Universidad de San Carlos de Guatemala Centro de Estudios del Mar y Acuicultura

Informe final Práctica Profesional Supervisada

Laboratorio de análisis biológicos pesqueros, Estación de Biología Marina, Universidad Nacional, Puntarenas, Costa Rica.

> Presentado por: Juan Carlos Tejeda Mazariegos Carne: 200940338

Para otorgarle el Título de Técnico en Acuicultura.

Guatemala, febrero del 2012

Universidad de San Carlos de Guatemala. Centro de Estudios del Mar y Acuicultura.

CONSEJO DIRECTIVO.

Presidente M.Sc. Erick Roderico Villagran Colón.

Coordinadora Académica MSc. Norma Edith Gil Rodas de Castillo.

Secretario M.B.A. Allan Franco de Leon

Representante Docente Ing. Gustavo Adolfo Elías Ogaldez

Representante del Colegio de Médicos

Veterinarios y Zootecnistas. M.Sc. Aldo Vinicio Leiva Cerezo

Representante Estudiantil T.A. Jesús Alfredo Guzmán Cáceres.

Representante Estudiantil T.A. Sofía del Carmen Morales Navarro.

La Coordinadora Académica del Centro de Estudios del Mar y Acuicultura -CEMA-, después de conocer el dictamen del Profesor M.Sc. Pedro Julio García Chacón, al Informe de la Práctica Profesional Supervisada del estudiante universitario Juan Carlos Tejeda Mazariegos, titulado "Laboratorio de análisis biológicos pesqueros, Estación de Biología Marina, Universidad Nacional, Puntarenas, Costa Rica", da por este medio su aprobación a dicho trabajo y autoriza su impresión.

"Id y Enseñad a Todos"

M.Sc. Norma Edith Gil de Cas

Guatemala, febrero 2,012.

ACTO QUE DEDICO

A DIOS:	Por otorgarme vida, salud y sabiduría.
A MI FAMILIA: todo sin condición.	Por estar siempre conmigo y apoyarme en
A MIS ABUELITOS:	Por apoyarme y preocuparse por mi siempre
A MIS AMIGOS:	Por darme alegría y apoyo.
A MI PATRIA:	Por tener el orgullo de ser guatemalteco.
A LA UNIVERSIDAD DE SAN CARLOS	Por tener el orgullo de ser sancarlista, casa de estudios, conocimientos y sabiduría.

AGRADECIMIENTOS

A Dios, por permitirme ser quien soy, y darme la oportunidad de vivir.

A mis padres y hermano, por estar siempre conmigo, apoyarme en todo, y sin condición.

A mi familia por preocuparse, apoyarme y estar pendiente de mí.

Al Centro de Estudios del Mar y Acuicultura, de la Universidad de San Carlos de Guatemala, por brindarme los conocimientos necesarios para realizar con éxito mí Práctica Profesional Supervisada.-PPS.

A la Universidad Nacional de Costa Rica, por darme la oportunidad de realizar mi Práctica Profesional Supervisada en sus casa de estudios.

Al Laboratorio de Análisis Biológico Pesquero de la Estación Biológica Marina, por brindarme la oportunidad de adquirir nuevos conocimientos académicos.

A la Estación de Ciencias Marino Costeras óECMAR- Por brindarnos el apoyo necesario durante nuestra estadía.

Al Ing. Pedro Julio García, Por el apoyo brindado para realizar mi PPS.

Al M.Sc.Rosa Soto Rojas, por darme la oportunidad de aprender nuevas técnicas en análisis biológicos pesqueros.

Al Biólogo Fernando Mejía, por la paciencia y el conocimiento brindado sobre técnicas en análisis biológicos pesqueros.

Al Biólogo Luis Hernández (õel chacaö), por el conocimiento sobre técnicas en análisis biológicos pesqueros.

Y a todos mis amigos por su apoyo y amistad.

RESUMEN

La Práctica Profesional Supervisada -PPS fue realizada en el Laboratorio de Análisis Biológicos Pesqueros, de la Estación de Biología Marina, de la Universidad Nacional de Costa Rica, ubicado en la provincia de Puntarenas.

El laboratorio de análisis biológicos pesqueros es la unidad encargada de realizar los estudios sobre el manejo y situación de la pesca de la costa pacifica de Costa Rica, enfocando el mayor de sus esfuerzos al Golfo de Nicoya, este representa una gran importancia en términos socioeconómicos por parte de la pesca a nivel nacional.

Dentro de las actividades realizadas en el laboratorio están; determinación de la edad de los peces, por medio de otolitos, extracción de gónadas, análisis macro y microscópico de las gónadas, por medio de histología y parámetros de maduración, muestreos para evaluación de poblaciones, por medio de capturas en campo, muestreo y análisis de diversidad marina local, elaboración, realización y análisis de encuestas dirigidas a pescadores locales.

Durante la práctica, las técnicas y análisis fueron enfocados para la evaluación de una zona de posible declaración de pesca responsable, en el cual se determinaron los aspectos tanto biológicos como sociales. Esto busca conocer las características originales de la zona antes de desarrollar la actividad.

ÍNDICE

		Pagina
1.	INTRODUCCIÓN	1
2.	OBJETIVOS	3
3.	DESCRIPCION GENERAL DE LA UNIDAD DE PRÁCTICA	4
3.1	Estación de Biología Marina (EBM).	4
3.2	Ubicación Geográfica	4
3.3	Condiciones climáticas	5
3.4	Altitud	5
3.5	Zona de vida	5 5
3.6	Vías de acceso	5
3.7	Actividades productivas de la unidad de práctica.	5
4	ASPECTOS ADMINISTRATVOS	6
4.1	Organigrama	6
4.2	Objetivos de la Estación de Biología Marina	6
4.3	Misión	6
4.4	Academia	6
4.5	Control de personal	7
4. 6	Prestaciones laborales	7
4.7	Prestaciones de servicios	7
5.	METODOLOGIA DE EVALUACION DE BIODIVERSIDAD	8
5.	MARINA, PROYECTO DE PESCA RESPONSABLE	o
5.1	Evaluación de biodiversidad marina presente en la Isla Toro, perteneciente a la zona de posible declaración de pesca responsable.	8
5.2	Metodología de evaluación de biodiversidad	9
5.3	Recolección y conservación de las muestras	10
5.4	Toma de parámetros medioambientales	11
5.5	Identificación taxonómica	11
6.	METODOLOGIA DE ANALISIS DE SEDIMENTOS,	13
0.	PROYECTO DE PESCA RESPONSABLE	13
6.1	Toma de muestras	13
6.2	Proceso de preparación de muestra.	13
6.3	Proceso de separación	17
6.4	Proceso de determinación de porcentajes de tamaño de	17
0.4	sedimentos	17
7.	METODOLOGIA PARA LA EVALUACION DEL	18
· •	RECURSO PESQUERO, PROYECTO DE PESCA	10
	RESPONSABLE	
7.1	Tipos de artes de pesca y técnica empleada para evaluar recurso	18
/ •I		10
7.2	pesquero Preparación de artes de pesca	18
7.2 7.3		18
7.3 7.4	Largado de las artes de pesca Identificación de organismos capturados	20
/ • 	iuchuncacion ut organismos capturados	∠ U

