{dis}}}{Q} = \frac{10,4645}{24,71} = 0,42348$$

De la tablas de relaciones hidráulicas se tiene que;

Actual

$$\frac{V_{\text{dis}}}{V} = 0.766 \rightarrow V_{\text{dis}} = 0.766 * 0.762 = 0.5838 \text{ m/seg}$$
 $\sqrt{}$

Futura

$$\frac{V_{dis}}{V} = 0.9582 \rightarrow V_{dis} = 0.9582 * 0.762 = 0.7301 \text{ m/seg}$$
 $\sqrt{}$

Tirante

De la tablas de relaciones hidráulicas se tiene que;

Actual Futura

$$\frac{y_h}{D} = 0.293 \text{ } \sqrt{\frac{y_h}{D}} = 0.454 \text{ } \sqrt{\frac{y_h}{D}} = 0.45$$

Tabla VI. Cálculo de Caudal de Diseño

Pozos	•			No	o. Ca	sas		Habitant	es A Servir	F.	Н.	Q. Dom		
De P.V.	A P.V	D.H Mts.	Local Act	Acum Act	Local Fut	Local Fut + 20%	Acum Fut	Actual	Futuro	Actual :	Futuro	Actual	Futuro	
				,			- '			-		,		
A2	A3	49	3	3	10	12	12	15	60	4,40	4,30	0,0163	0,0651	
A3	Α	41	4	7	6	7,0	19,0	35	95	4,34	4,25	0,0380	0,1031	
A	B C	37	4	16	6	7	32	80	160	4,27	4,18	0,0868	0,1736	
В	-	36	2	50	4	5	121	250	605	4,11	3,93	0,2713	0,6565	
	D	34		84	4	5	217	420	1085	4,01	3,78	0,4557	1,1773	
D	E	25	4	118	8	10	283	590	1415	3,94	3,70	0,6402	1,5354	
A1	A	33	5	5	5 1	6	6	25	30	4,37	4,35	0,0271	0,0326	
A2	B4	24,52	5	5	5	6	6	25	30	4,37	4,35	0,0271	0,0326	
B4	C5	36,31	4	9	4	5	11	45	55	4,32	4,31	0,0488	0,0597	
C5	D4	35,98	1	10	1	1	12	50	60	4,31	4,30	0,0543	0,0651	
D4	D	74	6	16	14	17	29	80	145	4,27	4,20	0,0868	0,1573	
B4	В	85	14	14	20	24	24	70	120	4,28	4,22	0,0760	0,1302	
B1	B2	55	4	4	8	10	10	20	50	4,38	4,31	0,0217	0,0543	
B2	B3	74	6	13	18	22	43	65	215	4,29	4,14	0,0705	0,2333	
B3	В	58,6	7	20	14	17	60	100	300	4,24	4,08	0,1085	0,3255	
B2.1	B2	33	0	0	4	5	5	0	25	4,50	4,37	0,0000	0,0271	
C5	С	81	4	4	20	24	24	20	120	4,38	4,22	0,0217	0,1302	
C1	C2	51	11	11	24	29	29	55	145	4,31	4,20	0,0597	0,1573	
C2	C3	52	8	19	12	14	43	95	215	4,25	4,14	0,1031	0,2333	
C3	C4	35	4	23	9	11	54	115	270	4,23	4,10	0,1248	0,2930	
C4	С	46	5	28	11	13	67	140	335	4,20	4,06	0,1519	0,3635	
C2	B2	38,95	3	2	5 5	6	6 6	15	30	4,40	4,35	0,0163	0,0326	
C2	D1	20,88	2	8		6 7		10	30	4,41	4,35	0,0109	0,0326	
D1	D2	45	6 3		6		13	40	65	4,33	4,29	0,0434	0,0705	
D2 D3	D3 D	40,8 49,6	3	11 14	6	7	20 27	55 70	100 135	4,31 4,28	4,24 4,21	0,0597 0,0760	0,1085 0,1465	
E	F	49,0	2	120	6	24	307	600	1535	3,93	3,67	0,6510		
F	G	40	0	120	6	22	329	600	1645	3,93		0,6510	1,6656	
G	Н	81	5	125	10	44	373	625	1865	3,93	3,65 3,61	0,6310	1,7849 2,0237	
Н	П	37	1	126	6	20	393	630	1965		3,59	0,6836		
1	J	57	0	126	8	10	403	630	2015	3,92 3,92	3,58	0,6836	2,1322 2,1864	
J	K	45	0	126	8	10							2,1804	
	L	45 45		126			413 423	630 630	2065	3,92	3,57	0,6836		
K L	M	35	0	126	8 6	10 7	430	630	2115 2150	3,92 3,92	3,57 3,56	0,6836 0,6836	2,2949 2,3329	
M	N	18		126	5	6	436	630	2180	3,92		0,6836	2,3655	
N	0	75	0	126	10	12	448	630	2240	3,92	3,56	0,6836	2,4306	
O	P		0	126	8	10	458	630	2240		3,55	0,6836	-	
P	Q	60 80	7	133	10	12	470	665	2350	3,92	3,54 3,53	0,6836	2,4848 2,5499	
	Ų	00	1	133	10	12	4/0	000	2330	J, & I	ა,აა	0,1210	2,0499	

Continuación tabla VI.

Pozo	s	Qinf		Q. ci		Q. sani				Q. De Dise	ño (Lts/seg)
De P.V.	A P.V	Actual	Futuro	Actual	Futuro	Actual	Futuro	Fqm calculado	Fqm utilizado	Actual	Futuro
A2	А3	0,0116	0,0210	0,0016	0,0065	0,0295	0,0926	0,0015	0,0020	0,1319	0,5158
A3	Α	0,0144	0,0269	0,0038	0,0103	0,0562	0,1403	0,0015	0,0020	0,3041	0,8074
Α	В	0,0231	0,0398	0,0087	0,0174	0,1186	0,2307	0,0014	0,0020	0,6830	1,3382
В	С	0,0583	0,1323	0,0271	0,0656	0,3567	0,8544	0,0014	0,0020	2,0556	4,7556
С	D	0,0934	0,2319	0,0456	0,1177	0,5947	1,5270	0,0014	0,0020	3,3701	8,1958
D	Е	0,1273	0,2991	0,0640	0,1535	0,8315	1,9880	0,0014	0,0020	4,6447	10,4646
A1	Α	0,0109	0,0120	0,0027	0,0033	0,0408	0,0478	0,0016	0,0020	0,2183	0,2613
A2	B4	0,0095	0,0105	0,0027	0,0033	0,0393	0,0463	0,0000	0,0020	0,2183	0,2613
B4	C5	0,0157	0,0178	0,0049	0,0060	0,0694	0,0834	0,0000	0,0020	0,3891	0,4737
C5	D4	0,0167	0,0187	0,0054	0,0065	0,0763	0,0904	0,0000	0,0020	0,4315	0,5158
D4	D	0,0295	0,0431	0,0087	0,0157	0,1250	0,2161	0,0015	0,0020	0,6830	1,2168
B4	В	0,0293	0,0398	0,0076	0,0130	0,1129	0,1830	0,0015	0,0020	0,5996	1,0131
B1	B2	0,0137	0,0200	0,0022	0,0054	0,0376	0,0796	0,0016	0,0020	0,1752	0,4315
B2	В3	0,0264	0,0576	0,0071	0,0233	0,1040	0,3143	0,0015	0,0020	0,5577	1,7787
B3	В	0,0310	0,0727	0,0109	0,0326	0,1504	0,4307	0,0014	0,0020	0,8487	2,4471
B2.1	B2	0,0057	0,0109	0,0000	0,0027	0,0057	0,0408	0,0000	0,0020	0,0000	0,2183
C5	С	0,0182	0,0391	0,0022	0,0130	0,0421	0,1823	0,0015	0,0020	0,1752	1,0131
C1	C2	0,0203	0,0391	0,0060	0,0157	0,0860	0,2121	0,0015	0,0020	0,4737	1,2168
C2	C3	0,0288	0,0538	0,0103	0,0233	0,1422	0,3104	0,0014	0,0020	0,8074	1,7787
C3	C4	0,0300	0,0623	0,0125	0,0293	0,1673	0,3846	0,0014	0,0020	0,9721	2,2127
C4	С	0,0372	0,0778	0,0152	0,0363	0,2043	0,4776	0,0014	0,0020	1,1762	2,7186
C2	B2	0,0099	0,0130	0,0016	0,0033	0,0278	0,0488	0,0016	0,0020	0,1319	0,2613
C2	D1	0,0057	0,0099	0,0011	0,0033	0,0176	0,0457	0,0015	0,0020	0,0883	0,2613
D1	D2	0,0161	0,0214	0,0043	0,0071	0,0639	0,0989	0,0015	0,0020	0,3467	0,5577
D2	D3	0,0185	0,0279	0,0060	0,0109	0,0842	0,1473	0,0015	0,0020	0,4737	0,8487
D3	D	0,0232	0,0367	0,0076	0,0146	0,1067	0,1979	0,0015	0,0020	0,5996	1,1355
Е	F	0,1328	0,3276	0,0651	0,1666	0,8490	2,1597	0,0014	0,0020	4,7186	11,2739
F	G	0,1319	0,3497	0,0651	0,1785	0,8481	2,3131	0,0014	0,0020	4,7186	12,0092
G	Н	0,1443	0,4026	0,0678	0,2024	0,8903	2,6286	0,0014	0,0020	4,9030	13,4623
Н	I	0,1377	0,4158	0,0684	0,2132	0,8896	2,7612	0,0014	0,0020	4,9398	14,1155
I	J	0,1411	0,4297	0,0684	0,2186	0,8931	2,8347	0,0014	0,0020	4,9398	14,4405
J	K	0,1391	0,4380	0,0684	0,2241	0,8910	2,9028	0,0014	0,0020	4,9398	14,7645
K	L	0,1391	0,4484	0,0684	0,2295	0,8910	2,9729	0,0014	0,0020	4,9398	15,0875
L	М	0,1373	0,4540	0,0684	0,2333	0,8893	3,0202	0,0014	0,0020	4,9398	15,3130
М	N	0,1344	0,4573	0,0684	0,2365	0,8863	3,0593	0,0014	0,0020	4,9398	15,5058
N	0	0,1443	0,4797	0,0684	0,2431	0,8962	3,1533	0,0014	0,0020	4,9398	15,8906
0	Р	0,1417	0,4875	0,0684	0,2485	0,8936	3,2208	0,0014	0,0020	4,9398	16,2101
Р	Q	0,1524	0,5035	0,0722	0,2550	0,9462	3,3084	0,0014	0,0020	5,1967	16,5923

Tabla VII. Cálculo hidráulico

Pozo		Cota Terren				Q. De Di (Lts/seg				Tubería Llena	Sección	
De P.V.	A P.V	Inicial	Final	D.H Mts.	Pendiente Terreno %	Actual	Futuro	Diámetro Φ (Pulgadas)	Pendiente de diseño %	Vel. (m/s)	Q (I/s)	Relación q/Q actual
A2	А3	101,95	101,05	49,00	-1,84	0,132	0,516	6	-2,00	1,779	32,454	0,00406
А3	Α	101,05	100,95	41,00	-0,24	0,304	0,807	6	-1,00	1,258	22,948	0,01325
Α	В	100,95	100,85	37,00	-0,27	0,683	1,338	6	-0,50	0,890	16,227	0,04209
В	С	100,85	100,40	36,00	-1,25	2,056	4,756	6	-0,50	0,890	16,227	0,12668
С	D	100,40	100,20	34,00	-0,59	3,370	8,196	8	-0,50	1,078	34,947	0,09643
D	Е	100,20	100,00	25,00	-0,80	4,645	10,465	8	-0,25	0,762	24,711	0,18796
A1	Α	101,55	100,95	33,00	-1,82	0,218	0,261	6	-2,00	1,779	32,454	0,00673
A2	B4	101,95	101,45	24,52	-2,04	0,218	0,261	6	-2,00	1,779	32,454	0,00673
B4	C5	101,45	101,10	36,31	-0,96	0,389	0,474	6	-1,00	1,258	22,948	0,01696
C5	D4	101,10	100,60	35,98	-1,39	0,431	0,516	6	-1,50	1,541	28,106	0,01535
D4	D	100,60	100,20	74,00	-0,54	0,683	1,217	6	-0,50	0,890	16,227	0,04209
B4	В	101,45	100,85	85,00	-0,71	0,600	1,013	6	-1,00	1,258	22,948	0,02613
B1	B2	109,00	108,90	55,00	-0,18	0,175	0,431	6	-1,00	1,258	22,948	0,00764
B2	В3	108,90	102,95	74,00	-8,04	0,558	1,779	6	-5,00	2,813	51,314	0,01087
В3	В	102,95	100,85	58,60	-3,58	0,849	2,447	6	-3,50	2,354	42,933	0,01977
B2.1	B2	106,85	108,90	33,00	6,21	0,000	0,218	6	-0,50	0,890	16,227	0,00000
C5	С	101,10	100,40	81,00	-0,86	0,175	1,013	6	-1,00	1,258	22,948	0,00764
C1	C2	110,15	109,95	51,00	-0,39	0,474	1,217	6	-1,50	1,541	28,106	0,01685
C2	C3	109,95	107,25	52,00	-5,19	0,807	1,779	6	-4,00	2,516	45,897	0,01759
C3	C4	107,25	101,10	35,00	-17,57	0,972	2,213	6	-17,50	5,263	96,000	0,01013
C4	С	101,10	100,40	46,00	-1,52	1,176	2,719	6	-1,50	1,541	28,106	0,04185
C2	B2	109,95	108,90	38,95	-2,70	0,132	0,261	6	-2,50	1,989	36,285	0,00363
C2	D1	109,95	109,31	20,88	-3,07	0,088	0,261	6	-3,00	2,179	39,748	0,00222
D1	D2	109,31	108,80	45,00	-1,13	0,347	0,558	6	-2,00	1,779	32,454	0,01068
D2	D3	108,80	101,70	40,80	-17,40	0,474	0,849	6	-17,00	5,187	94,619	0,00501
D3	D	101,70	100,20	49,60	-3,02	0,600	1,135	6	-2,50	1,989	36,285	0,01652
Е	F	100,00	98,50	45,00	-3,33	4,719	11,274	8	-2,50	2,410	78,143	0,06038
F	G	98,50	98,00	40,00	-1,25	4,719	12,009	8	-1,00	1,524	49,422	0,09548
G	Н	98,00	98,40	81,00	0,49	4,903	13,462	8	-0,50	1,078	34,947	0,14030
Н	I	98,40	97,50	37,00	-2,43	4,940	14,116	8	-0,50	1,078	34,947	0,14135
I	J	97,50	97,40	57,00	-0,18	4,940	14,441	10	-0,50	1,250	63,363	0,07796
J	K	97,40	97,62	45,00	0,49	4,940	14,765	10	-0,50	1,250	63,363	0,07796
K	L	97,62	97,72	45,00	0,22	4,940	15,087	10	-0,50	1,250	63,363	0,07796
L	М	97,72	97,32	35,00	-1,14	4,940	15,313	10	-1,00	1,768	89,608	0,05513
М	N	97,32	97,02	18,00	-1,67	4,940	15,506	10	-1,00	1,768	89,608	0,05513
N	0	97,02	96,62	75,00	-0,53	4,940	15,891	10	-0,50	1,250	63,363	0,07796
0	Р	96,62	96,74	60,00	0,20	4,940	16,210	10	-0,50	1,250	63,363	0,07796
Р	Q	96,74	96,09	80,00	-0,81	5,197	16,592	10	-0,50	1,250	63,363	0,08202

Continuación tabla VII.

Pozo		n q7Q	Relacio Actuale		Relacio Futuras		Veloci Diseño	dad de	Cotas Inve	er	Profun de Poz		de Zanja
De P.V.	A P.V	Relación Futura	v/V	y/D	v/V	y/D	Actua I	Futur a	Inicio	Final	Inicio	Final	Ancho de
A2	А3	0,01589	0,239	0,045	0,367	0,087	0,426	0,653	100,798	99,818	1,45	1,53	0,60
A3	Α	0,03518	0,348	0,080	0,468	0,128	0,438	0,589	99,788	99,378	1,56	1,92	0,60
Α	В	0,08247	0,493	0,139	0,604	0,175	0,439	0,537	99,348	99,163	1,90	2,04	0,70
В	С	0,29306	0,684	0,240	0,868	0,370	0,609	0,772	99,133	98,953	2,02	1,80	0,60
С	D	0,23452	0,631	0,209	0,816	0,329	0,680	0,879	98,923	98,753	1,78	1,80	0,60
D	Е	0,42348	0,766	0,293	0,958	0,454	0,584	0,730	98,723	98,660	1,78	1,69	0,60
A1	Α	0,00805	0,283	0,058	0,298	0,063	0,503	0,531	100,398	99,738	1,45	1,56	0,60
A2	B4	0,00805	0,283	0,058	0,298	0,063	0,503	0,531	100,798	100,307	1,45	1,49	0,60
B4	C5	0,02064	0,375	0,090	0,399	0,099	0,472	0,501	100,268	99,905	1,48	1,55	0,60
C5	D4	0,01835	0,364	0,086	0,383	0,093	0,561	0,590	99,875	99,335	1,53	1,62	0,60
D4	D	0,07498	0,493	0,139	0,587	0,185	0,439	0,522	99,305	98,935	1,60	1,62	0,60
B4	В	0,04414	0,428	0,111	0,502	0,143	0,539	0,631	100,298	99,448	1,45	1,75	0,60
B1	B2	0,01880	0,295	0,062	0,386	0,094	0,371	0,485	107,848	107,298	1,45	1,95	0,60
B2	ВЗ	0,03466	0,328	0,063	0,466	0,127	0,923	1,311	105,503	101,803	3,70	1,50	0,60
В3	В	0,05700	0,393	0,097	0,542	0,162	0,926	1,275	101,773	99,722	1,48	1,48	0,60
B2.1	B2	0,01346	0,000	0,000	0,351	0,081	0,000	0,312	105,698	105,533	1,45	3,72	0,70
C5	С	0,04414	0,295	0,062	0,502	0,143	0,371	0,631	99,948	99,138	1,45	1,61	0,60
C1	C2	0,04329	0,036	0,004	0,497	0,141	0,055	0,766	108,998	108,233	1,45	2,07	0,70
C2	C3	0,03875	0,380	0,092	0,482	0,134	0,957	1,213	108,203	106,123	2,05	1,48	0,60
C3	C4	0,02305	0,319	0,070	0,411	0,104	1,681	2,164	106,093	99,968	1,46	1,48	0,60
C4	С	0,09673	0,493	0,139	0,633	0,210	0,760	0,975	99,938	99,248	1,46	1,50	0,60
C2	B2	0,00720	0,233	0,043	0,289	0,060	0,463	0,575	108,798	107,824	1,45	1,43	0,60
C2	D1	0,00657	0,199	0,034	0,279	0,057	0,434	0,609	108,798	108,171	1,45	1,49	0,60
D1	D2	0,01719	0,325	0,072	0,378	0,091	0,578	0,672	108,141	107,241	1,47	1,91	0,60
D2	D3	0,00897	0,257	0,050	0,307	0,066	1,333	1,594	107,211	100,275	1,89	1,77	0,60
D3	D	0,03129	0,372	0,089	0,452	0,121	0,741	0,900	100,245	99,005	1,75	1,54	0,60
Е	F	0,14427	0,550	0,166	0,710	0,256	1,325	1,711	98,630	97,505	1,67	1,34	0,60
F	G	0,24299	0,629	0,208	0,824	0,335	0,959	1,255	97,475	97,075	1,32	1,27	0,60
G	Н	0,38522	0,705	0,253	0,934	0,430	0,760	1,007	97,045	96,640	1,25	2,11	0,70
Н	I	0,40391	0,638	0,213	0,946	0,442	0,688	1,020	96,610	96,425	2,09	1,42	0,60
I	J	0,22790	0,593	0,188	0,809	0,324	0,741	1,012	96,395	96,110	1,40	1,64	0,60
J	K	0,23302	0,593	0,188	0,815	0,328	0,741	1,019	96,080	95,855	1,62	2,11	0,70
K	L	0,23811	0,593	0,188	0,820	0,332	0,741	1,025	95,825	95,600	2,09	2,47	0,70
L	М	0,17089	0,536	0,159	0,746	0,279	0,947	1,318	95,570	95,220	2,45	2,45	0,70
М	N	0,17304	0,536	0,159	0,749	0,281	0,947	1,324	95,190	95,010	2,43	2,36	0,70
N	0	0,25079	0,593	0,188	0,832	0,341	0,741	1,040	94,980	94,605	2,34	2,36	0,70
0	Р	0,25583	0,593	0,188	0,835	0,344	0,741	1,045	94,575	94,275	2,34	2,81	0,70
Р	Q	0,26186	0,602	0,193	0,842	0,349	0,753	1,053	94,245	93,845	2,79	2,59	0,70

2.1.8. Desfogue

Este sistema de alcantarillado se conectará a un sistema ya existente.

2.1.9. Planos

Todos los planos de este proyecto se adjuntaran en los anexos.

2.1.10. Presupuesto

Tabla VIII. Resumen de presupuesto

RESUMEN

Proyecto: DRENAJE SANITARIO COLONIA LOS CERRITOS ALDEA BUENA VISTA , CHIMALTENANGO

No.	Reglo de trabajo	Cantidad	Unidad	Precio unitario	Total
1	Preliminares				
1,1	Trazo y estaqueo				
1.1.1	Colector Principal	1824,34	ml	Q5,25	Q9 577,79
1.1.2	Conexiones Domiciliares	822,50	ml	Q162,88	Q133 968,80
1,2	Excavación				
1.2.1	Zanja colector principal	1743,38	m3	Q162,11	Q282 619,33
1.2.2	Pozos	329,12	m3	Q162,11	Q53 353,64
1.2.3	Zanja conexión domiciliar	493,50	m3	Q162,11	Q80 001,29
1.2.4	Candela domiciliar	274,10	m3	Q162,11	Q44 434,35
3	Colector Principal				
3,1	Entubado Tubería de 6"	1132,64	ml	Q175,13	Q198 359,24
3,2	Entubado Tubería de 8"	262,00	ml	Q198,64	Q52 043,68
3,3	Entubado Tubería de 10"	415,00	ml	Q275,15	Q114 187,25
4	Pozos de Visita				
4,1	Fondo	34,00	U	Q1 486,75	Q50 549,50
4,2	Levantado (ladrillo tayuyo 0.065x0.11x0.23)	229,76	m2	Q404,87	Q93 022,93
4,3	Brocal de pozo	34,00	U	Q786,54	Q26 742,36
4,4	Tapadera de pozo	34,00	U	Q492,02	Q16 728,68
4,5	Repello y cernido	34,00	U	Q1 268,83	Q43 140,22
4,6	Escalones	34,00	C/P	Q138,94	Q4 723,96
4,7	Relleno y compactación	131,11	m3	Q81,06	Q10 627,78
5	Conexiones Domiciliares				
5,1	Instalación	235,00	U	Q710,59	Q166 988,65
7	Acarreo de tierra				
7,1	Zanja colector principal	232,53	m3	Q113,48	Q26 387,50
7,2	Pozos	198,01	m3	Q113,48	Q22 470,17
7,3	Conexión domiciliar	31,87	m3	Q113,48	Q3 616,61
			TOTA	<u></u>	Q1 433 543,73

Tabla IX. Resumen de materiales

Materiales

No.	Material	Cantidad	Unidad	Precio unitario	Total
1	cal	59,78	saco	Q27,00	Q1 614,06
2	Madera	322,02	P.T.	Q3,75	Q1 207,58
3	Clavo	488,14	Libra	Q3,50	Q1 708,49
4	Selecto	199,38	m3	Q90,00	Q17 944,20
5	Tubo p /drenaje PVC Diámetro 6"	188,77	U	Q345,00	Q65 125,65
6	Tubo p /drenaje PVC Diámetro 8"	43,67	U	Q450,00	Q19 651,50
	Tubo p /drenaje PVC Diámetro 10"	69,17	U	Q800,00	Q55 336,00
7	Tubo p /drenaje PVC Diámetro 4"	137,08	U	Q125,00	Q17 135,00
8	Tubo p /drenaje concreto Diámetro 12"	235,00	U	Q80,00	Q18 800,00
9	Tapadera para tubo de 12"	235,00	U	Q25,00	Q5 875,00
10	Silleta 45ª para PVC 4" a 6"	235,00	U	Q120,00	Q28 200,00
11	cemento solvente para PVC	7,58	Galón	Q750,00	Q5 685,00
12	Alambre de Amarre	110,70	Libra	Q8,00	Q885,60
13	Hierro diámetro 3/8"	190,28	Varilla	Q29,38	Q5 590,43
14	Hierro diámetro 1/2"	110,67	Varilla	Q67,85	Q7 508,96
15	Hierro diámetro 3/4"	20,40	Varilla	Q95,00	Q1 938,00
16	Ladrillo Tatuyo 0.065 x 0.11 x 0.23m.	29500,83	U	Q1,60	Q47 201,33
17	Arena de Amarilla sin cernir	16,67	m3	Q150,00	Q2 500,50
18	Arena	39,89	m3	Q125,00	Q4 986,25
19	Piedrín	34,82	m3	Q235,00	Q8 182,70
20	Cemento	540,85	saco	Q57,00	Q30 828,45
21	Agua	2735,53	Galón	Q1,00	Q2 735,53
		To	tal de ma	ateriales	Q350 640,22

2.1.11. Cronograma de ejecución e inversión

Esquema básico donde se distribuye y organiza en forma de secuencia temporal y financiero el conjunto actividades diseñadas a lo largo de proyecto. La organización básicamente se organiza en torno a dos ejes: la duración y el costo de cada actividad, en este caso en específico al proyecto de drenaje.

Cronograma de ejecución e inversión para drenaje sanitario Figura 2.

FECHA: Febrero De 2010

ANTICIPO 20%

LIQUIDO A RECIBIR

Proyecto: DRENAJE SANITARIO COLONIA LOS CERRITOS ALDEA BUENA VISTA, CHIMALTENANGO

			CRONOGRAMA DE EJECUCIÓN E INVERSIÓN											•					
			ESTIMACIONES																
			MES 1				ME	S 2			ME	S 3		MES 4			TOTAL	REPRESE NTA	
No ,	Renglón de trabajo	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	MANO DE OBRA Y MATRIALES	%
1	Trazo y estaqueo																	Q143546,58	10,01%
2	Excavación																	Q460408,61	32,12%
3	Colector Principal																	Q364590,17	25,43%
4	Pozos de Visita																	Q245535,43	17,13%
5	Conexiones Domiciliares																	Q166988,65	11,65%
7	Acarreo de tierra																	Q52474,29	3,66%
	TOTAL GASTO POR MES	(Q698 035,65		(Q294 476,67 Q294					Q294 476,67			Q146 554,74					
	REPRESENTA %		48,69%		3,69% 20,54% 20,54% 10,22%					2%		100%							

COSTO TOTAL DEL PROYECTO	Q1 433 543,73
ANTICIPO 20%	Q286 708,75

Q117 243,79

Q58 895,33

Q235 581,34

TOTAL GASTOS DE MANO DE OBRA Q1 082 903,51 **TOTAL GASTOS DE MATERIALES** Q350 640,22 TOTAL MATERIALES Y MANO DE OBRA Q1 433 543.73 Juventino Sal Hernández Director OMP

Q58 895,33

Q235 581,34

Q139 607,13

Q558 428,52

2.1.12. Evaluación preliminar ambiental

Una evaluación de impacto ambiental describe las características de un proyecto o actividad que se pretenda llevar a cabo o su modificación. Este documento proporciona antecedentes fundados para la predicción, identificación e interpretación de su impacto ambiental y describir la o las acciones que deben ejecutarse para impedir o minimizar sus efectos adversos.

Este proyecto no tendrá un impacto significativo en el ambiente de los que generalmente se producen debido a la descarga de las aguas servidas ya que este sistema se conectará a uno ya existente.

2.1.12.1. Impacto ambiental que será producido

Existen diferentes métodos para realizar una evaluación de impacto ambiental para este proyecto se usará el método de matrices de Leopold.

En este método se desarrollan matrices con el objeto de establecer las relaciones cusa-efecto de acuerdo con las características particulares de cada proyecto.

Siempre que se utilice este método de evaluación de impacto ambiental debe de tenerse muy en cuenta identificación de actividades constructivas y acciones para los proyectos.

Tabla X. Identificación de actividades constructivas y acciones para proyectos de drenajes sanitarios

АСТ	ACCIÓN	Movimiento de maquinaria	Transporte de materiales	Emisión de gases	Cierre parcial o total de las calles	Emisión de ruido	Emisión de polvo	Conducción de aguas servidas
ETAPA								
	Trazo							
	Excavación							
	Colocación de tubería							
	Construcción de pozos de visita							
	Relleno de zanjas							
z	Compactación							
Ç	Acarreo de tierra y material							
RUC	sobrante							
STI	Prueba de filtrado							
CONSTRUCCIÓN	Entrega del Proyecto							
	Mantenimiento							
OSO	Reparaciones							

Fuente: elaboración propia apoyado con el trabajo de graduación del Ing. Jorge Antonio, García Méndez. p. 103.

De acuerdo con los variados componentes ambientales. El proyecto y en las acciones asociadas se identificaron impactos potenciales.

Tabla XI. Impactos identificados en la etapa de construcción y operación del sistema de drenaje.

CAUSA DEL IMPACTO	ІМРАСТО
Trabajos de excavación, apertura de zanjas, transporte de sólidos, relleno y compactación.	Afectan al medio social, por la generación de ruidos, material particulado, gases de combustión.
Limpieza de equipos de construcción, lavado de maquinarias, palas, e instrumentos de trabajo.	Afectan de la calidad del suelo contaminando con aguas de lavado que contienen sólidos en suspensión, productos químicos, pH alcalinos, etc.
Montaje de tuberías, compactación del terreno, cerrado de zanjas.	Afectará el medios social ya que tendrán riesgos por accidentes en los moradores de la colonia, causados por la dificultad de tránsito, aperturas de zanjas, montículos de tierra acumuladas, presencia de maquinaria pesada, et
Funcionamiento de letrinas, bodegas y zona de parqueo de maquinaria pesada.	Afectan al medio social por la generación de desechos sólidos, producidos por las actividades diarias de los trabajadores.

Continuación tabla XI.

CAUSA DEL IMPACTO	ІМРАСТО
Acciones de traslado de material,	
desalojos y trasporte de material de	Estos son otros factores que influyen en
aporte, bodegaje de materiales de	casi todos los aspectos del medio
construcción, y construcción de	ambiente.
campamentos.	

Fuente: elaboración propia apoyado con el trabajo de graduación del Ing. Jorge Antonio, García Méndez. p. 104.

En base a lo anterior se puede construir una matriz para poder visualizar mejor el impacto ambiental que será producido ponderando dicho impacto de la siguiente manera.

Clasificación de los impactos; Para clasificar el impacto que sea producido este método lo clasifica como bajo, mediano y alto, y se da una ponderación a cada clasificación para poder visualizas el impacto que será producido.

Tabla XII. Clasificación de los impactos

Cualitativo	Cuantitativo
Bajo	1
Mediano	2
Alto	3

Fuente: GARCÍA MÉNDEZ, Jorge. Diseño de ampliación de la red de alcantarillado sanitario y diseño de puente en la entrada al municipio de San Rafael las Flores, Santa Rosa, p. 106.

Tabla XIII. Matriz de interacciones de componentes ambientales y actividades de los proyectos de drenaje

Medio	Componente	Irazo	Excavación	Colocación de tubería	Construcción de pozos de visita	Relleno de zanjas	Compactación	Acarreo de tierra y material sobrante	Prueba de filtrado	Entrega del Proyecto	Mantenimiento	Reparaciones	Funcionamiento del proyecto
	Aire		1			1	1	1					
Físico	Ruido	1	2		1	1	2	1					
1 10100	Agua								2				3
	Suelo	1	1			1	1		2				
Biótico	Flora												
Biotico	Fauna												
Humano	Social	1	1	1	1	1	1	1		2	1	1	2
	Recrea											1	
	tivo											'	
	Econó mico										1	1	

Fuente: elaboración propia.

Como se puede observar los aspectos en donde se producirá el mayor impacto son: el aspecto social, el aire, el ruido, el suelo y el agua.

2.1.12.2. Medidas de mitigación

Las medidas de mitigación deben ser tomadas sobre el o los aspectos que se vean más afectados o con mayor impacto debido a la ejecución del proyecto.

Tabla XIV. Medidas de mitigación según el medio y componente en donde se producirá el impacto en proyectos de drenaje

Medio	Componente	Medida de mitigación
	Aire	Lo primero que se debe de tomar en cuenta es la salud de los trabajadores para ello se deberá dotar de mascarillas en las actividades con más riesgo de producir y respirar polvo. Para controlar el polvo producido por el movimiento suelo y la utilización de materiales de construcción, lo recomendable es controlar la humedad del suelo que será movido al igual que la de los materiales que serán utilizados.
Físico		Las emisiones de CO2 son producidas por la maquinaria, para controlar estos gases se recomienda utilizar maquinaria en buen estado.

Continuación tabla XIV.

Medio	Componente	Medida de mitigación
		La mayor cantidad de ruido es producida por los automotores que trabajan para la construcción.
	Ruido	Debido a esto es muy difícil de controlar por lo que la comunidad se deberá acostumbrar a tener automotores trabajando frente a sus casas mientras se ejecuta el proyecto.
		El agua que se puede contaminar en este tipo de proyecto es el agua subterránea, debido a las filtraciones que pueda tener la tubería o en los acoples de la misma. También puede de contaminarse el agua superficial.
Físico	Agua	En el proyecto del drenaje se hará una revisión de cada tubo y acoples que se utilicen. También se deberá hacer una prueba de la eficiencia de la red de tubería y la absorción que tenga, esta prueba se hará de sección en sección, aguas arriba se dejará caer agua en la tubería y se recogerá al final de la misma, la cantidad de agua recibida aguas abajo deberá ser cuando menos el 90% de la que se suelta aguas arriba.

Continuación tabla XIV.

Medio	Componente	Medida de mitigación
Físico	Suelo	En cuanto a la estructura general del suelo tendrá modificaciones mínimas que no tendrá un impacto significativo.
Biótico	Flora y Fauna	En el caso de flora y fauna, no habrá ningún efecto ambiental adverso ya que la mayor parte del proyecto se encuentra dentro de una zona ya urbanizada y la parte que pasa sobre terreno, no existe vegetación.
Humano	Social	A pesar de que es el aspecto en donde se producirá el mayor impacto todo radica en cambio de costumbres debido a personas ajenas a lugar de los proyectos, el impacto se relaciona con el comportamiento de éstas personas; por lo que se recomienda implementar un código de buena conducta que regule la relación entre ambas sociedades.

Continuación tabla XIV.

Medio	Componente	Medida de mitigación
Humano	Recreativo Económico	No se observa un impacto significativo.

Fuente: elaboración propia apoyado con el trabajo de graduación del Ing. Jorge Antonio, García Méndez. p. 104.

2.1.13. Evaluación socioeconómica

Este estudio se realiza para verificar la rentabilidad de un proyecto, los indicadores más utilizados para esta evaluación son; el valor presente neto VPN y la tasa interna de retorno TIR.

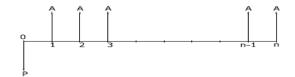
2.1.13.1. Valor presente neto

Es el método más utilizado para verificar la rentabilidad de un proyecto a largo plazo y es una medida del beneficio que rinde un proyecto de inversión a través de toda su vida útil; se define como el valor presente de su flujo de ingresos futuros menos el valor presente de su flujo de costos.

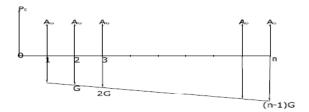
La ventaja de la utilización de este método es que es fácil de aplicar y considera el valor del dinero en el tiempo.

Existen diferentes formas de determinar el valor presente neto, todo depende de cómo se presente el flujo de costos.

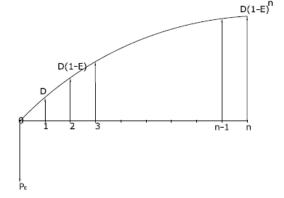
Figura 3. Formas de determinar el valor presente neto


Si es una cantidad única.

$$P = F\left(\frac{1}{(1+i)^N}\right)$$


Si se tiene una serie uniforme.

$$P = A\left(\frac{(1+i)^N - 1}{i(1+i)^N}\right)$$


Para un gradiente aritmético.

$$P = G\left(\frac{(1+i)^{N} - iN - 1}{i^{2}(1+i)^{N}}\right)$$

Para un gradiente geométrico.

$$P = D\left(\frac{\frac{(1+i)^N}{(1+i)^N} - 1}{E-i}\right)$$

$$D = \frac{N}{(1+E)}$$

Fuente: elaboración propia, Apuntes del curso ingeniería económica 1.

Donde

P = valor presente del flujo de costos

i = tasa de interés

N = periodo en años

F = cantidad única en el futuro

A = anualidad uniforme

G = gradiente aritmético

D = anualidad o cantidad de dinero en el año 1

E = tasa de crecimiento geométrico en forma decimal

2.1.13.2. Tasa interna de retorno

La tasa interna de retorno (TIR) es otro método para evaluar la rentabilidad de un proyecto a largo plazo. Se emplea bajo la premisa que en valor presente neto VPN es igual a cero, es decir, la tasa de interés con la que se recuperara la inversión del proyecto durante su vida útil.

El criterio por emplear cuando se usa la TIR para decisiones de aceptación o rechazo es que si la TIR ≥ costo de capital, se acepta el proyecto, de lo contrario se rechaza. Si se asume que la municipalidad utiliza una tasa de interés del 12% en relación y se compara al % que se obtendrá del proyecto y este es mayor es viable, en virtud que se obtiene un porcentaje mayor al interés que pagaría el banco si el capital estuviera a un plazo fijo.

2.2. Diseño de bulevar principal del Centro Universitario de La Villa de Chimaltenango

2.2.1. Descripción del proyecto

El proyecto consiste el estudio técnico y el diseño geométrico de la carretera de acceso principal para el centro universitario que se construirá en el municipio de Zaragoza, Chimaltenango, para el cual se están realizando las gestiones de financiamiento.

Este tramo carretero además de ser el acceso principal para el centro universitario también comunica la aldea Puerta Abajo con el municipio. El proyecto tiene una longitud de aproximadamente 1800 metros lineales el cual será pavimentado con concreto hidráulico.

2.2.2. Selección de ruta

Generalmente para seleccionar la ruta de un tramo carretero se emplea el uso de los mapas topográficos y se utiliza el proceso de selección por dos puntos, este método se emplea debido a que es muy práctico, se ahorra tiempo, dinero y esfuerzos.

Los mapas topográficos son publicados por el Instituto Geográfico Nacional (IGN), estos mapas representan el terreno en tres dimensiones estando definida la tercera dimensión por medio de las curvas de nivel. El IGN maneja diferentes escalas, para el caso de selección de ruta para tramos carreteros se utilizan los mapas a escala1:50 000.

2.2.2.1. Interpretación de mapa topográficos

La numeración de los mapas está basada en la serie de cuadrángulos de Centroamérica. Cada hoja contiene cuatro números arábigos y uno romano, los dos primeros corresponden al orden horizontal y los segundos al orden vertical y el romano a la composición que tiene cada cuadrángulo, Guatemala empieza su orden horizontal con 17 y finaliza con 26 en la dirección oeste –este, mientras la dirección sur-norte empieza con 57 y finaliza con 71.

Los mapas publicados por el Instituto Geográfico Nacional (IGN) contiene diferente tipo de información el diseñador deberá tener bien claro lo que este diseñando para el empleo de estos mapas.

Cada mapa publicado por el IGN contiene en un recuadro una tabla de nomenclatura en la cual identifica cada uno de los elementos de los mapas.

En carreteras, la interpretación de mapas topográficos radica básicamente en la fisonomía natural del terreno, está dada por las curvas de nivel dependiendo de la separación que estas tengan así será el tipo de terreno, si es un terreno plano, ondulado o montañoso.

Otro dato muy importante para los cual sirven las curvas de nivel es para calcular la pendiente del terreno ya que para el diseño de carreteras se tiene una pendiente máxima. La interpretación de esto es la que realmente definirá la selección de ruta del tramo carretero que se esté diseñando. Para este proyecto el proceso de seleccionar una ruta por medio de dos puntos para su unión se omitió, debido a la existencia de una ruta ya definida.

2.2.3. Levantamiento topográfico

Para el levantamiento topográfico del terreno se debe realizar en una franja sobre la ubicación de la ruta seleccionada.

2.2.3.1. Planimetría

Ya que para este proyecto la ruta ya está definida y es por donde actualmente transitan los pobladores, el método empleado para la planimetría es el de una poligonal auxiliar abierta por conservación de azimut marcando estacionamiento en los puntos donde se considero necesario, como cambios de pendientes, cambios de dirección, cambios en la sección del camino y otros.

2.2.3.2. Altimetría

La altimetría se realizó por el método taquimétrico empleando el manejo de hilos y ángulos, aunque el método recomendado para proyectos de carreteras es con el nivel de precisión.

2.2.3.3. Secciones transversales

El levantamiento topográfico de las secciones transversales se tomo en cada estacionamiento indicado en la planimetría con mediciones perpendiculares a la línea central de la selección de ruta a diferentes distancias donde se considero necesario, empleando para esto un estadal y un clinómetro para determinar la diferencia de nivel entre el punto de observación y el punto observado y una cinta métrica para medir las distancias entre estos dos puntos.

2.2.4. Cálculo topográfico

Todo el cálculo topográfico se realiza en gabinete y no es más que procesar los datos obtenidos en campo para poder visualizarlos en un plano o un software.

2.2.4.1. Planimetría

Consiste en determinar las coordenadas parciales (x_p,y_p) y las coordenadas totales X y Y de los puntos tomados en campo en el levantamiento planimétrico tomado como base un punto de referencia, se recomienda utilizar coordenada iníciales para X y Y como 10 000 o lo suficiente para evitar obtener coordenadas negativas al finalizar el cálculo. Para visualizar de mejor manera se muestra la siguiente figura.

Figura 4. Interpretación de levantamiento planimétrico

Fuente: elaboración propia.

Donde

 DH_{B-C} = Distancia horizontal entre los puntos analizados

 x_p = Coordenada parcial en el eje X

 y_p = Coordenada parcial en el eje Y

 X_{B} = Coordenada total del punto B en el eje X

 Y_B = Coordenada total del punto B en el eje Y

 X_c = Coordenada total del punto C en el eje X

 Y_c = Coordenada total del punto C en el eje Y

$$DH_{B-C} = (HS - HI)SENO^{2}(AZ_{D-C}) * 100$$
 $x_{p} = DH_{B-C} * SENO(AZ_{B.C})$
 $y_{p} = DH_{B-C} * COS(AZ_{B.C})$
 $X_{C} = X_{B} + x_{p}$
 $Y_{C} = Y_{B} + y_{p}$

2.2.4.2. Altimetría

El proceso de cálculo de altimetría es determinar la coordenada Z del levantamiento El cálculo de las cotas del terreno posteriormente ploteando, muestra la topografía real de la línea preliminar del diseño, este perfil del terreno determina el tipo de carretera a diseñar.

HM HI WITH THE PARTY OF THE PAR

Figura 5. Interpretación del levantamiento altimétrico

Fuente: elaboración propia.

Donde

HA = Altura de aparato

ZN = Ángulo vertical

 DH_{B_C} = Distancia horizontal entre los puntos analizados

Hs = Lectura de hilo superior

Hm = Lectura de hilo medio

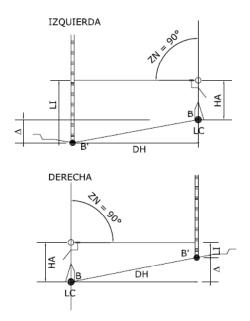
HI = Lectura de hilo inferior

 H = Diferencia de nivel entre altura del aparato y lectura de hilo medio

 CN_{B_C} = cambio de nivel entre los puntos analizados

$$H = \frac{DH_{B-C}}{TAN (ZN)}$$

$$CN_{B-C} = H + HA - HM$$


Entonces la coordenada $Z_{\mathbb{C}}$ se obtiene.

$$Z_c = Z_B + CN_{B-C}$$

2.2.4.3. Secciones transversales

Al igual que el cálculo planimétrico y altimétrico, el cálculo de las secciones transversales es determinar las coordenadas X, Y y Z de los datos tomados en campo pero estos están referenciados a los puntos de la línea central y perpendiculares a la misma.

Figura 6. Interpretación del levantamiento secciones transversales

Fuente: elaboración propia.

Donde

HA = Altura de aparato

ZN = Ángulo vertical

DH = Distancia horizontal

LC = Línea central

LI = Lectura de instrumento

 Δ = cambio de nivel entre los puntos analizado

$$\Delta = HA - LI$$

El signo de esta diferencia indicará; si es positivo que el punto de observación esta bajo el punto observado y si es negativo lo contrario que el punto de observación esta sobre el punto observado.

2.2.4.4. Curvas de nivel

Las curvas de nivel, llamadas también isohipsas, son líneas que se trazan uniendo todos los puntos que se encuentran en la misma altura con respecto a un determinado nivel de referencia. Para calcular las curvas de nivel con cierta exactitud conviene disponer de una densidad de cotas suficiente de acuerdo con las características geográficas del terreno.

Las curvas de nivel se calculan utilizando métodos de interpolación de las cotas obtenidas en el terreno. Actualmente estos métodos de interpolación vienen integrados en software de computadoras, para el cálculo de las curvas de nivel de este proyecto se utilizo el programa de Autodesk Land Desktop.

2.2.5. Diseño geométrico de carretera

El diseño geométrico de carreteras se realiza bajo algunas premisas principales; primero que el diseño cumpla con las características de seguridad y comodidad de los vehículos, que el diseño se adopte económicamente a las características topográficas del terreno, sin embargo para cumplir con estas premisas depende los criterios de diseño que se adapten así como de la intensidad de tránsito futuro para lo cual se está diseñando.

Existen varios aspectos técnicos que se deben de considerar en el proceso de diseño y cálculo de carreteras estos se mencionan a continuación:

- Todo el diseño debe ir basado en el principio de seguridad y comodidad en la carretera.
- Una carretera diseñada a seguir las ondulaciones de las curvas de nivel es preferible a una con tangentes largas, pero con repetidos cortes y rellenos, ya que esto disminuye los costos.
- Para una velocidad de diseño dada, debe evitarse, dentro de lo razonable,
 el uso de radios mínimos en el cálculo de las curvas horizontales.
- En carreteras del área rural es conveniente evaluar si se usa un radio menor al mínimo permitido por la velocidad de diseño a cambio de incrementar considerablemente el costo de la obra al utilizar radios mayores. En éstos casos, el criterio del Ingeniero diseñador es importante, ya que las curvas deben de ser diseñadas de tal forma que los vehículos puedan circular sin necesidad de hacer maniobras de retroceso, para

poder recorrer la curva, la observación anterior es muy importante para las ampliaciones y mejoras de caminos existentes.

- Se deben evitar curvas en donde se localicen puentes, ya que éstos deberán ubicarse preferiblemente en tangentes, pero en situaciones especiales, se ampliará la curva con un sobre ancho o diseñar un puente curvo.
- No deberán diseñarse curvas con radios mínimos previos a entrar a un puente.
- En terrenos llanos es conveniente evitar el diseño de tangentes demasiado largas, ya que la atención del conductor se pierde y pueden provocarse accidentes.
- Debe chequearse en cada cálculo la longitud de la tangente, ya que ésta no podrá ser jamás negativa, porque esto indicaría que dos curvas horizontales se están traslapando.

Parámetro del diseño del presente informe en base a las especificaciones de la Dirección General de Caminos

Típica E

Tipo de terreno Llanos, ondulados y montañosos

Tránsito promedio 0 a 500

Velocidad de diseño de 30 km/hora

Ancho de calzada 5,5 m.

Ancho de terracería corte 9,5 m.

Relleno 8,5 m.

Derecho de vía 25 m.

Radio mínimo 30 m.

Pendiente máxima 10%

Distancia visibilidad de parada mínima recomendada

Llanos 55 m. 70 m.
Ondulados 40 m. 50 m.
Montañosos. 30 m. 35 m.

Distancia visibilidad paso mínima recomendada

 Llanos
 260m.
 300 m.

 Ondulados
 180 m.
 200 m.

 Montañosos. 110 m.
 150 m.

2.2.5.1. Determinación de volumen de tránsito

El volumen de tránsito se estima con diferentes métodos los cuales se detallan en el inciso 2.2.7.1 este estudio se proyecta para que sirva no solo de acceso al centro universitario sino también que comunique la aldea Puerta Abajo con el municipio de Zaragoza es por ello que determinar el volumen de Tránsito por los métodos tradicionales se hace muy difícil y se determino que el diseño se analizará para una típica E.

2.2.5.1.1. Tráfico promedio

El tráfico promedio diario TPD para este proyecto será el que cumpla con una típica E que según la Dirección General de Caminos el TPD es de 0 a 500.

2.2.5.2. Curvas horizontales

Las curvas horizontales son empleadas para unir dos tangentes y suavizar los cambios de dirección en una carretera, éstas se calculan y se proyectan, según las especificaciones del camino y requerimiento de la topografía.

Para el diseño geométrico de una curva horizontal o perfil de planta se debe tomar en cuenta principalmente:

- El tipo de vía que será, este depende de: TPDA o de los usuarios futuros de la vía y de la importancia de la misma.
- La velocidad de diseño, esta depende de la topografía del terreno.

Los elementos de una curva horizontal se muestran en la siguiente figura.

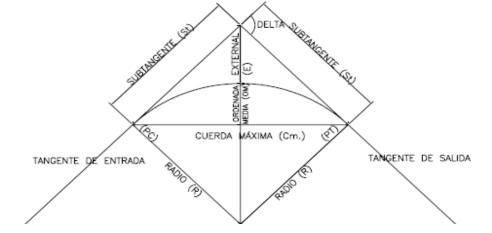


Figura 7. Elementos de una curva Horizontal

Fuente: elaboración propia.

2.2.5.2.1. Alineamiento horizontal

El alineamiento horizontal es la proyección sobre un plano horizontal del eje de una carretera, el objetivo principal es de brindar seguridad y permitir la operación ininterrumpida de los vehículos, tratando de conservar la misma velocidad en la mayor longitud de carretera que sea posible.

El trazado en planta de un tramo se compondrá de la adecuada combinación de los siguientes elementos: recta o tangente, curva circular y curva de transición.

2.2.5.2.2. Grado de curvatura

El grado de curvatura está definido como el ángulo obtenido de un arco de circunferencia de 20 m de longitud, se calcula mediante la siguiente expresión.

$$G = \frac{1145,9156}{R_c}$$

Donde

G = grado de curvatura

R = Radio

Con el radio mínimo (30m) se puede determinar el grado máximo de curva.

$$G = \frac{1145,9156}{30} = 38,1972^{\circ} = 38^{\circ}11'50"$$

2.2.5.2.3. Longitud mínima

En Guatemala no existen especificaciones acerca de la longitud mínima de una curva pero es recomendable que para el sector circular la longitud mínima sea la longitud de la espiral ya que la transición se da en esta y el PC y el PT están justo a la mitad de la espiral.

2.2.5.2.4. Longitud máxima

En el diseño de carreteras no se limita la longitud en las curvas circulares por lo tanto la longitud de las mismas no tenga ninguna restricción en cuanto a su longitud máxima.

2.2.5.2.5. Longitud de la curva

Es la distancia sobre el arco que describe la curva, medida desde el principio de curva (PC) hasta el principio de tangente (PT).

$$L_C = 20 * \frac{\Delta}{G}$$

Donde

L_C = Longitud de cuerda

 Δ =Diferencia angular entre el azimut de la tangente de entrada y la tangente de salida.

G = Grados de curvatura.

2.2.5.2.6. Tangente

La tangente horizontal es la distancia medida desde el final de una curva hasta el principio de la siguiente, está definida por la dirección que describe y por su longitud.

Debe tomarse en cuenta que cuando se calcule la longitud de tangente, el resultado nunca puede ser negativo ya que esto indicaría que dos curva horizontales se están traslapando.

$$Tg = L - St_{CA} - St_{CP}$$

Donde

Tg = Tangente

= Distancia entre los puntos de intersección (PI)

St_{CA} = Subtangente de la curva anterior

St_{CP} = Subtangente de la curva posterior.

2.2.5.2.7. Subtangente

Es la distancia que hay desde el principio de curva (PC) hasta el punto de intersección, por la simetría que debe tener la curva esta distancia es igual a la distancia que hay entre el punto de intersección (PI) y el principio de tangente (PT).

La subtangente puede determinase con la siguiente fórmula:

$$St = R_c * Tangente\left(\frac{\Delta}{2}\right)$$

Donde

St = Subtangente

R_c = Radio de curva

 Diferencia angular entre el azimut de la tangente de entrada y la tangente de salida

2.2.5.2.8. Cuerda máxima

Es la distancia en línea recta desde el principio de curva (PC) al principio de tangente (PT), se puede calcular con la siguiente fórmula.

$$C_{max} = 2 * R_c * seno\left(\frac{\Delta}{2}\right)$$

Donde

C_{max} = Cuerda máxima

 R_c = Radio

 Δ =Diferencia angular entre el azimut de la tangente de entrada y la tangente de salida

2.2.5.2.9. External

Es la distancia medida desde el punto de intersección (PI) hasta el centro de la curva, puede determinarse de la siguiente manera.

$$E = \frac{R_c * (1 - coseno\left(\frac{\Delta}{2}\right))}{coseno\left(\frac{\Delta}{2}\right)}$$

Donde

E = External

 R_c = Radio

 Diferencia angular entre el azimut de la tangente de entrada y la tangente de salida

2.2.5.2.10. Ordenada media

Es la distancia que hay entre el punto medio de la curva y el punto medio de la cuerda máxima.

$$OM = R_c * \left(1 - coseno\left(\frac{\Delta}{2}\right)\right)$$

Donde

OM = Ordenada Media

 R_c = Radio

 Δ =Diferencia angular entre el azimut de la tangente de entrada y la tangente de salida

2.2.5.2.11. Distancia de visibilidad de parada

El objetivo principal de este parámetro es evitar accidentes, determinando una distancia prudencial en la cual los conductores, usuarios de la carretera, tengan el espacio suficiente para: primero ver los vehículos que estén estacionados en las paradas y segundo frenar su vehículo si es necesario.

La distancia de visibilidad de parada puede determinarse con la siguiente expresión.

$$Dp = V_{dis} * t = \frac{{V_{dis}}^2}{254f}$$

Donde

D_p = Distancia de visibilidad de parada en metros

V_{dis} = Velocidad de marcha, en Km/h

t = tiempo de reacción, en segundos

f = Coeficiente de fricción longitudinal

A continuación se muestra una tabla donde se han calculado distancias de parada para diferentes velocidades de diseño.

Tabla XV. Distancia de visibilidad de la parada

		Reacción				Distancia de Visibilida	
Velocidad de				Coeficiente de			Para
proyecto	Velocidad de	Tiempo	Distancia	fricción	Distancia de	Calculada	Proyecto
(km/h)	marcha (km/h)	(seg)	(m)	longitudinal	Frenado (m)	(m)	(m)
30	28	2.50	19.44	0.400	7.72	27.16	30
40	37	2.50	25.69	0.380	14.18	39.87	40
50	46	2.50	31.94	0.360	23.14	55.08	55
60	55	2.50	38.19	0.340	35.03	73.22	75
70	63	2.50	43.75	0.325	48.08	91.83	95
80	71	2.50	49.30	0.310	64.02	113.32	115
90	79	2.50	54.86	0.305	80.56	135.42	135
100	86	2.50	59.72	0.300	97.06	156.78	155
110	92	2.50	63.89	0.295	112.96	176.85	175

Fuente: GONZÁLEZ IXCOLIN, César Enrique. Estudio y diseño de mejoramiento y pavimentación de carretera. p. 25.

2.2.5.2.12. Procedimiento de cálculo de curva horizontal

Datos, curva 1

$$\Delta_1 = 13^{\circ}24'27''$$
 derecha

$$V_{dis} = 30 \text{ kph}$$

$$L = 248,31 \text{ m}.$$

Para este diseño por ya existir un camino y para aprovechar este mismo se tratara de ajustar el alineamiento de la carretera al del camino. Con este objetivo se realizó el levantamiento topográfico sobre el camino y se ubicaron puntos sobre el principio y fin de la curva, con la ayuda de programa de computadora se establece la distancia entre estos dos puntos la cual se tomara como la cuerda máxima de la curva que será el punto de partida para nuestro diseño.

De la curva 1 se calcula la distancia entre el PC y PT y se establece como la cuerda máxima de la curva.

Cuerda máxima: = 52 m.

Radio de curva: de la fórmula de la cuerda máxima se despeja el radio y se calcula.

$$C_{max} = 2 * R_c * seno\left(\frac{\Delta}{2}\right) \rightarrow R_c = \frac{C_{max}}{2*seno\left(\frac{\Delta}{2}\right)} = \frac{52}{2*seno\left(\frac{13^924'27''}{2}\right)} = 222,73 \; mts.$$

Grado de curva: se calcula a partir de la fórmula del grado de curvatura.

Entonces

$$G^{\underline{0}} = \frac{1145,9156}{R_c} = \frac{1145,9156}{222,72} = 5^{\underline{0}}8'42''$$

Longitud de curva:

$$L_C = 20 * \frac{\Delta}{G} = 20 * \frac{13^{\circ}24'27''}{5^{\circ}8'42''} = 52,12 m.$$

Subtangente:

$$St = R_c * Tan\left(\frac{\Delta}{2}\right) = 222,72 * Tan\left(\frac{13^{\circ}24'27''}{2}\right) = 26,18 m$$

Tangente:

$$Tg = L - St_{CA} - St_{CP} = 248,31 - 0 - 26,18 = 222,13 m$$

Ordenada media:

$$OM = R_c * \left(1 - coseno\left(\frac{\Delta}{2}\right)\right) = 222,72 * \left(1 - coseno\left(\frac{13^{\circ}24'27}{2}\right)\right) = 1,52 \text{ m}$$

Según la geometría de la curva calculada y la velocidad de diseño las normas AASHTO recomienda (la tabla se encuentra en los anexos)

Sobreancho = 0.6 mts.

Longitud de transición = 20 mts.

Peralte = 3%

Todos los datos de la curvas se resumen en la tabla XXXV.

Glorietas o rotondas: la glorieta es una intersección que dispone de una isleta central, circular y que permite a los vehículos que penetran a la intersección por cualquiera de los ramales, abandonar la misma por el ramal elegido mediante un giro en el sentido antihorario alrededor de dicha isleta.

Par efectos del presente informe se dimensionara la glorieta con las especificaciones de los vehículos del manual centroamericano, para los cual se tomara específicamente las dimensiones y especificación de un bus y vehículos livianos. Según el manual centroamericano de normas:

Tabla XVI. Ancho de Giro Recomendable para Rotondas entre Cunetas, g, para Vehículos Pesados, en Metros

Diámetro del	Velocidad de diseño		
circulo inscrito, f	California mínimo	Bus mínimo	
91,4	6,6	5,2	
85,3	6,6	5,2 5,2	
79,2	6,9	5,2	
73,2	7,0	5,3	
67,1	7,3	5,3	
61,0	7,6	5,5	
57,9	7,8	5,5	
54,9	8,1	5,6	
51,8	8,4	5,8	
48,8	8,7	5,8	
45,7	9,1	5,9	
42,7	9,6	6,1	
39,6	10,2	6,2	
36,9	11,1	6,4	
33,5	11,3	6,4 6,7	
30,5	*	7,0	
29,0	*	7,2	

Fuente: LECLAIR, Consultor Raúl. Manual centroamericano de normas para el diseño geométrico de las carreteras regionales, febrero de 2001. p. 5-65.

Tabla XVII. Dimensiones de los vehículos de diseño (metros)

	Р	BUS	SU	WB-15	WB-19	WB-20
Altura	1,3 (1,3)	4.1	4,1(4,1)	4,1(4,1)	4.1	4.1
Ancho	2,1 (2,1)	2.6	2,6(2,6)	2,6(2,6)	2.6	2.6
Longitud	5,8 (5,8)	12.1	9,1(9,1)	16,7 (16,8)	21	22.5
Voladizo Delantero	0,9 (0,9)	2.1	1,2(1,2)	0,9 (0,9)	1.2	1.2
Voladizo Trasero	1,5 (1,5)	2.4	1,8(1,8)	0,6 (0,6)	0.9	0.9
Distancia entre Ejes Extremos, WB1	3,4 (3,4)	7.6	6,1(6,1)	6,1 (6,1)	6.1	6.1
Distancia entre Ejes Extremos, WB2				9,1 (9,2)	12.8	14.3

Fuente: AASHTO, A Policy on Geometric Design of Highways and Streets, 1994. p. 21.

Tabla XVIII. Radios mínimos de giro de los vehículos de diseño (metros)

Vehículo	Tipo	Radio Interior (m)	Radio de Diseño (m)
Automóvil	Pick-up	4,2 (4,7)	7,3 (7,3)
Autobús Sencillo	Bus	7.4	12.8
Camión Sencillo	Su	8,5 (8,7)	12,8 (12,8)
Camión Articulado	WB-15	5,8 (6,0)	13,7 (13,7)
Camión Articulado	WB-19	2.8	13.7
Camión Articulado	WB-20	0	13.7

Fuente: AASHTO, A Policy on Geometric Design of Highways and Streets, 1994, p. 22.

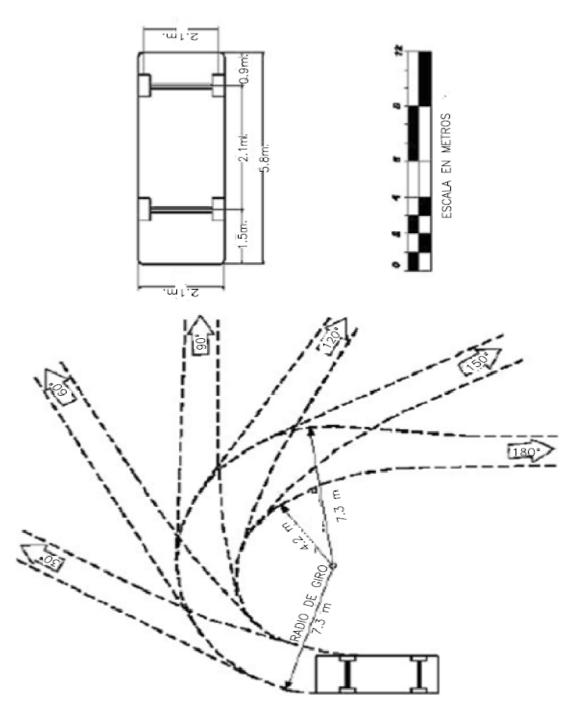
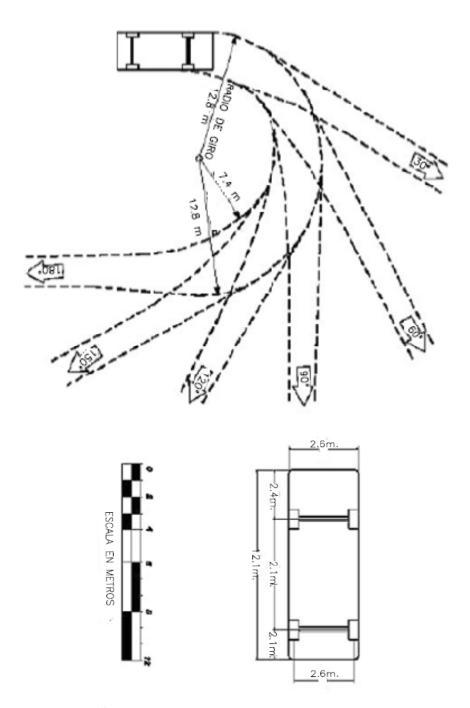



Figura 8. Giro mínimo para vehículo ligero

Fuente: SCIPION PIÑELLA, Eddy T. Diseño de carreteras normas DG, caminos i. p. 38.

Figura 8. **Giro mínimo para autobuses**

Fuente: SCIPION PIÑELLA, Eddy T. Diseño de carreteras normas DG, caminos i. p. 40.

Con las tablas anteriores se puede dimensionar la glorieta con lo mínimo que es un carril interior para vehículo liviano y un carril exterior para autobuses ya que esta como mínimo debe contener el número de carriles igual al número de carriles del acceso con mayor número de carriles en este caso especifico dos carriles. El radio exterior e interior de la glorieta de 12,8 m y 4,2 m respectivamente más un metro montable de cada lado por lo tanto el diámetro de diseño serán, radio exterior 13,8 m y radio interior 3,2 m y el eje de la glorieta que será el que indique la separación de los dos carriles con un radio de 7,4 m.

Parada de autobuses: para la parada de autobuses se empleo una sección típica con capacidad para un bus y un ancho mínimo (3 m.) según el manual centroamericano de normas.

Tabla XIX. Dimensiones típicas de las bahías para el refugio de autobuses en las carreteras regionales

Diseño	Entrada (m)	Parada (m)	Salida (m)	Ancho (m)	Long. Total (m)
Para un bus	10	15	15	3,-4	40
Para dos buses	10	30	15	3,-5	55
Para tres buses	15	45	15	3,-6	75

Fuente: LECLAIR, Raúl. anual centroamericano de normas para el diseño geométrico de las carreteras regionales, febrero de 2001, p. 4.18.

2.2.5.3. Curva vertical

Las curvas verticales contribuyen la importancia en el alineamiento vertical como las curvas circulares en el alineamiento horizontal.

Como se mencionó anteriormente las carreteras no solo cuentan con curvas horizontales sino también con curvas verticales, estas son empleadas para suavizar los cambios de pendiente que hay entre las tangentes verticales.

Las curvas verticales pueden ser cóncavas o convexas como se muestra en la figura siguiente.

Curva vertical cóncava

PIV

LCV

LCV

Figura 10. Tipos de curvas verticales

Fuente: elaboración propia.

2.2.5.3.1. Alineamiento vertical

El alineamiento vertical es la representación del eje longitudinal de la carretera en el plano vertical, esto significa ver el eje de la carretera a través de sus niveles, cotas y altura, longitudes y transversales.

Esta formado por una sucesión de tramos rectos y curvas que los empalman. Los tramos rectos o tangentes verticales, se caracterizan por su longitud y por tener una pendiente constante, y las curvas verticales permiten el cambio gradual para pasar de una pendiente a otra.

2.2.5.3.2. Diseño de curvas verticales

Cuando diseñamos curvas verticales, el objetivo principal es proporcionar un cambio gradual entre dos tangentes verticales con diferentes pendiente, para lograr esto se pueden diseñar curvas de dos tipos; curvas circulares o parabólicas.

En Guatemala la Dirección General de Caminos emplea curvas parabólicas simples, debido a la facilidad de su cálculo y a su gran adaptabilidad a las condiciones necesarias de operación.

Este diseño está basado en la diferencia algebraica de las pendientes, de la tangente que se desean unir.

2.2.5.3.3. Visibilidad de parada

Cuando se hace referencia a la visibilidad de la parada en curvas verticales, se refiere principalmente a la longitud de la curva, ya que esta se proyectan en función de: la velocidad de diseño y las distancias de visibilidad que toda carretera debe tener para que esta sea segura y cómoda, estas dos características dependen principalmente de la diferencia algebraica de las pendientes. Tomando esto en consideración se puede determinar la longitud de curva vertical con la siguiente fórmula.

$$LCV = K_{LCV} * A_{LCV}$$

Donde

LCV = longitud de la curva vertical

K_{LCV} =Parámetro que contempla la distancia de visibilidad de la parada

A_{LCV} = Diferencia algebraica entre las pendientes

$$A_{LCV} = (p2 - p1)$$

P1 = Pendiente de entrada

P2 = Pendiente de salida

Tabla XX. Parámetro K_{LCV}

VELOCIDAD	VALOR DE K SEGÚN EL TIPO DE				
DE DISEÑO	CURVA				
(K.P.H.)	CÓNCAVA	CONVEXA			
10	1	0			
20	2	1			
30	4	2			
40	6	4			
50	9	7			
60	12	12			
70	17	19			
80	23	29			
90	29	43			
100	36	60			

Fuente: González Ixcolin, César Enrique. Estudio y diseño de mejoramiento y pavimentación de carretera. p. 108.

2.2.5.3.4. Cálculo de curvas verticales

Para el cálculo de las curvas verticales se empleo el software de Excel y se presenta en la tabla XXI.

2.2.5.3.5. Tangente

Las tangentes verticales como ya se mencionó son los tramos rectos del alineamiento vertical, se caracterizan principalmente por su longitud y por tener una pendiente constante.

Al igual que el alineamiento horizontal, los tramos rectos no pueden ser negativos pues indicaría que dos curvas se están traslapando.

2.2.5.3.6. Procedimiento de cálculo de curva vertical

Como un ejemplo se presenta los datos de la curva 1 en la estación 0+088.221:

Datos

Pendiente de entrada $P_1 = -2,95 \%$ Pendiente de salida $P_2 = 0,82 \%$ Velocidad de diseño = 30 kph

El primer paso será verificar que tipo de curva es, cóncava o convexa, analizando la pendiente se tiene que es una curva cóncava

Con la velocidad de diseño y el tipo de curva se determina el parámetro K_{LCV} de la tabla XX.

$$K_{LCV} = 4$$

Se calcula la diferencia entre las pendiente A en % con su signo.

$$A_{LCV} = (p2 - p1) = (0.82 - (-2.95)) = 3.77 \%$$

Se calcula la longitud de curva LCV.

$$LCV = K_{LCV} * A_{LCV} = 4 * 3,77 = 15,09 m.$$

La corrección se calcula limitada por la ordenada media que se detalla el inciso 2.2.6.2.

2.2.6. Movimiento de tierra

El movimiento de tierra en el diseño de carreteras lo define directamente el diseño de la sub-rasante, este es probablemente uno de los factores más importantes en proyectos de carretera debido a su incidencia en el costo de los mismos.

2.2.6.1. Diseño de sub-rasante

La sub-rasante es el trazo vertical del eje longitudinal de un proyecto de carretera sobre el cual se fundara la estructura del pavimento, en estas se determinan las cotas finales del proyecto así como las cotas de corte o relleno que conformaran las pendientes del terreno.

La sub-rasante puede ser el terreno natural o algún material seleccionado debidamente compactado según las especificaciones.

Cuando se realice el diseño de la sub-rasante deben considerarse algunos criterios básicos.

- Cuando se tracen las tangentes verticales debe tenerse bien en cuenta el movimiento de tierra que se generará, ya que este tiene gran incidencia en al costo del proyecto.
- El balance de masas es uno de los criterios que se tienen que utilizar, pues, con este se busca en un tramo de 1000 metros, balancear los cortes con los rellenos para no tener material de préstamo.
- Debe evitarse tener curvas verticales en donde exista curvas horizontales.
- En terrenos montañosos el criterio técnico básico para definir la subrasante es no exceder la pendiente máxima que es de 14% en tramos de carreteras nuevos, en mejoramientos lo más práctico es chequear las pendientes y mejorarlas solamente donde sea muy necesario tratando de mantenerse entre este rango.

Según la Dirección General de Caminos en Guatemala, para el diseño de carreteras se manejan tres tipos de regiones: regiones en terrenos llanos, ondulados y montañosos, las cuales dependen directamente de la topografía.

 Terrenos llanos: son aquellos cuyo perfil tiene pendientes longitudinales pequeñas y uniformes a la par de pendientes transversales escasas. En este tipo de terreno la sub-rasante se debe diseñar en relleno, con pendientes paralelas al terreno natural, con una elevación suficiente para dar cabida a las estructuras del drenaje transversal y además de esto quedar a salvo de la humedad propia del suelo.

- Terrenos ondulados: son aquellos que poseen pendientes oscilantes entre el 5% al 12%.
- Terrenos montañosos: su perfil obliga a grandes movimientos de tierras, las pendientes generalmente son las máximas permitidas por las especificaciones.

Para el diseño de la sub-rasante debe considerarse la pendiente ya que no se puede sobrepasar la máxima permitida pero tampoco se debe tener una pendiente nula debido a que se dificultaría el drenaje de la carretera.

- Pendiente mínima: es la menor pendiente que se fija para permitir la funcionalidad de un drenaje. En los tramos en relleno la pendiente puede ser nula, debido que para drenar la carretera, basta con la pendiente transversal de la misma. En los tramos en corte se recomienda una pendiente longitudinal mínima de 0,5% para garantizar el buen funcionamiento de las cunetas.
- Pendiente máxima: es la mayor pendiente que se puede utilizar en el diseño del proyecto, está determinada por el tránsito previsto y la configuración del terreno. Se empleará cuando convenga desde el punto de vista económico, para salvar ciertos obstáculos locales tales como: cantiles, fallas y zonas inestables.

Existen dos formas para calcular la sub-rasante y dependerá del proyectista cual a de usar.

- Seleccionando dos puntos como puntos de intersección: se localizan dos puntos conocidos como puntos de intersección vertical (PIV). La pendiente entre ellos será el parámetro para determinar si son adecuados o deben ser reubicados. Luego, cada 20 metros y en cada punto de cambio de curva horizontal (principio de curva, centro de curva y principio de tangente), se determinará analíticamente la altura que tendrá la subrasante.
- Seleccionando un punto de intersección y una pendiente determinada: se puede tener también un punto conocido y una pendiente determinada. A partir del punto seleccionado para ser PIV, se calcula la altura correspondiente del siguiente PIV según el perfil del terreno. A cada 20 metros y en otras estaciones adecuadas, se calcula la elevación de la rasante, completando así el cálculo. Cuando la elevación de la subrasante se sitúe encima del terreno, se dice que está en relleno, si se ubica debajo, está en corte, a partir de esto y la información obtenida en las secciones transversales se puede obtener la cantidad de tierra a mover.

Para calcular la sub-rasante, es necesario disponer de los siguientes datos:

- La sección típica que se utilizará
- El alineamiento horizontal del tramo
- El perfil longitudinal del mismo
- Las secciones transversales

- Las especificaciones o criterios que regirán el diseño
- Datos de la clase de material del terreno
- Datos de los puntos obligados de paso

Después de diseñar la sub-rasante debe hacerse correcciones por la curva verticales.

2.2.6.2. Correcciones por curva vertical a sub-rasante

La corrección máxima para curvas verticales es la ordenada máxima y puede calcularse con la siguiente fórmula.

$$OM = \frac{P_2 - P_1}{800} * LCV$$

Donde

OM = Ordenada máxima

P1 = Pendiente de entrada

P2 = Pendiente de salida

LCV = Longitud de curva vertical

Par calcular la corrección en cualquier punto de la curva.

$$Y_V = \frac{(P_2 - P_1) * DH^2}{200 * LCV}$$

Donde

Y_V = corrección vertical

P₁ = pendiente de entrada

P₂ = Pendiente de salida

LCV = longitud de curva vertical

DH =distancia medida desde los extremos de la curva (PCV y PTV) hacia el centro.

2.2.6.3. Cálculo de áreas de secciones transversales

La sección transversal es un corte en cualquier punto del eje central de la carretera conforme un plano vertical perpendicular a eje longitudinal de la misma en donde se muestra la sub-rasante contemplando el ancho de la calzado y la pendiente de bombeo de 3%, sobre esta la sección típica escogida para el proyecto así como el terreno natural incluyendo los taludes para poder determinar las áreas de corte o relleno en este punto.

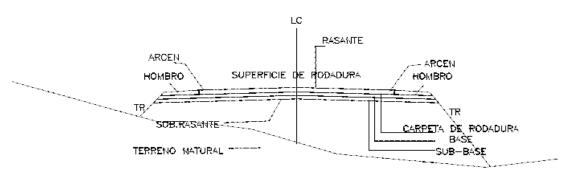
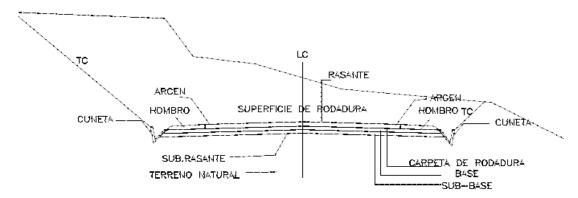
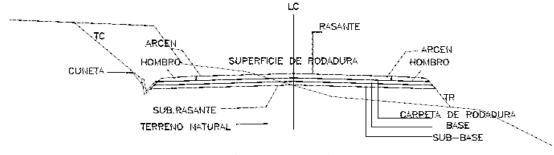

Generalmente en proyectos de carreteras las secciones transversales se calculan a cada 20 metros.

Tabla XXI. Taludes recomendados para dibujo de secciones

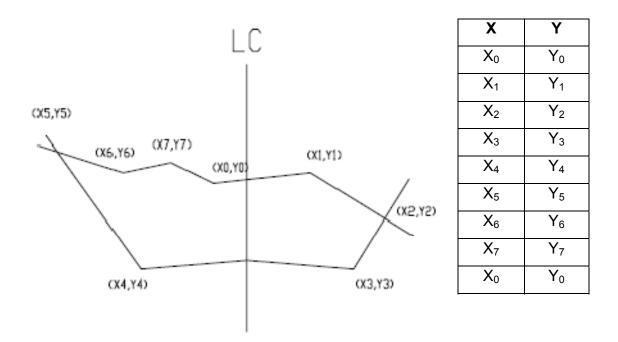

CORTE		RELLENO		
ALTURA	H – V	ALTURA	H – V	
0 – 3	1 – 1	0 – 3	2 – 1	
3 – 7	1 – 2	> 3	3 – 2	
> 7	1 – 3			

Fuente: GONZÁLEZ IXCOLIN, César Enrique. Estudio y diseño de mejoramiento y pavimentación de carretera. p. 113.


Figura 11. Secciones típicas en vías terrestres

SECCIÓN TRANSVERSAL TÍPICA EN TERRAPLEN

SECCIÓN TRANSVERSAL TÍPICA EN CORTE

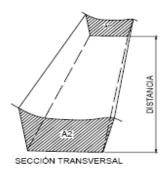


SECCIÓN TRANSVERSAL TÍPICA MIXTA

Fuente: elaboración propia.

Las áreas de corte o relleno se pueden determinarse utiliza cualquier método de cálculo de áreas generalmente se utiliza métodos gráficos empleando para el cálculo planímetros polar o asignado coordenadas totales como se considere conveniente y aplicar el método de determinantes para encontrar el área.

Figura 12. Sección transversal


Fuente: elaboración propia.

$$Area = \left(\frac{\sum X_i * Y_{i+1} + \sum Y_i * X_{i+1}}{2}\right)$$

2.2.6.4. Cálculo de volúmenes

El cálculo de volúmenes de corte o relleno se determina entre las estaciones donde se cálculo la secciones transversales regularmente a cada 20 metros, cuando las dos secciones que se desea obtener el volumen se encuentran en corte o relleno es posible hacerlo con el volumen de un prisma irregular que es la semisuma de las áreas externas por la distancia entre las estaciones.