8.	METODOLOGIA PARA LA EVALUACION DE	
	PARAMETROS FISICO QUIMICOS, PROECTO DE PESCA	22
	RESPONSABLE	
8.1	Toma de muestras	22
8.2	Preparación de muestras	25
8.3	Medición de parámetros de muestras	25
9.	EVALUACION SOCIO-ECONOMICA DE COMUNIDAD	27
	DE PESCADORES DE PUERTO NISPERO, PROYECTO DE	
	PESCA RESPONSABLE.	
9.1	Elaboración de encuesta	27
9.2	Ejecución de encuestas de campo	27
10.	PLAN DE ACCION	28
11.	RESULTADOS	30
12.	CONCLUSIONES	42
13.	RECOMENDACIONES	43
14.	BIBLIOGRAFIA	44
15.	ANEXOS	45

INDICE DE FIGURAS

		Pagina
Figura 1.	Isla Toro, frente a la desembocadura del rio tempisque	8
Figura 2.	Imagen satelital de la Isla Toro y desembocadura del rio Tempisque	10
Figura 3.	Identificación de organismos, muestra fijada	12
Figura 4.	Identificación de organismos, muestra fijada	12
Figura 5.	Moldes de aluminio para sedimento	13
Figura 6.	Moldes de aluminio para sedimento previo al secado	14
Figura 7.	Sedimento acomodado en moldes y etiquetados, antes de secar	14
Figura 8.	Muestras de sedimentos secas, en el horno	15
Figura 9.	Tamiz de 850 um.	17
Figura 10.	Largado de trasmallo	19
Figura 11.	Largado de red de arrastre	20
Figura 12.	Esquema de red de arrastre	21
Figura 13.	Organismos capturados con trasmallo	21
Figura 14.	Botella de niskin	22
Figura 15.	Hielera para almacenaje temporal de las muestras de agua	23
Figura 16.	Disco de sechii, multiparametrico y botellas para muestra	24
Figura 17.	Uso de la botella de niskin	24
Figura 18.	Espectofometro utilizado en los análisis	26
Figura 19.	Celdas de espectrofotómetro utilizado	26
Figura 20.	Preparación de trasmallo para largar en la desembocadura del rio tempisque	45
Figura 21.	Imagen satelital de la estación de biología marina, en Puntarenas	45

INDICE DE CUADROS

		Pagina
Cuadro 1.	Tabla de posiciones globales de los cuadrantes trabajados.	30
Cuadro 2.	Biodiversidad marina registrada en Isla Toro, relacionada con la zona de posible declaración de pesca responsable	31
Cuadro 3.	Diversidad de micro hábitats identificados en cada cuadrante.	32
Cuadro 4.	Parte 1 de la tabla de resultados de porcentaje de partícula.	33
Cuadro 5.	Parte 2 de la tabla de resultados de porcentaje de partícula por granulometría.	34
Cuadro 6.	Especies capturadas y su biomasa estimada por cada una, perteneciente al día de pesca 9/11/2011.	35
Cuadro 7.	Especies capturadas y su biomasa estimada por cada una, perteneciente al día de pesca 10 / 11 / 2011.	36
Cuadro 8.	Concentración de amonio, nitritos, fosfatos y silicatos obtenida de las muestras de agua de la zona de posible declaración de pesca responsable.	37
Cuadro 9.	Valores obtenidos de parámetros físicos del agua de la zona posible declaración de pesca responsable.	38
Cuadro 10.	Valores de parámetros medio ambientales sobre la zona de	38
	posible declaración de pesca responsable.	
Cuadro 11.	Valores de lectura de penetración de luz, por medio del disco de sechii.	39
Cuadro 12.	Número y nombre de pescadores encuesta.	39
Cuadro 13.	Cuadro de resultados de respuesta a sitos de pesca.	40
Cuadro 14.	Respuestas sobre sitos idóneos para establecimiento de zona de pesca responsable.	40
Cuadro 15.	Respuestas sobre alternativas de manejo al Golfo de Nicoya.	41
Cuadro 16.	Respuestas sobre aprovechamiento actual al golfo de Nicoya	41

1. INTRODUCCIÓN.

Dentro del pensum (2004) de la Carrera Técnico en Acuicultura, del Centro de Estudios del Mar y Acuicultura (CEMA) de la Universidad de San Carlos de Guatemala, se incluye como curso, la Practica Profesional Supervisada-PPS, la cual tiene una duración mínima de dos meses, a realizarse en una institución o empresa dedicada al manejo de recursos hidrobiologicos, pudiéndose entender de carácter productivo, manejo y estudio de los mismos. La Práctica busca relacionar al estudiante con el campo laboral real de actividades que se lleven a cabo dentro de la institución o empresa, fuera o dentro del país, pudiendo permitirle al estudiante aplicar conocimientos teóricos, mantener experiencias de carácter laboral con toda la seriedad y responsabilidad para la actividad.

La Practica Profesional Supervisada-PPS, se realizó en la Estación de Biología Marina (EBM) de la Universidad Nacional de Costa Rica, Ubicada en la provincia de Puntarenas. En el laboratorio de Análisis Biológicos Pesqueros, se participo en las siguientes actividades:

a) Determinación de edad de los peces, por medio de otolitos:

Se utiliza esta metodología para realizar estudios de población de peces de importancia pesquera en el área.

b) Extracción de gónadas:

Metodología utilizada para determinar la maduración de los organismos, y mediante estudios continuos determinar las temporadas de reproducción de los mismos, para establecer medidas de manejo de la pesca.

c) Análisis macro y microscópico de las gónadas, por medio de histología y parámetros de maduración:

Estudio que se realiza a las gónadas a simple vista y mediante un corte histológico visto al microscopio se relaciona con los parámetros de maduración, que varían entre diferentes metodologías. Para realizar estudios de dinámica poblacional.

d) Muestreos para evaluación de poblaciones, por medio de capturas en campo:

Se realizaban giras de pesca con diferentes artes, para obtener muestras y posteriormente analizarlas en laboratorio.

e) Muestreo y análisis de diversidad marina local:

Se realizaron giras para la obtención de muestras y determinar la diversidad de una zona determinada.

f) Elaboración, realización y análisis de encuestas dirigidas a pescadores locales:

Como complemento de un estudio socioeconómico a una comunidad de pescadores, se realizó una encuesta para conocer la realidad de la situación de la pesca en la comunidad.

g) Determinación de parámetros físico-químicos:

Se realizó gira de toma de muestras de agua y sedimento, para evaluar estado de la calidad del agua, composición y cualidades de los sedimentos y evaluación de parámetros ambientales.