Figura 13. Cálculo de volumen

Fuente: elaboración propia.

$$Vol = \left(\frac{A_1 + A_2}{2}\right) * DH$$

Donde

Vol = Volumen de corte o relleno

A₁ = área de la seccion 1

A₂ = área de la seccion 2

DH = diastancia entre las estaciones

Cuando en un extremo de la sección tenga sólo área de corte y el otro solamente relleno, debe calcularse una distancia de paso, donde teóricamente el área pasa a ser de corte a relleno. Esto se obtiene por medio de la interpolación de las dos áreas en la distancia entre ellas. Las fórmulas que facilitan este cálculo son las siguientes:

$$d_1 = \left(\frac{C}{C + R}\right) * DH$$

$$d_2 = \left(\frac{R}{C + R}\right) * DH$$

$$Vol_{corte} = \left(\frac{C}{2}\right) * d_1$$

$$Vol_{relleno} = \left(\frac{R}{2}\right) * d_2$$

Donde

d₁ = distancia de paso a corte

d₂ = distancia de paso a relleno

C = Área de corte

R = Área de relleno

DH = diastancia entre las estaciones

2.2.7. Carpeta de rodadura

La carpeta de rodadura es la capa superficial de la estructura del pavimento en una carretera, de esta depende la clasificación del pavimento que puede ser rígido o flexible cada uno construido de diferentes materiales, aunque la carpeta de rodadura puede ser construida de cualquiera de los dos

tipos la elección dependerá del tipo de tránsito, tipo de carga y suelo donde será soportada la estructura.

2.2.7.1. Tránsito

El tránsito, es uno de los parámetros de gran importancia a determinar ya que de este dependerá el tipo de carretera que se va a diseñar.

Independientemente del método que se emplee para determinar el volumen de tránsito antes debe estudiarse el área para la cual servirá el proyecto en estudio ya que de esta dependerá en gran parte el momento más adecuado para determinar el tipo de tránsito y el volumen del mismo.

Naturalmente el tránsito no solo depende del lugar sino también de la época por ejemplo en zonas agrícolas el tránsito aumenta en época de cosecha, en zonas turísticas el tránsito es mayor en época de vacaciones.

2.2.7.1.1. Volumen de tránsito

Existen diferentes formas de determinar el volumen de tránsito de un lugar las más utilizadas solo los conteos manuales y los conteos mecánicos.

Conteos manuales: este es uno de los métodos más sencillos de aplicar ya solo depende solo de la habilidad de una persona para observar y anotar lo visto, ha este método también se le llama conteos visuales.

Conteos mecánicos: estos ponen a disposición una serie de aparatos diseñados para el registro automático de volúmenes de tránsito. Al observar un contador mecánico se nota que consta de dos unidades básicas que son:

detector vehicular y el aparato registrador. Principalmente son aparatos eléctricos, que mediante detectores registran el paso de cada vehículo en puntos dados de un camino o calle. En algunos casos, el registro es realizado en una cinta donde se imprime un número acumulativo de vehículos, o en una cinta perforada, para su utilización posterior en una computadora. También hay registros gráficos de diversos tipos. Entre los detectores se tienen los siguientes:

Detector neumático: consiste en una manguera de caucho cerrada en un extremo, la cual se coloca normalmente perpendicular a la dirección de la carretera y por lo tanto del tránsito, para registrar el número de vehículos, también se observa en él una membrana que es la encargada de accionar el contacto eléctrico del aparato registrador, el cual anota una unidad vehicular por dos ejes. Los contadores o detectores neumáticos cuentan pares de ejes, por lo tanto hay que hacer ajustes para fines comparativos.

Detectores eléctricos: este tipo de detector es utilizado en estaciones permanentes, los cuales consisten en una placa de acero cubierta por una capa de hule vulcanizado y moldeado, que contiene una tira de acero flexible. El espacio formado entre los contactos es llenado con un gas inerte y seco, durante el montaje del pedal y sellado como una unidad durante el proceso de vulcanización. Al pasar cada eje de un vehículo sobre este dispositivo se cierra un circuito eléctrico. Con este tipo de detectores es posible realizar recuento de vehículos por carril, un dispositivo provisional consiste de un contacto metálico separado por aire y un espaciador de goma resinosa.

De radar: un fenómeno natural que ocasiona que una señal de radio al ser reflejada por un objeto en movimiento cambie su frecuencia en relación a la señal de radio incidente, es lo que hace posible la detección de vehículos por

medio de radar. Este fenómeno es conocido como el efecto doppler. El equipo electrónico que utiliza el radar compara continuamente la frecuencia de la señal recibida. Siempre que exista una diferencia de frecuencia será detectado un vehículo. Los dispositivos de radar no están sujetos a deterioro por la acción de tránsito. Los datos obtenidos son precisos y dignos de confianza.

El tránsito futuro tiene considerable influencia en el diseño, por lo que la razón de crecimiento es afectada por factores como el tránsito desarrollado; todos estos factores pueden causar razones de crecimiento anual del 2 al 6 %, que corresponden a factores de proyección de tránsito a 20 años de 1,2 a 1,8.

Por lo que si la típica empleada es una típica E el tráfico promedio es de 100 a 500 se puede emplear un factor de proyección a 20 años de 1,8, entonces se tiene 500*1.8 = 900.

2.2.7.1.2. Clasificación

El tránsito se clasifica principalmente en tránsito liviano, mediano y pesado. Esta clasificación está regida por el número de ejes que poseen y por la capacidad de carga que tienen.

2.2.7.1.2.1. Tránsito liviano

En esta clasificación están incluidos aquellos vehículos livianos, automóviles, pick-ups, paneles, incluyendo algún otro camión de dos ejes sencillos, con dos llantas en cada eje, haciendo un total de 4 llantas.

La carga por eje sencillo de estos vehículos varía según el rango de dos a cinco toneladas; por consiguiente, la carga y repeticiones de los vehículos livianos no tienen efecto alguno para el diseño de un pavimento.

2.2.7.1.2.2. Tránsito mediano o medio

Incluye camiones de reparto, autobuses y camiones, camiones medianos y pequeños de carga de 6 llantas y un eje sencillo atrás de 4 llantas, cuyo rango de carga por eje varía de 5 a 8 toneladas.

2.2.7.1.2.3. Tránsito pesado

Está constituido, principalmente por vehículos comerciales pesados, normalmente vehículos de dos ejes y 6 llantas o más, o combinaciones de tres ejes o más. Así, los valores permisibles de tránsito promedio diario de camiones (TPDC), incluyen solamente camiones de 6 llantas y unidades simples o combinadas de tres ejes o más.

La carga por eje sencillo de dos y cuatro llantas para tránsito pesado, generalmente se encuentra en el intervalo de 14 a 30 toneladas de peso. En el tránsito pesado no incluye camiones de dos ejes con dos llantas en cada eje.

2.2.7.1.3. Especificaciones de ejes de camiones

Un eje sencillo: está compuesto, normalmente, de dos llantas en automóviles livianos y en camiones pesados por cuatro llantas.

Un eje en tándem: está compuesto por dos ejes sencillos, cada eje sencillo tiene cuatro llantas, por lo cual el eje tándem tiene ocho llantas.

2.2.7.1.4. Carga máxima utilizada en Guatemala

El eje simple de carga equivalente de 18 000 libras podría ser definido como el eje simple con esa carga, cuyas repeticiones causarían en la reacción del pavimento el mismo efecto que causaría la repetición de cualquier combinación de ejes con carga de diferente magnitud.

El manual serie 1 (MS-) – 1970, del instituto de asfalto norteamericano para el diseño de pavimentos flexibles, establece un método para obtener el número de ejes simples con carga equivalente a 18 000 libras, que sería el número de diseño de tránsito que se utiliza en el método de diseño de la AASHTO. También en el método de diseño de pavimentos rígidos de la Asociación del Cemento Portland, se utiliza un censo estandarizado o promedio de tránsito llevado en el fórmulario W-4, es así como se puede establecer el número de ejes simples con ruedas duplas, con carga equivalente de 18,000 libras, que se utiliza en el método de AASHTO.

Se hace notar que en las calles y carreteras es recomendable limitar las cargas de las ruedas, por eje simple y tándem de los vehículos, de manera que estas cargas no excedan las utilizadas en el diseño.

2.2.7.2. Pavimento

Se denomina pavimento a la estructura compuesta por distintas capas principalmente la sub-base, la base y carpeta de rodadura que se coloca sobre la sub-rasante de la carretera.

La finalidad principal de un pavimento es dar seguridad y comodidad al usuario así como de brindar una durabilidad a la estructura.

2.2.7.2.1. Tipos de pavimento

El pavimento se clasifica principalmente por su carpeta de rodadura estos pueden ser, rígidos y flexibles.

Pavimento rígido: el pavimento rígido se compone de losas de concreto hidráulico o cemento portland en algunas ocasiones reforzado con un armado de acero. Tiene la ventaja de no requerir de mucho mantenimiento y un periodo de vida útil de 20 a 40 años aunque su costo inicial es más elevado que el pavimento flexible.

Este tipo de pavimento generalmente se utiliza en proyectos destinados a soportar grandes cargas, en tráficos intensos y en suelos con baja capacidad de soporte.

Pavimento flexible: este tipo de pavimentos son construidos principalmente a base de materiales de la mezclas de materiales inertes como arenas y gravas, y cementos asfalticos. Este tipo de pavimento a pesar de que el costo en la fase de construcción es más bajo que el rígido y puede ser reciclable requiere de un mayor mantenimiento para que cumpla con su vida útil que es de 10 a 20 años.

2.2.7.2.2. Elementos de pavimento

Aunque la estructura principal de un pavimento está compuesta de la subbase, base y carpeta de rodadura que se describió en el inciso 2.2.7., otros elementos del pavimento que deben estudiarse es el suelo de fundación y la sub-rasante ya que es donde se fundara la estructura del pavimento.

2.2.7.2.2.1. Suelo de fundación

En términos de construcción de carreteras el suelo de fundación es conocida también como la sub-rasante, la cual se describe a continuación.

2.2.7.2.2.2. Sub-rasante

Es la capa de terreno de una carretera que soporta la estructura del pavimento y que se extiende hasta una profundidad en que no le afecte la carga de diseño que corresponde a la estructura prevista.

La sub-rasante es el resultado final del proceso de ejecución de la fase de movimiento de tierras en el cual se construyen las partes de la carretera mostradas en la sección típica.

Un fenómeno que se ha estudiado en cuanto a la sub-rasante de una carretera es el fenómeno conocido como bombeo de lodos que ocurre cuando la sub-rasante es de suelo arcillosos y limos arcillosos y el agua de lluvia se infiltra a la sub-rasante, especialmente a través de las juntas mal selladas y de las grietas en las losas, saturándolas y disminuyendo su capacidad soporte y en consecuencia, permitiendo que se aumenten las deformaciones.

Estudios realizados a cerca de este fenómeno muestran que esto no ocurre cuando la sub base o la base granular tiene un porcentaje de finos (pasa tamiz número 200) menor del 45% y un índice de plasticidad menor de seis.

Cuando la construcción de la estructura del pavimento se va a efectuar sobre carreteras de terracería existentes, la sub-rasante existente previamente se deberá de reacondicionar.

Reacondicionamiento de sub-rasantes existentes: es la operación que consiste en escarificar, homogeneizar, mezclar, uniformizar, conformar y compactar la sub-rasante de una carretera previamente construida para adecuar su superficie a la sección típica y elevaciones del proyecto establecidas en los planos, efectuando cortes y rellenos con un espesor no mayor de 200 milímetros, con el objeto de regularizar y mejorar, mediante estas operaciones, las condiciones de la sub-rasante como cimiento de la estructura del pavimento.

2.2.7.2.2.3. Sub-base

Es la primera capa de la estructura principal del pavimento está compuesta de distintos materiales los cuales dependerán del tipo de sub-base que se construirá, por ejemplo, según las especificaciones generales para construcción de carreteras y puentes más conocido como Libro Azul en su división 300, una sub-base común está compuesta de materiales de tipo granular, que se coloca encima de la sub-rasante, esta debe tener un espesor de 10 a 70 centímetros dependiendo las características de la sub-rasante.

El material de la sub-base puede ser: arena, grava, granzón, escoria de los altos homos o volcánica, o bien residuos del material de cantera; debe ser seleccionado y tener mayor capacidad soporte que el terreno de fundación

compactado. Es posible emplear para sub-base el mismo material de la sub rasante pero estabilizándolo.

El material ha de tener las características de un suelo A-1 o A-2 aproximadamente, de acuerdo a la Clasificación de la AASHTO. Su límite líquido debe ser inferior a 40 y su índice plástico no mayor de 10. El CBR, (valor soporte) no podrá bajar de 20 % (dependiendo del espesor de Base).

La sub-base está destinada fundamentalmente a:

- Soportar, transmitir y distribuir con uniformidad el efecto de las cargas del tránsito proveniente de las capas superiores del pavimento para que la soporte la sub-rasante.
- Servir de material de transición entre la terracería y la base, así también como elemento aislador; previniendo la contaminación de la base cuando la terracería contenga material muy plástico.
- Servir de capa de drenaje al pavimento del agua que se infiltre por los hombros y capas superiores por lo que deben preferirse los materiales granulares y la cantidad de material fino, (limo y arcilla) que pase el tamiz numero 200, no ha de ser mayor del 10%.
- Controlar, o eliminar en lo posible, los cambios de volumen, la elasticidad y la plasticidad perjudiciales que pudiera tener el material de la sub rasante.

 Controlar la ascensión capilar del agua proveniente de las capas freáticas cercanas, o de otras fuentes, protegiendo así el pavimento contra los hinchamientos que se producen en épocas de heladas.

2.2.7.2.2.4. Base

Es la capa de material que se coloca por encima de la sub-base y debajo de la carpeta de rodadura este material puede ser según el Libro Azul piedra o grava, con arena y suelo, piedra o grava trituradas, combinadas con material de relleno, suelo cemento. Esta debe tener un espesor no mayor a 35 centímetros ni menor a 10 centímetros.

El material para la base debe cumplir con las siguientes especificaciones.

- Ser resistente a los cambios de temperatura, humedad, y desintegración por abrasión producidas por el tránsito.
- El porcentaje de desgaste o abrasión, según el ensayo Los Ángeles, debe ser inferior a 50%.
- La fracción del material que pase el tamiz No. 40, ha de tener un límite líquido menor de 25 % y un índice de plasticidad inferior a 6.
- La fracción que pasa el tamiz No. 200, no deberá exceder de ½, y en ningún caso de los 2/3, de la fracción que pase el tamiz No. 40.
- La graduación debe ser controlada y estar dentro de límites especificados.
- El CBR tiene que ser superior a 80%.

 La capa de base debe compactarse al 100 % de la densidad máxima y, si el pavimento (capa de rodadura) es asfáltico, se le colocará un riego de Imprimación.

Su principal finalidad es:

- Trasmitir y distribuir las cargas provenientes de la carpeta de rodadura.
- Servir de material de transición entre la sub-base y la carpeta de rodadura.
- Drenar el agua que se filtre a través de las carpetas y hombros, hacia las cunetas.

2.2.7.2.3. Diseño de pavimento

El diseño del pavimento se basa principalmente en las características mecánicas que presente el terreno de fundación donde se construirá o fundará el pavimento. Para determinar estas características debe de realizarse un estudio de suelos.

2.2.7.2.3.1. Estudio de suelos

Para determinar las características mecánicas del suelo es necesario llevar muestras a un laboratorio en donde se realicen los ensayos para cada muestra, dentro del estudio de suelos para proyecto de carreteras están:

Análisis granulométrico: este ensayo clasifica el suelo dependiendo el tamaño de sus partículas y lo representa en una grafica según lo descrito por la AASTHO. T-27.

Límites de consistencia: estos son indicadores de las propiedades plásticas de los suelos representados por el contenido de humedad se conocen como.

Límite líquido: fija la división entre el estado líquido y el estado plástico, ocasionalmente puede utilizarse para estimar asentamientos en problemas de consolidación. El límite líquido es una medida de la resistencia al corte del suelo a un determinado contenido de humedad. Las investigaciones muestran que el límite líquido aumenta a medida que el tamaño de los granos o partículas presentes en el suelo disminuyen. El procedimiento analítico para la determinación de este límite se basa en la norma AASHTO T-89.

Límite plástico: está definido como el contenido de humedad, en el cual una masa de suelo se encuentra entre el estado semisólido y el estado plástico, El proceso analítico para este ensayo se encuentra en la norma AASHTO T 90.

Ambos límites juntos son algunas veces útiles para predecir la máxima densidad en estudios de compactación.

Índice plástico: este indica el margen de humedades dentro del cual el suelo tiene un comportamiento plástico, se calcula solo por la diferencia numérica entre el límite plástico y el límite líquido, Si el límite plástico es mayor que el límite líquido, el índice de plasticidad se considera no plástico.

Este clasifica el suelo como se muestra en la siguiente tabla.

Tabla XXII. Clasificación de los suelos según el índice plástico

RANGO DE IP	CLASIFICACIÓN
IP = 0	No plástico
0 <ip<7< td=""><td>Baja plasticidad</td></ip<7<>	Baja plasticidad
7 <ip<17< td=""><td>Medianamente plástico</td></ip<17<>	Medianamente plástico
IP>17	Altamente plástico

Fuente: HERNÁNDEZ CANALES, Juan Carlos. Características físicas y propiedades mecánicas de los suelos y sus métodos de medición. p. 70.

Ensayo de compactación Proctor: en Guatemala es obligatorio el uso del ensayo Proctor modificado. El proceso analítico debe hacerse según lo descrito en la norma AASHTO T 180 este ensayo permite determinar dos parámetros sumamente importante en el diseño de carreteras que son la humedad optima y la densidad máxima de los materiales a utilizar.

Ensayo Valor Soporte del Suelo (CBR): el valor relativo de soporte de un suelo (CBR), es un índice de su resistencia al esfuerzo cortante, en condiciones determinadas de compactación y humedad, se expresa en porcentaje de la carga requerida, para producir la misma penetración, en una muestra estándar de piedra triturada. El procedimiento analítico se rige por la norma AASHTO T 193 Este ensayo proporciona el porcentaje de compactación (%C), el porcentaje de expansión y el porcentaje de CBR, con lo que se determina el valor soporte del suelo.

Equivalente de arena: valúa de manera cualitativa la cantidad y actividad de los finos presentes en los suelos por utilizar. El proceso analítico debe

hacerse según lo descrito en la norma AASHTO T 180. Tiene la finalidad de conocer el porcentaje relativo de finos plásticos que contienen los suelos y lo agregados pétreos.

Peso unitario suelto (PUS): este ensayo servirá para determinar los movimientos de tierra.

Informe de resultados de estudio de suelos

Descripción de suelo: limo arenoso color café

Densidad seca máxima yd = 78,7 lb/pie³ = 1261 kg7m³

Humedad optima 38,5 %

Ensayo de C.B.R a un 95% de compactación

10,2%

Granulometría

% grava = 0,02

% arena = 36,56

% limo = 63,42

Clasificación

S.C.U. ml

P.R.A. a-5

Límite líquido 45,8 %

Índice plástico 7,5%

Peso unitario suelto P.U.S. 918 kg/m³.

Equivalente de arena E.A = 30,6

2.2.7.2.3.2. Dimensionamiento

Para efecto del presente informe se presenta el dimensionamiento de un pavimento rígido.

La Asociación del Cemento Portland (PCA) ha desarrollado dos métodos para determinar el espesor de losa adecuada para soportar las cargas de tránsito en calles y carreteras.

Método de capacidad: el empleo de este método requiere de datos detallados de carga-eje los cuales tienen que ser obtenidos de estaciones representativos de peso de camiones.

Método simplificado: este método se emplea cuando no se tiene la posibilidad de obtener datos de carga-eje muy detallados.

Debido a que el diseño de esta carretera se está proyectando para el bulevar del centro universitario que está en planificación no es posible obtener datos detallados de carga-eje por lo que se empleara el método 2 de la Asociación del Cemento Portland (PCA) para el dimensionamiento del pavimento rígido basado solamente en el tránsito estimado en la vía, el procedimiento de cálculo o direccionamiento se realiza mediante tablas las cuales están elaboradas para periodos de diseño de 20 años.

El procedimiento de cálculo para el dimensionamiento del espesor de losas de un pavimento rígido es la siguiente:

a) Determinar la categoría de la vía según los criterios de la tabla XXIII.

Tabla XXIII. Categoría de tráfico en función de carga por eje

CATEGORÍAS DE TRÁFICO EN FUNCIÓN DE CARGA POR EJE							
CATEGORÍ A POR EJE		TPDA	TPDC		CARGA MÁXIMA POR EJE		
Cargados	Descripción		%	por dia	eje sencillo	ejes dobles	
1	Calles residenciales, carreteras rurales y secundarias (cajo a medio)	200 – 800	1 – 3	Hasta 25	22	36	
2	Calles colectoras, carreteras rurales y secundarias (altas), carreteras primarias y calles arteriales (bajo)	700 – 5000	5 – 18	40 – 1000	26	44	
3	Calles arteriales, carreteras primarias (medio), súper carreteras o interestatales urbanas y rurales (bajo y medio)	3000 – 12 000 en 2 carriles 3000 – 5000 en 4 carriles	8 – 30	500 – 1000	30	51	
4	Calles arteriales, carreteras primarias, súper carreteras (altas) interestatales urbanas (altas) interestatales urbanas y rurales (medio a alto)	3000 – 20000 en 2 carriles 3000 – 150 000 en 4 carriles o más	8 – 30	1500 – 8000	34	60	

Fuente: SALAZAR RODRÍGUEZ, Aurelio. Guía para el diseño y construcción de pavimentos rígidos. p. 148.

Según las características de servicio que se espera para esta carretera se determina una categoría 2 estableciendo un 18% de camiones se tiene 900*0,18 = 162.

b) Establecer el tipo de junta por utilizar.

El tipo de junta a utilizar será dovela o de trabe por agregado las juntas se detallaran en el inciso 2.2.7.2.3.3.

c) Decidir incluir o excluir hombros o bordillos en el diseño.

El incluir hombros o bordillos en el diseño del pavimento según el método simplificado de la PCA disminuye considerablemente el espesor de la losa de concreto. Para el diseño de este proyecto serán incluidos hombros.

d) Determinar el módulo de ruptura del concreto.

Todas las propiedades del concreto son aplicables en el diseño de pavimentos concreto.

En pavimentos la estructura es sometida tanto a esfuerzos de compresión como a esfuerzos de flexión. La losa de pavimento se diseña en base a los esfuerzos de flexión ya que los esfuerzos de compresión son tan mínimos que no influyen en el espesor de la losa.

La fuerza de flexión está determinada por el módulo de ruptura del concreto (MR), el cual está definido con el esfuerzo máximo de tensión en la fibra extrema de una viga de concreto, por experimentación se estima entre un 10% a un 20 % de su resistencia a la compresión.

Para el diseño de pavimento se estima el módulo de ruptura en un 15% de la resistencia del concreto a la compresión f'c por lo que se toma como.

$$MR = 0.15f'c = 0.15*4000 \text{ psi} = 600 \text{ psi}.$$

e) Determinar el módulo de reacción k de la sub-rasante.

El soporte de la sub-rasante y de la base, está definido por el módulo de Westergard de reacción de la sub-rasante (k). Este se calcula mediante una prueba que indica la característica de resistencia que implica elasticidad del

suelo. Se dice que es igual al coeficiente del esfuerzo aplicado por una placa entre la deformación correspondiente, producida por este esfuerzo pero debido al costo y la complejidad de la misma se puede encontrar un valor aproximado a través del porcentaje de CBR.

Según el estudio de suelos a un 95 % de compactación el CBR es de 10.2 % en base a esto se determina el módulo de reacción K.

Para determinar el modulo de reacción K del suelo se intercepta el porcentaje de CBR del suelo con el modulo de reacción de la sub-rasante en la figura 13 de donde obtenemos que $k = 200 \text{ lbs/pul}^3$.

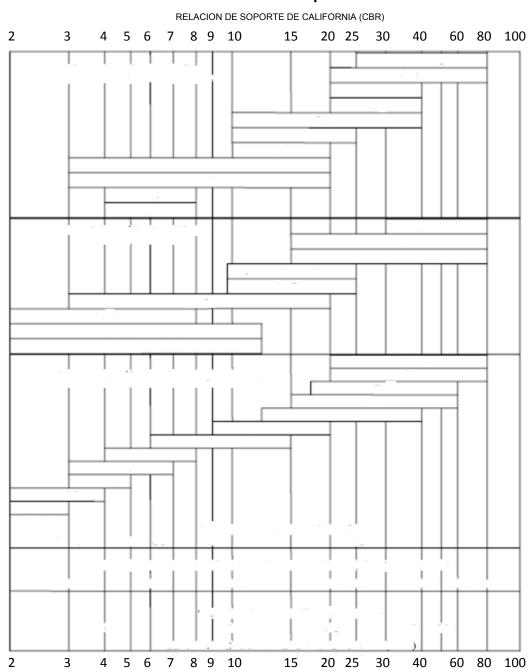

El valor aproximado de k, cuando se utiliza una base granular, se puede incrementar según la tabla XXIV.

Tabla XXIV. Valores de k sobre bases granulares

sub-rasante	valores de k sobre la base (lbs./pulg³)							
valor de K	Espesor 4 Espesor 6 Espesor 9 Espesor							
(PCI)	pulga.	pulga.	pulga.	pulga.				
50	65	75	85	110				
100	130	140	160	190				
200	220	230	270	320				
300	320	330	370	430				

Fuente: SALAZAR RODRÍGUEZ, Aurelio. Guía para el diseño y construcción de pavimentos rígidos. p. 68.

Figura 14. Interrelación aproximada de las clasificaciones de suelos y los valores de soporte

Fuente: SALAZAR RODRÍGUEZ, Aurelio. Guía para el diseño y construcción de pavimentos rígidos. p. 5.

Según la figura 13 el módulo de reacción de la sub-rasante (K) es de 200 lbs./pulg 3 y de la tabla XXIV se obtiene que para k= 200 lbs./pulg 3 con una base granular de 6 pulgadas el nuevo k = 230 lbs./pulg 3 con este valor se clasifica con un soporte alto según la tabla XXV.

Tabla XXV. Tipos de suelo de sub-rasante valores aproximados de K

TIPOS DE SUELOS	SOPORTE	RANGO DE VALORES DE K LBS/PULG ³	
Suelos de grano fino, en el cual el tamaño de partículas de limo y arcilla predomina.	Bajo	75 - 120	
Arenas y mezclas de arena con grava, con una cantidad considerada de limo y arcilla.	Medio	130 - 170	
Arenas y mezclas de arena con grava, relativamente libre de finos	Alto	180 - 220	
Sub-base tratadas con cemento	Muy alto	260 - 400	

Fuente: SALAZAR RODRÍGUEZ, Aurelio. Guía para el diseño y construcción de pavimentos rígidos. p. 149.

f) Determinar el volumen de tránsito promedio diario de camiones o su porcentaje del tránsito promedio diario de vehículos, según la tabla XXIII.

Estableciendo un 18% de camiones se tiene 900*0,18 = 162.

g) Determinar el espesor de losa según la tabla XXVI de diseño, determinado con los parámetros anteriores.

Para determinar el espesor de pavimento como está clasificada como una carretera de categoría 2, junta tipo dovela, se tiene la tabla XXVI. Además deben recordarse cada uno de los parámetros establecidos en los pasos anteriores.

Como este pavimento en particular incluye hombros entonces el espesor de la los estará en el lado derecho de la tabla XXVI.

En base al módulo de reacción de la sub-rasante $k = 230 \text{ lbs./pulg}^3$ se determinó un soporte alto, se determino un modulo de ruptura del concreto de 600 lbs./pulg^2 y volumen de tránsito promedio diario de camiones TPDC de 162.

Entonces para determinar el espesor de la losa interceptamos la fila del modulo de ruptura de 600 lbs./pulg² = 42 Kg/cm² con la columna de soporte alto y buscamos el valor más aproximado al TPDC de 162 de donde obtenemos que el espesor de la losa de concreto será de 6 pulgadas.

Tabla XXVI. TPDC permisibles. Carga por eje categoría 2

	Deter	minaciór	ı de esp	esores	de pavime	entos con pasajunt	as (junta	a tipo do	vela)	
	Sin hombros de concreto o bordillo					Con hombros de concreto o bordillo				
	Espesor de losa	soporte de terreno o subrasante		espesor de losa	soporte de terreno o subrasante					
	en cm	Bajo	Medi o	Alto	Muy Alto	en cm	Bajo	Medi o	Alto	Muy Alto
	14				5	13		3	9	42
	15		4	12	59	14	9	42	120	450
MR=46kg/C	16.5	9	43	120	490	15	98	380	970	3400
m	18	80	320	840	3100	16.5	710	2600		
	19	490	1900			18	4200			
	20	2500								
	15				11	13			1	8
	16.5		8	24	110	14	1	8	23	98
MR-	18	15	70	190	750	15	19	84	220	810
42Kg/cm	19	11	440	110		16.5	160	620	1500	5200
	20	590	2300			18	1000	3600		
	22	2700		4						
	16.5			4	19	14			3	17
MR=39kg/C m	17.8		11	34	150	15	3	14	41	160
	19	19	84	230	890	16.5	29	120	320	1100
	20	120	470	120 0		18	210	770	1900	
	22	560	2200			19	1110	1000	1000	
	23	2400	,							

Fuente: SALAZAR RODRÍGUEZ, Aurelio. Guía para el diseño y construcción de pavimentos rígidos. p. 150.

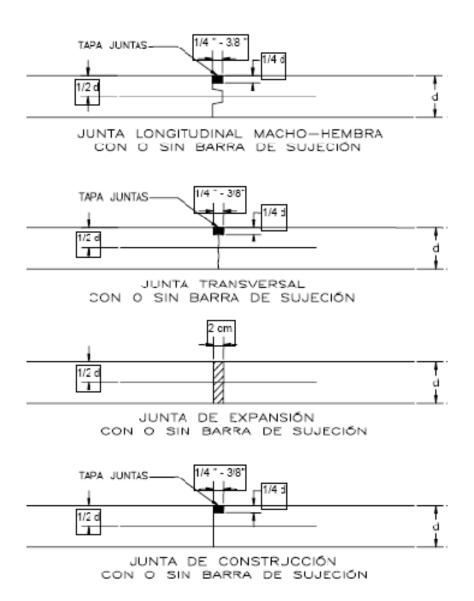
2.2.7.2.3.3. Juntas

Estas son construidas generalmente en pavimento rígidos el objetivo principal es de controlar los esfuerzos del concreto, debido a su expansión y contracción, estos esfuerzos se producen por los cambios de temperatura en el ambiente, además de no permitir la formación de grietas irregulares de la losa de concreto. Las juntas más comunes en los pavimentos rígidos son.

Juntas longitudinales: la separación máxima entre juntas longitudinales es de 12,5 pies (3,81 m.) es la que determina el ancho del carril, estas juntas se utilizan para controlar el agrietamiento longitudinal del pavimento, la profundidad de la ranura superior debe de ser de por lo menos ¼ de el espesor de la losa.

Juntas transversales: la profundidad de la ranura debe ser igual a un cuarto del espesor de la losa. La separación máxima de las juntas transversales es de 10 pies (4,57 m.) la colocación de barras de transferencia depende de las características de la sub-rasante y del tipo de tránsito esperado para el pavimento. Estas son llamadas juntas de contracción, ya que controlan el agrietamiento transversal por contracción de concreto.

Juntas de expansión: estas son necesarias cuando existan estructuras fijas, tales como: puentes, aceras, alcantarillas, etc. Donde sea necesario este tipo de junta, se dejará una separación de dos centímetros. Se construyen para disminuir las tensiones, cuando el concreto se expande. Se colocan obligadamente frente a estructuras existentes y en intersecciones irregulares. Cuando las juntas de contracción controlan adecuadamente el agrietamiento transversal, las juntas de expansión no son necesarias.


Juntas de construcción: se construyen cuando hay una interrupción no mayor de treinta minutos en la colocación del concreto. Son del tipo trabado, es decir lleva barras de acero o material adecuado, para formar tabiques, de modo que se forme una cara vertical con una traba apropiada.

Existen dos dispositivos de transferencia de cargas entre las losas en zonas de juntas, las barras de sujeción y las dovelas o pasajuntas.

Las barras de sujeción, se utilizan en las juntas longitudinales para ligar losas de carriles o franjas contiguas. Se deben utilizar barras de acero de refuerzo corrugadas, colocadas a la mitad del espesor con el espaciamiento especificado y son hechas solamente para garantizar la continuidad del pavimento. La junta de trabe por agregados o barras de sujeción se construyen insertando una barra de acero para hacer la interconexión entre dos losas separadas. Este tipo de junta es más sencillo en su construcción pero requiere de espesores más altos de la losa de concreto.

Las dovelas o pasajuntas, se utilizan normalmente en juntas transversales de construcción, contracción y de expansión y fueron diseñadas para la transmisión de carga de una losa hacia la siguiente. La junta tipo dovela se logra haciendo un detalle macho—hembra en el concreto en el sentido longitudinal. Este detalle requiere más trabajo, pero garantiza una disminución en el espesor de la losa.

Figura 15. Tipos de juntas

Fuente: CHACÓN VALDEZ, Henry Ernesto. Diseño de Pavimento Rígido de la Calzada principal al Municipio de El Progreso. p. 38.

2.2.8. Obras especiales para diseño de carreteras

2.2.8.1. Drenaje

Su función principal es el manejo y conducción adecuada de las aguas que pueden llegar a la carretera ya sea aguas pluviales, superficiales, ríos o quebradas, para que esta cumpla eficientemente con sus funciones durante sus años de servicio para la cual se diseña.

Por lo general en proyectos de carreteras las obras de drenaje que se construyen son: para el drenaje transversal, alcantarillas y para el drenaje longitudinal cunetas, existen otras obras como contra cunetas y disipadores de energía pero estos últimos se construyen en casos específicos y de dependerá de cada casos el tipo de construcción que se realizará.

Drenaje transversal alcantarillas: existen diferentes métodos para diseñar las alcantarillas generalmente se utiliza el método racional el cual se describe a continuación.

Método racional

Caudal

Para determinar el caudal se emplea la fórmula.

$$Q = \frac{CIA}{360} * 1000$$

Donde

C = coeficiente de escorrentía

I = intensidad de lluvia (mm/h)

A = área tributaria (ha)

El coeficiente de escorrentía dependerá de la superficie a drenar como se muestra en la tabla XXVII.

Tabla XXVII. Algunos coeficientes de escorrentía utilizados en Guatemala

TIPO DE SUPERFICIE	С			
Centro de la ciudad	0,70-0,95			
Fuera del centro de la ciudad	0,50-0,70			
Parques, cementerios	0,10-0,25			
Áreas no urbanizadas	0,10-0,30			
Asfalto	0,70-0,95			
Concreto	0,80-0,95			
Adoquín	0,70-0,85			
Suelo Arenoso	0,15-0,20			
Suelo duro	0,25-0,30			
Bosques	0,20-0,25			

Fuente: GIL LAROJ, Joram Matías. Ing. Evaluación de Tragantes Pluviales para la ciudad de Guatemala 1984.

La Dirección General de Obras Públicas en sus normas generales para el diseño de redes de alcantarillado hace la observación que el porcentaje de escorrentía se determinará de acuerdo con la siguiente fórmula:

$$C = \frac{\sum (c * a)}{A}$$

Donde

C = coeficiente de escorrentía

c = coeficiente de escorrentía de cada área tributaria.

a = área tributaria de cada tipo (ha)

A = área tributaria total (ha)

Entonces se buscan los puntos críticos de la carretera y se determinan las aéreas tributarias dependiendo sus características.

Entonces tenemos a_1 = 0,46179 ha de pavimento y a_2 = 1,8382 ha aéreas no urbanizadas, de la tabla XXVII tenemos c_1 = 0,9 y C_2 = 0,3 respectivamente, con estos datos se calcula A y C.

$$A = \sum (a_i) = 0.46179 \text{ ha} + 1.8382 \text{ ha} = 2.3 \text{ ha}$$

$$C = \frac{\sum (c * a)}{A} = \frac{(0,46179 * 0,9 + 1,8382 * 0,3)}{0,5784} = 0,420$$

Intensidad de Iluvia: la intensidad de Iluvia dependerá de cada región esta puede consultarse en el Instituto de Sismología, Vulcanología, Meteorología e Hidrología, INSIVUMEH. Para la región de Chimaltenango según la estación ubicada en Santa Cruz Balanya está dada por.

$$I = \frac{a}{b+t} = \frac{2201}{10.71+t}$$

$$t = \left(0,886 * \frac{L^3}{H}\right)^{0,395} * 60$$

Donde

a y b = Constantes proporcionados por el INSIVUMEH

t = Tiempo de concentración en minutos

L = Longitud del cauce principal en kilómetros

 H =Diferencia de elevaciones entre los puntos extremos del cauce principal en metros.

Del diseño geométrico se tiene que L = 0,422 km. y H = 42,43 m. entonces el tiempo de concentración y la intensidad de lluvia es:

$$t = \left(0,886 * \frac{0,422^3}{42,43}\right)^{0,395} * 60 = 4,68 \text{ minutos}$$

$$I = \frac{2201}{10,71 + 4,68} = 143 \, mm/h$$

El caudal de diseño es:

$$Q = \frac{CIA}{360} * 1000 = \frac{0,420 * 143 * 2,3}{360} * 1000 = 383,72 \frac{lts}{seg}$$

$$Q = 0.38372 \; \frac{m^3}{seg}$$

Determinación de diámetro aplicando la fórmula de Manning.

$$V = \frac{1}{n} R_H^{2/3} S^{1/2}$$

$$R_{H} = \frac{A}{P} = \frac{\pi r^{2}}{2\pi r} = \frac{r}{2} \rightarrow r = \left(\frac{D}{2}\right) \rightarrow R_{H} = \frac{\left(\frac{D}{2}\right)}{2} = \frac{D}{4}$$

$$V = \frac{1}{n} \left(\frac{D}{4}\right)^{2/3} S^{1/2}$$

$$Q = V * A$$

$$Q = V(\pi R^2) \rightarrow Q = V * \pi \frac{D^2}{4}$$

$$Q = \left(\frac{1}{n} \left(\frac{D}{4}\right)^{2/3} S^{1/2}\right) * \pi \frac{D^2}{4} = \frac{\pi}{n} \frac{D^{8/3}}{4^{5/3}} S^{1/2}$$

Despejando el diámetro.

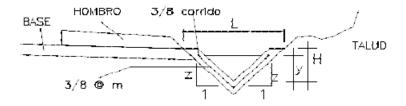
$$D = \left(\frac{4^{5/3}n}{\pi S^{1/2}}Q\right)^{\frac{3}{8}}$$

Donde

D = diámetro de la tubería en pulgadas

Q = caudal del flujo, en m³/s

n = coeficiente de rugosidad 0,013 para concreto..


S = pendiente, en m/m generalmente 3%

$$D = \left(\frac{4^{5/3} * 0.013}{\pi * (0.03)^{1/2}} * 0.1842\right)^{\frac{3}{8}} = 0.40938 \text{ m.} = 16.12 \text{ pulg.}$$

Como este diámetro no es comercial se debe tomar el inmediato superior pero se recomienda para efecto de limpieza que no sea menor de 30 pulg.(0,75m) por lo que el diámetro será de 30".

Drenaje longitudinal cunetas: son canales abiertos que se calculan por el método de Manning, se colocan paralelamente a uno o ambos lados del camino, sirven para evacuar el agua que cae en la sección de corte en una carretera, en pendientes fuertes se deben proteger del escurrimiento y acción destructiva del agua por medio de disipadores de energía. Las cunetas pueden tener diferentes formas y dimensiones, a continuación se presenta un ejemplo de sección típica de cuneta.

Figura 16. Sección típica de cuneta

Fuente: elaboración propia.

Al igual que el drenaje transversal estas generalmente se diseñan empleando el método racional para el cálculo del caudal la diferencia entre el alcantarillado y el canal es el cálculo del radio el hidráulico ya que a diferencia de una sección circular en donde el radio hidráulico siempre va ha ser D/4 en los canales el radio hidráulico depende de la geometría de cada sección. Por ejemplo el radio hidráulico para un canal de sección triangular con una relación de taludes 1:1 dada es:

$$R_H = \frac{\mathrm{Zy}}{2\sqrt{1+Z^2}} = \frac{(1)\mathrm{y}}{2\sqrt{1+(1)^2}} = \frac{1}{2\sqrt{2}} * \mathrm{y}$$

Donde y es el tirante hidráulico que se debe calcula representa la altura del nivel de agua, como ejemplo se calcula la cuneta mas critica o la que debe conducir mayor caudal.

Datos. $a_1 = 0.24365$ ha de pavimento y $a_2 = 3.2563$ ha áreas no urbanizadas, de la tabla XXVII se tiene $c_1 = 0.9$ y $C_2 = 0.3$ respectivamente, L = 0.5601 km. y H = 53.41 m.

Tiempo de concentración.

$$t = \left(0,886 * \frac{0,5601^3}{53,41}\right)^{0,395} * 60 = 5,9796 \text{ minutos}$$

Intensidad de Iluvia.

$$I = \frac{2201}{10,71 + 5,9796} = 132 \, mm/h$$

Coeficiente de escorrentía

$$A = \sum (a_i) = 0.24365 \text{ ha} + 3.2563 \text{ ha} = 3.50 \text{ ha}$$

$$C = \frac{\sum (c * a)}{A} = \frac{(0,24365 * 0,9 + 3,2563 * 0,3)}{3,50} = 0,342$$

Caudal de diseño.

$$Q = \frac{CIA}{360} * 1000 = \frac{0,342 * 132 * 3,50}{360} * 1000 = 438,6 \frac{lts}{seg} = 0,4386 \frac{m^3}{seg}$$

Cálculo de tirante de la fórmula de Manning para una cuneta con relación de taludes 1:1

$$Q = \frac{1}{n} (R)^{2/3} S^{1/2} * A = \frac{1}{n} \left(\frac{1}{2\sqrt{2}} * y \right)^{2/3} S^{1/2} * (y^2)$$

La pendiente será idealmente la de la carretera. s = 6,586% =0,06586

Despejando (y) o por iteraciones dando valores a (y) hasta llegar al caudal de diseño, se tiene que el tirante es igual a 0,31 m. entonces la cuneta tendrá una altura total de 0,35 m.

2.2.8.2. Obras de protección

Con el objetivo de proteger la estructura de la carretera se emplean obras especiales en lugares específicos de la misma entre los más utilizados para dicho propósito están los muros de contención y los gaviones.

Muros de contención: tienen como finalidad resistir las presiones laterales causadas por el material retenido.

El diseño de estas estructuras consiste en dar un predimencionamiento del mismo y chequear si este resiste ante las fallas más comunes que son:

- Falla por hundimiento
- Falla por deslizamiento
- Falla por volteo

Existen diferentes tipos de muros entre estos:

 Muros de gravedad: son aquellos que resisten los empujes mediante su propio peso y son económicos para alturas menores de 4,50 m. En cuanto a los materiales, éstos pueden ser de mampostería, de ladrillo o de concreto ciclópeo. La estabilidad de este tipo de muro se logra sólo con su peso propio, por lo que se requiere grandes dimensiones dependiendo de los empujes. La dimensión de la base de estos muros oscila alrededor de 0.43 de su altura.

- Muro en ménsula: son aquellos que trabajan como viga en voladizo, empotrados en una zapata inferior. Estos muros son económicos para alturas hasta de 6,50 m. Pueden ser de diferentes formas. Estos muros son de concreto reforzado.
- Muro con contrafuerte: son aquellos que resisten los empujes trabajando como losas continuas apoyadas en los contrafuertes, es decir que el refuerzo principal en el muro lo lleva horizontalmente. Son muros de concreto, económicos para alturas mayores de 6,50 m.
- Muro en forma de T: la estabilidad de este tipo de muro se logra por la anchura de su zapata y viene aumentada por la acción del prisma de tierra que carga sobre la parte posterior de la zapata que ayuda a impedir el vuelco. La resistencia se haya encomendada a la pantalla vertical, la cual se calculará como una ménsula empotrada en su base con una carga igual al empuje de tierras y a las sobrecargas que pueda tener.

Gaviones: son obras construidas con la finalidad de proveer estabilidad contra la ruptura de macizos de tierra o roca y evitar el colapso de los mismos ocasionado por el peso propio o cargas externas.

Tiene la ventaja de ser monolíticas, armadas, permeables, prácticas versátiles y económicas. Debido a su alto índice de vacíos, dispensa el uso de sistemas de drenajes. Por componerse de una estructura flexible, es posible utilizarla sobre suelos deformables.

Para un gavión tipo caja el procedimiento de ejecución es el siguiente.

- Embalaje: para facilitar el manipuleo y el transporte, los gaviones son suministrados doblados y agrupados en bultos.
- Montaje: se abre el bulto y se desdobla cada unidad. En el caso de los gaviones caja y colchones reno, levantar los laterales, las extremidades y los diafragmas para la posición vertical. Para los gaviones caja, costurar las aristas en contacto y los diafragmas a las paredes laterales. La costura se ejecuta con el alambre de amarre que es proporcionado con los gaviones, se debe colocar de forma continua pasándose por todas las mallas, alternadamente con vueltas simples y dobles.
- Colocación: se nivela la base donde los gaviones se colocaran hasta obtener una superficie regular. Antes del relleno se deben de coser los gaviones en contacto a lo largo de todas sus aristas, tanto horizontales como verticales. En el caso de los gaviones caja, para obtener un mejor alineamiento y acabado, éstos pueden ser traccionados antes del llenado, o como alternativa puede ser utilizado un encofrado de madera, en la cara externa.
- Relleno: el relleno puede ser efectuado manualmente o con auxilio de equipo mecánico. Deberá ser usada piedra limpia, no friable y con un buen peso específico. El tamaño debe ser, en la medida de lo posible, regular y tal que las dimensiones estén comprendidas entre la mayor abertura de la malla y el doble. Puede ser aceptable un máximo de 5% en piedra con dimensiones superiores a las indicadas. El relleno debe permitir la máxima deformabilidad de la estructura, obteniendo el mínimo porcentaje de vacíos, asegurando el mayor peso específico.

- Atirantamiento: para los gaviones caja. Durante el relleno, deben ser colocados tirantes de alambre de la siguiente forma: Llenar cada celda del gavión de 1,00 m de altura hasta un tercio de su capacidad. Colocar dos tirantes uniendo paredes opuestas, amarrando dos mallas de cada pared. Repetir ésta operación cuando el gavión se encuentre llenado hasta dos tercios. En casos particulares los tirantes pueden unir paredes adyacentes. Eventualmente en obras de revestimiento o plataformas, los tirantes pueden ser colocados verticalmente.
- Cierre: en el caso de los gaviones caja, doblar la tapa. En ambos casos, coser la tapa a los bordes superiores de la base y de los diafragmas. Los gaviones caja colocados arriba de una camada ya ejecutada deben ser cosidos a lo largo de todas las aristas en contacto con la camada de gaviones ya llenados.

2.2.9. Mantenimiento del camino

El mantenimiento de caminos se refiere a todos aquellos trabajos preventivos o de reparación que se realizan periódicamente después de construido en proyecto con el objetivo de proporcionar la mayor durabilidad al tramo carretero.

La coordinación de todos los trabajos de mantenimiento del camino estará a cargo de del comité encargado y la municipalidad.

El mantenimiento de caminos dependerá principalmente de la inspección que el comité encargado realice cuando la obra esté en funcionamiento, esta inspección se realizara a las estructuras de prevención que se construyeron

como cunetas, contra cunetas, muros de contención alcantarillados etc. y de ser necesario plantear la construcción de otros que se consideren.

2.2.10. Planos

Lo planos se adjuntarán en los anexos

2.2.11. Presupuesto

Tabla XXVIII. Resumen del presupuesto

	Proyecto: Diseño de bulevar principal del centro universitario								
NO.	Reglón de trabajo	Total							
1	Limpia, chapeo y destronque,	Нс	3.57	Q9 093.76	Q32 464.72				
2	Trazo y topografía	m	1704.94	Q9.73	Q16 589.07				
3	Excavación no clasificada relleno	m3	5954.42	Q38.13	Q227 042.03				
4	Excavación no clasificada desperdicio	m3	36830.71	Q24.24	Q892 776.41				
5	Reacondicionamiento de subrasante	m2	19965.56	Q24.72	Q493 548.64				
6	Base	m2	18413.87	Q20.33	Q374 353.98				
7	Carpera de rodadura	m2	13535.48	Q277.43	Q3 755 148.22				
8	Alcantarillado (tobo de concreto 30")	m	21.00	Q404.55	Q8 495.55				
9	Cabezales y cajas (ciclópeo)	m3	31.87	Q1 269.24	Q40 449.02				
11	Cunetas	m	3102.59	Q259.16	Q804 067.22				
12	Bordillos	m	1195.88	Q184.24	Q220 328.93				
13	Banquetas	m2	594.98	Q142.95	Q85 052.39				
	Total Q6 950 316.19								

Costo por m² de pavimento

Q513.49

Tabla XXIX. Rendimiento

NI.a	De control é u	Rend	imiento	Concurs de combuetible		_	4-
No.	Descripción		1	Consumo de combustible		costo	
		unidad	cantidad	unidad	cantidad	unida	cantidad
1	Tractor D6	m3/h	100	gal/h	3	Q/h	325
2	Cargador frontal	m3/h	60	gal/h	4	Q/h	200
3	Camión volteo 12m3	m3	12			Q/viaje	100
4	Motoniveladora	m3/h	110	gal/h	4	Q/h	300
5	Camión cisterna	m3/h	75	gal/h	3	Q/h	75
6	Vibrocompactadora	m3/h	75	gal/h	4	Q/h	175
7	Fletes	m2	700			flete	100
8	Retroescabadora	m3/h	85	gal/h	4	Q/h	275
19	Bailarina	m3/h	10	gal/h	2	Q/h	40
10	Mezcladora	m3/dia	12	gal/h	2	Q/h	35
11	Concretera	m3/h	1,5	gal/h	2	Q/h	35
12	Extenderora de concreto	m3/h	52,5	gal/h	4	Q/h	600
13	Texturizadora	m2/h	350	gal/h	2	Q/h	350

Fuente: elaboración propia.

Tabla XXX. Precio de materiales

MATERIALES

	INALLO	T	1
No.	DESCRIPCIÓN DE ARTÍCULO	UNIDAD DE MEDIDA	COSTO POR UNIDAD
1	gasolina	galón	Q35,00
2	Diesel	galón	Q30,00
3	Madera	P,T.	Q3,60
4	Clavos 3"	Libra	Q5,00
5	Alambre de amarre	Libra	Q3,50
6	Selecto	m3	Q90,00
7	Cemento	sacos	Q65,00
8	Arena	m3	Q150,00
9	Piedrín	m4	Q250,00
10	Agua	galón	Q5,00
11	Antisol	galón	Q450,00
12	Tubo DE CEMENTO DE 30 "	unidad	Q100,00
13	Piedra bola	m3	Q20,00

2.2.12. Cronograma de ejecución e inversión.

Como ya se menciono en el inciso 2.1.11 el cronograma es un esquema básico donde se distribuye y organiza en forma de secuencia temporal y financiero el conjunto actividades diseñadas a lo largo de proyecto.

Figura 17. Cronograma de ejecución e inversión para el bulevar

Proyecto

Diseño de Bulevar Principal den Centro Universitario de Chimaltenango.

			ESTIMACIONES																
			MES 1				ME	ES 2			М	ES 3			ME	S 4		TOTAL MANO DE	REPRESENTA
No.	Renglón de trabajo	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	OBRA Y MATRIALES	%
1	Limpia, chapeo y destronque,																	Q32 464.72	0.47%
2	Trazo y topografía																	Q16 589.07	0.24%
3	Excavación no clasificada relleno																	Q227 042.03	3.27%
4	Excavación no clasificada desperdicio																	Q892 776.41	12.85%
5	Reacondicionamiento de subrasante																	Q493 548.64	7.11%
6	Base																	Q374 353.98	5.39%
7	Carpeta de rodadura																	Q3 755 148.22	54.07%
8	Alcantarillado (tobo de concreto 30")																	Q8 495.55	0.12%
9	Cajas																	Q17 290.26	0.25%
10	Cabezales																	Q18 188.55	0.26%
11	Cunetas																	Q804 067.22	11.58%
12	Bordillos																	Q220 328.93	3.17%
13	Banquetas																	Q85 052.39	1.22%
	TOTAL GASTO POR MES		379	929.	27	Q	742	534.	11	Q3	103	882	.35	Q2 719 000.25			.25	Q6 945 345.98	100.00%
	REPRESENTA %		5.4	17%			10.	69%			44.	4.69% 39.15%							
	ANTICIPO 20%	ď	275 9	985.8	35	Q	148	506.	82	Q	620	776.	47 Q543 800.05						
	LIQUIDO A RECIBIR	Q	303	943.	42	Q	594	027.	29	Q2	483	105	.88	Q2 175 200.20		.20			

costo total de proyecto	Q6 945 345.98
Anticipo	Q1 389 069.20
Costo por m2 de pavimentación	Q513.12

2.2.13. Evaluación preliminar ambiental (EPA)

2.2.13.1. Impacto ambiental

Como se detallo en el numeral 2.1.12. el método empleado para la EPA de este proyecte es el método de las matrices de Leopold

Tabla XXXI. Identificación de actividades constructivas y acciones para proyectos de carreteras

AC	CCIÓN				æ			as	de	
		Movimiento de maquinaria	Transporte de materiales	on de gases	Cierre parcial o total de la vía	Emisión de ruido	Emisión de polvo	Producción de aguas servidas	eros y Banco	ales
ACTIVIDA	D	Movin	Trans	Emisión de	Cierre	Emisi	Emisi	Produ	Botaderos	materiales
	Topografía (trazo)									
	Limpia, chapeo y destronque									
	Corte									
Z	Reacondicionamiento de la sub-rasante									
CIĆ	Acarreo de material sobrante									
CONSTRUCCIÓN	Drenajes									
IST	Preparación de la estructura del pavimento.									
OS	Entrega del Proyecto									
	Mantenimiento									
osn	Reparaciones									

Fuente: elaboración propia apoyado con el trabajo de graduación del Ing. Jorge Antonio, García Méndez. p. 103.

Impactos potenciales

Tabla XXXII. Impactos identificados en la etapa de construcción y operación de carreteras

CAUSA DEL IMPACTO	ІМРАСТО
	El medio más afectado es la calidad del suelo producto del movimiento de las grandes cantidades de suelo y creación de botaderos y banco de materiales.
En general la mayor parte de los trabajos constructivos para una carretera requieren de movimiento de grandes volúmenes de tierra y materiales necesarios para el tipo de pavimentación que se realice y por lo anterior descrito se requiere del manejo de maquinaria pesada.	Contaminación del aire debido a la emisión de gases de combustión y generación de polvos. Afectan al medio social, por la generación de ruidos, y el cierre parcial o total de la vía ya que esta comunica una comunidad con el municipio.
	El agua, la flora y fauna no serán muy afectado ya que este es un camino existente y no existen nacimiento de agua y no se tendrá la necesidad de la tala de árboles.

Continuación tabla XXXII.

CAUSA DEL IMPACTO	ІМРАСТО
Limpieza de equipos de construcción, lavado de maquinarias, palas, e instrumentos de trabajo.	Afectan de la calidad del suelo contaminando con aguas de lavado que contienen sólidos en suspensión, productos químicos, pH alcalinos, etc.
Funcionamiento de letrinas, bodegas y zona de parqueo de maquinaria pesada	Afectan al medio social por la generación de desechos sólidos, producidos por las actividades diarias de los trabajadores.

Fuente: elaboración propia apoyado con el trabajo de graduación del Ing. Jorge Antonio, García Méndez. p. 104.

Tabla XXXIII. Clasificación de los impactos en carreteras

Cualitativo	Cuantitativo
Bajo	1
Mediano	2
Alto	3

Fuente: GARCÍA MÉNDEZ, Jorge. Diseño de ampliación de la red de alcantarillado sanitario y diseño de puente en la entrada al municipio de San Rafael las Flores, Santa Rosa, p. 106.

Tabla XXXIV. Matriz de interacciones de componentes ambientales y actividades de los proyectos de carretera

Medio	Componente	тородівіїв (паго)	Limpia, chapeo y destronque	Corte	Reacondicionamiento de la sub-	Acarreo de material sobrante	Drenajes	Preparación de la estructura del	Entrega del Proyecto	Mantenimiento	Reparaciones	Funcionamiento del proyecto
	Aire			2	2	2		1			1	
Físico	Ruido		1	1	2	2		2				1
1 13100	Agua											
	Suelo		1	2	3	3						
Biótico	Flora		1		1							
Biotico	Fauna											
	Social	1		1	1	1		1		1	1	1
Humano	Recreativo										1	
	Económico									1	1	

2.2.13.2. Medidas de mitigación

Las medidas de mitigación deben ser implementadas en los aspectos que se vean más afectados.

Tabla XXXV. Medidas de mitigación según el medio y componente en donde se producirá el impacto en la construcción de carreteras

Medio	Componente	Medida de mitigación
	Suelo	Respecto del suelo que es uno de los aspectos más afectados, debe considerarse y estudiarse bien la ubicación de los botaderos y controlar de manera adecuada de donde se extraigan las materiales que se utilizaran para la construcción.
Físico	Ruido	La mayor cantidad de ruido es producida por los automotores que trabajan para la construcción. Debido a esto es muy difícil de controlar por lo que la comunidad se deberá acostumbrar a tener automotores trabajando frente a sus casas mientras se ejecuta el proyecto. Proporcionar protectores para los oídos de los trabajadores.

Continuación tabla XXXV.

Medio	Componente	Medida de mitigación
	Aire	Para la salud de los trabajadores se deberá dotar de mascarillas en las actividades con más riesgo de producir y respirar polvo. Para controlar el polvo producido por el movimiento suelo y la utilización de materiales de construcción, lo recomendable es controlar la humedad del suelo que será movido al igual que la de los materiales que serán utilizados.
Físico		Las emisiones de CO2 son producidas por la maquinaria, para controlar estos gases se recomienda utilizar maquinaria en buen estado.
Humano	Social	La empresa constructora deberá de colocar la señalización adecuada para evitar accidentes para los usuarios durante la construcción. Las personas deberán acostumbrarse a todos estos trabajos y cambiar algunas costumbres ya que será de beneficio para ellas.
Biótico	Flora y Fauna	No tendrá cambios significativos ya que es un camino existente y no se tendrá que talar árboles.

Fuente: elaboración propia apoyado con el trabajo de graduación del Ing. Jorge Antonio, García Méndez. p. 104.

Tabla XXXVI. Datos de curvas horizontales

Curva	Delta o cambio de dirección		T	adio		Longitud de Curva (m.)	Subtangente (m.)	Tangente (m.)	External (m.)	Ordenada media (m.)
					Grado curvatu			_		
1	13	24	27	222,71	5,15	52,12	26,18	222,13	1,53	1,52
2	-8	24	37	272,31	4,21	39,97	20,02	94,09	0,74	0,73
3	-19	10	19	62,29	18,40	20,01	10,09	31,25	0,81	0,80
4	27	47	32	79,07	14,49	38,00	19,37	131,89	2,34	2,27
5	-2	48	50	712,73	1,61	35,00	17,51	111,96	0,21	0,21
6	36	1	7	91,89	12,47	57,77	29,87	147,89	4,73	4,50
7	-11	40	54	259,58	4,41	51,42	25,79	112,95	1,28	1,27
8	12	17	14	204,54	5,60	36,18	18,14	81,56	0,80	0,80

Fuente: elaboración propia.

Tabla XXXVII. Datos de curvas verticales

Curva	Estacionamiento del PC.	p1 (%)	p2 (%)	Tipo	A (%)	K	LCV (m.)
1	0+088,221	-2,95	0,82	cóncava	3,77	4,00	15,09
2	0+270,116	0,82	2,82	cóncava	2,00	4,00	7,98
3	0+491,905	2,82	0,00	convexa	-2,82	2,00	5,63
4	0+532,194 hacia aldea Puerta abajo	0,00	-12,81	convexa	-12,81	2,00	25,61
5	0+828,564 hacia aldea Puerta abajo	-12,81	-6,59	cóncava	6,22	4,00	24,88
6	0+530,631 hacia finca El Escondite	0,00	7,68	cóncava	7,68	4,00	30,74
7	0+661,717 hacia finca El Escondite	7,68	-1,59	convexa	-9,28	2,00	18,55
8	0+998,812 hacia finca El Escondite	-1,59	-7,98	convexa	-6,39	2,00	12,78

CONCLUSIONES

- A pesar de que la construcción de proyectos de alcantarillado y carreteras en la mayoría de los casos no son rentables sin duda alguna contribuirá a mejorar el nivel de vida de las comunidades beneficiadas ya sea directa e indirectamente.
- 2. Debido a que la topografía del terreno en donde está ubicada la colonia presenta muy poca pendiente, el diseño del alcantarillado sanitario se realizó con tubería de PCV ya que permite el diseño con velocidades de diseño relativamente bajas, el diámetro de la tubería en tramos iníciales es de 6" como lo establecen las normas y fue aumentando gradualmente, como lo indican los planos, hasta llegar a un diámetro de 10" en el punto donde descarga.
- 3. Por las características del lugar, el servicio que se pretende con la construcción del bulevar del centro universitario y que también servirá de comunicación entre la aldea Puerta Abajo y el municipio de Zaragoza, en donde ya existe un camino con la ruta y ancho de calle definido, se adoptó una sección típica E con las especificación que la Dirección General de Caminos indica, ya que este permite pendientes gobernadoras de 10% y pendientes máximas de hasta 14%, el pavimento propuesto una carpeta de rodadura de concreto hidráulico con una base granular, hombros y cunetas en ambos lados de la carretera.

4. Para retorno de los vehículos se emplearon glorietas o rotondas con dos carriles en anillo anular, con el objetivo de reducir al mínimo en espacio requerido el carril interior se diseñó para permitir la circulación o el retorno de vehículos livianos y el carril exterior para autobuses.

RECOMENDACIONES

- Independientemente del lugar donde se diseñó un sistema de alcantarillado sanitario, es necesario hacer saber a los usuarios que el sistema es únicamente para la recolección y conducción de aguas negras, para que el sistema brinde el servicio eficiente durante todo el período de diseño.
- A la Municipalidad de Chimaltenango se recomienda la construcción de plantas de tratamiento en los puntos de descarga de las agua negras con el objetivo de evitar la contaminación del medio ambiente.
- 3. Se recomienda que para la pavimentación del bulevar se emplee el material propuesto (concreto hidráulico) debido a la baja capacidad soporte del suelo encontrado en este lugar ya que en este tipo de material rígido este factor tiene menor influencia que en cualquier material de tipo flexible.
- Tanto para el proyecto de drenaje como el de carretera, se debe de realizar periódicamente el mantenimiento preventivo y correctivo si fuera necesario con la finalidad estos proyectos funciones de acuerdo a lo planificado.

BIBLIOGRAFÍA

- Dirección General de Caminos. Especificaciones generales para la construcción de carreteras y puentes. Guatemala: Ministerio de Comunicaciones y Obras Públicas, 1975. 406 p.
- 2. Instituto de Fomento Municipal. *Normas generales para diseño de alcantarillados. Resolución 420-2001 de Junta Directiva.* Guatemala: INFOM, 2001. 31 p.
- MATÍAS PALACIOS, Ronald David. Cálculo y diseño de carreteras utilizando el programa Civil Survey. Trabajo de graduación de Ing. Civil. Facultad de Ingeniería, Universidad de San Carlos de Guatemala, 1997. 80 p.
- MIDENCE MONROY, Danilo Gustavo. Diseño de pavimentos de concreto.
 3ª ed. México: Limusa, 1995. 756 p.
- 5. ORELLANA MORALES, Marco Vinicio. Diseño de red de drenajes de aguas servidas de las comunidades de Bosque del Mirador y Vistas de San Lorenzo, en el municipio de San Andrés Itzapa, Chimaltenango. Trabajo de graduación de Ing. Civil. Facultad de Ingeniería, Universidad de San Carlos de Guatemala, 2008. 61 p.
- 6. Secretaría de Integración Económica Centroamericana. *Normas para el diseño geométrico de las carreteras regionales.* Guatemala: SIECA 2001. pág. irreg.

ANEXOS

- 1. Integración de precios unitarios y planos para el sistema de alcantarillado sanitario.
- 2. Integración de precios unitarios, planos y reporte de estudio de suelos para el bulevar principal del centro universitario.
- 3. Características geométricas de carreteras según la Dirección General de Caminos, sobre-anchos y peraltes recomendados.

INTEGRACIÓN DE PRECIOS UNITARIOS Y PLANOS PARA EL SISTEMA DE ALCANTARILLADO SANITARIO.

GENERALES

D	RENAJE SANITARIO	COLONIA L	OS CERRITOS ALDEA BUENA	VISTA, CHIMAL	TENANGO		
DENC	SLÓN DE TRABAJO		CONCRETO (4.0 F.2)	CANTIDAD	UNIDAD		
KENG	SLUN DE TRABAJO	'	CONCRETO (1:0,5:2)	1	m3		
	MATERIALES						
NO.	CANTIDAD	UNIDAD DE MEDIDA	DESCRIPCIÓN DEL ARTÍCULO	COSTO POR UNIDAD	COSTO TOTAL		
1	0,42	m3	Arena	Q125,00	Q52,50		
2	0,84	m3	Piedrin	Q235,00	Q197,40		
3	9,80	m3	Cemento	Q57,00	Q558,60		
4	66	Galon	Agua	Q1,00	Q66,00		
5							
	Total				Q874,50		
			MANO DE OBRA				
1							
2							
	Mano de Obra Califi	cada			Q0,00		
	Mano de Obra No C		Q0,00				
			Q0,00				
			Total de Materiales	_	Q874,50		
			Costo directo		Q874,50		

D	RENAJE SANITARIO	COLONIA L	OS CERRITOS ALDEA BUENA	VISTA, CHIMAL	TENANGO	
DENC	SLÓN DE TRABAJO	C AV/IET	SAVIETA PARA LEVANTADO (1:3)		UNIDAD	
KENC	BLON DE TRABAJO	SAVIET	A PARA LEVANTADO (1.3)	1	m3	
NO.	CANTIDAD	UNIDAD DE MEDIDA	DESCRIPCIÓN DEL ARTÍCULO	COSTO POR UNIDAD	COSTO TOTAL	
1	1,33	m3	Arena	Q125,00	Q166,25	
2	12,00	Saco	Cemento	Q57,00	Q684,00	
3					Q0,00	
	Total				Q850,25	
			MANO DE OBRA			
1						
2						
	Mano de Obra Califi	cada			Q0,00	
	Mano de Obra No C	alificada	•		Q0,00	
	Total de Mano de obra					
	Total de Materiales					
			Costo directo		Q850,25	

D	RENAJE SANITARIO	COLONIA I	LOS CERRITOS ALDEA BUENA	VISTA, CHIMALT	ENANGO		
DENC	SLÓN DE TRABAJO	МО	RTERO PARA REPELLO	CANTIDAD	UNIDAD		
KENG	SLUN DE TRABAJO	IVIO	RIERO PARA REPELLO	1	m3		
MATERIALES							
NO.	CANTIDAD	UNIDAD DE MEDIDA	DESCRIPCIÓN DEL ARTÍCULO	COSTO POR UNIDAD	COSTO TOTAL		
1	6,00	Saco	Cal	Q27,00	Q162,00		
2	1,33	m3	Arena amarilla sin sernir	Q150,00	Q199,50		
3							
4							
5							
	Total				Q361,50		
			MANO DE OBRA				
1							
2							
	Mano de Obra Califi	cada			Q0,00		
	Mano de Obra No C	alificada			Q0,00		
			Total de Mano de obra		Q0,00		
			Total de Materiales	7	Q361,50		
			Costo directo		Q361,50		

D	DRENAJE SANITARIO COLONIA LOS CERRITOS ALDEA BUENA VISTA, CHIMALTENANGO							
DENO	SLÓN DE TRABAJO	N DE TRABAJO MORTERO PARA ALIZADO		CANTIDAD	UNIDAD			
KENG	SLUN DE TRABAJU	IVIO	RTERU PARA ALIZADO	1	m3			
	MATERIALES							
NO.	CANTIDAD	UNIDAD DE MEDIDA	DESCRIPCIÓN DEL ARTÍCULO	COSTO POR UNIDAD	COSTO TOTAL			
1	13,06	Saco	Cemento	Q57,00	Q744,42			
2	7,00	Saco	cal	Q27,00	Q189,00			
3	0,74	m3	Arena de rio	Q125,00	Q92,50			
	Total				Q1 025,92			
			MANO DE OBRA					
1								
2								
	Mano de Obra Califi	cada			Q0,00			
	Mano de Obra No C	alificada	-		Q0,00			
			Q0,00					
			Total de Materiales	_	Q1 025,92			
			Costo directo		Q1 025,92			

LINEA CENTRAL

DENIG	ÓN DE TRADA IO	TD 4 7 0 V	FOTA OUEO (s als atom Brita aire al)	CANTIDAD	UNIDA
RENG	SLÓN DE TRABAJO	TRAZU Y	ESTAQUEO (colector Principal)	1	ml
			MATERIALES		
NO.	CANTIDAD	UNIDAD DE MEDIDA	DESCRIPCIÓN DEL ARTÍCULO	COSTO POR UNIDAD	COSTO
1	0,0164	P,T.	Madera	Q3,75	Q
2	0,0080	Saco	Cal	Q27,00	Q
3	0,0049	Libra	Clavos 3"	Q3,50	Q
	Subtotal				Q
			MANO DE OBRA		
1	1	ml	Trazo	Q1,50	Q
	Subtotal				Q
			HERRAMIENTA		
	Q2,18	%	Herramienta 5% de mano de obra	Q5,00	Q
2	Subtotal				Q
	Mano de Obra Califi	cada			Q
	Mano de Obra No C	alificada			Q
Total	de Mano de obra cal	ificada y no	calificada		Q
Presta	aciones laborales				Q
			Total de Materiales		Q
			Total de mano de obra		Q
			Total de herramienta		Q
			Costo directo		Q
			Indirectos 30%		Q
			TOTAL		Q

D	RENAJE SANITARIO	COLONIA	LOS CERRITOS ALDEA BUENA VIS	TA, CHIMALTE	NANGO	
DENC	SLÓN DE TRABAJO		EVCAVACIÓN (nanca)	CANTIDAD	UNIDAD	
RENG	SLON DE TRABAJO		EXCAVACIÓN (pozos)	1	m3	
MATERIALES						
NO.	CANTIDAD	UNIDAD DE MEDIDA	DESCRIPCIÓN DEL ARTÍCULO	COSTO POR UNIDAD	COSTO TOTAL	
	Subtotal				Q0,00	
	Subtotal		MANO DE OBRA		Q0,00	
1	1	m3	Excavación	Q50,00	Q50,00	
<u>'</u>	Subtotal					
	Gustotai		HERRAMIENTA		Q50,00	
	Q72,50	%	Herramienta 5% de mano de obra	Q5,00	Q3,63	
2	Subtotal			1	Q3,63	
	Mano de Obra Calif	icada			Q50,00	
	Mano de Obra No C	Calificada			Q22,50	
Total	de Mano de obra cal	lificada y no	calificada		Q72,50	
Presta	aciones laborales				Q48,58	
			Total de Materiales		Q0,00	
			Total de mano de obra		Q121,08	
			Total de herramienta		Q3,63	
			Costo directo		Q124,70	
			Indirectos 30%		Q37,41	
			TOTAL		Q162,11	

	RENAJE SANITARIO	COLONIA	LOS CERRITOS ALDEA BUENA VIS		NANGO		
	RENGLÓN DE TRABAJO	EXC	AVACIÓN (colector principal y domiciliares)	CANTIDA D	UNIDAD		
	IRABAJU		domicinares)	1	ml		
			MATERIALES				
NO.	CANTIDAD	UNIDAD DE MEDIDA	DESCRIPCIÓN DEL ARTÍCULO	COSTO POR UNIDAD	COSTO TOTAL		
1							
2							
	Subtotal				Q0,00		
			MANO DE OBRA				
1	1	m3	Excavación	Q50,00	Q50,00		
	Subtotal				Q50,00		
			HERRAMIENTA				
	Q72,50	%	Herramienta 5% de mano de obra	Q5,00	Q3,63		
2	Subtotal				Q3,63		
	Mano de Obra Calif	icada			Q50,00		
	Mano de Obra No C	Calificada			Q22,50		
Total	de Mano de obra ca	lificada y no	calificada		Q72,50		
Prest	aciones laborales				Q48,58		
			Total de Materiales		Q0,00		
			Total de mano de obra		Q121,08		
			Total de herramienta		Q3,63		
			Subtotal		Q124,70		
	Indirectos 30%						
			TOTAL		Q37,41 Q162,11		

D	RENAJE SANITARIO	COLONIA	LOS CERRITOS ALDEA BUENA VIST	ΓA, CHIMALTE	NANGO	
PENG	LÓN DE TRABAJO		Entubado Tubería de 6"	CANTIDAD	UNIDAD	
INLING	LON DE TRABAJO		Littubado Tuberia de 0	1	ml	
MATERIALES						
NO.	CANTIDAD	UNIDAD DE MEDIDA	DESCRIPCIÓN DEL ARTÍCULO	COSTO POR UNIDAD	COSTO TOTAL	
1	1,00000	ml	Tubo PVC	Q57,50	Q57,50	
2	0,00130	Galón	cemento solvente para PVC	Q750,00	Q0,98	
3	0,10	m3	selecto	Q90,00	Q8,69	
	Subtotal				Q67,16	
			MANO DE OBRA			
1	1	ml	Colocación de Tubería	Q3,00	Q3,00	
2	0,10	m3	Compactación fondo zanja h=0,15m	Q25,00	Q2,41	
3	0,86684855	m3	relleno de zanja	Q25,00	Q21,67	
5	Subtotal				Q27,08	
			HERRAMIENTA			
	Q39,27	%	Herramienta 5% de mano de obra	Q5,00	Q1,96	
	Subtotal				Q1,96	
	Mano de Obra Calif	cada			Q27,08	
	Mano de Obra No C	alificada			Q12,19	
Total	de Mano de obra cal	ificada y no	calificada		Q39,27	
Presta	aciones laborales				Q26,31	
			Total de Materiales		Q67,16	
			Total de mano de obra		Q65,59	
			Total de herramienta		Q1,96	
			Costo directo		Q134,71	
			Indirectos 30%		Q40,41	
			TOTAL		Q175,13	

			LOS CERRITOS ALDEA BUENA VIST	CANTIDAD	UNIDAD
RENC	BLÓN DE TRABAJO		Entubado Tubería de 8"	1	ml
			MATERIALES		
NO.	CANTIDAD	UNIDAD DE MEDIDA	DESCRIPCIÓN DEL ARTÍCULO	COSTO POR UNIDAD	COSTO TOTAL
1	1,00000	ml	Tubo PVC	Q75,00	Q75,00
2	0,00208	Galón	cemento solvente para PVC	Q750,00	Q1,56
	0,10	m3	selecto	90,00	Q8,69
	Subtotal				Q85,25
			MANO DE OBRA		
1	1	ml	Colocación de Tubería	Q3,00	Q3,00
2	0,096534643	m3	Compactación fondo zanja h=0,15m	25	Q2,41
3	0,86684855	m3	relleno de zanja	Q25,00	Q21,67
	Subtotal				Q27,08
			HERRAMIENTA		
	Q39,27	%	Herramienta 5% de mano de obra	Q5,00	Q1,96
	Subtotal				Q1,96
	Mano de Obra Califi	cada			Q27,08
	Mano de Obra No C	alificada			Q12,19
Total	de Mano de obra ca	lificada y no	calificada		Q39,27
Prest	aciones laborales				Q26,31
			Total de Materiales		Q85,25
			Total de mano de obra		Q65,59
			Total de herramienta		Q1,96
			Costo directo		Q152,80
			Infractos 30%		Q45,84
			TOTAL		Q198,64

L	DRENAJE SANITARIO COLONIA LOS CERRITOS ALDEA BUENA VISTA, CHIMALTENANGO CANTIDAD UNIDAD							
RENC	SLÓN DE TRABAJO		Entubado Tubería de 10"		UNIDAD			
			MATERIALEC	1	ml			
			MATERIALES	1				
NO.	CANTIDAD	UNIDAD DE MEDIDA	DESCRIPCIÓN DEL ARTÍCULO	COSTO POR UNIDAD	COSTO TOTAL			
1	1,00000	ml	Tubo PVC	Q133,33	Q133,33			
2	0,00278	Galón	cemento solvente para PVC	Q750,00	Q2,08			
3	0,10	m3	selecto	90,00	Q8,69			
4								
5								
	Subtotal				Q144,10			
			MANO DE OBRA					
1	1	ml	Colocación de Tubería	Q3,00	Q3,00			
2	0,096534643	m3	Compactación fondo de zanja h=15 cm	Q25,00	Q2,41			
3	0,86684855	m3	relleno de zanja	Q25,00	Q21,67			
	Subtotal				Q27,08			
			HERRAMIENTA					
	Q39,27	%	Herramienta 5% de mano de obra	Q5,00	Q1,96			
	Subtotal				Q1,96			
	Mano de Obra Calific	cada			Q27,08			
	Mano de Obra No C	alificada			Q12,19			
Total	de Mano de obra ca	lificada y no	calificada		Q39,27			
Prest	aciones laborales				Q26,31			
			Total de Materiales		Q144,10			
			Total de mano de obra		Q65,59			
	Total de herramienta							
			Costo directo		Q211,65			
Indirectos 30%								
	TOTAL							

POZOS DE VISITA

D	RENAJE SANITARIO	COLONIA	LOS CERRITOS ALDEA BUENA VIS	STA, CHIMALT	ENANGO	
RENGLÓN DE TRABAJO			FONDO	CANTIDAD	UNIDAD	
			FONDO	1	U	
			MATERIALES			
NO.	CANTIDAD	UNIDAD DE MEDIDA	DESCRIPCIÓN DEL ARTÍCULO	COSTO POR UNIDAD	COSTO TOTAL	
1	0,76	m3	Concreto	Q874,50	Q666,63	
2	3,68	varilla	Hierro No. 3	Q29,38	Q107,97	
3	1,13	Libra	Alambre	Q8,00	Q9,05	
4	0,73	m3	selecto	Q90,00	Q65,34	
	Subtotal				Q848,99	
	<u> </u>		MANO DE OBRA			
1	1	U	Fundición del fondo	Q100,00	Q100,00	
	0,73	m3	compactación de base h=0,15	Q25,00	Q18,15	
Subtotal						
			HERRAMIENTA			
	Q171,32	%	Herramienta 5% de mano de obra	Q5,00	Q8,57	
	Subtotal				Q8,57	
	Mano de Obra Califi	cada			Q118,15	
	Mano de Obra No C	alificada			Q53,17	
Total	de Mano de obra cal	ificada y no	calificada		Q171,32	
Presta	aciones laborales				Q114,78	
			Total de Materiales		Q848,99	
			Total de mano de obra		Q286,10	
			Total de herramienta		Q8,57	
	Costo directo					
			Indirectos 30%		Q343,10	
			TOTAL		Q1 486,75	