Todas las actividades mencionadas anteriormente, fueron complemento de la evaluación integrada a una zona de posible declaración de pesca responsable, la cual tiene como objetivo satisfacer las necesidades de los pescadores de la comunidad de Puerto Níspero.

Las muestras tomadas en el campo fueron llevadas al laboratorio, donde se realizaron los análisis.

2. OBJETIVOS.

2.1 Objetivo general:

Confrontar al estudiante en el ambiente de trabajo de la Carrera de Técnico en Acuicultura, a través de una práctica directa, en un contexto empresarial o institucional, y un espacio territorial determinado.

2.2 Objetivos específicos:

- 2.2.1 Proveer la oportunidad de participar en actividades reales propias del Manejo de los Recursos Hidrobiológicos de la costa pacifica de Costa Rica, mediante la inserción en el laboratorio de análisis biológicos pesqueros, de la Estación de Biología Marina, de la Universidad Nacional, Puntarenas. Costa Rica.
- 2.2.2 Retroalimentar el proceso de enseñanza-aprendizaje mediante la integración de los conocimientos y experiencias teórico-prácticas adquiridas.
- 2.2.3 Propiciar el desarrollo y ejercicio de los valores morales y éticos en el desempeño profesional.

3 . DESCRIPCION GENERAL DE LA UNIDAD DE PRÁCTICA.

3.1 Estación de Biología Marina (EBM).

La estación de biología marina fue diseñada para dar soporte al manejo costero y el desarrollo de tecnología para acuacultura marina, las cuales son actualmente sus dos áreas principales. La estación fue fundada en 1997, con la aprobación del consejo directivo de la Escuela de Ciencias Biológicas, de la Facultad de Ciencias Exactas y Naturales, de la Universidad Nacional de Costa Rica; la EBM brinda el apoyo científico y técnico requerido para hacer un uso sustentable del recurso pesquero más importante de Costa Rica, el Golfo de Nicoya.

Las áreas principales se dividen en laboratorios especializados en diferentes ramas de análisis, importantes para lograr los objetivos de la estación. Algunos de ellos son; fitoplancton marino y marea roja, biología pesquero, control de calidad de productos pesqueros, microbiología marina, por la parte de manejos pesqueros. Cultivo de moluscos, cultivo de peces marinos, fisiología reproductiva de crustáceos, cultivo de fitoplancton y zooplancton en la parte de acuacultura.

3.2 Ubicación Geográfica

La Estación de Biología Marina esta ubicada en la provincia costera de Puntarenas, en el centro de la ciudad, la posición esta dada por las coordenadas: 09 grados 58 minutos y 35 segundos N, 84 grados 50 minutos 18 segundos O. Puntarenas tiene una extensión territorial de 11,276 km². Limita al norte con Alajuela y San José al noroeste con Guanacaste, al sur con el Océano Pacifico y al sureste con la República de Panamá. (EBM).

3.3 Condiciones climáticas

Sobre la ubicación de la provincia de Puntarenas se clasifica un clima calido-humedo. Los registros de temperaturas según el Instituto Meteorológico Nacional (IMN) las máximas oscilan los 35 grados centígrados y las mínimas no bajan de 20 grados centígrados. Presenta una precipitación anual de entre 1500 a 2500 mm. Vientos

predominantes durante la época seca, y los vientos alisios son dominantes durante toda la temporada, aumentando su actividad de julio a agosto. (IMN, 2010).

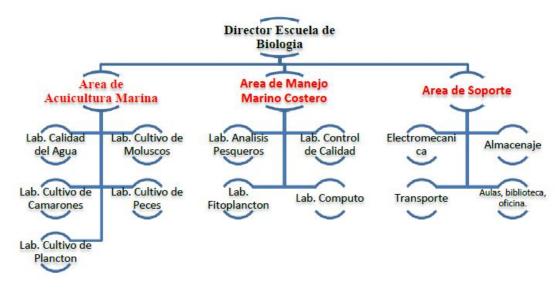
3.4 Altitud

La provincia de Puntarenas esta situada a solo 3 metros sobre el nivel del mar, entendiéndose que es una provincia costera. (INM).

3.5 Zona de vida

Según la geografía del país, la orografía y su relación cercana con los dos océanos provee las condiciones ambientales para el desarrollo de una gama de ambientes siendo Costa Rica predominado por las zonas de vida tales como: bosque muy húmedos, bosques húmedos, bosques secos, bosques lluviosos y paramos, distribuidos en 5 diferentes altitudes. La provincia de Puntarenas donde se ubica la estación esta clasificada como una zona de vida de carácter bosque húmedo montano bajo, fuertemente influenciado también por la actividad de tormentas y huracanes provenientes del Océano Pacifico. (IMN, 2010).

3.6 Vías de acceso


Existen 2 vías para llegar a la provincia de Puntarenas, donde se ubica la estación, la carretera vieja que es la ruta interamericana proveniente de Nicaragua por el Norte y proveniente de Panamá por el sur, la cual proviene de la ciudad capital San José, es una carretera angosta de un solo carril y últimamente ha presentado problemas por causa de las temporadas de lluvias. La segunda vía de acceso es la carretera nueva llamada Caldera que es una autopista rápida que viaja de San José a la provincia de Puntarenas.

3.7 Actividades productivas de la unidad de práctica

El laboratorio de análisis biológicos pesqueros, es la unidad encargada del estudio sobre las pesquerías del Golfo de Nicoya, es decir tanto biológica, económica y socialmente, donde se realizan estudios biológicos sobre la situación de las poblaciones de las especies de interés pesquero en el Golfo lo que permite dar estados y sugerencias de manejo a la autoridad pesquera del país INCOPESCA.

4. ASPECTOS ADMINISTRATVOS.

4.1 Organigrama

4.2 Objetivos de la Estación de Biología Marina

- Proporcionar la infraestructura básica para el desarrollo de los estudiantes de Biología marina.
- Contribuir al desarrollo sostenible de la zona marino costera.
- Contribuir con el desarrollo del conocimiento científico de la zona marino costera del Golfo de Nicoya.