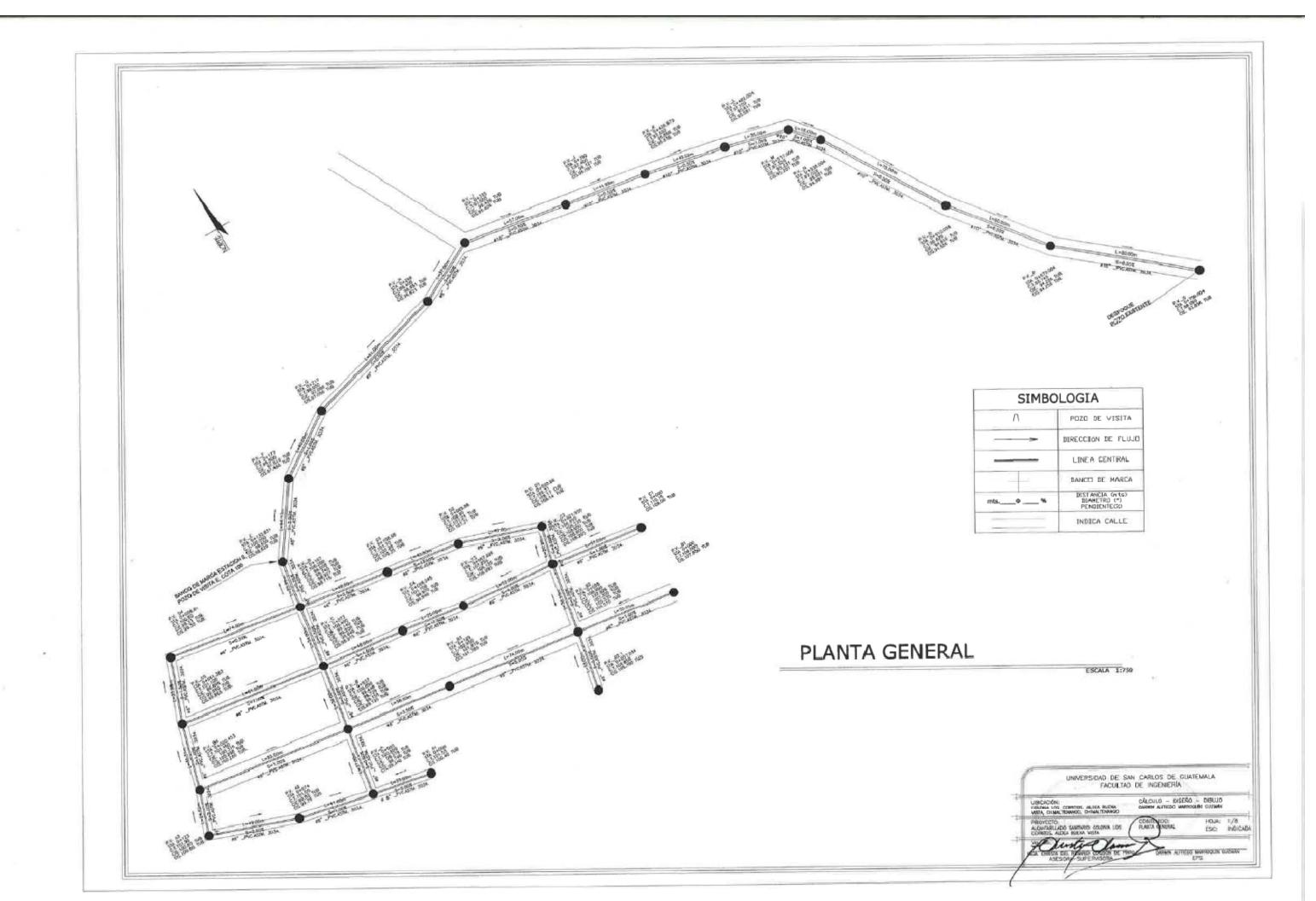
DRENAJE SANITARIO COLONIA LOS CERRITOS ALDEA BUENA VISTA, CHIMALTENANGO						
RENGLÓN DE TRABAJO			LEVANTADO DE MUROS		UNIDAD	
KENG	RENGLON DE TRABAJO				m2	
			MATERIALES			
NO.	CANTIDAD	UNIDAD DE MEDIDA	DESCRIPCIÓN DEL ARTÍCULO	COSTO POR UNIDAD	COSTO TOTAL	
1	0,07	m3	Savieta	Q850,25	Q56,12	
2	128,40	U	ladrillo	Q1,60	Q205,44	
3	Subtotal				Q261,56	
			MANO DE OBRA			
1	1	m2	Levantado	Q20,00	Q20,00	
2	2 Subtotal					
			HERRAMIENTA			
	Q29,00	%	Herramienta 5% de mano de obra	Q5,00	Q1,45	
	Subtotal				Q1,45	
	Mano de Obra Calificada					
	Mano de Obra No Calificada					
Total	de Mano de obra cal	lificada y no	o calificada		Q29,00	
Presta	ciones laborales				Q19,43	
			Total de Materiales		Q261,56	
Total de mano de obra					Q48,43	
	Total de herramienta					
	Costo directo					
Indirectos 30%					Q93,43	
			TOTAL		Q404,87	

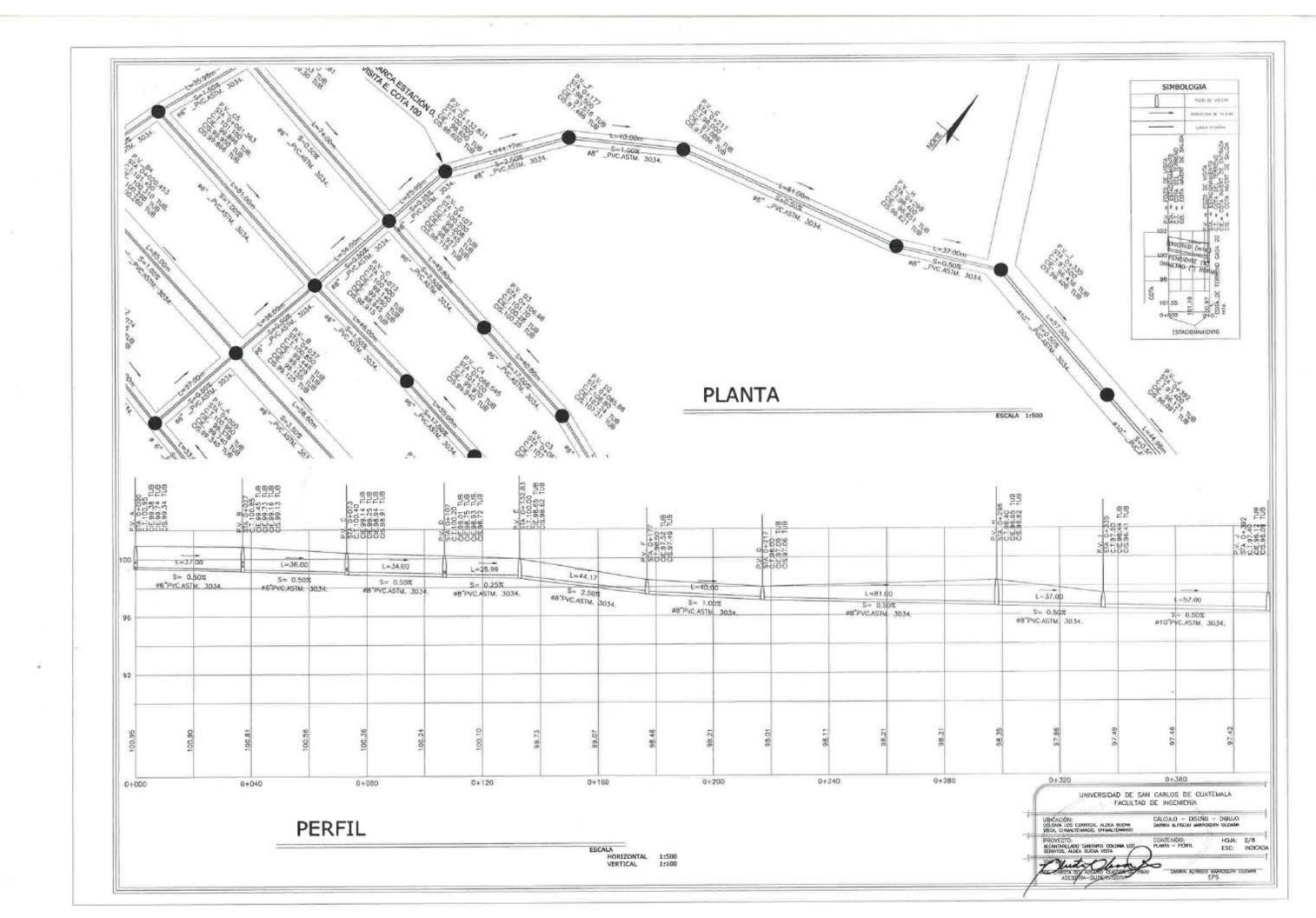
D	DRENAJE SANITARIO COLONIA LOS CERRITOS ALDEA BUENA VISTA, CHIMALTENANGO					
RENGLÓN DE TRABAJO		-	REPELLO Y ALIZADO (P.V.)	CANTIDAD	UNIDAD	
		r	REPELLO I ALIZADO (P.V.)	1	U	
			MATERIALES			
NO.	CANTIDAD	UNIDAD DE MEDIDA	DESCRIPCIÓN DEL ARTÍCULO	COSTO POR UNIDAD	COSTO TOTAL	
1	0,368653	m3	Mortero para repello (1:3)	Q361,50	Q133,27	
2	0,092163	m3	Mortero para alisado (1:1:2)	Q1 025,92	Q94,55	
3	Subtotal				Q227,82	
			MANO DE OBRA			
1	1	J	Repello y Alisado	Q300,00	Q300,00	
2 Subtotal						
			HERRAMIENTA			
	Q435,00	%	Herramienta 5% de mano de obra	Q5,00	Q21,75	
Subtotal						
	Mano de Obra Calificada					
	Mano de Obra No Calificada					
Total de Mano de obra calificada y no calificada					Q435,00	
Presta	aciones laborales				Q291,45	
			Total de Materiales		Q227,82	
Total de mano de obra					Q726,45	
Total de herramienta					Q21,75	
Costo directo					Q976,02	
Indirectos 30%						
			TOTAL		Q1 268,83	

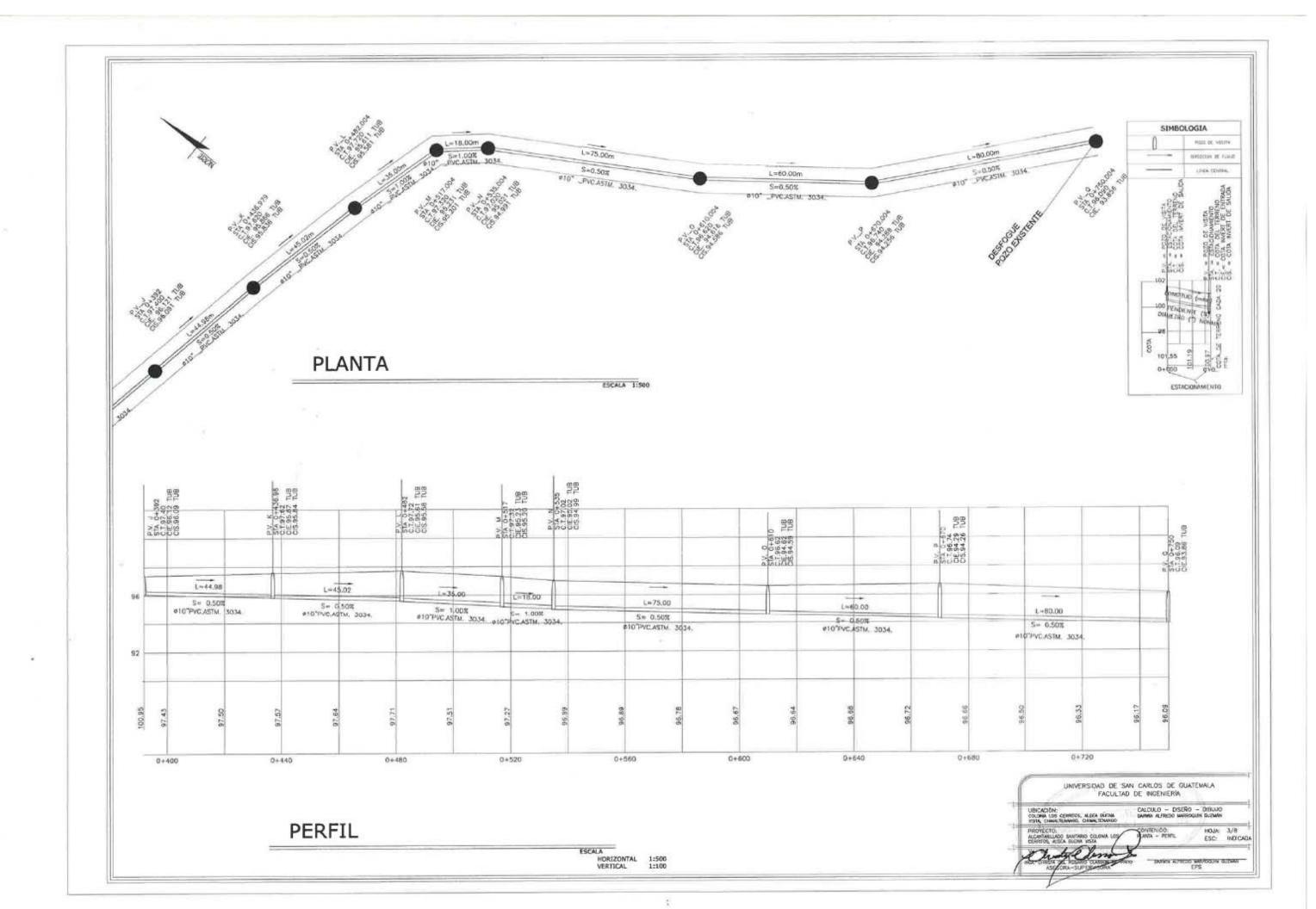
DRENAJE SANITARIO COLONIA LOS CERRITOS ALDEA BUENA VISTA, CHIMALTENANGO					
RENGLÓN DE TRABAJO			BATIENTE O BROCAL	CANTIDAD	UNIDAD
KENG	RENGLON DE TRABAJO		BATIENTE O BROCAL	1	U
			MATERIALES		
NO.	CANTIDAD	UNIDAD DE MEDIDA	DESCRIPCIÓN DEL ARTÍCULO	COSTO POR UNIDAD	COSTO TOTAL
1	0,128625	m3	Concreto M3	Q874,50	Q112,48
2	1,68	varilla	Hierro No. 4	67,85	Q113,99
3	1,9215	varilla	Hierro No. 3	Q29,38	Q56,45
4	1,225034483	Libra	Alambre	Q8,00	Q9,80
5	4,708	P,T.	Madera	Q3,75	Q17,66
6	12,928	Libra	Clavo	Q3,50	Q45,25
7 Subtotal					
			MANO DE OBRA		
1	1	U	Hechura de batiente	Q100,00	Q100,00
2	Subtotal				Q100,00
			HERRAMIENTA		
	Q145,00	%	Herramienta 5% de mano de obra	Q5,00	Q7,25
	Subtotal				
	Mano de Obra Calificada				
	Mano de Obra No Calificada				
Total de Mano de obra calificada y no calificada					Q145,00
Prestaciones laborales					Q97,15
			Total de Materiales		Q355,63
			Total de mano de obra		Q242,15
			Total de herramienta		Q7,25
			Costo directo		Q605,03
			Indirectos 30%		Q181,51
			TOTAL		Q786,54

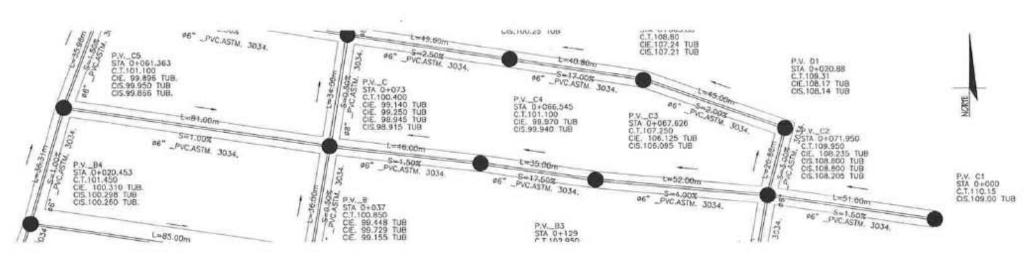
DRENAJE SANITARIO COLONIA LOS CERRITOS ALDEA BUENA VISTA, CHIMALTENANGO					
RENGLÓN DE TRABAJO			TAPADERA	CANTIDAD	UNIDAD
			MATERIAL EQ	1	U
	T		MATERIALES	T T	
NO.	CANTIDAD	UNIDAD DE MEDIDA	DESCRIPCIÓN DEL ARTÍCULO	COSTO POR UNIDAD	COSTO TOTAL
1	0,063334508	m3	Concreto	Q874,50	Q55,39
2	1,575	varilla	Hierro No. 4	67,85	Q106,86
3	0,9	Libra	Alambre	Q8,00	Q7,20
	1,98	P.T.	Madera	Q3,75	Q7,43
	0,594	Libra	Clavo	Q3,50	Q2,08
4	Subtotal				Q178,95
			MANO DE OBRA		
1	1	U	Hechura de Tapadera	Q80,00	Q80,00
2 Subtotal					
			HERRAMIENTA		
Q116,00 % Herramienta 5% de mano de obra Q5,00					
	Subtotal				
Mano de Obra Calificada					Q80,00
Mano de Obra No Calificada					Q36,00
Total	de Mano de obra cal	ificada y no	calificada		Q116,00
Prestaciones laborales					
			Total de Materiales		Q178,95
			Total de mano de obra		Q193,72
Total de herramienta					Q5,80
			Costo directo		Q378,47
	Indirectos 30%				Q113,54
			TOTAL		Q492,02

DRENAJE SANITARIO COLONIA LOS CERRITOS ALDEA BUENA VISTA, CHIMALTENANGO						
RENGLÓN DE TRABAJO			500ALONEO		UNIDAD	
			ESCALONES	1	POR POZO	
			MATERIALES			
NO.	CANTIDAD	UNIDAD DE MEDIDA	DESCRIPCIÓN DEL ARTÍCULO	COSTO POR UNIDAD	COSTO TOTAL	
1	0,60	Varilla	Hierro No.6	Q95,00	Q57,00	
2	Subtotal				Q57,00	
			MANO DE OBRA			
1	4	U	Hechura colocación de escalón	Q5,00	Q20,00	
2	Subtotal				Q20,00	
			HERRAMIENTA			
	Q29,00	%	Herramienta 5% de mano de obra	5,00	Q1,45	
	Subtotal					
Mano de Obra Calificada					Q20,00	
Mano de Obra No Calificada						
Total	de Mano de obra cal	lificada y no	o calificada		Q29,00	
Presta	aciones laborales				Q19,43	
			Total de Materiales		Q57,00	
			Total de mano de obra		Q48,43	
			Total de herramienta		Q1,45	
Costo directo					Q106,88	
Indirectos 30%					Q32,06	
	TOTAL					

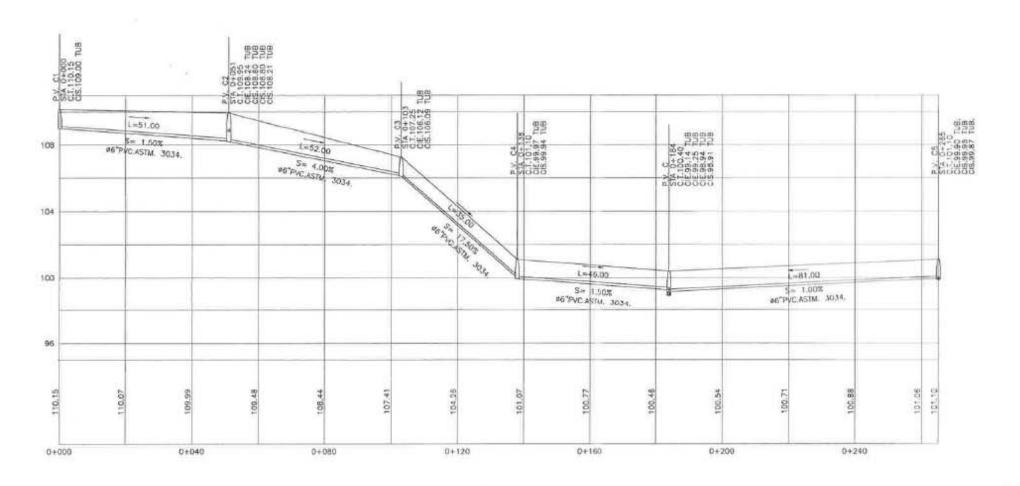

DENIG	N ÓN DE TRADA IO		5.11	CANTIDAD	UNIDAD
RENG	RENGLÓN DE TRABAJO		Relleno y compactación	1	m3
			MATERIALES		
NO.	CANTIDAD	UNIDAD DE MEDIDA	DESCRIPCIÓN DEL ARTÍCULO	COSTO POR UNIDAD	COSTO TOTAL
1					
	Subtotal				Q0,00
			MANO DE OBRA		
1	1	m3	Relleno y Compactación	Q25,00	Q25,00
Subtotal				Q25,0	
			HERRAMIENTA		
	Q36,25	%	Herramienta 5% de mano de obra	Q5,00	Q1,8°
	Subtotal				Q1,8°
	Mano de Obra Califi	cada			Q25,00
	Mano de Obra No C	alificada			Q11,2
Total	de Mano de obra cal	ificada y no	o calificada		Q36,2
Presta	aciones laborales				Q24,29
			Total de Materiales		Q0,00
			Total de mano de obra		Q60,54
			Total de herramienta		Q1,8 ⁴
			Costo directo		Q62,3
			Indirectos 30%		Q18,71
			TOTAL		Q81,00

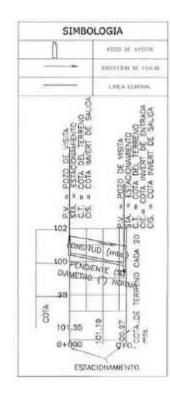

CONEXIÓN DOMICILIAR


D	DRENAJE SANITARIO COLONIA LOS CERRITOS ALDEA BUENA VISTA, CHIMALTENANGO				
RENGLÓN DE TRABAJO		TDAZ	TRAZO CONEXIÓN DOMICILIAR		UNIDAD
		TRAZO CONEXION DOMICILIAR		1	ml
	MATERIALES				
NO.	CANTIDAD	UNIDAD DE MEDIDA	DESCRIPCIÓN DEL ARTÍCULO	COSTO POR UNIDAD	COSTO TOTAL
1	0,0080	P.T.	Cal	Q27,00	Q0,22
2	0,0786	Saco	madera	Q3,75	Q0,29
3	0,0236	Libra	Clavos 3"	Q3,50	Q0,08
4	Subtotal				Q0,59
			MANO DE OBRA		
1	1	ml	Trazo	Q50,00	Q50,00
2 Subtotal					Q50,00
			HERRAMIENTA		
	Q72,50	%	Herramienta 5% de mano de obra	Q5,00	Q3,63
	Subtotal				Q3,63
	Mano de Obra Calif	icada			Q50,00
	Mano de Obra No C	alificada			Q22,50
Total	de Mano de obra ca	lificada y no c	alificada		Q72,50
Presta	aciones laborales				Q48,58
			Total de Materiales		Q0,59
			Total de mano de obra		Q121,08
			Total de herramienta		Q3,63
			Costo directo		Q125,29
			Indirectos 30%		Q37,59
	TOTAL				


0	DRENAJE SANITARIO COLONIA LOS CERRITOS ALDEA BUENA VISTA, CHIMALTENANGO				
RFNC	GLÓN DE TRABAJO	INSTALACIÓN CONEXIÓN DOMICILIAR		CANTIDAD	UNIDAD
	SEON DE MADAGO		LEAGURE CONTENTS TO MICHELIAR	1	U
			MATERIALES		
NO.	CANTIDAD	UNIDAD DE MEDIDA	DESCRIPCIÓN DEL ARTÍCULO	COSTO POR UNIDAD	COSTO TOTAL
1	0,038308935	m3	Concreto	Q874,50	Q33,50
2	3,5	ml	Tubo PVC 4"	20,833333	Q72,92
3	1	U	Tubo de cemento de 12"	80	Q80,00
4	1	U	Tapadera para tubo de cemento de 12"	25	Q25,00
5	1	U	Silleta 45* para PVC 4 "	120	Q120,00
6	0,016666667	Galón	cemento solvente para PVC	750	Q12,50
7	Subtotal				Q343,92
			MANO DE OBRA		
1	1	U	Instalación	Q3,00	Q3,00
2	2,075678041	m3	relleno de zanja	Q25,00	Q51,89
3	1,055125188	m3	relleno de candela	Q25,00	Q26,38
	Subtotal				Q81,27
			HERRAMIENTA		
	Q117,84	%	Herramienta 5% de mano de obra	Q5,00	Q5,89
	Subtotal				Q5,89
	Mano de Obra Calific	ada			Q81,27
	Mano de Obra No Ca	alificada			Q36,57
Total	de Mano de obra cal	ificada y no	calificada		Q117,84
Prest	Prestaciones laborales			Q78,95	
			Total de Materiales		Q343,92
			Total de mano de obra		Q196,80
			Total de herramienta		Q5,89
			Costo directo		Q546,61
			Indirectos 30%		Q163,98
			TOTAL		Q710,59

D	DRENAJE SANITARIO COLONIA LOS CERRITOS ALDEA BUENA VISTA, CHIMALTENANGO						
RENGLÓN DE TRABAJO			A d - Ti		UNIDAD		
KENG	SLON DE TRABAJO		Acarreo de Tierra	1	m3		
			MATERIALES				
NO.	CANTIDAD	UNIDAD DE MEDIDA	DESCRIPCIÓN DEL ARTÍCULO	COSTO POR UNIDAD	COSTO TOTAL		
1							
2	Subtotal						
			MANO DE OBRA				
1	1	m3	Acarreo	Q35,00	Q35,00		
	Subtotal				Q35,00		
			HERRAMIENTA				
	Q50,75	%	Herramienta 5% de mano de obra	Q5,00	Q2,54		
	Subtotal				Q2,54		
	Mano de Obra Califi	cada			Q35,00		
	Mano de Obra No C	alificada			Q15,75		
Total	de Mano de obra cal	lificada y no	o calificada		Q50,75		
Presta	aciones laborales				Q34,00		
			Total de Materiales		Q0,00		
	Total de mano de obra				Q84,75		
	Total de herramienta				Q2,54		
			Costo directo		Q87,29		
			Indirectos 30%		Q26,19		
			TOTAL				



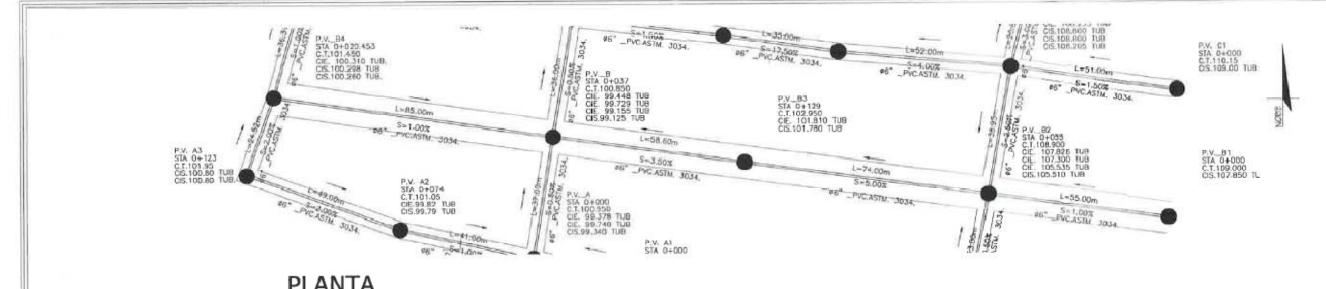


PLANTA

ESCALA 1:500

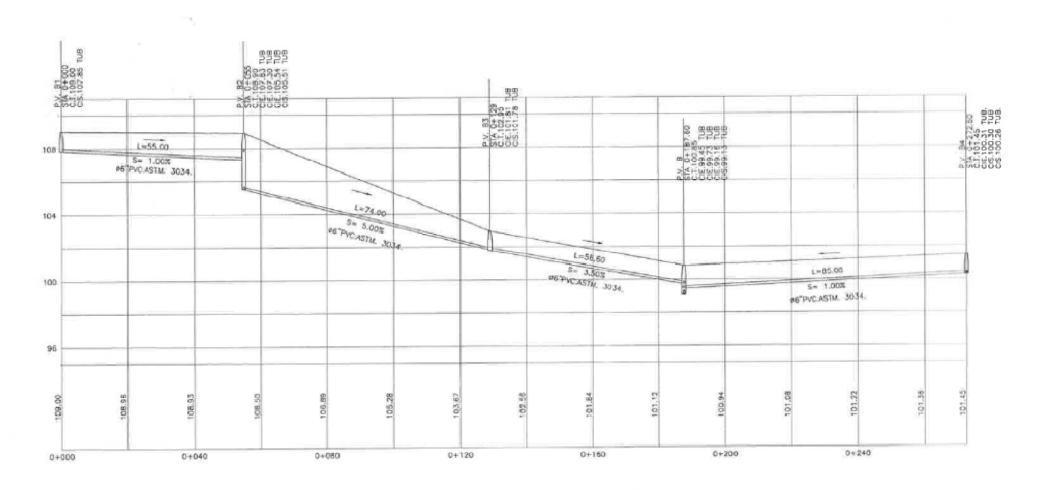
PERFIL

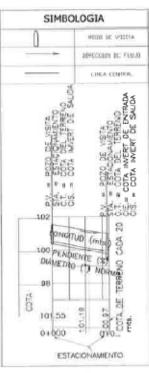
HORIZONTAL 1:500 VERTICAL 1:100 UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERIA


UBICACIÓN COLORDOS, ALCO RUDA COLORDO COLORDO

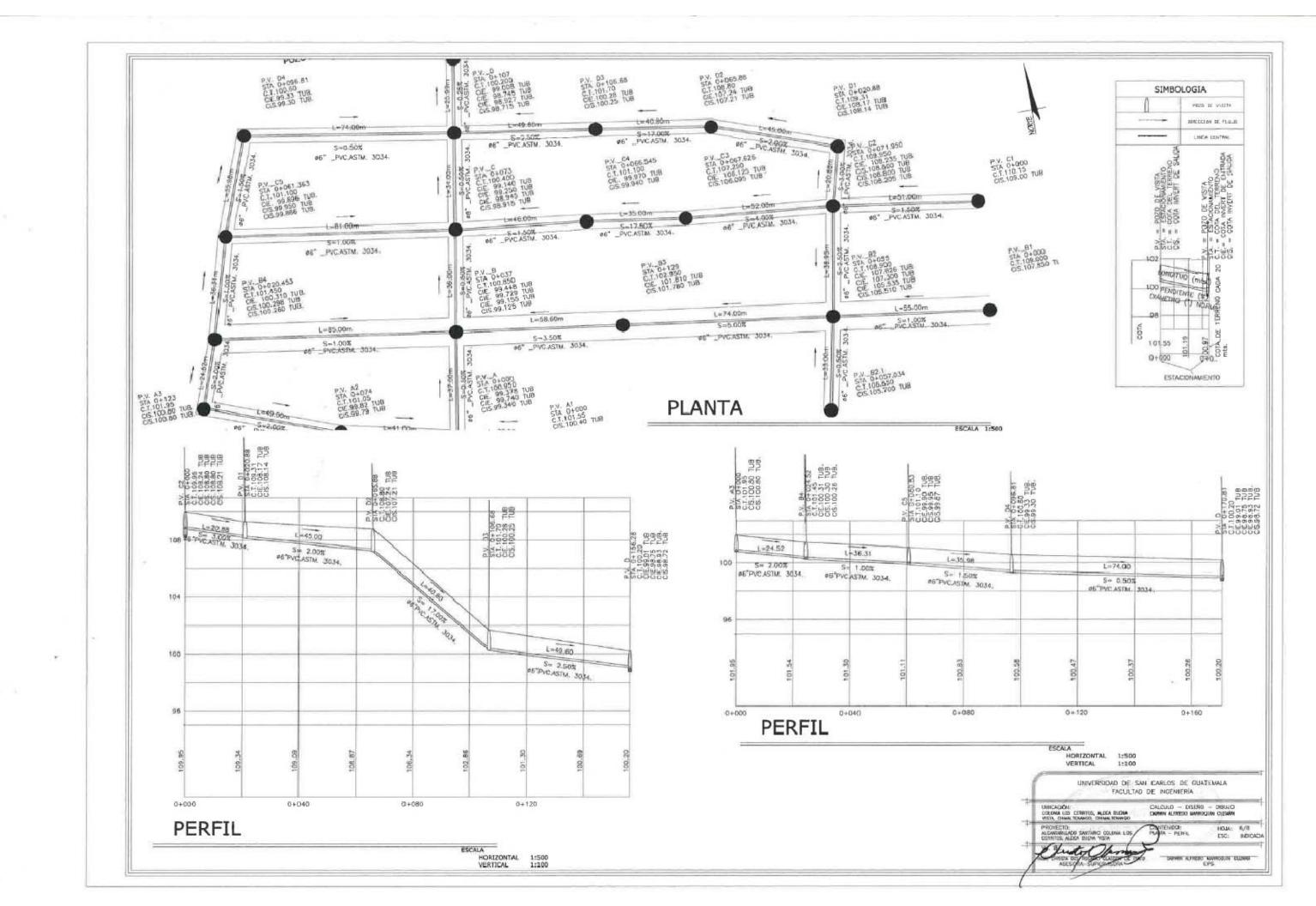
THE THE SANTANO COLONA LOS PLANTA - PERET.

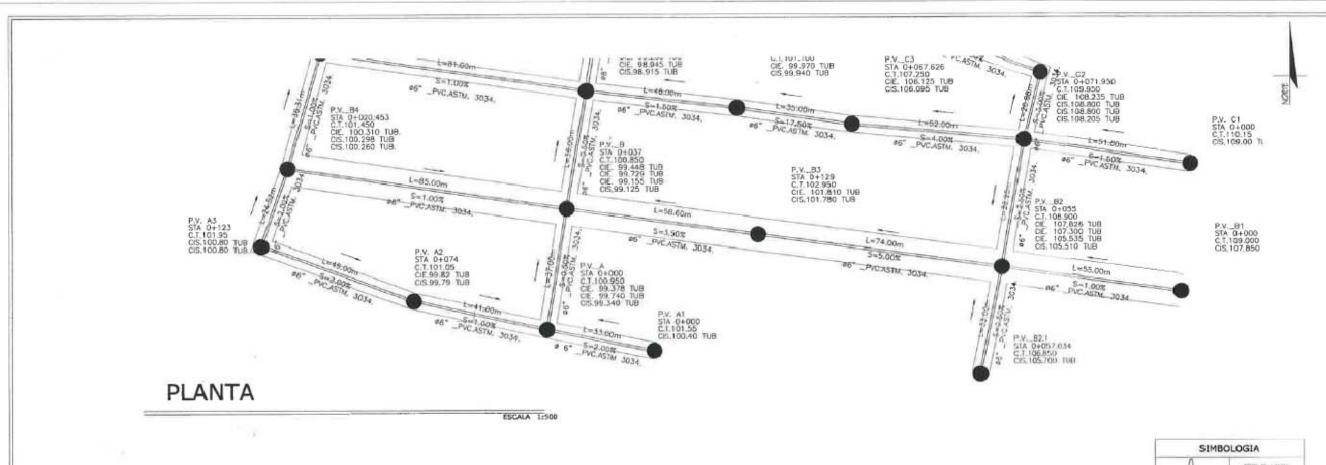
DE SANTA RESTAN ACTIA

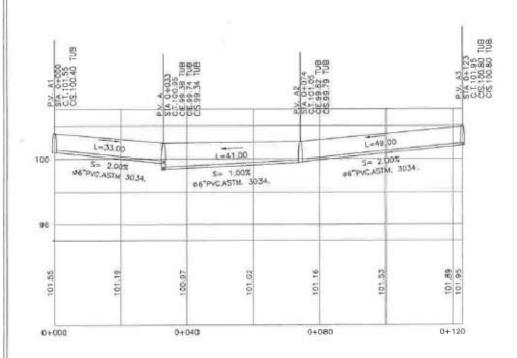

BESTA EST. RESTAND CLASSISTE SANO BRANCH AFRESO WAR

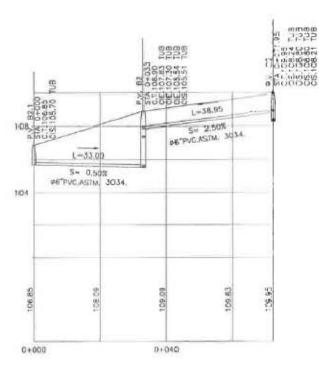

EPS CONTRACTOR OF THE PROPERTY OF THE PROPERTY

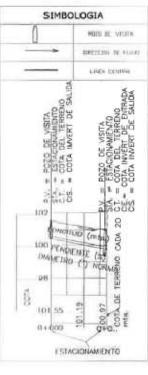
PLANTA




PERFIL


FSCALA
HORIZONTAL 1:500


UNIVERSIDAD DE SAN CARLOS DE CUATEMALA FACULTAD DE INGENIERÍA


HOJA: 5/8 ESC: INDICADA

PERFIL

ESCALA MORIZONTAL 1:500 VERTICAL 1:100 **PERFIL**

ESCALA HORIZONTAL 1:500 VERTICAL 1:100 UNIVERSIDAD DE SAN CANLOS DE GUATEMALA
FAGULIAD DI INGENIERIA

UBICACIÓN:
COLUMA LOS SERVITOS, ALEA SETHA
MINIMO APPROPERTO.
AL OMINIMO SEMPLADO COLUMA LOS HAJIR PERELLADO SEMPLADO COLUMA LOS HAJIR PERELLADO SEMPLADO COLUMA LOS HAJIR PERELLADO SEMPLADO COLUMA LOS HAJIR PERELLADOS SEMPLADOS COLUMA LOS HAJIR PERELLADOS SEMPLADOS COLUMA LOS HAJIR PERELLADOS SEMPLADOS DEL SEGUE PARA MANOR ALFREDO BRANCOCIONI GUIDANA

SEGUE DEL SEGUE DESENTA PARA MANOR ALFREDO BRANCOCIONI GUIDANA

MANOR ALFREDO BRANCOCIONI

INTEGRACIÓN DE PRECIOS UNITARIOS, PLANOS Y REPORTE DE ESTUDIO DE SUELOS PARA EL BULEVAR PRINCIPAL DEL CENTRO UNIVERSITARIO.