4.3 Misión

Formar profesionales, generar conocimiento y resolver problemas al sector productivo, caracterizando profesionales de alto nivel identificados con la problemática de la zona costera y oceánica.

4.4 Academia

Ejes donde gira el papel de la Universidad Nacional:

- Docencia: cursos regulares para los niveles académicos de Bachillerato y Licenciatura en Biología Marina, además de contar con la Maestría en Ciencias Marinas y Costeras.
- Extensión: transferencia de tecnología, asesorías sobre producción, manejo de tecnología, comercialización, conciencia ambiental a comunidades.
- Investigación: generación de tecnología y conocimiento para la aplicación.

4.5 Control de personal:

Dentro de la estación el personal docente y administrativo esta restricto a un horario de trabajo de 8 horas, de 8:00 am a 17:00 pm, algunos profesionales trabajan de lleno los 5 días de la semana en la estación, otros cumplen esas horas conjunto con docencia en la sede central de la universidad. También hay profesionales quienes no están contratados las 8 horas diarias por parte de la universidad, y se hacen presentes únicamente los días que su contrato les exige. (EBM, 2007).

4.6 Prestaciones laborales:

Las prestaciones por parte de la universidad son de bonificaciones que otorga en el año. Sin embargo debe existir una longevidad de por lo menos 5 años de laborar para la institución. (EBM. 2011).

4.7 Prestación de servicios:

Como universidad, se creo la FUNDAUNA, que es una fundación especial en brindar el apoyo y en algunos casos recursos económicos para la elaboración de algún proyecto. En la estación, esta unidad se enfoca en la formulación de proyectos relacionados con los temas de problemáticas marino costeras, y buscar soluciones efectivas y rápidas.

5. METODOLOGÍA DE EVALUACIÓN DE BIODIVERSIDAD MARINA, PROYECTO DE PESCA RESPONSABLE.

5.1 Evaluación de biodiversidad marina presente en la Isla Toro, perteneciente a la zona de posible declaración de pesca responsable.

Dentro de los requisitos para la declaración de pesca responsable esta el reconocimiento de la biodiversidad marina tanto de flora como fauna del área, para ello se llevó a cabo 3 giras de campo, para la evaluación por zonas de la isla. Según la metodología del proyecto es importante conocer la biodiversidad presente en el área, con el fin de comparar algún impacto que pueda causar la actividad en un tiempo futuro.

Figura 1. Isla Toro, frente a la desembocadura del rio tempisque. Fuente: Propia

5.2 Metodología de evaluación de biodiversidad

La metodología empleada fue la utilizando transectos y cuadrantes de $1\ y\ 0.25\ metros$

cuadrados, se trabajo dividiendo la isla en 3 zonas ecológicas, las cuales fueron:

- Zona submareal

Zona intermareal rocosa

Zona rocosa

Se selecciona la zona ecológica donde se trabajará y posteriormente se selecciona al

azar el sitio a muestrear de dicha área, se deberán contar totalmente los organismos

presentes dentro el 1 metro cuadrado que limita el cuadrante, conociendo los números

totales por grupos o especies de los organismos encontrados.

Con los números por grupos y especies totales por todos los cuadrantes, se realizará una

estimación de la abundancia de cada grupo o especie para toda la zona estudiada. Para

ello se deben conocer las medidas de la zona donde se trabaja.

La siguiente formula es empleada para la determinación de la abundancia de un grupo o

especie:

$$AT = ((a1 + a2 + a3 + a4 + i ...) / Cn) * at$$

Donde:

AT = abundancia total

a = abundancia por cuadrante

Cn= numero de cuadrantes

at = área total

Esta información debe ser tomada en campo por medio de los conteos y separación de

grupos, para ello debe ser elaborada una boleta para guardar la información y ser

analizada posteriormente.

Deberán recolectarse muestras de los organismos encontrados por cada cuadrante así

como se debe conocer los parámetros medioambientales en los que se ubique el

cuadrante, esto se determina para conocer un nicho específico de los organismos que se

encuentren.

9

También se debe tomar la posición global con GPS de cada cuadrante, esto permitirá conocer la ubicación precisa de los organismos.

Figura 2. Imagen satelital de la Isla Toro y desembocadura del rio Tempisque.

Fuente: Propia.

5.3 Recolección y conservación de las muestras

Se deberá contar con recipientes que permitan transportar herméticamente alcohol y a los organismos, sin permitir riesgo a abrirse repentinamente por algún golpe o movimiento brusco, los recipientes deberán contener alcohol de 70% llenando un 75 % del recipiente, a ello se le deberá agregar 5ml de glicerina. La función del alcohol es para sacrificar al organismo y fijar sus tejidos inmediatamente para detener todos sus procesos fisiológicos lo mas rápido posible, la glicerina permite conservar el organismo en un medio viscoso para evitar daños mecánicos por movimiento bruscos del recipiente.

Cada recipiente deberá se identificado con el numero de cuadrante al que pertenece la muestra y debe estar marcado con la fecha de recolección.

5.4 Toma de parámetros medioambientales

Para identificar nichos ecológicos de las especies es importante conocer las variedades de micro hábitats donde existe una interacción especial para cada especie entre el ambiente y el organismo.

En el caso del agua y ambientes marinos costeros donde los parámetros son siempre cambiantes, se debe tomar la salinidad y temperatura del agua, también se debe tomar la medida del factor viento y temperatura del ambiente para cada cuadrante.

La salinidad puede ser conocida por medio de un refractómetro, la temperatura puede ser medida con un multiparametros. Se uso un anemómetro para medir la temperatura ambiental y la velocidad del viento.

5.5 Identificación taxonómica

Para evaluar la biodiversidad de una zona, debe reconocerse con exactitud el número de grupos presentes en ella, y las variaciones genéticas que han provocado la especiación, es por ello que cada organismo encontrado en el estudio debe ser identificado por especie, sin embargo en algunos casos las claves de identificación taxonómicas no son especializadas y pueden solo identificar la familia a la que pertenece el organismo.

Las muestras fijadas deben ser llevadas al laboratorio, para ser identificadas, empleando guías y claves de identificación, además debe emplearse pinzas, agujas de disección, estereoscopio y microscopio.

Se realiza el proceso de identificación para cada organismo, se fija nuevamente y almacena junto a su etiqueta, en frascos de vidrio.