	Proyecto		Diseño del bulevar principal del ce	ntro universitari	io
DENG	N ÓN DE TRADA IO	Limite about a destruction		CANTIDAD	UNIDAD
RENG	RENGLÓN DE TRABAJO		Limpia, chapeo y destronque		Нс
			MATERIALES		
NO.	CANTIDAD	UNIDAD DE MEDIDA	DESCRIPCIÓN DEL ARTÍCULO	COSTO POR UNIDAD	COSTO TOTAL
1					Q0,00
2					Q0,00
3					Q0,00
4					Q0,00
Subto	tal				Q0,00
	,		MAQUINARIA		
1	14,2857	flete	Flete (subcontrato)	Q350,00	Q5 000,00
2					Q0,00
8					Q0,00
subtot	al				Q5 000,00
			MANO DE OBRA		
1	2,0000	día	un caporal	Q80,00	Q160,00
2	2,0000	día	10 peones	Q500,00	Q1 000,00
4					Q0,00
5					Q0,00
subtot	l al				Q1 160,00
			HERRAMIENTA		
1	Q1 160,00	%	herramienta 5% de mano de obra	5,00	Q58,00
subtotal					Q58,00
	Mano de Obra Calific	ada			Q1 160,00
Total de Mano de obra calificada y no clasificada				Q1 160,00	
	ciones laborales	, .			Q777,20

Total de Materiales	Q0,00
Total maquinaria	Q5 000,00
Total mano de obra	Q1 937,20
Total de herramienta	Q58,00
Costo directo	Q6 995,20
Indirectos 30%	Q2 098,56
TOTAL	Q9 093,76

	Proyecto		Diseño del bulevar principal del ce	ntro universitari	0
RENGLÓN DE TRABAJO				CANTIDAD	UNIDAD
RENC	RENGLON DE TRABAJO		Trazo y topografía		ml
			MATERIALES		
NO,	CANTIDAD	UNIDAD DE MEDIDA	DESCRIPCIÓN DEL ARTÍCULO	COSTO POR UNIDAD	COSTO TOTAL
1					Q0,00
2					Q0,00
3					Q0,00
4					Q0,00
Subto	tal				Q0,00
	1	T	MAQUINARIA		
1				Q0,00	Q0,00
2					Q0,00
7					Q0,00
8					Q0,00
9					Q0,00
10					Q0,00
subto	tal				Q0,00
		T	MANO DE OBRA		
1	1,0000	ml	trazo	Q3,00	Q3,00
2				Q0,00	Q0,00
subto	l tal				Q3,00
			HERRAMIENTA		
1	Q4,3500	%	herramienta 5% de mano de obra	5,00	Q0,22
subto	tal				Q0,22
	Mano de Obra Calific	ada			Q3,00
	Mano de Obra No Ca	alificada			Q1,35
Total	de Mano de obra cali	ficada y no	o clasificada		Q4,35
Presta	aciones laborales				Q2,91

Total de Materiales	Q0,00
Total maquinaria	Q0,00
Total mano de obra	Q7,26
Total de herramienta	Q0,22
Costo directo	Q7,48
Indirectos 30%	Q2,24
TOTAL	Q9,73

	Proyecto	Proyecto Diseño del bulevar principal del centro universitario			
				CANTIDAD	UNIDAD
RENG	LÓN DE TRABAJO	Ex	cavación no clasificada (relleno)	1	m3
			MATERIALES		
NO.	CANTIDAD	UNIDAD DE MEDIDA	DESCRIPCIÓN DEL ARTÍCULO	COSTO POR UNIDAD	COSTO TOTAL
1					Q0,00
Subto	tal				Q0,00
			MAQUINARIA		
1	0,0100	hora	Tractor D6	Q325,00	Q3,25
2	0,0167	hora	Cargador frontal	Q200,00	Q3,33
3	0,0091	hora	Motoniveladora	Q300,00	Q2,73
4	0,0133	hora	vibroconpactadora	Q175,00	Q2,33
5	0,0133	hora	Camión cisterna	Q75,00	Q1,00
6	0,0300	galón	combustible tractor D6	Q30,00	Q0,90
7	0,0667	galón	Combustible cargador frontal	Q30,00	Q2,00
8	0,0364	galón	Combustible motoniveladora	Q30,00	Q1,09
	0,0533	galón	Combustible vibroconpactadora	Q30,00	Q1,60
9	0,0273	galón	Combustible camión cisterna	Q30,00	Q0,82
10	0,0833	viaje	Camión volteo 12 m3 (subcontrato)	Q100,00	Q8,33
subto	tal				Q27,39
			MANO DE OBRA		
1	0,0100	hora	Operador tractor D6	Q12,50	Q0,13
1	0,0167	hora	Operador cargador	Q12,50	Q0,21
1	0,0091	hora	Operador motonivelador	Q12,50	Q0,11
1	0,0133	hora	Operador vibroconpactadora	Q12,50	Q0,17
1	0,0133	hora	Operador cisterna	Q12,50	Q0,17
subto	tal				Q0,78
	T	T	HERRAMIENTA		
11	Q1,1314	%	herramienta 5% de mano de obra	5,00	Q0,06
subto					Q0,06
	Mano de Obra Califi				Q0,78
	Mano de Obra No C				Q0,35
	de Mano de obra cal	lificada y r	no clasificada		Q1,13
Presta	aciones laborales				Q0,76

Total de Materiales	Q0,00
Total maquinaria	Q27,39
Total mano de obra	Q1,89
Total de herramienta	Q0,06
Costo directo	Q29,33
Indirectos 30%	Q8,80
TOTAL	Q38,13

	Proyecto	Diseño del bulevar principal del centro universitario			
DENOLÓN DE TRADA IO				CANTIDAD	UNIDAD
RENG	RENGLÓN DE TRABAJO		vación no clasificada desperdicio	1	m3
			MATERIALES		
NO.	CANTIDAD	UNIDAD DE MEDIDA	DESCRIPCIÓN DEL ARTÍCULO	COSTO POR UNIDAD	COSTO TOTAL
1					Q0,00
2					
3					
4					
Subto	Subtotal				
			MAQUINARIA		
1	0,0100	hora	Tractor D6	Q325,00	Q3,25
2	0,0167	hora	Cargador frontal	Q200,00	Q3,33
4	0,0300	galón	combustible tractor D6	Q30,00	Q0,90
5	0,0667	galón	Combustible cargador frontal	Q30,00	Q2,00
7	0,0833	viaje	Camión volteo 12 m3 (subcontrato)	Q100,00	Q8,33
subto	tal				Q17,82
			MANO DE OBRA		
1	0,0100	hora	Operador tractor D6	Q12,50	Q0,13
2	0,0167	hora	Operador cargador	Q12,50	Q0,21
subto	l tal				Q0,33
			HERRAMIENTA		
1	Q0,4833	%	herramienta 5% de mano de obra	5,00	Q0,02
subtotal					Q0,02
	Mano de Obra Califi	cada			Q0,33
Mano de Obra No Calificada					Q0,15
Total	de Mano de obra ca	lificada y r	no clasificada		Q0,48
Presta	aciones laborales				Q0,32

Total de Materiales	Q0,00
Total maquinaria	Q17,82
Total mano de obra	Q0,81
Total de herramienta	Q0,02
Costo directo	Q18,65
Indirectos 30%	Q5,59
TOTAL	Q24,24

RENGLÓN DE TRABAJO Reacondicionamiento de subrasante D 1 MATERIALES UNIDAD DE DESCRIPCIÓN DEL COSTO POR	UNIDA D m2 COSTO TOTAL			
NO. CANTIDAD DE MEDID A ARTÍCULO COSTO POR UNIDAD 1 2	COSTO TOTAL Q0,00			
NO. CANTIDAD DE MEDID A DESCRIPCIÓN DEL ARTÍCULO UNIDAD	Q0,00			
NO. CANTIDAD DE MEDID ARTÍCULO ARTÍCULO ONIDAD ONI	Q0,00			
2				
3				
4				
Subtotal	Q0,00			
MAQUINARIA				
3 0,0091 hora Motoniveladora Q300,00	Q2,73			
4 0,0133 hora vibroconpactadora Q175,00	Q2,33			
5 0,0133 hora Camión cisterna Q75,00	Q1,00			
8 0,0364 galón Combustible motoniveladora Q30,00	Q1,09			
0,0533 galón Combustible vibroconpactadora Q30,00	Q1,60			
9 0,0273 galón Combustible camión cisterna Q30,00	Q0,82			
Camión volteo 12 m3 0,0833 viaje (subcontrato) Q100,00	Q8,33			
subtotal	Q17,90			
MANO DE OBRA				
1 0,0091 hora Operador motonivelador Q12,50	Q0,11			
1 0,0133 hora Operador vibroconpactadora Q12,50	Q0,17			
1 0,0133 hora Operador cisterna Q12,50	Q0,17			
subtotal	Q0,45			
HERRAMIENTA				
1 Q0,6481 % herramienta 5% de mano de obra 5,00	Q0,03 Q0,03			
subtotal				
Mano de Obra Calificada	Q0,45			
Mano de Obra No Calificada	Q0,20			
Total de Mano de obra calificada y no clasificada	Q0,65			
Prestaciones laborales	Q0,43			

Total de Materiales	Q0,00
Total maquinaria	Q17,90
Total mano de obra	Q1,08
Total de herramienta	Q0,03
Costo directo	Q19,02
Indirectos 30%	Q5,71
TOTAL	Q24,72

Proyecto Diseño del bulevar principal del centro universitario					o
DENG	RENGLÓN DE TRABAJO				UNIDAD
RENG			Base	1	m2
			MATERIALES		
NO.	CANTIDAD	UNIDAD DE MEDIDA	DESCRIPCIÓN DEL ARTÍCULO	COSTO POR UNIDAD	COSTO TOTAL
1	0,150	m3	selecto	Q90,00	Q13,50
2					
4					
Subto	tal				Q13,50
			MAQUINARIA		
1	0,0018	hora	Motoniveladora	Q300,00	Q0,55
2	0,0027	hora	vibroconpactadora	Q175,00	Q0,47
3	0,0027	hora	Camión cisterna	Q75,00	Q0,20
4	0,0073	galón	Combustible motoniveladora	Q30,00	Q0,22
5	0,0107	galón	Combustible vibroconpactadora	Q30,00	Q0,32
6	0,0055	galón	Combustible camión cisterna	Q30,00	Q0,16
subtotal					Q1,91
	1		MANO DE OBRA		
1	0,0018	hora	Operador motoniveladora	Q12,50	Q0,02
2	0,0027	hora	Operador vibroconpactadora	Q12,50	Q0,03
3	0,0027	hora	Operador cisterna	Q12,50	Q0,03
subto	tal				Q0,09
	1		HERRAMIENTA		
1	Q0,1296	%	herramienta 5% de mano de obra	5,00	Q0,01
subtotal					Q0,01
	Mano de Obra Calific	ada			Q0,09
	Mano de Obra No Ca	alificada			Q0,04
Total	de Mano de obra cali	ficada y no	o clasificada		Q0,13
Presta	aciones laborales				Q0,09

Total de Materiales	Q13,50
Total maquinaria	Q1,91
Total mano de obra	Q0,22
Total de herramienta	Q0,01
Costo directo	Q15,64
Indirectos 30%	Q4,69
TOTAL	Q20,33

	Proyecto		Diseño del bulevar principal del cent	ro universitari	o	
DENIG	RENGLÓN DE TRABAJO				UNIDAD	
RENG	SLON DE TRABAJO		Carpeta de rodadura	1	m2	
			MATERIALES			
NO.	CANTIDAD	UNIDAD DE MEDIDA	DESCRIPCIÓN DEL ARTÍCULO	COSTO POR UNIDAD	COSTO TOTAL	
1	0,150	sacos	Concreto premezclado (4000psi)	Q1 400,0	Q210,00	
					Q0,00	
Subto	otal				Q210,00	
			MAQUINARIA			
1	0,0029	hora	Extendedora de concreto	Q600,00	Q1,71	
2	0,0029	hora	Texturizadora	Q350,00	Q1,00	
	0,0114	gal	Combustible extendedora de concreto	Q30,00	Q0,34	
	0,0057	gal	Combustible texturizadora	Q30,00	Q0,17	
subto	otal				Q3,23	
			MANO DE OBRA			
1	0,0029	hora	Operador extendedora de concreto	Q12,50	Q0,04	
2	0,0029	hora	Operador texturizadora	Q12,50	Q0,04	
					Q0,00	
subto	ıtal				Q0.07	
34.50			HERRAMIENTA		40,01	
1	Q0,1036	%	herramienta 5% de mano de obra	5,00	Q0,01	
subto				,	Q0,01	
	Mano de Obra Calificada					
	Mano de Obra No Calificada				Q0,07 Q0,03	
Total	de Mano de obra ca		no clasificada		Q0,10	
	aciones laborales				Q0,07	

Total de Materiales	Q210,00
Total maquinaria	Q3,23
Total mano de obra	Q0,17
Total de herramienta	Q0,01
Costo directo	Q213,41
Indirectos 30%	Q64,02
TOTAL	Q277,43

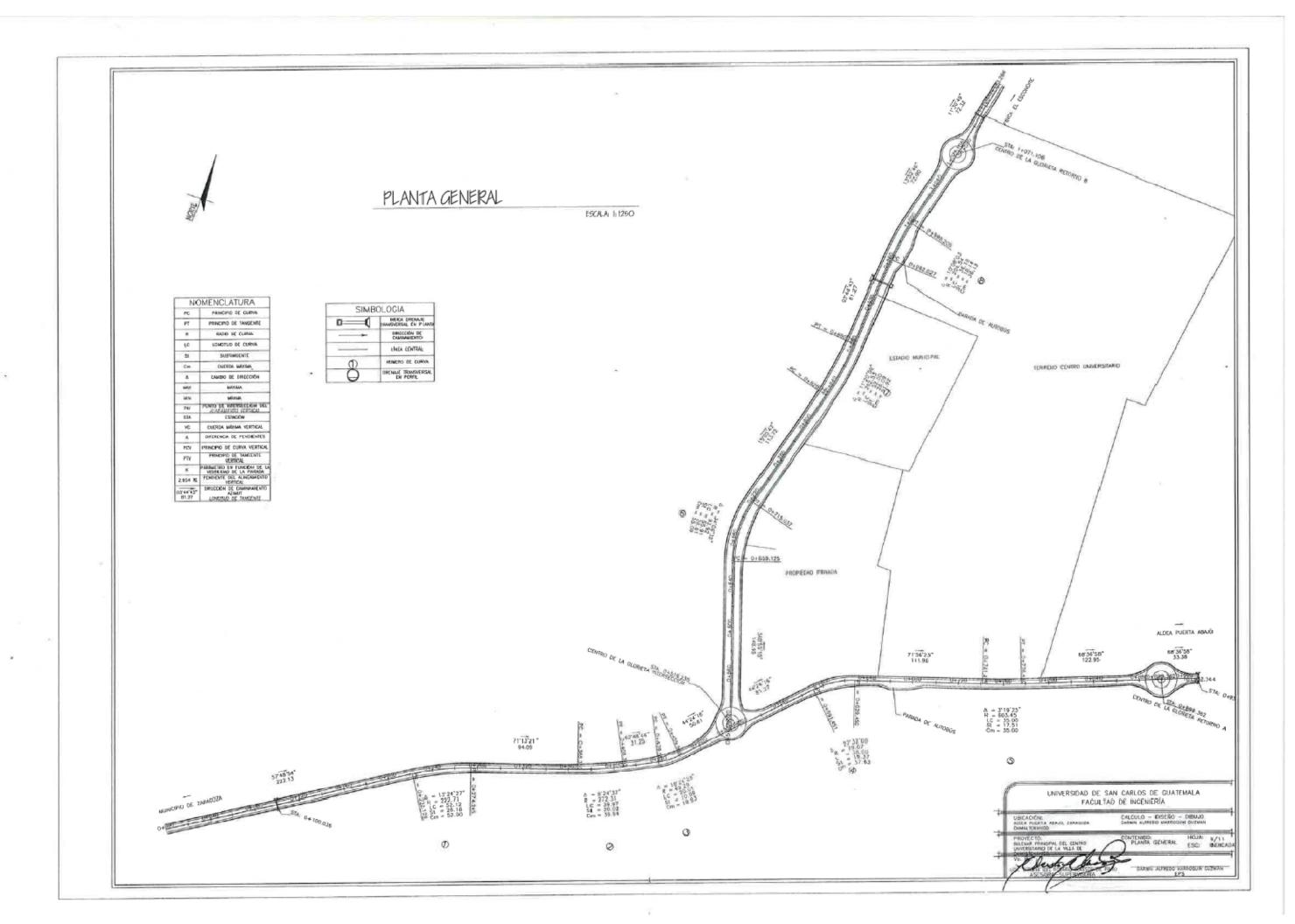
Proyecto Diseño del bulevar principal d			Diseño del bulevar principal del cen	tro universitario	
RENGLÓN DE TRABAJO		Alasadarillada (talas da assenta 0011)		CANTIDAD	UNIDAD
RENG	RENGLON DE TRABAJO		antarillado (tubo de concreto 30")	1	ml
			MATERIALES		
NO.	CANTIDAD	UNIDAD DE MEDIDA	DESCRIPCIÓN DEL ARTÍCULO	COSTO POR UNIDAD	COSTO TOTAL
1	1,000	ml	Tubo de concreto de 30"	Q100,00	Q100,00
2	0,338	sacos	Cemento	Q65,00	Q21,96
3	0,029	m3	Arena	Q150,00	Q4,30
4	0,150	m3	selecto	Q90,00	Q13,50
Subto	tal				Q139,76
			MAQUINARIA		
1	0,0371	hora	Retroescabadora	Q275,00	Q10,19
2	0,0525	hora	Cargador frontal	Q200,00	Q10,50
3	0,3150	hora	bailarina	Q175,00	Q55,13
4	0,0420	hora	Camión cisterna	Q75,00	Q3,15
5	0,1482	galón	combustible de retroescabadora	Q30,00	Q4,45
6	0,2100	galón	Combustible cargador frontal	Q30,00	Q6,30
7	0,6300	galón	combustible bailarina	Q35,00	Q22,05
8	0,0833	viaje	Camión volteo 12 m3 (subcontrato)	Q100,00	Q8,33
subtotal					Q120,10
			MANO DE OBRA		
1	0,0371	hora	Operador retroescavadora	Q12,50	Q0,46
2	0,0525	hora	Operador cargador	Q12,50	Q0,66
3	0,3150	hora	Operador bailarina	Q12,50	Q3,94
4	0,0420	hora	Operador cisterna	Q12,50	Q0,53
5	1,0000	unidad	Colocación de la tubería	Q15,00	Q15,00
subtot	tal				Q20,58
			HERRAMIENTA		
1	Q29,844	%	herramienta 5% de mano de obra	5,00	Q1,49
subtot	tal				Q1,49
	Mano de Obra Califi				Q20,58
	Mano de Obra No C	alificada			Q9,26 Q29,84
Total o	Total de Mano de obra calificada y no clasificada				
Presta	ciones laborales				Q20,00

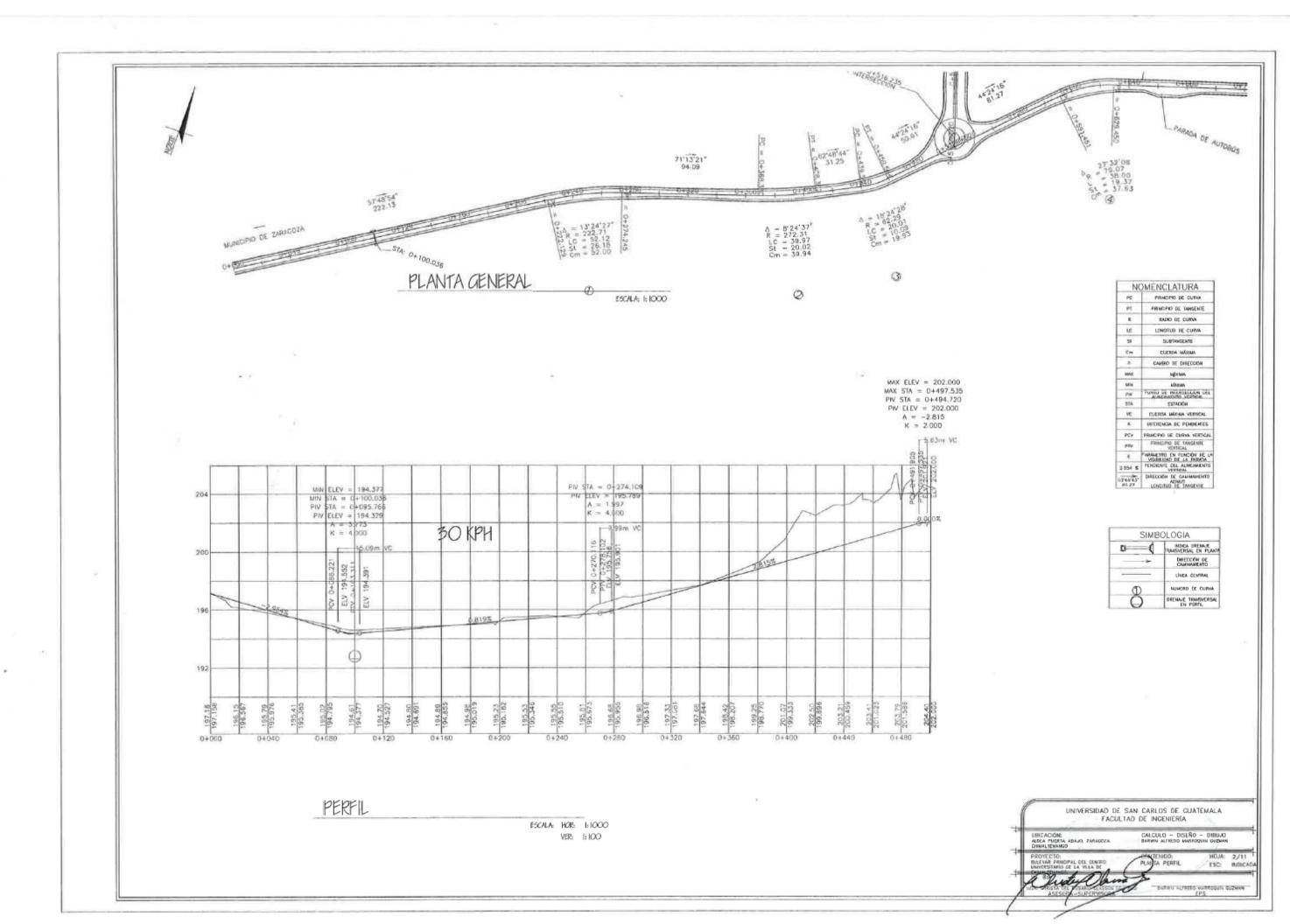
Total de Materiales	Q139,76
Total maquinaria	Q120,10
Total mano de obra	Q49,84
Total de herramienta	Q1,49
Costo directo	Q311,19
Indirectos 30%	Q93,36
TOTAL	Q404,55

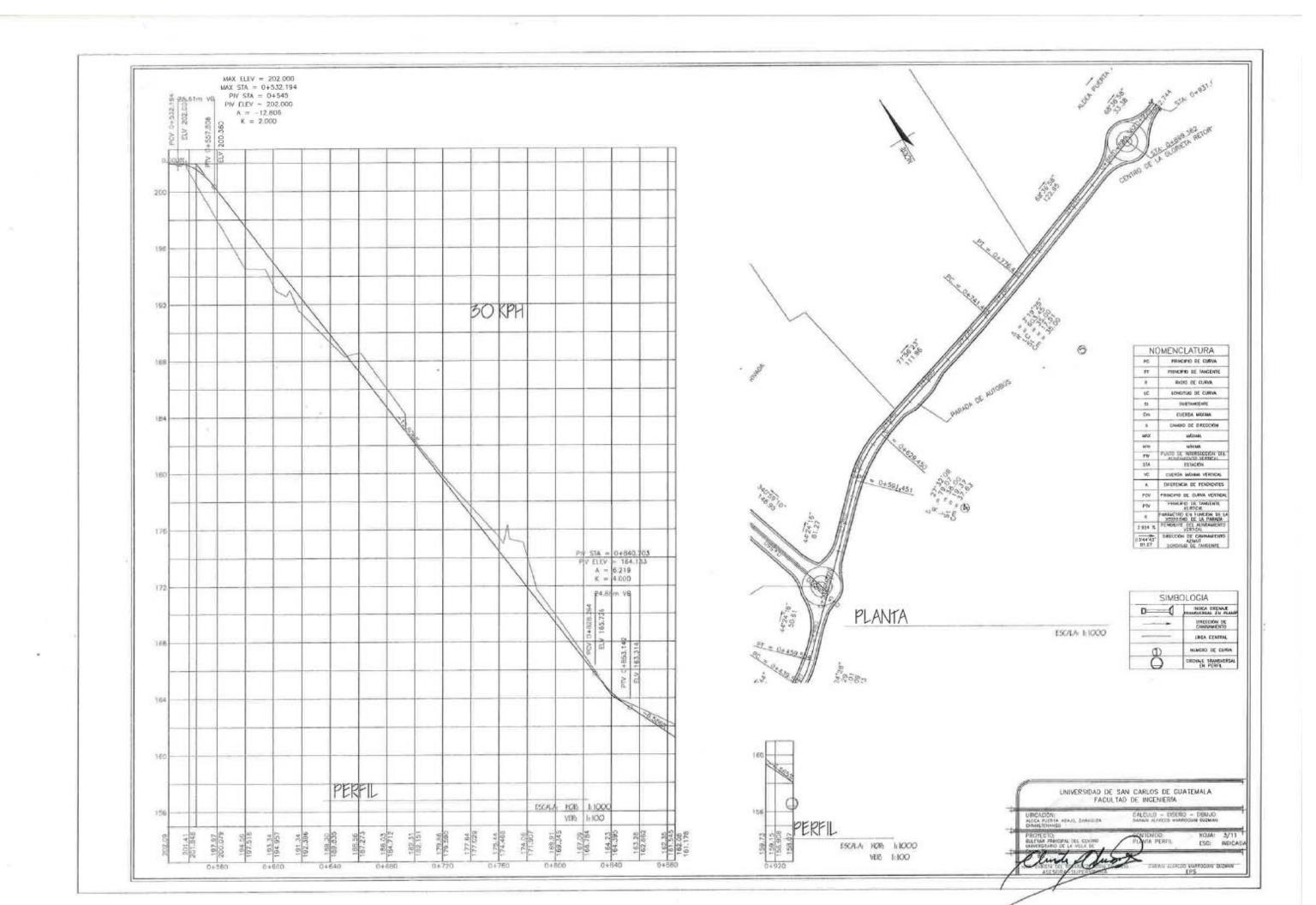
	Proyecto		Diseño del bulevar principal del centro u	niversitario	
RENGLÓN DE TRABAJO		Cabezales y cajas (ciclópeo)		CANTIDA D	UNIDAD
	INADAJO			1	m3
			MATERIALES		
NO.	CANTIDAD	UNIDAD DE MEDID A	DESCRIPCIÓN DEL ARTÍCULO	COSTO POR UNIDAD	COSTO TOTAL
1	3,500	sacos	Cemento	Q65,00	Q227,50
2	0,380	m3	Arena	Q150,00	Q57,00
3	0,480	m3	Piedrín	Q250,00	Q120,00
4	0,530	m3	Piedra bola	Q20,00	Q10,60
5	20,000	gal	Agua	Q5,00	Q100,00
6	24,790	P,T:	madera	Q3,60	Q89,25
7	7,437	lbs.	clavos	Q5,00	Q37,19
Subtotal					Q641,53
	0.0007	haua	MAQUINARIA	025.00	
1	0,6667	hora	concretera	Q35,00	
subto	tal .				Q0,00
Subio	lai		MANO DE OBRA		Q0,00
1	2,0654	m3	Excavación	Q50.00	Q103,27
2	5.8141	m2	colocar y quitar formaleta	Q7,50	Q43,61
3	1,0000	m3	Preparación y fundición del concreto ciclope	Q100,00	Q100,00
subto	tal	•		•	Q246,88
			HERRAMIENTA		
	Q597,8145	%	herramienta 5% de mano de obra	5,00	Q29,89
subtotal			Q29,89		
	Mano de Obra Califi	icada			Q246,88
	Mano de Obra No Calificada			Q111,09	
Total	de Mano de obra ca	lificada y	no clasificada		Q357,97
Presta	aciones laborales				Q239,84

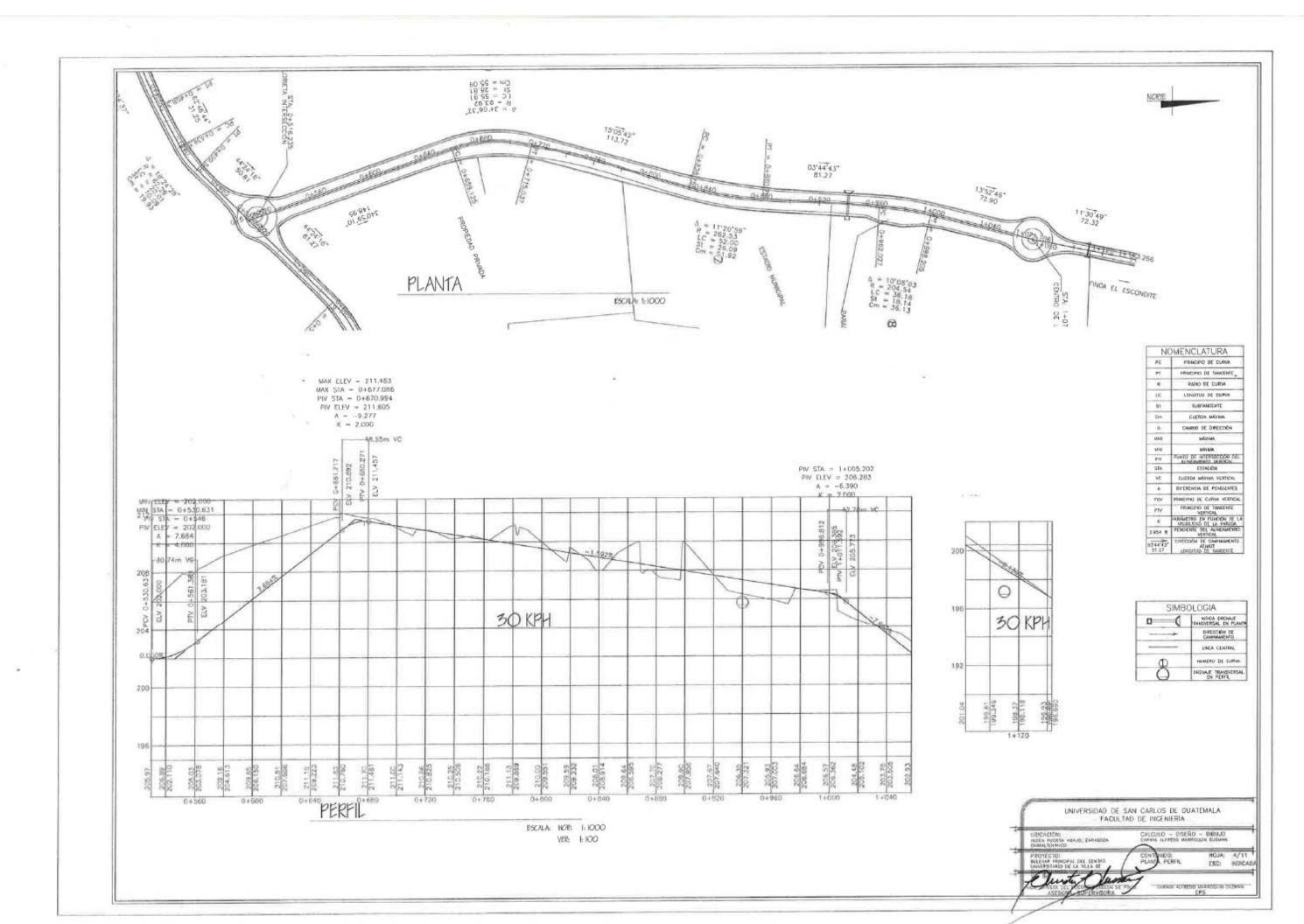
Total de Materiales	Q641,53
Total maquinaria	Q0,00
Total mano de obra	Q597,81
Total de herramienta	Q29,89
0 1 11 1	Q1
Costo directo	269,24
	Q1
TOTAL	269,24

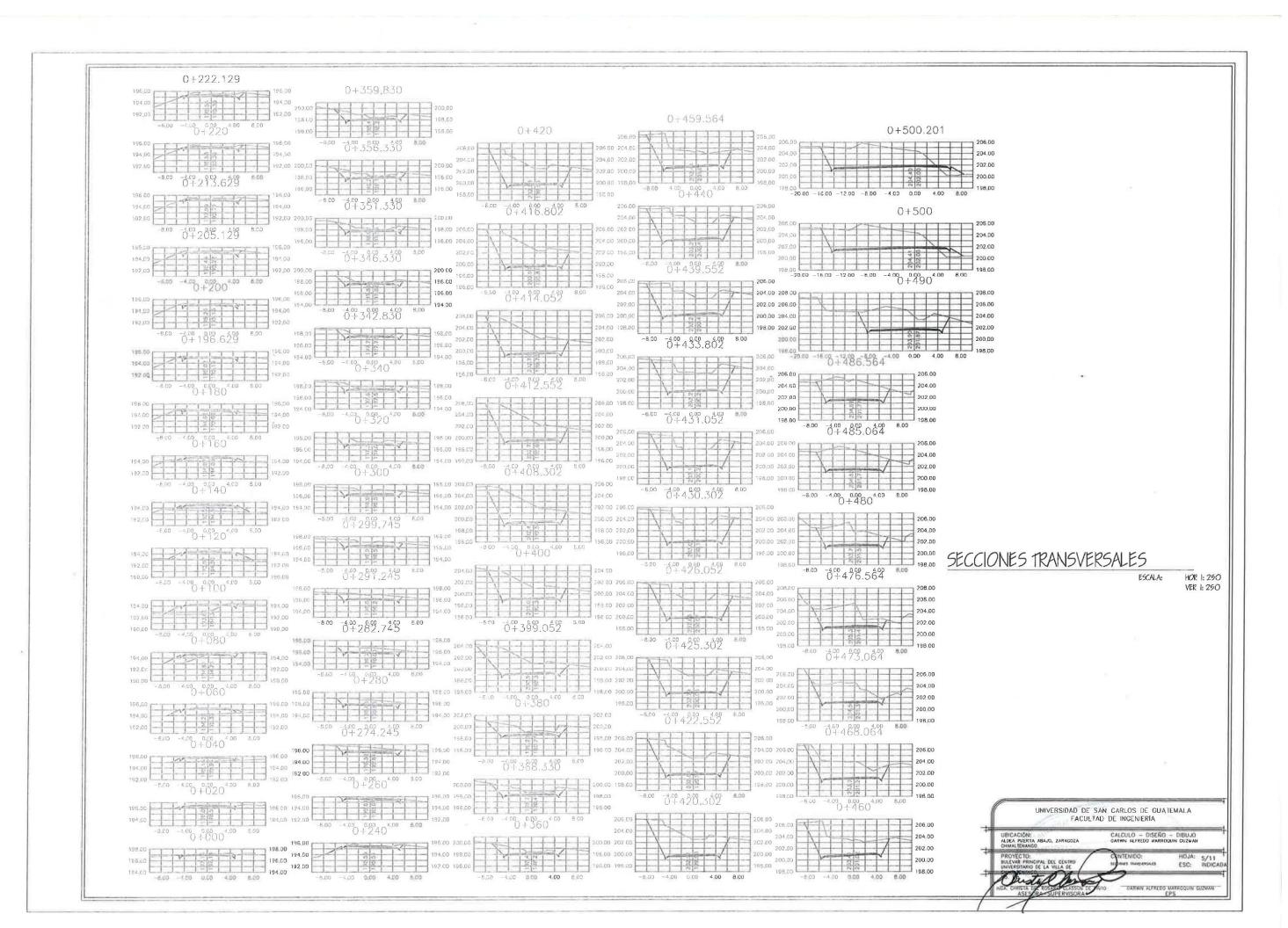
	Proyecto Diseño del bulevar principal del centro universitario				
					UNIDAD
RENG	RENGLÓN DE TRABAJO		cunetas	1	ml
			MATERIALES		
NO.	CANTIDAD	UNIDAD DE MEDIDA	DESCRIPCIÓN DEL ARTÍCULO	COSTO POR UNIDAD	COSTO TOTAL
1	0,988	sacos	Cemento	Q65,00	Q64,23
2	0,063	m3	Arena	Q150,00	Q9,52
3	0,095	m3	Piedrín	Q250,00	Q23,79
	1,267	var	Acero	Q30,00	Q38,00
Subto	tal				Q135,54
			MAQUINARIA		
	0,1220	hora	concretara	Q35,00	Q4,27
subtot	tal				Q4,27
			MANO DE OBRA		
1	1,2200	m2	Preparación y colocación de concreto e = 10 cm	Q10,00	Q12,20
	1,1300	m2	Colocar y quitar formaleta	Q7,50	Q8,48
	1,0000	m	Armado	Q3,20	Q3,20
					Q0,00
subtot	tal				Q23,88
			HERRAMIENTA	-	
1	Q34,62	%	herramienta 5% de mano de obra	5,00	Q1,73
subtot	tal				Q1,73
	Mano de Obra Califi	cada			Q23,88
	Mano de Obra No C	alificada			Q10,74
Total o	de Mano de obra cal	lificada y n	no clasificada		Q34,62
Presta	iciones laborales				Q23,19

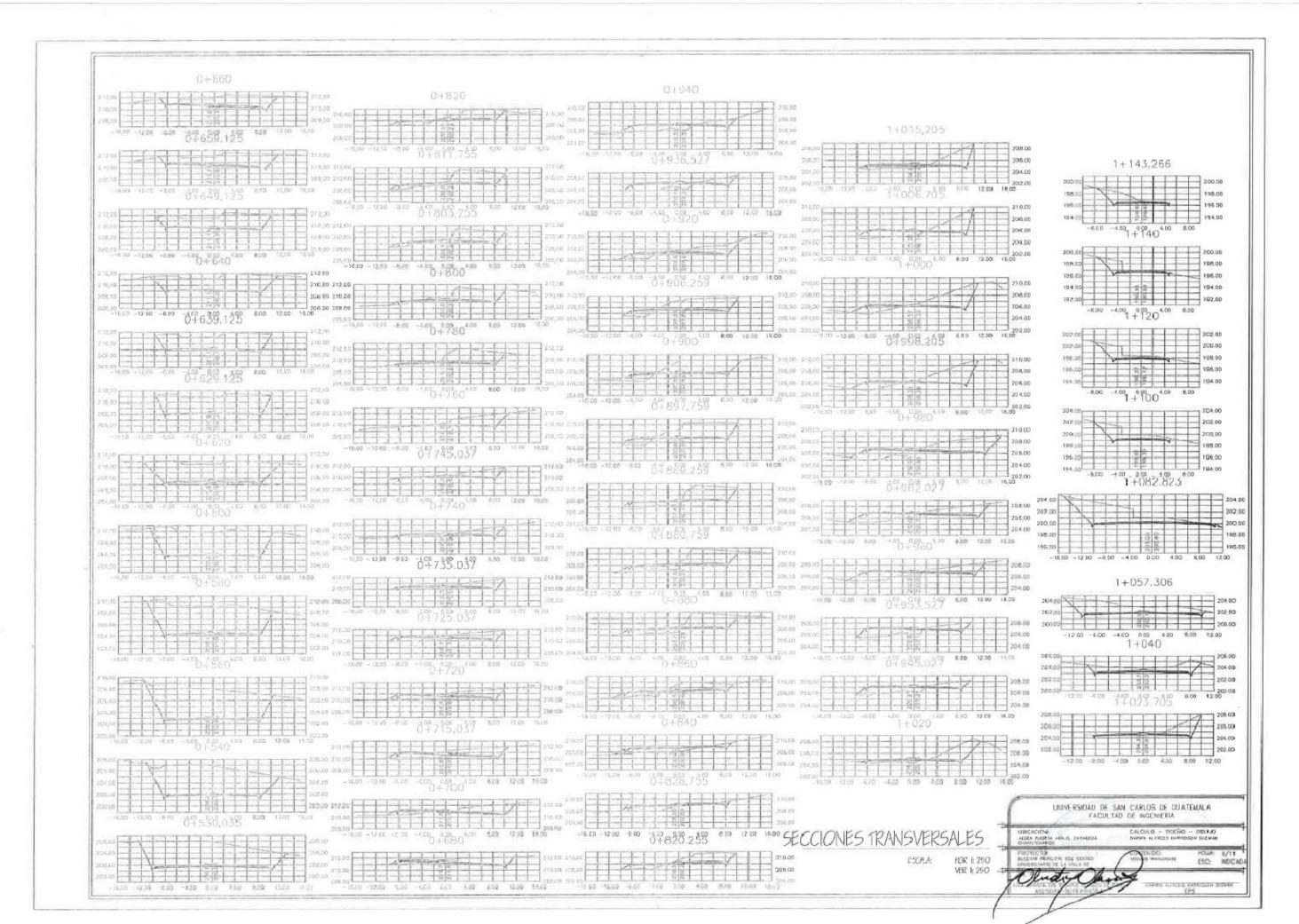

Total de Materiales	Q135,	54
Total maquinaria	Q4,;	27
Total mano de obra	Q57,	81
Total de herramienta	Q1,	73
Costo directo	Q199,	35
Indirectos 30%	Q59,8	81
TOTAL	Q259,	16