La etiqueta deberá contener la siguiente información:

- Fecha de recolección
- Lugar de recolección
- Nombre de especie a la que pertenece el organismo
- Familia a la que pertenece el organismo

Figura 3. Identificación de organismos, muestra fijada. Fuente: Propia.

Figura 4. Identificación de organismos, muestra fijada. Fuente: propia

6 METODOLOGÍA DE ANÁLISIS DE SEDIMENTOS, PROYECTO DE PESCA RESPONSABLE.

6.1 Toma de muestras

Las muestras de sedimento se deben de recolectar por medio de una draga, controlando la profundidad de la muestra por medio de una cuerda. Las muestras deberán ser empacadas en doble bolsa de plástico, siempre identificando el número de muestra y registrando la posición de muestra. Luego las muestras deberán almacenarse en hielo para su conservación de características originales.

6.2 Proceso de preparación de muestra

La muestra deberá ser descongelada, luego el sedimento debe ser acomodado en moldes de aluminio, los moldes con el sedimento deberán ser etiquetadas con papel especial para calor.

Figura 6. Moldes de aluminio para sedimento. Fuente: propia.

Luego de acomodar y etiquetar los sedimentos, se debe secar la muestra para realizar el tamizado, esto se lleva a cabo en un horno especial que alcanza los 100 grados centígrados de temperatura, esto elimina la humedad total presente en la muestra, el sedimento debe ser sometido por 24 horas a la temperatura de 100 grados, para asegurarse de que se ha eliminado toda la humedad.

Figura 6. Moldes de aluminio para sedimento previo al secado. Fuente: propia.

Figura 7. Sedimento acomodado en moldes y etiquetados, antes de secar. Fuente: propia.

6.3 Proceso de separación de sedimentos

Figura 8. Muestras de sedimento secas, en el horno. Fuente: propia.

Posteriormente de la desecación total de la muestra, esta debe ser limpiada de basura y objetos no pertenecientes al sedimento, luego deberá ser separada a sus componentes más simples del sedimento, esto se logra por medio de un mortero quebrando los bloques producidos por la desecación del material.

En el proceso de separación de los sedimentos se utilizan varios tamices de distintos tamaños de filtración, esto es para ir diferenciando entre las partículas y la proporción en que se encuentran por una diferencia de pesos.

Los tamaños de tamices que se utilizan son:

- 0.953 mm
- 850 um
- 425 um
- 250 um
- 150 um
- 75 um

El procedimiento para determinar las porciones en que se encuentran los diferentes componentes del sedimento es el siguiente:

Se debe eliminar las grandes porciones que deja cuando el sedimento se reseca, esto produce gránulos y terrones que deben ser deshechos por acción mecánica en un mortero. Al tener el sedimento original, se comienza con el proceso de tamizado y pesado.

A continuación los pasos para obtención de proporciones de componentes:

- Pasar la muestra por el tamiz de 0.953 mm, anotar el peso de la muestra restante y luego anotar el peso del mismo sin el contenido de la muestra restante.
- Pasar la muestra por el tamiz de 850 um, anotar el peso de la muestra restante y luego anotar el peso del mismo sin el contenido de la muestra restante.
- Pasar la muestra por el tamiz de 425 um, anotar el peso de la muestra restante y luego anotar el peso del mismo sin el contenido de la muestra restante.
- Pasar la muestra por el tamiz de 250 um, anotar el peso de la muestra restante y luego anotar el peso del mismo sin el contenido de la muestra restante.
- Pasar la muestra en el tamiz de 150 um, anotar el peso de la muestra restante y luego anotar el peso del mismo sin el contenido de la muestra restante.
- Pasar la muestra en el tamiz de 75 um, anotar el peso de la muestra restante y luego anotar el peso del mismo sin el contenido de la muestra restante.

Se debe tener cuidado con las anotaciones, debido a ser muchos datos se debe ordenar la forma de escribirlos para evitar algún tipo de confusión en el momento de realizar el procedimiento.

Figura 9. Tamiz de 850 um. Fuente: Propia

6.4 Proceso de determinación de porcentajes de tamaño de sedimentos

Este procedimiento consiste en determinar cuantitativamente o porcentualmente la proporción de un sedimento de cierto tamaño. Esto se obtiene conociendo los datos del tamizado, a continuación los pasos para determinación, esto se debe hacer por cada muestra.

- Obtener la diferencia entre el peso de cada tamiz por el que pasó la muestra con sedimento restante y el mismo sin el sedimento, esto dará como resultado el peso neto del sedimento.
- Realizar la sumatoria de todos los pesos netos de sedimento restante de cada tamizado.
- Obtener el porcentaje de tamaño por medio de la formula %P = (Tt/St)*100, donde %P es el porcentaje de partícula, Tt es el tamaño del tamiz y St significa la sumatoria de todos los pesos netos de los sedimentos tamizados.

7 METODOLOGÍA PARA LA EVALUACIÓN DEL RECURSO PESQUERO, PROYECTO DE PESCA RESPONSABLE.

7.1 Tipos de artes de pesca y técnica empleada para evaluar recurso pesquero

Para conocer el recurso de pesca en un cuerpo de agua se deberán emplear todas las artes de pesca posibles que permitan capturar todos los recursos presentes de toda la columna de agua, a manera de realizar una caracterización de que se tiene en el área de pesca, es por ello que los organismos capturados deberán ser identificados y medidos morfometricamente, dejando a dichos organismos dentro del recurso pesquero del área y haciendo una caracterización teórica de la biomasa presente.

Las artes empeladas fueron:

- Trasmallo
- Red de arrastre
- Trampas nasas

Cada arte de pesca deberá capturar lo correspondiente a la posición sobre la columna de agua, se debe dejar un tiempo mínimo para que cada arte de pesca pueda ser efectiva.

7.2 Preparación de artes de pesca

Previo a una gira de pesca, las artes de pesca deben ser revisadas y preparadas para la actividad, debido que existen algunas artes de pesca como los trasmallos que deben ser preparados con anterioridad para realizar un largado rápido y efectivo, así mismo las trampas deben estar con los mecanismos de acción efectivos.

7.3 Largado de las artes de pesca

Los mecanismos de largado para las artes son diferentes de cada una.

7.3.1 Trasmallo:

La preparación previa del trasmallo es importante, puesto que este debe mantener una posición al doblarse que permita su desplegado fácil, empleando únicamente la fuerza contraria de la embarcación para largarse. Se debe anclar el extremo inferior del trasmallo para mantenerse a fondo y se debe amarrar el extremo superior a una bolla flotante, a manera de que el paño del trasmallo tome una posición vertical que permita

facilitar la captura de los organismos. Con la ayuda de dos personas se va logrando mantener la posición vertical del trasmallo y evitando los plegamientos aplicando jalones sobre ambos extremos del trasmallo, esto se realiza hasta llegar al extremo final del trasmallo, donde igual se ancla el extremos inferior y se flota con una bolla el extremo superior del trasmallo.

Figura 10. Largado de trasmallo. Fuente: Propia.

7.3.2 Red de arrastre:

Es clasificada como un arte de pesca no selectiva, es decir puede capturar casi todo tipo de tallas de organismos y diversidad de los mismos, esta es un arte que requiere de fuerza extra, es decir debe ser jalada por la embarcación, no requiere estar preparada, ya que se debe armar en la embarcación por facilidad de manejo, la red esta diseñada para capturar todo en su extremo final o copo, se debe atar a dos cuerdas que a su vez, deben ser atadas a los extremos de una cadena, la cual esta sujetada por una pieza de madera en cada extremo llamados tablas, que son los encargados de dar dirección a la red.

Figura 11. Largado de red de arrastre. Fuente: Propia

7.3.3 Nasa:

Estas son trampas que permiten capturar selectivamente una talla o por algún hábito alimenticio, el funcionamiento del las trampas es simple, no requiere demasiado esfuerzo ni una previa preparación para ser largado, únicamente se instala la carnada y se ata a un flotador para dar con su ubicación, luego se deja por 24 horas. Preferiblemente debe estar en la noche, para aprovechar la actividad de los depredadores.

7.4 Identificación de organismos capturados

Para conocer la diversidad de pesca, deber identificarse y ordenarse todos los organismos que fueron capturados en la gira, y por arte de pesca. Este procedimiento se realiza en campo o bien puede llevarse a cabo en un laboratorio. Empleando guías de clasificación de intereses pesqueros puede conocerse la diversidad pesquera del lugar.

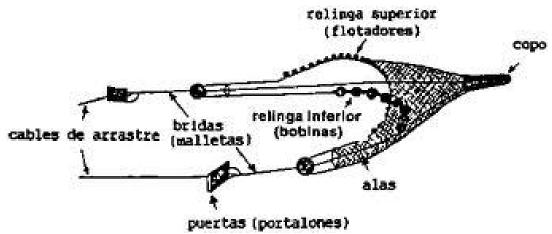


Figura 12. Esquema de red de arrastre. Fuente: Pescadores al limite 1998.

Figura 13. Organismos capturados con trasmallo. Fuente: propia.

8 METODOLOGÍA PARA LA EVALUACIÓN DE PARAMETROS FISICO QUIMICOS, PROYECTO DE PESCA RESPONSABLE.

8.1 Toma de muestras

Para la toma de muestras en campo se debe contar con todo el equipo necesario, para obtener la medida mas real que sea posible, debido que muchos de los parámetros fisicoquímicos no pueden ser medidos en campo por instrumentos de medición como refractómetros o multiparametricos, deben llevarse al laboratorio para ser analizados, esto quiere decir que se deben conservar.

Oxígeno disuelto, temperatura, salinidad, conductividad, zona fótica son parámetros que pueden ser medidos con multiparamétricos, refractómetros y disco de sechii, esto permite conocer las medidas instantáneamente y llevar registros en el campo. Sin embargo parámetros como: silicatos disueltos, amonio total, amoniaco, nitritos y nitratos, requieren de equipo más complejo que no puede llevarse al campo, por ello se debe llevar muestra al laboratorio, esto implica preservar las características originales de la muestra lo mayor sea posible. Para ello se requieren recipientes herméticos, hielo, hielera, botella de Niskin.

Figura 14. Botella de Niskin. Fuente: Propia.

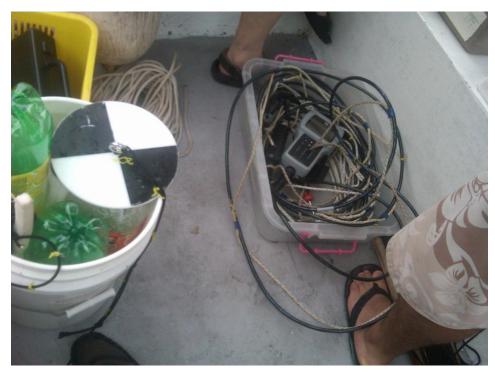

Los parámetros que puedan tomarse en situ deberán ser anotados y estar ordenados por lugar de muestreo, punto, fecha.

Figura 15. Hielera para almacenaje temporal de las muestras de agua. Fuente: propia.

Se identificaron las botellas de cada muestra de agua, al identificarse con tintas comunes puede que se altere la escritura con el agua, conocer el contenido de la muestra es muy importante, ya que ello evita confusiones. Se debe tomar la posición de cada sitio donde se tome la muestra, ya que para estudios futuros la localización de una fuente de referencia será de mucha utilidad.

Los equipos de medición como el multiparametrico, debe manejarse con cuidado ya que son materiales sensibles de fácil desgaste y pueden arruinarse, se deben seguir todas las instrucciones sobre el correcto uso de cada equipo.

Figura 16. Disco de sechii, multiparametrico y botellas para muestra. Fuente: Propia.

Figura 17. Uso de la botella de niskin. Fuente: Propia.

8.2 Preparación de muestras

Para la medición de parámetros se empleo un espectrofotómetro, el cual trabaja con longitudes de onda producidas por los diferentes colores que se usan para la medición de los parámetros. A continuación la preparación de los parámetros determinados:

Amonio:

Se emplean 5 ml de muestra agua, se prepara 0.1 ml de solución buffer, 0.1 ml de fenol y 0.1 de solución oxidante, posteriormente se almacena por 10 horas en obscuridad, la lectura se debe realizar a una longitud de onda de 630 nm.

Nitritos:

Se emplean 5 ml de muestra, o.1 ml de solución de sulfanilamida, luego se esperan 3 minutos. Se adicionan 0.1 ml de solución de dicloruro. Se esperan 20 a 30 minutos. Se realiza la lectura a una longitud de onda de 540 nm.

Fosfatos:

Se preparan 5 ml de muestra, se adiciona 0.1 ml de reactivo mixto, 0.1 ml de solución de acido ascórbico. Se deja que la actividad química trabaje de 5 a 30 minutos, por ultimo se realiza la lectura de 880 nm de longitud de onda.

Silicatos:

Se emplean 0.5 ml de muestra, se adicionan 0.15 ml de reactivo mixto, esperar 15 minutos, se adiciona 0.1 ml de acido ascórbico, mas 0.1 ml de acido oxilico. Se realiza una lectura a una longitud de onda de 810 nm.