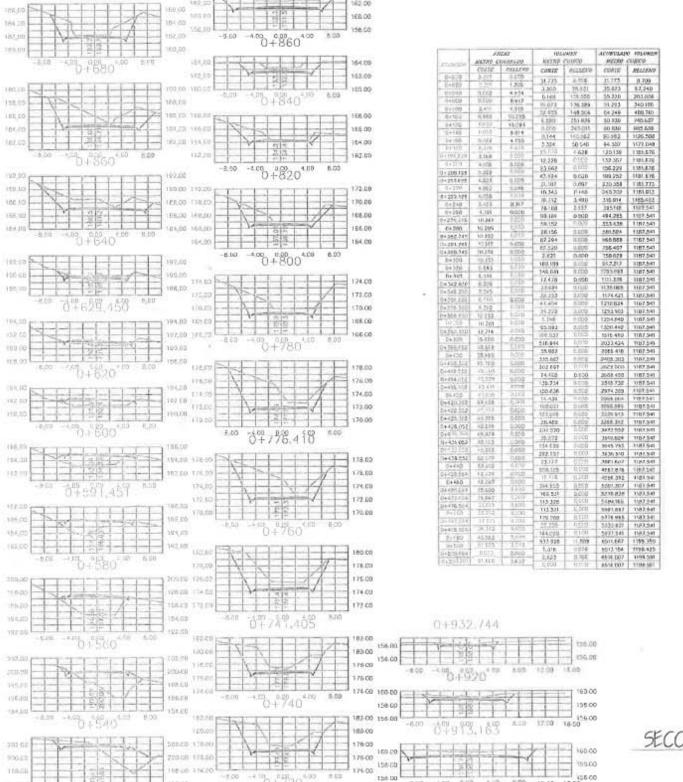

	Proyecto		Diseño del bulevar principal del centro u	universitario				
DENO	U ÓN DE TRADA IO		D170	CANTIDAD	UNIDAD			
RENG	RENGLÓN DE TRABAJO		Bordillos	1	ml			
MATERIALES								
NO.	CANTIDAD	UNIDAD DE MEDIDA	DESCRIPCIÓN DEL ARTÍCULO	COSTO POR UNIDAD	COSTO TOTAL			
1	0,988	sacos	Cemento	Q65,00	Q64,23			
2	0,063	m3	Arena	Q150,00	Q9,52			
3	0,095	m3	Piedrín	Q250,00	Q23,79			
Subto	tal				Q97,54			
Gubto	· · ·		MAQUINARIA		Q07,04			
1	0,1080	hora	concretera	Q35,00	Q3,78			
subto	l tal		<u> </u>		Q3,78			
-			MANO DE OBRA		ασ,. σ			
1	1,6200	m2	Preparación y colocación de concreto e = 10 cm	Q10,00	Q16,20			
					Q0,00			
subto	tal				Q16,20			
	T	ı	HERRAMIENTA					
1	Q23,49	%	herramienta 5% de mano de obra	5,00	Q1,17			
subto	tal				Q1,17			
	Mano de Obra Califi	cada			Q16,20			
	Mano de Obra No C	alificada			Q7,29			
Total	de Mano de obra ca	lificada y	no clasificada		Q23,49			
Presta	aciones laborales				Q15,74			


Total de Materiales	Q97,54
Total maquinaria	Q3,78
Total mano de obra	Q39,23
Total de herramienta	Q1,17
Costo directo	Q141,72
Indirectos 30%	Q42,52
TOTAL	Q184,24


	Proyecto		Diseño del bulevar principal del centro uni	versitario			
F	RENGLÓN DE		Banqueta C				
	TRABAJO		-a.iquota	1	m2		
			MATERIALES				
NO.	CANTIDAD	UNIDAD DE MEDID A	DESCRIPCIÓN DEL ARTÍCULO	COSTO POR UNIDAD	COSTO TOTAL		
1	0,683	sacos	cemento	Q65,00	Q44,41		
2	0,065	m3	arena	Q150,00	Q9,70		
3	0,117	m3	piedrín	Q250,00	Q29,28		
Subto	tal				Q83,39		
		T	MAQUINARIA	Γ			
1	0,0467	hora	Concretera	Q35,00	Q1,63		
subto	tal				Q1,63		
			MANO DE OBRA Preparación y colocación de concreto e = 7				
1	1,0000	m2	cm	Q10,00	Q10,00		
					Q0,00		
					Q0,00		
					Q0,00		
subto	tal				Q10,00		
			HERRAMIENTA				
1	Q14,50	%	herramienta 5% de mano de obra	5,00	Q0,73		
subto	tal				Q0,73		
	Mano de Obra Calif	icada			Q10,00		
	Mano de Obra No C	Calificada			Q4,50		
Total	de Mano de obra ca	lificada y	no clasificada		Q14,50		
Presta	ciones laborales				Q9,72		


Total de Materiales	Q83,39
Total maquinaria	Q1,63
Total mano de obra	Q24,22
Total de herramienta	Q0,73
	Q109,9
Costo directo	6
Indirectos 30%	Q32,99
	Q142,9
TOTA	L 5





TABLAS DE MOVIMIENTO DE TIERRA

187.60 187.60 187.60 188.60 17

6.00

20-60 200-60 200-00 200-00 198-00

0+720 ***

166 G0 176 G0 180 G0

200.23

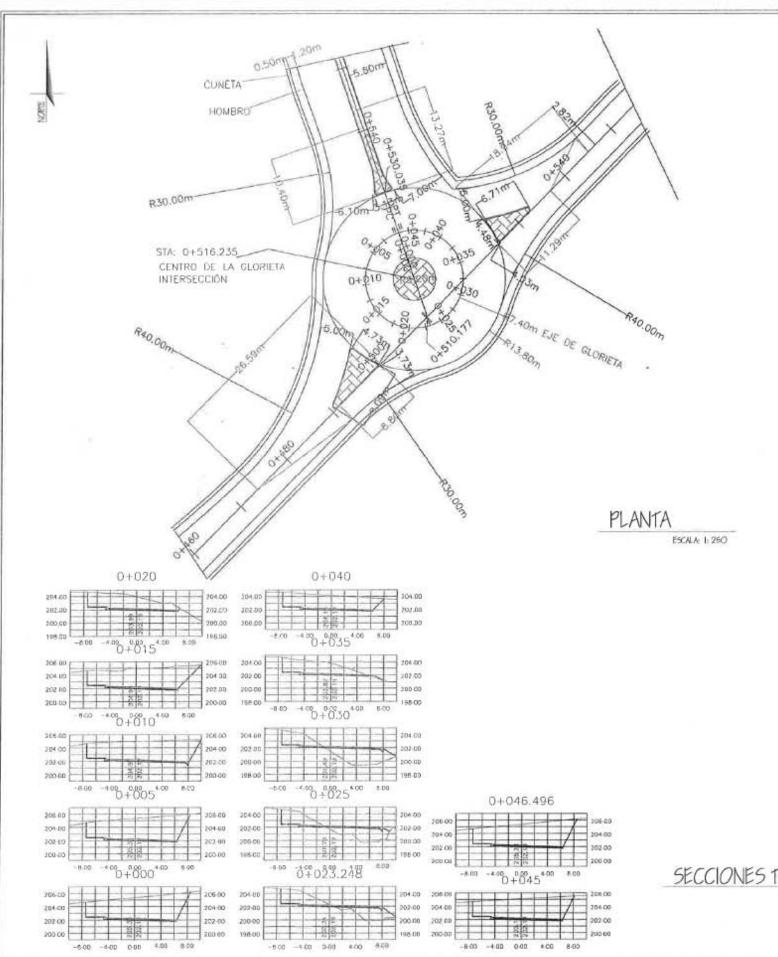
186 00 196 00 196 00 196 00 196 00 196 00 196 00 196 00 196 00

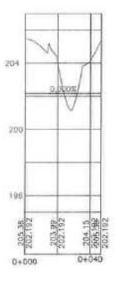
0+880

mon outs		NOAS DIADRAND	AUTOR	OUTEWAY.	NUMBER OF STREET	
ESTACIÓ#	CORRE	MELLENO	CONTR	MALLENO	CONTR	RELLENO
01325369	9.500	2.405	104,544	196.376	104.849	158.276
0454,0	2.737	16,917	24.454	184.192	103.343	530,528
0+360	0.542	31,312	8.024	423.128	165.257	253.635
0+590	\$5,5007	16.616	2.040	182,209	121 207	1115.860
0+505.450	0.385	11,634	4.032	103.043	175.736	1278.938
D+600	0.775	12.906	5555 5555	193,486	186.343	1474 514
D+620	0.213	3.687	210000	100000000000000000000000000000000000000	188.683	1523.365
0+629.420	0.208	3.327	2.329	49.051		1544.351
D+640	2,435	0.306	31.876	30 665	101.056	1111111111111
0+860	13.600	6,000	213.521	8.374	41.515	1000:420
04660	33.105	6,11064	345.882	3.7.17	971.400	1555.825
14.700	15.415	0,000	693,258	0.000	1470,659	1500.605
D+720	24.275	0,000	404 325	9.006	3874.963	1560.825
D+ 740	24.032	0.000	505.610	0.000	2,578,892	1500 825
E+243.400	25.617	(0.000)	36.351	0.000	2416/994	1508 625
D+ 750	21.003	19 (000)	3,Vi, p44	0.690	2940.097	1550.625
D+ 176 410	17 055	0000	362.506	5.000	3509.403	1550 625
D+7900	37.761	0.000	134.245	0.000	2543.649	1559.625
0+700	17.593	BBCD	340.005	0.000	4185.634	1555.825
D+820	16.633	0000	343 182	0.000	40,29,016	1209,673
D+ 640	10.403	0000	265 780	0.000	6192.78A	1200 823
D+1000	12.796	6,000	232,368	0.000	2030 104	1500,623
		0.000	340.464	0.000	3370.569	1550 629
G+EED	21.547		120.528	9.000	2:481.188	1200.615
D+855.563	25.564	0.000	0.000	0.000	3401.109	1500,620

en e	PEYSIA CULTURARE		METHOL CHINAD		NEWS EVACE	
the Opposition .	ESWOR	Missort	DONLE	SCHEWS	CAMER	8827530
2+913,163	19.642	0.400	10.031	0.000	19.031	0.000
9+920	8-104	0.000	64.724	0.000	100,755	8.005
5+930,3+4	A.139	1100	0.000	6.000	169.155	0.609

		233		DWW	TOSUMEN ACUMULADA		
STREET, ON	MAYRO C	WANTED	HEND CHARD		AUTHOR CREMOR		
	CORTE	JH00.00091	DUNCE	ACLUSION.	STREET	MILLEM	
GH 550 025	01 155	0.000	922,925	6,000	922.936	0.000	
0+340	88.587	D 000	1913.556	81000	2838.493	5000	
0+100	312,539	6,000	1055.637	b1108	4.7ab.U.0	8,000	
D4318	D7 965	0.000	1902 172	0.036	+5502 301	0.000	
U+810	102 4555	0.006	1533 284	B1000	9125 566	9.000	
D+£30	F1 014	0.000	357.630	6.000	13/3/198	6 900	
0.4439.128	56,000	0.000	535.776	EL 10130	5249.572	5,000	
6 +639 125	40 457	0.000	44.16.7	6.006	9294.139	8,000	
0+840	51,410	0.008	420 455	8 000	9714.639	8 000	
0+648129	44.03/	0.000	255 683	B.COU	1(2)83,372	5,000	
6+115.725	38.004	D 000	27.560	0.004	10010 682	6,000	
C+668	31.620	nince.	405.258	8.027	31514.545	8.027	
04.820	12/144	1.381	227.267	43.124	10741 529	51.20	
C4 /10	12.2%	3.013					
0+715.057	11.570	5.168	35.215	84.676	10909.184	115-677	
D+ 320	10.519	1.430		24.286			
04 125 031	10.018	4.079	51.654	21,985	71(118, 26E)	162 028	
0+735.037	2.042	2.504	93-219	27.599	11115 519	194.010	
0×240	6.425	1, 752	45.456	16.505	111.54.975	200 123	
0+745.051	3,545	15 850	40,340	6.804	10 200 320	211 729	
G+78D	15 640	0.256	193,494	9.200	11363,786	219 R90	
04 78D	25 000	0.029	325,878	2.465	2139E-463	233.405	
0-850	20.770	0.039	437.500	0.1952	12226-063	228 417	
(14.803.35d	20.556	1.105	87.270	2.181	12293.333	232 605	
04871,755	12,400	2.682	\$20.00	15,608	12465.522	248.215	
D+ 60D	11.242	3.498	138 937	25.4D#	1,7502,459	233345	
0+520,358	1.5.9.75	3.525	3.557	0.694	1,2600,045	274309	
D4 R28 TS4	3.000	4.897	86.750	\$5.577	1.2674.765	504 886	
0+84D	1,812	2 ten	29.549	481,189	1,2204.743	578 268	
O+ CSD	14/038	6.321	142,154	119,905	1,2049.027	498-002	
BARED	10.065	3.083	253 413	108.642	13200360	50X 914	
CT4 PRES. TEST	20308	5.032	76.224	4.937	13218 586	812 885	
0+860.009	20.657	0.685	176,779	76755	13363.366	100.734	
8+607.759	27.215	1685	202,642	44.432	1,3563,241	354.167	
04330	27.431	3 852	61.230	0.460	11857.272	722,847	
04108.200	23.262	3.665	1,58,764	23.532	13816 056	746.369	
0+125	15.711	7 655	231.415	16,593	11052-161	798 662	
0+135.527	2,227	1,577	129.319	MISAS	https://de	JR65-805	
B+140	5.652	9.639	48.415	36.297	16253.160	827,412	
	5.14	3.777	29.617	48.817	14240.397	976.219	
0+145.10		0.913	55.619	FR.157	14099,616	1094.374	
0+950 825	10.00	12.444	14,793	35.749	14355.406	1140 124	
	-	1 100 100 100 100 100 100	75.335	25.214	14,54,744	1165.24	
D-SWEGZY	15.241	12.432	334.618	215.109	147(3.422	1378.44	
C+107	23.779	H1 552	416,983	167.729	151,00.415	1546 177	
U+555 705	21.793	2.30	39.332	12.692	1,5669.283	1,534,669	
11-000	32.065	6.994	124,297	16.130	15264,084	3837,478	
1+618.706	15.225	10,475	130 254	67.525	15494.393	1504.654	
1+615,200	12 104	5.659	46366	18.609	15480-934	1703.272	
1+120	16,873	2.147	49,192	4.530	15529-056	1207.640	
10022300	11 262	0.504	2=5,023	2.098	35376 AM	1209.888	
1+010	15.555	5.009	< 72,184	0.000	16253.768	1.709.000	
14467.368	36.734	5,000	0.000	0.000	15253.788	1709.898	


process	AND COMMADE		HEZHO EDWICH		TOTOMON ACOMORADA METRO CUBICO	
	£387£	RIGLERIO	FORTE	RECEIVE	CSR78*	RELLENO
1+012:123	89,570	0.431	415.617	2479	246.837	2.476
1+100	16.208	0.009	246.657	0.000	200.025	2.436
24.520	11,212	11.009	235.488	- OLDE	710,564	2.410
1+142	E 320	5:048	200 431	0.748	0.00.741	2.728
1+153,514	9.510	1.008	29,515	0.534	975.551	2.783
111-07-11		10000	A 005	41.056	935.551	3.762


SECCIONES TRANSVERSALES

ESCALA

HOR # 250 VER 1 250

UNIVERSIDAD DE SAN CARLOS DE CUATEMALA FACULTAD DE INGENIERÍA HOJA: Z/11 ESC: NDCAD Questa Classe

	MCING C	UAZVOADO	PETAD COMED		METRO CUMICO	
REAL PLANS	120005	ASSLEND	CORFE	NEUZNO	CONTE	KENLEND
E+009	50.73F	\$1.00B	273.672	8.008	272.672	6.000
04-005	49.573	6.000	m24/502/600m		independent and inter-	min (6/7500mm)
54016	49.922	0.000	282,484	0.000	155.153	0.000
41+D15	46,009	6.000	278.462	-0.000	8.33.615	0.000
E+070	28.595	0.000	174.934	0.000	1006.249	0.000
D+923.246	12,735	6.247	38.456	14.356	1045.703	14.316
E+025	10.517	12.318	7.140	33.476	1054.542	47.612
B+030	10.369	12.613	16.267	125.057	1072.929	172.616
- POGROU-14		LINESCOOPS IN	41,332	29.616	1116.162	232.406
04036	21.224	0.232	510,939	0.587	1224.892	233.053
0+040	31:620	0.000	195.693	0.000	1420.506	233.053
D+045	45.809	0.000	77.737	0.000	1498.323	233053
0×1115 499	50.137	0.000	9.400	0.000	1498.323	233.053

PERFIL

ESCALA: HOR: I-1000 VER: I:100

ESPECIFICACIONES

EL EJE CENTRAL DE LA CLORIETA ES EL QUE DIVIDE LUS CARRILES CON UN RADIO DE 7,4 m.

LA GLORIETA SE CONSTRUIRÁ EN UN PLAND HORIZONTAL.

LA PENDIENTE TRANSVERSAL DE LA GLORIETA SERÁ DEL 3/8 DEL BORDE INTERIOR HASTA EL BORDE EXTERIOR,

DEBIDO AL ESPACIO LA GLORIETA SE CONSTRUIRA CON UN CARRIL INTERIOR DE 3.2 m. DE ANCHO CON RADIOS DE DISEÑO INTERIOR DE 4.2 m. Y EXTERIOR 7.4 m., PARA VEHICULO LIMANO Y UN CARRIL EXTERIOR PARA AUTOBUSES DE 5.4 m. DE ANCHO CON RADIOS INTERIOR DE 7.4 m. Y EXTERIOR DE 12.8 m.

EN LOS BORDES DE LA GLORIETA SE EMPLEARON ZOMAS MONTABLES DE 1 m. DE ANCHO QUEDANDO UNA ISLA CENTRAL DE 3-2 m. DE RADIO Y EL BORDE EXTERIOR DE LA GLORIETA DE 13-6 m. DE RADIO.

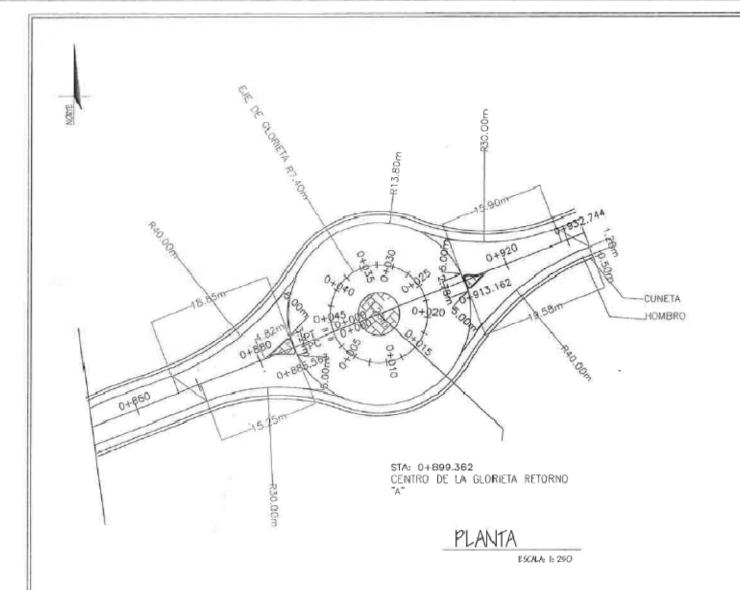
EN LAS ZONAS DONDE LA GLORIETA NO SE INTERCEPTA CON LOS CARRILES DE ENTRADA Y SALIDA DE LA GLORIETA SE EMPLEARON HOMBROS. SE 1.2 m. DE ANCHO, UNA PENDIENTE DEL 68. Y CUNETA EN EL EXTERIOR.

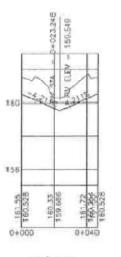
EN LOS BORDES DE LAS ZONAS DE TRANSICIÓN SE EMPLEARON CURVAS DE ENTRADA DE 30 m $_{\rm I}$ DE RADIO Y CURVAS DE SALIDA DE 40 m $_{\rm I}$ DE RADIO

SE CANALIZARA LAS ENTRAS Y SALIDAS DE LA GLORIETA MEDIANTE ISLAS. COMO SE INDICA.

EN LAS SECCIONES EL RIVO DE LADO IZQUIERDO ES EL CENTRO DE LA ISLA CENTRAL DE LA GLORIETA.

SECCIONES TRANSVERSALES


ESCALA: HOR: 1:250 VER: 1:250 UNIVERSIDAD DE SAN CARLOS DE GUATEMALA
FACULTAD DE INGENIERIA


UNICACIONI
DISTA TRANSA APARIL ZAMADIZA

CALCULO — DISERRO — DIBURO
DIAMA TRANSA APARIL ZAMADIZA

CANCOLO — DISERRO — DIBURO
DIAMA TRANSA APARIL ZAMADIZA

CONTONIO
DIAMA TRANSA DE CONTRO
DI

	MREAR WEEND CHARADO		METERO CURROS		HILDWRY ACTIVIDAD HISTRO CURROS	
ZSTACYÓN	CHREE	DELLEWO	COSTS	ACUADIO	CONTE	ARKLENO
04000	17.777	0.000		0.000	*** ***	
04005	31.416	0.000	193.524	0.000	133.524	0.000
D+0 ⁵ 0	24-713	0.000		0.000	273.885	0,000
0+015	19.880	0.000	141/502	0.000	415:167	0-000
04079	15239	0.000	56 580	0.000	503.747	0.000
Santa 248	13.415	0.000	38 955	6.000	542 702	0.000
	13100	10000	20.204	0.000	552.406	8.000
04025		0.000	77-494	0.000	840,399	0.000
04030	17895	0.000	116.389	6.000	256.767	8-886
01606	25'787	0.500	137612	0.000	A67.411	0.000
0+043	39.230	0.000	125.349	0.000	1022-755	0.000
04043	16635	0.000	33.848	0.000	1058-603	0.000
0+049:499	17777	0.000	0.000	0.000	1055-515	0.000

ESCALA: HOR: 1:1000 VER: 1: 100

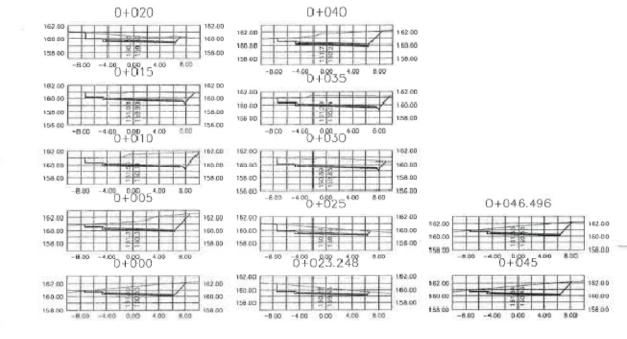
ESPECIFICACIONES

EL EJE CENTRAL DE LA GLORIETA ES EL QUE DIVIDE LOS CARRILES CON UN RADIO DE 7.4 m-

LA GLORIETA SE CONSTRUIRÁ EN UN PLANO INCLINADO CON 4.211% DE PENDIENTE:

LA PENDIENTE TRANSVERSAL DE LA GLORIETA SERÁ DEL 3% DEL BORDE INTERIOR HASTA ÉL BORDE

DEBIDO AL ESPACIO LA GLORIETA SE CONSTRUIRĂ CON UN GARRIL INTERIOR DE 3.2 m. DE ANCHO CON RADIOS DE DISEÑO INTERIOR DE 4.2 m. Y EXTERIOR 7.4 m., PARA VEHÍCULO LIVIANO Y UN CARRIL EXTERIOR PARA AUTOBUSES DE 5.4 m. DE ANCHO CON RADIOS INTERIOR DE 7.4 m. Y EXTERIOR DE 1.2 a. DE 1.2 a. C. EXTERIOR DE 12.8 m.

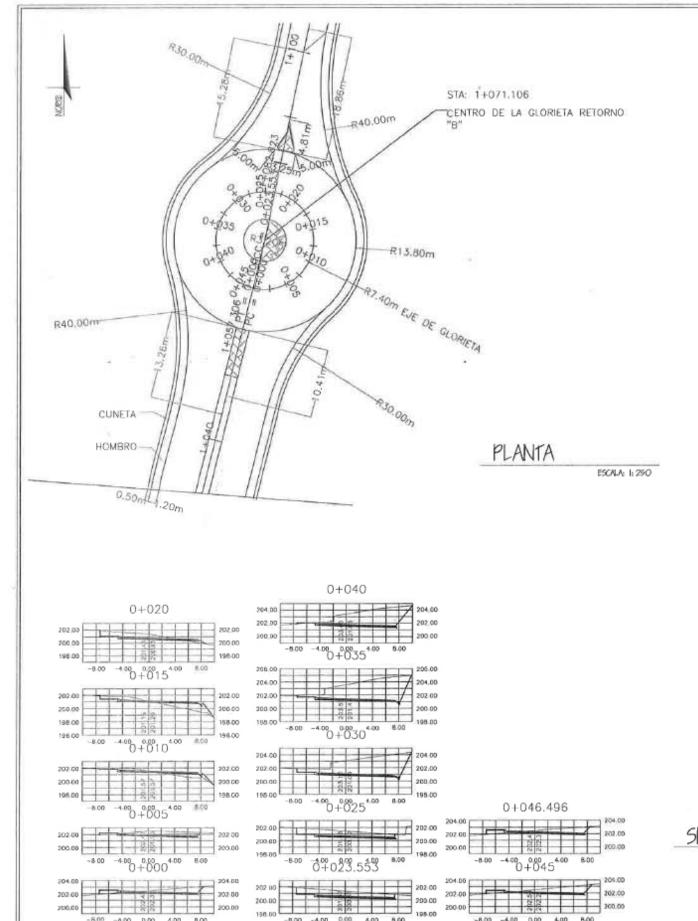

EN LOS BORDES DE LA GLORIETA SE EMPLEARON ZONAS MONTABLES DE 1 m. DE ANCHO QUEDANDO-UNA ISLA CENTRAL DE 3.2 m. DE RADIO Y EL BORDE EXTERIOR: DE LA GLORIETA DE 13.8 m. DE RADIO.

EN LAS ZONAS DONDE LA GLORIETA NO SE INTERCEPTA CON LOS CARRILES DE ENTRADA Y SALIDA DE LA GLORIETA SE EMPLEARON HOMBROS DE 1.2 m. DE ANCHO, UNA PENDIENTE DEL 6% Y CUNETA EN EL EXTERIOR.

EN LOS BORDES DE LAS ZONAS DE TRANSICIÓN SE EMPLEARON CURVAS DE ENTRADA DE 3D m. DE RADIO Y CURVAS DE SALIDA DE 40 m. DE RADIO.

SE CANALIZARA LAS ENTRAS Y SALJOAS DE LA GLORIETA MEDIANTE ISLAS. COMO SÉ INDICA.

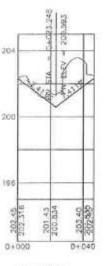
EN LAS SECCIONES EL RIVO DE LADO IZQUIERDO ES EL CENTRO DE LA ISLA CENTRAL DE LA



SECCIONES TRANSVERSALES

ESCALA: HOR: 1:250

VER 1:250


UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA CALCULIO - DISERO - DIBUJO DARMI ALFREDO MARROQUE GAZMAN MIREA PRESTA ABAJO, ZARASOZA HOJA: g/11 Choty Obs

-8.00 -4.00 0.00 4.00 8.00

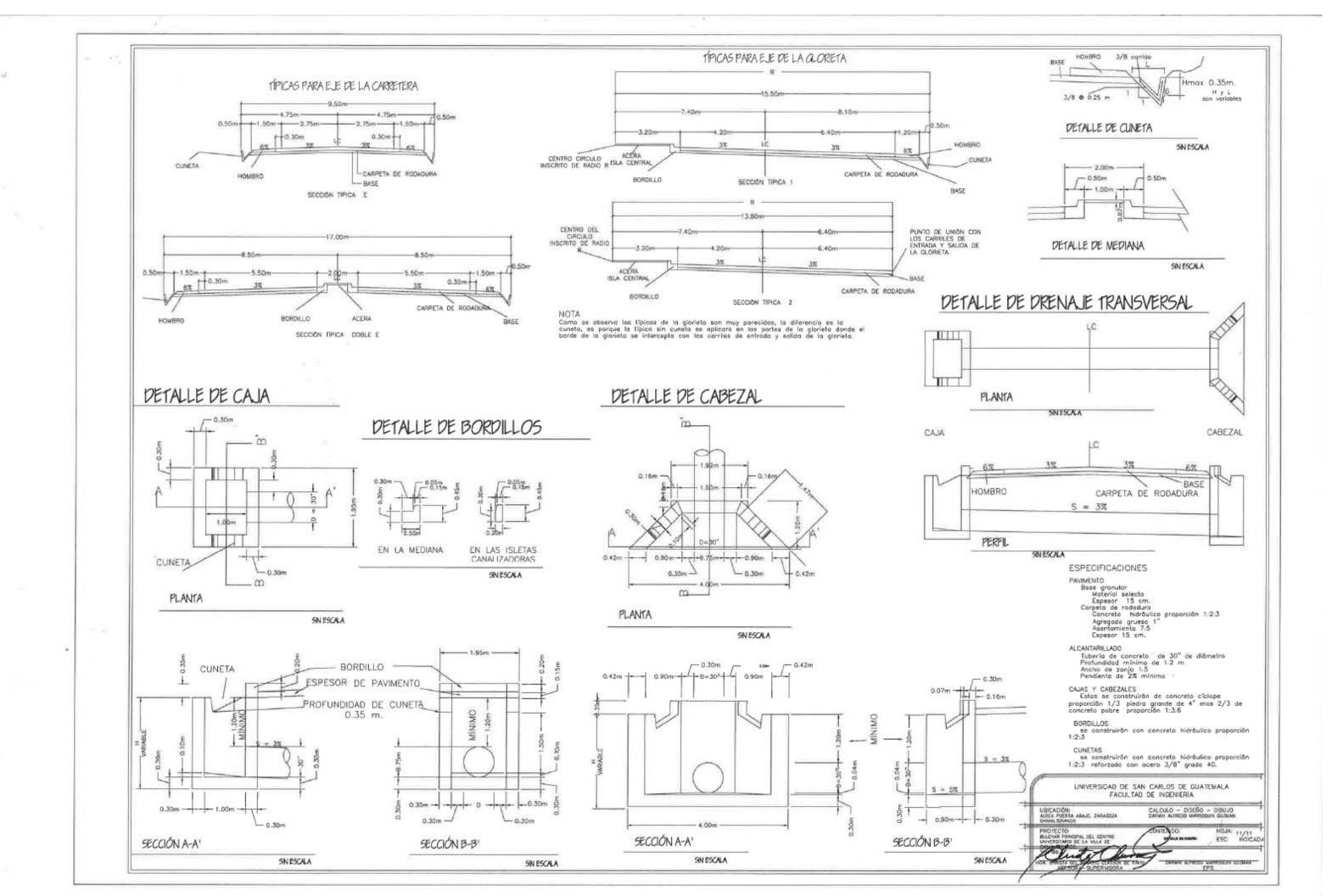
-8.00 -4.00 0.00 4.00

-8.00 -4.00 DOO 4.00 B.00

estacido	ARIDAS METINO CUALINADO		NOTONEO CONCO		HOLOWEN ACUMULADA AUCTRO ÉLUNCO	
	DOUT!	CONTRACTOR OF THE PARTY.	CORTE	RELLENO	CORTE	RELLEND
04400	2.349	1.495	M 729	0.844	98.726	0.846
0+606	8.738	0.583		104	#100 (Port.)	31477
DARD	3,509	10.471	27.567	29 989	84 098	30.733
0+0.5	# D83	13,165	10.232	162.798	94,533	223,329
manufacture and the second	8 925	Employee Code and	19.544	70913	194,177	264.441
6+620	man To State of the	0.468	54.258	Dete	148.412	285.279
O+D25.500	14.283	0.000	19.060	0.000	197 455	285,279
0+925	13 536	0.000	141.227	0.000	305,719	285 279
0+630	25,789	0.000	to the proper little and the little		100000000000000000000000000000000000000	THE PROPERTY AND
D+C15	37 948	0.000	265.176	0.000	575.893	245,279
D+G4B	39.128	0.537	244,224	0.323	650,117	265,402
04945	and the later of		137.241	3,334	355,356	285 736
THE PERSON NAMED IN	E 316	1.122	19,373	0.334	974,732	268,070
(3+046, 456)	7.249	1,495	0.000	0.000	974,732	266 870

PERFIL

ESCALA HOR: 1:1000 VER: 1:100


ESPECIFICACIONES

- EL EJE CENTRAL DE LA GLORIETA ES EL QUE DIVIDE LOS CARRILES CON UN RADIO DE 7.4 m.
- LA GLORIETA SE CONSTRUIRÁ EN UN PLANO INCLINADO CON UNA PENDIENTE DE 7,411 %
- LA PENDIENTE TRANSVERSAL DE LA GLORIETA SERÁ DEL 3% DEL BORDE INTERIOR HASTA EL BORDE
- DEBIDO AL ESPACIO LA GLORIETA SE CONSTRUIRÁ CON UN CARRIL INTERIOR DE 3,2 m. DE ANCHO CON RADIOS DE DISEÑO INTERIOR DE 4,2 m. Y EXTERIOR 7,4 m., PARA VEHÍCULO LIMANO Y UN CARRIL EXTERIOR PARA AUTOBUSES DE 5,4 m., DE ANCHO CON RADIOS INTERIOR DE 7,4 m., Y EXTERIOR DE 12,8 m.
- EN LOS BORDES DE LA GLORIETA SE EMPLEARON ZONAS MONTABLES DE 1 m, DE ANCHO QUEDANDO UNA ISLA CENTRAL DE 3.2 m, DE RADIO Y EL BORDE EXTERIOR DE LA GLORIETA DE 13,8 m, DE RADIO
- EN LAS ZONAS DONDE LA GLORIETA NO SE INTERCEPTA CDN LOS CARRILES DE ENTRADA Y SALIDA DE LA GLORIETA SE EMPLEARON HOMBROS DE 1.2 m. DE ANCHO, UNA PENDIENTE DEL, 6% Y CUNETA EN EL EXTERIOR.
- EN LOS BORDES DE LAS ZONAS DE TRANSICIÓN SE EMPLEARON CURVAS DE ENTRADA DE 30 m. DE RADIO Y CURVAS DE SALIDA DE 40 m. DE RADIO,
- SE CAMALIZARA LAS ENTRAS Y SALIDAS DE LA GLORIETA MEDIANTE ISLAS. COMO SE INDICA.
- EN LAS SECCIONES EL RWO DE LADO IZQUIERDO ES EL CENTRO DE LA ISLA CENTRAL DE LA GLORIETA.

SECCIONES TRANSVERSALES

ESCALA: HOR: 1:250 VER: 1:250

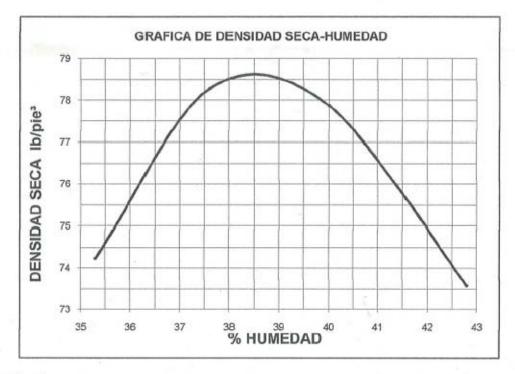
UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA CALCULO - DISERO - DIBUJO DARMI ALFREDO MARROQUIA GIZWAM ALDEA FUERTA ABAJO, ZARAGOZA HOJA: 10/11 ESC: INDICAE

INFORME No. 049 S.S.

O.T. No.: 27,602

Interesado: Darwin Alfredo Marroquin Guzman

Asunto: ENSAYO DE COMPACTACIÓN.


Proctor Estándar: () Norma:

Proctor Modificado: (X) Norma: A.A.S.T.H.0. T-180

Proyecto: EPS-Diseño del Bulevar Principal del Centro Universitario.

Ubicación: La Villa del Municipio de Chimaltenango, Departamento de Chimaltenango.

Fecha: 07 de marzo de 2011

Muestra No.: 1

Descripción del suelo:

Humedad óptima Hop.:

Limo arenoso color café.

Densidad seca máxima

1,261 Kg/m^3

38.5 %

Observaciones: Muestra proporcionada por el interesado.

78.7 lb/pie^3

Atentamente,

Vo. Bo.:

Inga. Telma Maricela Cano Morales
DIRECTORA CII/USAC

Ing. Omar Enrique Medrano Mendez

Jefe Sección Mecánica de Suelos

SECCION MECANICA DE SUELOS

DIRECCION

INFORME No .:

050 S.S.

O.T. No.:

Interesado:

27,602

Asunto:

Darwin Alfredo Marroquin Guzman

Ensayo de Razón Soporte California (C.B.R.)

Norma: A.A.S.H.T.O.T-193

Proyecto:

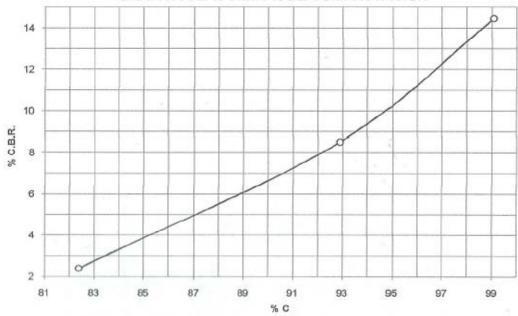
EPS-Diseño del Bulevar Principal del Centro Universitario.

Ubicación:

La Villa del Municipio de Chimaltenango, Departamento de Chimaltenango.

Descripción del suelo:

Limo arenoso color café.


Muestra No.: 1

Fecha:

07 de marzo de 2011

PROBETA	GOLPES	A LA COMPAC	CTACION	С	EXPANSION	C.B.R.
No.	No.	H (%)	γ d b/pie^3)	(%)	(%)	(%)
1	10	38.70	64.8	82.4	1.30	2.4
2	30	38.70	73.1	92.9	1.74	8.5
3	65	38.70	78.0	99.1	1.52	14.5

GRAFICA DE % C.B.R-% DE COMPACTACION

Atentamente,

DIRECCION

Vo. Bo .:

Inga. Telma Marice a Cano Morales DIRECTORA CII/USAC

Jefe Sección Mecánica de Suelos

SECCION MECANICA DE

SHELOS

INFORME No.

051 S.S.

O.T. No.

27,602

Darwin Alfredo Marroquin Guzman

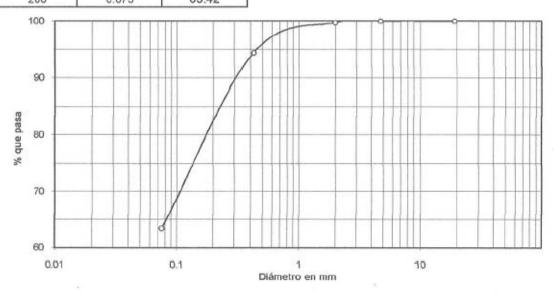
Tipo de Ensayo: Análisis Granulométrico, con tamices y con lavado previo.

Norma: A.A.S.H.T.O. T-27, T-11

Proyecto:

EPS-Diseño del Bulevar Principal del Centro Universitario.

Ubicación:


La Villa del Municipio de Chimaltenango, Departamento de Chimaltenango.

Fecha:

07 de marzo de 2011

Análisis con T	amices:	
Tamiz	Abertura (mm)	% que pasa
1 1/2"	38.10	100.00
3/4"	19	100.00
4	4.75	99.98
10	2	99.72
40	0.425	94.46
200	0.075	63.42

% de Grava: 0.02 % de Arena: 36.56 % de finos: 63.42

Descripción del suelo:

Limo arenoso color café.

DIRECCION

Clasificación: S.C.U.:

ML.

P.R.A.:

A-5

Observaciones: Muestra tomada por el interesado.

Atentamente,

Vo. Bo.

Inga. Telma Maricela Cano Morales

DIRECTORA CII/USAC

Ing. Omar Enrique Medrano Ménd Jefe Sección Mecánica de Suelos

SECCION MECANICA DE

CANICA DE

INFORME No. 052 S. S.

O.T.: 27,602

Interesado: Darwin Alfredo Marroquin Guzman

Proyecto: EPS-Diseño del Bulevar Principal del Centro Universitario.

Asunto: ENSAYO DE LIMITES DE ATTERBERG

Norma: AASHTO T-89 Y T-90 Ubicación: La Villa del Municipio de Chimaltenango, Departamento de Chimaltenango.

FECHA: 07 de marzo de 2011

RESULTADOS:

ENSAYO No.	MUESTRA No.	L.L. (%)	I.P. (%)	CLASIFICACION *	DESCRIPCION DEL SUELO
1	1	45.8	7.5	ML	Limo arenoso color café.

(*) CLASIFICACION SEGÚN CARTA DE PLASTICIDAD

Observaciones: Muestra tomada por el interesado.

Atentamente,

Vo. Bo.

Inga. Telma Maricela Cano Morales DIRECTOR CII/USAC

Ing. Omar Enrique Medrano Méndez Jefe Sección Mecánica de Suelos

CANICA DE

INFORME No.: 053 S. S.

O.T.: 27,602

INTERESADO:

Darwin Alfredo Marroquin Guzman

PROYECTO:

EPS-Diseño del Bulevar Principal del Centro Universitario.

ASUNTO: ENSAYO DE PESO UNITARIO SUELTO (P.U.S.)

A.A.S.T.H.O T-19

UBICACIÓN:

La Villa del Municipio de Chimaltenango, Departamento de

Chimaltenango.

DESCRIPCIÓN DEL SUELO:

Limo arenoso color café

FECHA:

07 de marzo de 2011

RESULTADO DEL ENSAYO:

P.U.S.=

918 kg/m³

OBSERVACIONES: Muestra tomada por el interesado

Atentamente,

DIRECCION

Vo. Bo.

Inga, Telma Maridela Cano Morales DIRECTOR A CII/USAC

nrique Medrano Mendez Jefe Sección Mecánica de Suelos

FACULTAD DE INGENIERÍA -- USAC-Edificio T-5, Ciudad Universitaria zona 12 Teléfono directo: 2418-9115, Planta: 2418-8000 Exts. 86209 y 86221 Fax: 2418-9121 Página web: http://cii.usac.edu.gt

INFORME No.: 054 S. S.

O.T.: 27,602

INTERESADO:

Darwin Alfredo Marroquin Guzman

PROYECTO:

EPS-Diseño del Bulevar Principal del Centro Universitario.

ASUNTO: ENSAYO DE EQUIVALENTE DE ARENA

A.A.S.T.H.O T-176

UBICACIÓN:

La Villa del Municipio de Chimaltenango, Departamento de

Chimaltenango.

DESCRIPCIÓN DEL SUELO:

Limo arenoso color café

FECHA:

07 de marzo de 2011

RESULTADO DEL ENSAYO:

E.A=	30.5
------	------

OBSERVACIONES: Muestra tomada por el interesado

Atentamente,

DIRECCION

Vo. Bo.

Inga. Telma Maricela Cano Morales DIRECTORA CII/USAC

Jefe Sección Mecánica de Suelos

CARACTERÍSTICAS GEOMÉTRICAS DE CARRETERAS SEGÚN LA DIRECCIÓN GENERAL DE CAMINOS, SOBRE-ANCHOS Y PERALTES RECOMENDADOS.

	120 KPH	1.20	×	3°21	9°24																											TES								
	120	Db=56	Ls	67	94																					PT				E L	3	NDIEN		DAS		SOO				
		Dp	%e	5.5	8.9																					PC Ó		OMO		ALME	RROL	REPO		NDIC		ASEN				
		1:245	A	3,08,	7°54'						П									ш	السا	1				SER EL		SAR CO		CLAON	DESA	SCOR	ADAS.	SALTE		ORRID			8	,
-			_	_	79 7	+	-	-	\forall	H	Н	-		-	_	H	-	-		SD		1	-			NDO		IDA US		OPOR	ITE DE	ONLA	NDIC/	IL PEF		REC			5 9 15	100
١	i	DD=53	e% Ls		0.6	7	1	+	1			+	H	\dashv	-		-	-		3		ŀ	4			DEBIE		SOMIL		SE PR	NDIE	SES	YYES	LO DE		ACIAS			1.145.9156	
Ī			_		-	12°27'	1		1		1	1	-			7			1	5	S	ŀ	1			ADAS.		SE RE		ACER	LAPE	NDRO (ENDIE	ARROL		SCIST				1
100	2	-					-	-	-	-	1	1	1	_	4	4		_	(5	MO	-			SHO.	AL US/		ABEO (EBE H	OR DE	E CU	LASPE	E DES/		SALA			2	
	Dh-6	200	e% Ls	3.8 56	7.7 64	9.9 83	+	+	+	+	+	+	+	+	+	+	+	-	0	20	Ž	F	-		Z Y	ESPIR		EL BON		ST)	MINAD	N ES	S DE	TES D		ENTE				
	1.215 Dh-60 4.220	0 4	A		5.06	_	15.24	1	1	1	1	1	1	1	1	+	1	1	PERAL TE RECOMENDADO MINIMAS LOS CONTRACTOR		I KANSICION Y DELTAS MINIMOS	-	-		NO POR	DE LA		NTE DE		L (TS Ć	DENON	ECENE	MADC	NDIEN.		SPOND				
8					1 5		-	+	+	1	+	4	+	1	1	-	1	-	8.4.5	, IAI		L	-		NDAD	SITUD		ENDIE		SPIRA	X OOI	APAR	DENON	AS PE		ORRES				
	Dh=46	300	6 %	- 0	6.2.51	0.9 69	10.01	+	+	+	+	+	+	+	+	+	+	1	And	2	>	-	-		ECOM	A LONG		ELAP		JE LA E	SFALT	SOUE	Y. E.	BOON		LOSC				
	1.200		Y 00	000	7057		170451	6	T		1			T	1				CIND	2 .	000			3	4 2	N.		OR O		INAL	CHO	AR L	20mts	DASSI		L SON				
Š	2		_	- 1	- 1	3 7	3 2		+	+	+	+	+	+	+	+	+	4	S. C.		SS	L		0013		LMEN	KAL	ONEN		100	OXAN	SOA G	OUE	CULA		SPIRA				
	Db=43	00/ 10	2 5 45	2 0	7 2 52	3. 4	0	0.0	†	1	†	†	+	+	†	+	†	1	H		2	r		7 10 1	N CLON	SON DO	101	Š		KINCE	OMBE	CME	AL 10	N CAL	9) DE E	ENO	DRA.		
	1:185	A	10571	205.41	6.00	9.48	30.	10042	23.07	V	1	1	T	1	1	T	1	1	L	1		r	The second	, CHO	0000	5	5 6	SALC SALC	0.0	N EL P	E DE	DAPE	D AST	D AAC	K AAS	SITU	EL DIS	OR H		
70	1	1		_	_			10			1	ļ	_	1	1		-	-	VC			L	IN JOSEPH	OUA.	IDA DE	2 4 7	7 17	SALIC	S S S S S S S S S S S S S S S S S S S	NENT	DOD 0	ANCH	LAGIC	AC DO	DI ST	OF LON	CADD	ROSF		
	Pp=7	2 1 %	1 0 30	3 8 30	5.6 40	744	87	9	100	1	+	1	+	+	$^{+}$	+	+	1	d			H	-	2	Par	2	2 6	2 6	3	2 2	MAA	WII W	2 0	DA C	LA CA	SES	FOC	OME		
_					-	1	- 00	0	:15	2			1	-	- 1	1	1					ı	ı	A.	9	1	1 3	5 5	- 4	ő å	5 4	. 6	3 6	5 6	5	5	₹.	_		
	1.170	A	1042	3024		_		4°24' 9	8°54' 10	3012	7.00.	0.30,	3		t	T	1	T	T	T	T	-		E FUE CA	F SF RED	TO MED	NAC CAN	SALDIENTE	I BONDE	NOIA DA	TE SINE	FORFS	II IDES D	DOCCOURA	S TALLO	US VALOR	ALAV	D EN KIL		
09	37 1:170 Db=40	L	-	-	5.06	7°00'	10°30'	14°24'	54 18°54'10 06"			61 30°30'												ERALTE FUE CA	ERALTE SE RED	PLINTO MED	S CHBIAS CON	I TE SENINENTE	SO DEL BONDE	DISTANCIA DA	PERA TE SINE	ROMBEO DE 3	ONGITHER	RA Y RECOMEN	Aller I RECOMEN	MINIMOS VALOR	ONDOS A LA VE	CIADAD EN KIL		
09	Db=37 1:170	e% Ls A	-	34	34 5°06'	35 7°00'	42 10°30'	48	54	28	8	91	;											- EL PERALTE FUE CA	- EL PERALTE SE REP.	EL PUNTO MEDIO DE DICHA GODIA	-FN I AS CHRIVAS CON	PERALTE SENDICITE DE SONDES	FI PASO DEI BOMBE		DEL PERALTE: SIM EMPARADO SE DE COMPENDA INDES DE COMPENDA SE PETICO X DENOMINADOR DE LA PENDIENTE DE DESARROLLO	AUN BOMBED DE 394, IN AMOUNT ASSETT THE AUND OF THE STEECH EN ESTECUADED OF THE STEECH EN THE STEECH THE STEEC	-LAS LONGITI INES DE 230, UN MINORIO ASPAL LICO DE 7 20mbs. Y EL DENOMINADOR DE LAS PENDIENTES INDICADAS.	ARRIBA Y RECOMENDADAS BOD ASSESS	TO SAMPLE OF VALOR	SECTIMENT ALALOR	SECONDOS A LA VELOCIDAD DEL DISENO	-VELOCIADAD EN KIL		
09	Db=37	e% Ls	1.4 34	2.8 34	4.1 34 5°06'	5.5 35 7°00'	6.8 42 10°30'	7.9 48	8.8 54	9 4 58	9.8	10.0 61		.48,	.45.	0.2	,000							1. EL PERALTE FUE CA ICHI ADO SEGÚN EL METODO MA DECIDIO.	2. EL PERALTE SE RED	EL PIINTO MEDIO DE INCLA ESPIDA.	3-FNIAS CLIBIAS CON	DEBATTE SERVINGE OF THE TRANSPORT OF THE SERVINGE OF THE SERVINGE OF RECOMINDA USAR COMO	4-FI PASO DEI BONDE	A LA DISTANCIA DA	DEL PERALTE SINE	A UN BOMBEO DE 3	S-LAS LONGITI IDEGIN	TARRIAR A PERMANANANE OF PRANTE FOR MAN AND A SECTION LAS PENDIENTES DE DESARROLLO DEL PERALTE INDICADAS	NEWO STATE OF THE PROPERTY OF	SCHOOL MINIMORE VALORES DE LONGITUD DE ESPIRAL SON LOS CORRESPONDIENTES A LAS DISTACIAS RECORRIDAS EN DOS	SEGUNDOS A LA VE	/VELUCIADAD EN KILOMETROS POR HORA.	T	T
50 60	1:155 Db=37	A e% Ls	1°24" 1.4 34	2°48' 2.8 34	4°12' 4.1 34 5°06'	5°36' 5.5 35 7°00'	7°00' 6.8 42 10°30'	7.9 48	12°57' 8.8 54	16°24' 9 4 58	9.8	10.0 61		53 31°48'	55 35 45	55 39 72	56 42°00'							1. EL PERALTE FUE CA	2. EL PERALTE SE BED	EL PUNTO MED	3-FNIAS CHBIAS COM	PERALTE DENOMINE	4-FI PASO DEI BONDE	A LA DISTANCIA DE	DEL PERALTE: SIN F	A UN BOMBEO DE 3	S-LAS LONGITI IDES IN	ARRIBAYRECOMEN	NEWOCKHING OF THE PROPERTY OF	SECTION MINIMOS VALOR	SECONDOS ALA VE	7VELOCIADAD EN KIL		I
	33 1:155 Db=37	e% Ls	1°24" 1.4 34	2.8 34	4°12' 4.1 34 5°06'	28 5°36' 5.5 35 7°00'	6.8 42 10°30'	32 9°36' 7.9 48	37 12°57' 8.8 54	41 16°24' 9 4 58	45 20°15' 9.8 60	49 24°30' 10.0 61	51 28°03'			55	10 56 42°00'							1 EL PERALTE FUE CA	2 EL PERALTE SE RED	EL PUNTO MED	3-FNI AS CIDIAS CON	PERALTE SENDENTE	4 FI PASO DEI BONDE	ALADISTANCIA DE	DEL PERALTE: SIN F	A UN BOMBEO DE 3	5-LAS IONGITI IDES II	ARRIBA V RECOMEN	S TO S WINDOWS	SCOUNDOS VALOR	SECUNDOSALAV	/VELOCIADAD EN KIL		
	Db=33 1:155 Db=37	e% Ls A e% Ls	BN 28 1°24" 1.4 34	1.9 28 2°48' 2.8 34	2.9 28 4°12' 4.1 34 5°06'	3.8 28 5°36' 5.5 35 7°00'	4.8 28 7°00' 6.8 42 10°30'	5.8 32 9°36′ 7.9 48	6.6 37 12°57' 8.8 54	7.4 41 16°24' 94 58	8.1 45 20°15' 9.8 60	8.7 49 24°30' 10.0 61	9.1 51 28°03'	9.5	9.8	9.9 58	10 55		15,	18,	36,	.00.	27.				3-FNI AS CIBUAS CON	PERAL TE SENDICIPATE	4-FI PASO DEI BONDE	ALADISTANDIA DE	DELPERALTE SINE	A UN BOMBEO DE 3	S-LAS LONGITIDES I	ARRIBA V RECOMEN	CHANGO CHANGE OF THE COMMENT OF THE	O-LOS MINIMOS VALOR	SECONDOS ALA VE	7VELOCIADAD EN KIL		
50	1:140 Db=33 1:155 Db=37	A e% Ls A e% Ls	1.09 BN 28 1°24" 1.4 34	2°18' 1.9 28 2°48' 2.8 34	3°27' 2.9 28 4°12' 4.1 34 5°06'	4°36' 3.8 28 5°36' 5.5 35 7°00'	5°45' 4.8 28 7°00' 6.8 42 10°30'	6*54' 5.8 32 9*36' 7.9 48	8°24' 6.6 37 12°57' 8.8 54	10°00' 7.4 41 16°24' 94 58	12°36' 8.1 45 20°15' 9.8 60	15°30' 8.7 49 24°30' 10.0 61	18°09' 9.1 51 28°03'	21°36' 9.5	24°42' 9.8	28°00' 9.9 55	31°30' 10 56	35°12'		42°18'		49.00,		55°00'	57°30'	60°00′	NATION OF THE PARTY OF THE PART	POS CANADA ST. ACAD	4-FI PASO DEI BONDE	A LA DISTANCIA DE	DEL PERALTE: SIN F	A UN BOMBEO DE 3	S-LAS LONGITI DECU	ARRIBAYRECOMEN	TO THE PROPERTY OF THE PROPERT	SECTION MINIMOS VALOR	SECONDOS A LA VE	7VELOCIADAD EN KIL		
40 50	=30 1:140 Db=33 1:155 Db=37	Ls A e% Ls A e% Ls	23 1.09 BN 28 1°24" 1,4 34	23 2°18' 1.9 28 2°48' 2.8 34	23 3°27' 2.9 28 4°12' 4.1 34 5°06'	23 4°36' 3.8 28 5°36' 5.5 35 7°00'	23 5°45' 4.8 28 7°00' 6.8 42 10°30'	23 6°54' 5.8 32 9°36' 7.9 48	24 8°24' 6.6 37 12°57' 8.8 54	25 10°00' 7.4 41 16°24' 9.4 58	28 12°36' 8.1 45 20°15' 9.8 60	31 15°30' 8.7 49 24°30' 10.0 61	33 18°09' 9.1 51 28°03'	36 21°36' 9.5	38 24°42' 9.8	9.9 58	42 31°30' 10 56	44 35°12'	_	47	48	49 49.00,	49	50 55°00'	50 57°30'	50 60°00′	3-FNIAS CHOVAS CON	NO DE PARENTAL DE LA CONTRACTA	4-FI PASO DEI BONDE	ALADISTANDIADE	DEL PERA TE SIN E	AUNBOMBEODE	S-LAS LONGITIONS	ARRIBA V RECOME	CONTROL SOLD	SCOLINIOS VALOR	SECONDOSALAVE	VVELOCIADAD EN KIL		
40 50	Db=30 1:140 Db=33 1:155 Db=37	LS A e% LS A e% LS	23 1.09 BN 28 1°24" 1,4 34	23 2°18' 1.9 28 2°48' 2.8 34	23 3°27' 2.9 28 4°12' 4.1 34 5°06'	23 4°36' 3.8 28 5°36' 5.5 35 7°00'	23 5°45' 4.8 28 7°00' 6.8 42 10°30'	6*54' 5.8 32 9*36' 7.9 48	8°24' 6.6 37 12°57' 8.8 54	10°00' 7.4 41 16°24' 94 58	28 12°36' 8.1 45 20°15' 9.8 60	31 15°30' 8.7 49 24°30' 10.0 61	5.6 33 18°09' 9.1 51 28°03'	7.1 36 21°36' 9.5	7.6 38 24°42' 9.8	8 40 28°00' 9.9 55	8.4 42 31°30' 10 55	8.7 44 35°12'	9 45	9.3 47	9.5 48	9.7 49	49	9.9 50 55°00'	10, 50 57°30′	10 50 60°00′			4 -FI PASO DEI BONDE	ALADISTANCIA DE	DEL PERA TE: SIN F	A UN BOMBEO DE 3	S-LAS LONGITH IDES IN	ARRIBA V RECOMEN	TOWN SOUTH TOWN SOLD ST	SCOUNDED VALOR	SEGUNDOS LAV	/VELOCIADAD EN KIL		
40 50	25 Db=30 1:140 Db=33 1:155 Db=37	e% Ls A e% Ls A e% Ls	BN 23 1.09 BN 28 1°24" 1.4 34	BN 23 2°18' 1.9 28 2°48' 2.8 34	BN 23 3°27' 2.9 28 4°12' 4.1 34 5°06'	2.5 23 4°36' 3.8 28 5°36' 5.5 35 7°00'	3.1 23 5°45' 4.8 28 7°00' 6.8 42 10°30'	3.7 23 6.54 5.8 32 9.36 7.9 48	4.3 24 8°24' 6.6 37 12°57' 8.8 54	25 10°00' 7.4 41 16°24' 9.4 58	5.5 28 12°36' 8.1 45 20°15' 9.8 60	6.1 31 15°30' 8.7 49 24°30' 10.0 61	5.6 33 18°09' 9.1 51 28°03'	7.1 36 21°36' 9.5	7.6 38 24°42' 9.8	8 40 28°00' 9.9 55	8.4 42 31°30' 10 55	8.7 44 35°12'	9 45	9.3 47	9.5 48	9.7 49	9.8 49	9.9 50 55°00'	10, 50 57°30'	10 50 60°00′			4				.5						10241	Rouge.
30 KPH 40 50	1:125 Db=30 1:140 Db=33 1:155 Db=37	e% Ls A e% Ls A e% Ls	BN 23 1.09 BN 28 1°24" 1.4 34	BN 23 2°18' 1.9 28 2°48' 2.8 34	BN 23 3°27' 2.9 28 4°12' 4.1 34 5°06'	2.5 23 4°36' 3.8 28 5°36' 5.5 35 7°00'	4°15' 3.1 23 5°45' 4.8 28 7°00' 6.8 42 10°30'	3.7 23 6.54 5.8 32 9.36 7.9 48	4.3 24 8°24' 6.6 37 12°57' 8.8 54	4.9 25 10°00' 7.4 41 16°24' 9.4 58	7°39' 5.5 28 12°36' 8.1 45 20°15' 9.8 60	8°30' 6.1 31 15°30' 8.7 49 24°30' 10.0 61	5.6 33 18°09' 9.1 51 28°03'	7.1 36 21°36' 9.5	13°00' 7.6 38 24°42' 9.8	15°24" 8 40 28°00' 9.9 55	8.4 42 31°30' 10 55	20°00' 8.7 44 35°12'	22°06' 9 45	24°18' 9.3 47	27°33' 9.5 48	30.00. 8.7 49	33°36' 9.8 49	35°12' 9.9 50 55°00'	39°06' 10 50 57°30'	42°00' 10 50 60°00'	45°009	48°06'	49°57"	53:12'	56°33'	.00.00	63°33'	65°36'	69°18"	71°24"	75°15'	77°24'	+-	+-
30 KPH 40 50	=27 1:125 Db=30 1:140 Db=33 1:155 Db=37	LS A e% LS A e% LS A e% LS	17 0°51' BN 23 1.09 BN 28 1°24' 1.4 34	17 1°42' BN 23 2°18' 1.9 28 2°48' 2.8 34	2°33' BN 23 3°27' 2.9 28 4°12' 4.1 34 5°06'	2.5 23 4°36' 3.8 28 5°36' 5.5 35 7°00'	17 4°15' 3.1 23 5°45' 4.8 28 7°00' 6.8 42 10°30'	17 5°06' 3.7 23 6°54' 5.8 32 9°36' 7.9 48	17 5°57' 4.3 24 8°24' 6.6 37 12°57' 8.8 54	17 6°48' 4.9 25 10°00' 7.4 41 16°24' 94 58	17 7°39' 5.5 28 12°36' 8.1 45 20°15' 9.8 60	17 8°30' 6.1 31 15°30' 8.7 49 24°30' 10.0 61	17 9°21' 6.6 33 18°09' 9.1 51 28°03'	19 11°24' 7.1 36 21°36' 9.5	20 13°00' 7.6 38 24°42' 9.8	22 15°24" 8 40 28°00' '9.9 55	23 17°15' 8.4 42 31°30' 10 56	25 20°00' 8.7 44 35°12'	26 22°06' 9 45	27 24°18' 9.3 47	29 27°33' 9.5 48	30, 30,00, 9.7 49	32 33°36' 9.8 49	32 35°12' 9.9 50 55°00'	34 39°06' 10 50 57°30'	35 42°00' 10' 50 60°00'	36 45°009	37 48°06'	37 49°57	38 53:12'	39 56°33'	40 60°00'	41 63°33'	41 65°36'	42 69°18'	42 71°24'	43 75°15'	43 77°24'	44	44
3UK/th 40 50	Db=27 1:125 Db=30 1:140 Db=33 1:155 Db=37	e% LS A e% LS A e% LS A e% LS	BN 17 0°51' BN 23 1.09 BN 28 1°24' 1.4 34	BN 17 1°42' BN 23 2°18' 1.9 28 2°48' 2.8 34	BN 17 2°33' BN 23 3°27' 29 28 4°12' 4.1 34 5°06'	1.4 17 3°24' 2.5 23 4°36' 3.8 28 5°36' 5.5 35 7°00'	1.7 17 4°15' 3.1 23 5°45' 4.8 28 7°00' 6.8 42 10°30'	2.1 17 5°06' 3.7 23 6°54' 5.8 32 9°36' 7.9 48	2.4 17 5°57' 4.3 24 8°24' 6.6 37 12°57' 8.8 54	2.8 17 6.48' 4.9 25 10.00' 7.4 41 16.24' 9.4 58	3.1 17 7°39' 5.5 28 12°36' 8.1 45 20°15' 9.8 60	3.5 17 8°30' 6.1 31 15°30' 8.7 49 24°30' 10.0 61	3.8 17 9°21' 6.6 33 18°09' 9.1 51 28°03'	4.2 19 11°24' 7.1 36 21°36' 9.5	4.5 20 13°00' 7.6 38 24°42' 9.8	4.8 22 15°24" 8 40 28°00' 9.9 55	5.2 23 17°15' 8.4 42 31°30' 10 56	5.5 25 20°00' 8.7 44 35°12'	5.8 26 22°06' 9 45	6.1 27 24°18' 9.3 47	6.4 29 27°33' 9.5 48	6.1 30 30 00 9.7 49	7 32 33°36' 9.8 49	7.2 32 35°12' 9.9 50 55°00'	7.5 34 39°06' 10, 50 57°30'	7.8 35 42°00' 10/ 50 60°00'	7.9 36 45°009	3.1 37 48°06'	8.3 37 49°57	8.5 38 53*12"	8.7 39 56°33'	8.9 40 60°00'	9 41 63°33'	9.2 41 65°36'	9.3 42 69°18"	9.4 42 71°24°	9.5 43 75°15°	9.6 43 77°24'	9.7 44	9.8 44
3UK/th 40 50	Db=27 1:125 Db=30 1:140 Db=33 1:155 Db=37	e% LS A e% LS A e% LS A e% LS	2 BN 17 0°51' BN 23 1.09 BN 28 1°24' 1.4 34	BN 17 1°42' BN 23 2°18' 1.9 28 2°48' 2.8 34	BN 17 2°33' BN 23 3°27' 29 28 4°12' 4.1 34 5°06'	1.4 17 3°24' 2.5 23 4°36' 3.8 28 5°36' 5.5 35 7°00'	1.7 17 4°15' 3.1 23 5°45' 4.8 28 7°00' 6.8 42 10°30'	2.1 17 5°06' 3.7 23 6°54' 5.8 32 9°36' 7.9 48	2.4 17 5°57' 4.3 24 8°24' 6.6 37 12°57' 8.8 54	2.8 17 6.48' 4.9 25 10.00' 7.4 41 16.24' 9.4 58	3.1 17 7°39' 5.5 28 12°36' 8.1 45 20°15' 9.8 60	3.5 17 8°30' 6.1 31 15°30' 8.7 49 24°30' 10.0 61	3.8 17 9°21" 6.6 33 18°09" 9.1 51 28°03"	4.2 19 11°24" 7.1 36 21°36" 9.5	4.5 20 13°00' 7.6 38 24°42' 9.8	4.8 22 15°24" 8 40 28°00' 9.9 55	5.2 23 17°15' 8.4 42 31°30' 10 56	5.5 25 20°00' 8.7 44 35°12'	5.8 26 22°06' 9 45	6.1 27 24°18' 9.3 47	6.4 29 27°33' 9.5 48	6.1 30 30 00 9.7 49	7 32 33°36' 9.8 49	7.2 32 35°12' 9.9 50 55°00'	7.5 34 39°06' 10, 50 57°30'	7.8 35 42°00' 10' 50 60°00'	7.9 36 45°009	3.1 37 48°06'	8.3 37 49°57	8.5 38 53.12'	8.7 39 56°33'	8.9 40 60°00'	9 41 63°33'	9.2 41 65°36'	9.3 42 69°18"	9.4 42 71°24°	9.5 43 75°15°	9.6 43 77°24'	9.7 44	9.8 44

CARACTERISTICAS GEOMÉTRICAS

Vias -

VALORES LÍMITES RECOMENDADOS FARA LAS CARACTERÍSTICAS DE LA GARRETERA EN ESTADO FINAL 15

	ALL COLONE	MINUTED	ANCHOUE	ANCHO DE TERRACERIA	DERECHO	RADIO	PENDIENTE	DISTANCIA VIS	DISTANCIA VISIBILIDAD PARADA	DISTANCIA V	DISTANCIA VISIBILIDAD PASO
CAPCETEROA	(K.P.H.)	(Mts.)	CORTE	RELLENO	DE VIA	OWINING	MAXIMA	AMINIMA	RECOMENDADA	AMINIMA	RECOMENDADA
"A" Odl.		2×720	25	24	50	1.61104.7	(mis.)	(MIS.)	(Mts.)	(Mts.)	(Mts.)
REGIONES			-			-	-				
LLANAS	100					375	ω	18	3	700	-
ONDUCADAS	83					225	4	110	150	50 8	/30
MONTAÑOSAS	8					110	5	70	18	200	300
Ja. Odl.		7.20	13	12	25				100	330	400
REGIONES											
LLANAS	80					225	6	110	155	630	ECO
ONDULADAS	50			3		110	7	70	100	035	300
MONTAÑOSAS	ð					47	80	45	3 8	5 8	400
TIPO"C"		6.50	ĺ,	11	25				8	100	200
REGIONES											
LLANAS	80					225	6	110	150	520	75
ONDULADAS	8					110	7	70	100	350	400
MONTANOSAS	40					47	8	40	3	180	2000
Libo, O.		6.00	11	10	25						4000
REGIONES											
LLANAS	80					225	6	110	150	530	200
ONDUCADAS	8					110	7	70	100	350	480
MON: ANOSAS	6					47	8	40	56	180	2000
.3.Od!		5.50	9.50	8.50	25						-
REGIONES											
LUANAS	.83					75	80	55	70	38	38
ONDULADAS	40					47	9	40	3	180	38
ANDSAS	30					30	10	3	ž,	15	100
TiPO F		5.50	9.50	8.50	15				8	-	190
REGIONES											
LUNNAS	40					47	10	40	50	180	200
CHUNDOUNDAS	80					30	12	30	35	110	3
CALCONALACO	20					18	14	20	25	3	130
AS:				NOTAS:							100
CARGA: ALTURA LIBRE: ICHO RODADURA:	CARGA: ALBRE: DADURA:	H-15-S-12 4.75 mts. 7.90 mts.		22.1	1 T.P.D.: Promedio de Tráfico Diario 2 La Sección Típica para Carreteras 3 Las Caracteristicas de las Estructu	de Tráfico Diario, pará Carreteras Ti de las Estructura	po "A", incluye isli is son generales p	1 T.P.D.: Promedo de Tráfico Dário. 2 La Sección Tipica pura Cairretiras Tipo "A", Incluye isia central de 1.50 mts. de Ancho 3 Las Ceracterísticas de las Estructuras son generales para todos los tipos de la Cairrete	 T.P.D.: Promedio de Tráfico Diario. La Sección Tibide per Carreteras Tipo "A", incluye isla central de 1.50 mts, de Ancho Las Características de las Estuduras son generales para todos los tipos de la Carretera, con excepción de la Tipica "A", en donde el 	don de la Tipica "A	en donde ei
UERZOS UNITARIOS Concreto Clase "A": Acero de Refuerzo: Acero Estructural:		3,000,000) Libras / Pulçada cuadrada 18,000,0000 Libras / Pulçada cuadrada	cuadrada	. *	La calidad de la Opo o Tratamiento Super Tratamiento Super Los Recubrimiento	spa de recubrimier verficial Múltiple; p ficial Doble; pura 1 a para las Curete	nto de la Calzada ara Tipo "B" y "C" Tipo "E": Tratamier ras, desde el Tipo	podrá ser para Carrel Concreto Asfálico (I no Superficial Simple "A" al "E", dependen	amont es pouse 4. La edidad del a Capa de moutrimiento de la Catada poorté ser para Cametenas Tipo "A". Homigón, Constato Adálito (Frio o Callente). O Tratamiento Superficial Multi sis, para Tipo "E" y "C". Constrete Adálitico (Frio o Callente) o Tratamiento Superficial Dobe; para Tipo "To Tratamiento Superficial Stripe y para Tipo "P. Republication de Malarial Stripe. Los Republimientos para las Currocara, deste os Tipo "Y a "E, deportedor de da las Caracteristatos de Malaria Series. Los Republimientos para las Currocara, deste os Tipo "Y a "E, deportedor de da las caracteristatos modeles nos series os caracteristatos modeles nos series os caracteristatos modeles nos series os caracteristatos modeles nos series caracteristatos modeles nos series caracteristatos de la caracteristatos modeles nos series de la caracteristatos de la caracteristator modeles nos series de la caracteristator de	Concreto Asfáltico ento Superficial Do miento de Material	(Frio o Callente) ble; para Tipo 'U'; Selecto.
ancie de Vicinidad de Daniel											

Γ	П	7.0	AN	AN	Z.	AN	AN	9.0																										Г					
	7.20	60	AN	AN	N. S	AN AN	AN	AN	0.60	0.60	0.60																				Г	r		Г	r	l	r	H	
	TIPICA "B" 7.20	90	AN	+	+	Ne an	╁	\vdash	AN	0.60	0.60	0.60	0.60	0.60	0.60	0.70																		H			H	Н	П
		40	AN	+	+	NA AN	H	\vdash	AN	AN 0	AN 0	0.80	0.60	0.80	0.80	0.80	0.60	0.70	0.70	0.80	0.80	0.80	0.80	1.00	1.00									F			H	H	poo
	Н	120	0.80 A	4	1	4 4	4	٩	٩	٩	٩	0	0	0	0	0	0	0	0.	0.	0.	0.	0.	1.	1.					AL.				H			L	H	Leiscod
		Ш	Н	9	+	+	H	_					_																	CHA ESPIR	SE USARA	L		H			L	H	
		110	I AN	0.80	,	+	H	_																						ID DO DOD	6.36 m. NO	L		H	L		L	H	
S VIAS		100	AN	+	0.00		H	L																						M OTNUR J	ENORES DE	L		L	L		L	Н	
DEDC	6.50	80	AN	+	+	0.00	ļ																							PC O: PT BL	O DE: SER M	L	145	L			L	Н	
VALORES DE DISENO PARA SOBRE-ANCHOS DE PAVIMENTO EN CURVAS PARA CARRETERAS DE DOS VIAS	TIPICA "C" 8.50	80	AN	+	+	0.80	╀																							2. EL BOBREANCHO SE REPARTIRA PROPORCIONALMENTE A LA LOHGITUD DE LA ESPISAL USADA, DEBIENDO SER EL PC OF PT EL PUNTO MEDIO DE DICHA ESPIRAL	- SOBRE LAS LINCEDONTALES LOS VALORES CALCULLADOS PUEDNI HERNOSES DE ASS. P. PERO MAYORES QUE 6.38%, EN CASO DE 1928, MENORES DE 6.3% MENORES DE 6.3% NENDRES	L	4-PARA ANCHO DE CALZADA DE 7,29m., Y VELOCIDADES MAYORES DE 70 KPH LAS CURVAS NO SERAN SOGREANCHADAS	L			L	Ц	
CARRE		70	AN	+	+	0.80	╁	┰																						A, DEBIEND	KES ONE 638		ERAN SOBI	OR HORA.			L		Leiscod
PARA		80	N۳	Ne 3	0.80	0.80	0.80	0.60	0.70	0.80	0.80																		A AASHO	RAL USADV	SRO MAYOR	L	TVAS NO S	5. ANCHOS DE CALZADA Y SOBREANCHOS EN METROS. VELOCIDADES EN I/PH+ KILOMETROS POR HORA.	L		L		
URVAS		9	AN	NA :	N.	0.80	0.80	0.60	0.60	0.70	0.80	0.80	0.80	0.80	1.00	1.10													ONES DE L	DE LA ESPI	DE 0.00 m. P		H LAS CUR	DH+ KILOB			L		
OENC		40	NW	AN	ž.	NA C	08.0	0-80	09-0	08'0	0.70	0.70	0.80	0.80	0.80	1.00	1.00	1.10	1.10	1.20	1.20	1.30	1.30	1.40	1.40				PECIFICACI	омагтива	SSSONGS!		S DE 70 KP	ADES EN N					
/IMENT		120	08:0	0.70	T	T																							RDO A ESP	HEALAU	NOS FUERON		SMAYORE	VELOCIB					
DE PA		110	0.80	0.80	T																								S DE ACUE	CHARACTE	S CALCULAR		LOCIDADE	N METROS					
CHOS		100	08'0	0.80	0.70	T	Ī																						ALCULADO	A PROPORK	3807WA 607		20m, Y VE	ANCHOS ES				П	
BRE-A	۰	90	08'0	0.80	0.70	0.80	T																						1. LOS SOBREANCHOS PUERON CALCULADOS DE ACUERDO A ESPECIPICACIONES DE LA AASHO	REPARTIR	CONTALES		ZADA DE 7	A Y SOBRE			Г	П	
ARA SO	TIPICA "D" 6.00	80	0.60	0.80	0.80	0.70																							EANCHOS	ANCHO SE	INEAS HORS	-045	NO DE CAL	ECALZAD	O NORWAL			П	
ENO P/	TIPIC	7.0	08'0	+	+	0.70	╀	0.80																					LOS SOBR	21 SOBRE	DOBECTAS	SOBREAMOND	PARA AND	ANCHOSE	S AN* ANCHO NORMAL		H	Н	reiscod
DE DIS		80	0.80	+	+	0.80	╀	⊢	0.80	1.00	1.10																		4.	2	3.4		4.	ń	ú		\vdash	Н	Le
ORES		60	AN	+	+	0.80	╁	₩	0.80	08'0	1.00	1.00	1.10	1.10	1.20	1.20				_					_									H			\vdash	H	
VAI		40	AN	1	+	0.80	1	₩	0.80	0.80	0.80	0.90	1.00	1.00	1.10	1.20	1.20	1.30	1.30	1.40	1.40	1.60	1.60	1.80	1.80	1.80	1.80	1.80	1.80	1.80	1.80	1.80	1.80	1.80	1.70	1.70	1.80	1.80	1.80
	Н	90	Н	+	+	0.70	╁	+	Н	1.10 0	Н	Н	1.30	\dashv	1.40	1.60	1	-	1	1	1	1	-	-	1	1	-	-	1	1	-	-	-	-	-	-	-	-	+
	TPICA "E" 5.50		Н	+	+	+	╁	${}^{-}$	П	Н	1.10 1.	1.10	Н	\dashv	-	Н	1.40	90	90	80	80	1.70	0.4	80	1.80							L		H	L		\vdash	H	
	TIPICA"	40	Н	+	+	+	╁	₩	1.00	1.00	Н	Н	0 1.20	\dashv	0 1.30	Н	Н	1.60	1.60	1.80	1.80	Н	1.70	1.80	Н	0.	0	0	0	0	0		0		9	9	9	0	0
	Н	30	Н	+	+	0.80	╁	₩	0.80	08'0	1.00	1.00	1.10	1.10	1.20	1.20	1.30	1.30	1.40	1.40	1.60	1.60	1.80	1.80	1.70	1.70	1.80	1,80	1.80	1.80	2.00	2.00	2.10	2.10	2.20	2.20	2.30	Н	2.40
	ANCHO CALZADA	VELOCIDADES	40	84	9 3	4 8	å	2	å	ô	10°	110	150	130	149	16°	160	170	180	180	200	210	220	230	240	26°	280	27°	280	280	300	310	320	33	340	36	38	370	380
	ANCHO	VELOC														٧	an	TΑ	ΛЫ	cn	30	1 (OCIV	/ UK)														