8.3 Medición de parámetros de muestras

La medición se realiza en el espectofotómetro, este aparato permite la lectura de 5 muestras simultáneamente. Los resultados de la lectura deben ser convertidos posteriormente a mg / l por medio de un factor ya que los resultados de lectura se expresa como en una diferencia entre la longitud de onda resultante sobre la muestra.

Figura 18. Espectofotómetro utilizado en los análisis. Fuente: Propia.

Figura 19. Celdas de espectofotómetro utilizado. Fuente: Propia.

9 EVALUACIÓN SOCIO-ECONÓMICA DE COMUNIDAD DE PESCADORES DE PUERTO NISPERO, PROYECTO DE PESCA RESPONSABLE.

9.1 Elaboración de encuesta

Para poder elaborar una encuesta dirigida a pescadores se debe tener en cuenta que esta sea precisa y breve, es por ello que debe mantenerse claro la información que se pretende recopilar, para formular preguntas concisas. Además se debe diseñar una encuesta de un carácter no repetitivo ni aburrido, esto puede ayudar a mantener la fidedignidad en las respuestas del encuestado.

9.2 Ejecución de encuestas en campo

De acuerdo con el número de individuos que la encuesta requiera para ser estadísticamente representativa, los encuestadores deberán mantener un carácter atento con los encuestados, así también un interés sobre las respuestas del encuestado. Independientemente del diseño de la encuesta el encuestador deberá tratar de demorar el menor tiempo posible.

10 PLAN DE ACCIÓN.

Semana	Objetivos	Actividad
Semana 1	- Conocer las distintas áreas y	- Reconocimiento de las
3 / 10 /2011	laboratorios de trabajo.	instalaciones de la estación de
	- Realizar técnica de determinación	biología marina.
	de edad en peces, mediante la	- Reconocimiento del área de
	técnica de otolitos.	trabajo.
		- Introducción a la biología
		pesquera y determinación de
		edad en peces.
		- Realización de cortes de
		otolitos
Semana 2	- Elaborar plan de muestreo a	- Inducción teórica sobre los
10/10/ 2011	realizarse en gira.	ecosistemas marino costeros.
	- Realizar gira a Isla Toro para	- Elaboración de plan de
	muestreo de biodiversidad.	muestreo.
		- Gira de muestre a isla toro.
Semana 3	- Identificar taxonómicamente los	- Identificación de los
17/10/ 2011	organismos muestreados en la	organismos muestreados en la
	gira a Isla Toro.	gira a Isla Toro.
	- Etiquetar y fijar los organismos	 Inducción teórica sobre la
	recolectados e identificados en la	reproducción la relación con
	gira.	el ordenamiento pesquero.
		- Etiquetado y fijación de los
		organismos recolectados e
		identificados.
Semana 4	- Aprender a determinar el estado	- Aplicación de la histología en
24/10/ 2011	de madurez sexual en los peces,	la reproducción de peces.
	por medio de histología.	- Cortar gónadas de peces
		- Preparación de eosina y
		hematoxilina para tinción
		histológica.
		- Preparación de parafina para

		cortes de gónadas.
Semana 5	- Evaluar las muestras de	- Evaluación mensual de
31/10/2011	sedimento por medo de la	pesquerías de sardina para la
	granulometría.	empresa Sardimar.
	- Evaluar la pesquería de sardina	- Gira de muestreo de
	del mes de octubre.	parámetros físico químicos,
		sobre la zona de posible
		declaración de pesca
		responsable.
		 Preparación y análisis de
		muestras de agua y
		sedimentos.
Semana 6	- Realizar morfometria de la	- Análisis de muestra de
7/11/ 2011	muestra de calamar.	pesquerías de calamar
	- Determinar el recurso pesquero	(Loligunculapanamensis).
	de la zona de posible declaración	- Gira por 3 días de evaluación
	de pesca responsable.	de pesquerías, a zona de
		posible declaración de pesca
		responsable.
Semana 7	- Determinar biomasa capturada	- Evaluación de muestras
14/11/2011	como caracterización del recurso	obtenidas en gira de pesca.
	de pesca de la zona de posible	- Determinación del recurso de
	declaración de pesca responsable.	pesca de la zona de posible
		declaración de pesca
		responsable.
Semana 8	- Formulación de encuesta para la	- Formular las preguntas de la
21/11/2011	evaluación de la situación socio-	encuesta dirigidas a los
	económica de la comunidad de	pescadores de la comunidad
	pescadores de Puerto Níspero.	de Puerto Níspero.
	- Gira a comunidad de Puerto	- Encuestar a pescadores de la
	Níspero, para el encuestado de los	comunidad de Puerto Níspero.
	pescadores.	

11 RESULTADOS.

11.1 Evaluación de biodiversidad relacionada con la zona de posible declaración.

Cuadro 1. Tabla de posiciones globales de los cuadrantes trabajados.

tabla de posiciones globales de cuadrantes							
Posiciones		N				W	
No. Cuadrante	ō	,		"	ō	,	"
1	10		12	193	85	14	240
2	10	:	12	187	85	14	237
3	10	,	12	184	85	14	234
4	10	,	12	181	85	14	231
5	10	:	12	178	85	14	229
6	10		12	145	85	14	104
7	10		12	148	85	14	142
8	10		12	151	85	14	186
9	10	:	12	127	85	14	166
10	10	:	12	180	85	14	236
11	10		12	184	85	14	238
12	10	,	12	187	85	14	239
13	10	:	12	193	85	14	235
14	10	:	12	192	85	14	229
15	10	:	12	200	85	14	236
16	10		12	127	85	14	162
17	10		12	130	85	14	170
18	10	:	12	331	85	14	212
19	10		12	246	85	14	153

Cuadro 2. Biodiversidad marina registrada en Isla Toro, relacionada con la zona de posible declaración de pesca responsable

Crustaceos	Moluscos	Anelidos	Hexapodos
Alpheus sp.	Brachidontes sp.	Polichaeta	Velidae
Uca sp.	Tagelusperuvianus		Hidrofiledae
Callianassa sp.	Iphigeniaaltior		
coloncho sp.	Littorina varia		
Xantidae	Littorinazebra		
Clibanariuspanamensis	Thais kiosquiformis		
Ligia sp.	Protothacaasperrima		
Gonoipsispulchra	Mytellaguyanensis		
Porcellanidae	Neritina sp.		
balanomorfos sp 1	Terebra sp.		
balanomorfos sp 2	Nassariusplanocostatus		
	Theliostylafuniculata		
	Ostreidae		

Cuadro 3. Diversidad de micro hábitats identificados en cada cuadrante.

Cuadrante	Hábitat / zona de vida	Fecha	Observaciones
	playa de ostras /costado		
1	oeste	11/10/11	ligado a la actividad de baja mar
	playa de ostras /costado		
2	oeste	11/10/11	ligado a la actividad de baja mar
	zona de barro / costado		
3	oeste	11/10/11	ligado a la actividad de baja mar
4	zona fango arenosa	11/10/11	zona media
5	zona fango arenosa	11/10/11	zona media
6	zona arenosa	11/10/11	zona media
7	zona arenosa	11/10/11	zona media
8	zona fango arenosa	11/10/11	zona media
9	zona fango arenosa	11/10/11	canal de alimentación de agua salada
10	Muestra de agua	13/10/11	
11	roca en playa de ostras	13/10/11	mitad playa ostras / barro / zona media /
12	roca en playa de ostras	13/10/11	ligado a la actividad de baja mar
13	roca en playa de ostras	13/10/11	zona alta
14	roca en playa de ostras	13/10/11	zona alta
15	roca en playa de ostras	13/10/11	zona alta
16	roca en playa de ostras	13/10/11	zona alta
17	Muestra de agua	13/10/11	
18	zona rocosa	13/10/11	zona alta
19	Muestra de agua	14/10/11	
20	zona rocosa	15/10/2011	zona alta

11.2.Granulometría y análisis de sedimentos.

Cuadro 4. Parte 1 de la tabla de resultados de porcentaje de partícula.

%(Tamiz 0.953mm)	%(Tamiz 850um)	%(Tamiz 425um)	%(Tamiz 250)
27,81339871	8,61581255	38,63089906	17,3329876
25,58978057	12,54421208	26,93588819	19,20263727
15,41005512	3,741439786	34,63504259	32,65074328
9,588686729	13,64577046	30,27075968	27,40363887
0,301666019	0,303951368	7,699339534	72,44098087
0,25427059	1,345322577	10,94519313	69,46903678
0,128970524	1,516443742	21,93330976	65,06978969
1,643238609	4,315287477	11,93669959	60,22290889
11,12334802	15,7856094	20,6681351	27,75330396
0,478932358	2,319324113	-0,737232955	63,56347199
20,5279788	15,09530119	14,34104576	27,85648762
5,526271042	18,46624724	46,94779799	18,38689565
7,520026157	5,672715383	15,87379434	49,8038254
6,013229104	15,03307276	50,21046302	22,94046903
2,422959304	5,104681251	37,42648789	42,7742492
20,16518936	28,55895783	31,92989525	14,45071179
1,540216771	4,092983457	64,3896178	20,66457501

Cuadro 5. Parte 2 de la tabla de resultados de porcentaje de partícula por granulometría.

%(Tamiz 75um)	%(Palangana)	Comprobacion
2,345481118	0,381877328	100
3,880361251	1,929878782	100
2,919659262	0,607983965	100
3,798396137	0,551866862	100
2,173366547	0,169115799	100
2,653660341	0,429948452	100
1,863832089	0,336987498	100
1,12704735	0,162537732	100
7,78267254	1,945668135	100
4,525641716	0,360544584	100
5,46325553	0,845989196	100
2,590262427	0,702828317	100
2,869053458	0,743828674	100
1,232711966	1,14251353	100
1,215400298	0,211714891	100
1,128122482	0,470051034	100
2,039361095	0,492013691	100
	2,345481118 3,880361251 2,919659262 3,798396137 2,173366547 2,653660341 1,863832089 1,12704735 7,78267254 4,525641716 5,46325553 2,590262427 2,869053458 1,232711966 1,215400298 1,128122482	2,345481118 0,381877328 3,880361251 1,929878782 2,919659262 0,607983965 3,798396137 0,551866862 2,173366547 0,169115799 2,653660341 0,429948452 1,863832089 0,336987498 1,12704735 0,162537732 7,78267254 1,945668135 4,525641716 0,360544584 5,46325553 0,845989196 2,590262427 0,702828317 2,869053458 0,743828674 1,232711966 1,14251353 1,215400298 0,211714891 1,128122482 0,470051034

11.3. Evaluación del recurso pesquero de la zona de posible declaración de pesca responsable.

Cuadro 6. Especies capturadas y su biomasa estimada por cada una, perteneciente al día de pesca 9 / 11 / 2011.

Especie	Familia	Nombre común	Cantidad por especie	Biomasa por especie (g)
Stelliferillecebrosus	Sciaenidae	Chinita negra	20	284.1
Cynoscionphoxocephalus	Sciaenidae	Curvina picuda	6	87.2
Stelliferoscitans	Sciaenidae	Chinita maya	326	19336.1
Stelliferephelis	Sciaenidae	Chinita rápida	1	16.2
Stelliferzestocarus	Sciaenidae	Chinita ojona	5	32.8
Bagre panamensis	Ariidae	Cuminate	20	345.3
Arius sp.	Ariidae	Cuminate	3	87.2
Odontognathuspanamensis	Clupeidae	Sardina plática	1	20.1
Batrachoidesboulengeri	Batrachoididae	Pez perro o sapo	1	146.6
Ilishafurthii	Engraulidae	Sardina hacha	27	67.2
Anchoa lucida	Engraulidae	Bocona	4	58.8
Protrachypene precipua	Penaeidae	Camarón titi	596	680.5
Trachipenaeusbyrdi	Penaeidae	Camarón carabalí o conchudo	7	17
Litopenaeusstylirostis	Penaeidae	Camarón blanco	1	11.4

Cuadro 7. Especies capturadas y su biomasa estimada por cada una, perteneciente al día de pesca 10 / 11 / 2011.

Especie	Familia	Nombre común	Cantidad por especie	Biomasa por especie (g)
Stelliferillecebrosus	Sciaenidae	Chinita negra	2	41.2
Cynoscionphoxocephalus	Sciaenidae	Curvina picuda	5	52.4
Stelliferoscitans	Sciaenidae	Chinita maya	227	611.6
Bagre panamensis	Ariidae	Cuminate	20	345.3
Arius sp.	Ariidae	Cuminate	3	87.2
Ilishafurthii	Engraulidae	Sardina hacha	69	246.4
Anchoa lucida	Engraulidae	Bocona	6	43.9
Ancho mundeola	Engraulidae	Falsa anchoa	5	50
Protrachypene precipua	Penaeidae	Camarón titi	44	44.6
Trachipenaeusbyrdi	Penaeidae	Camarón carabalí o conchudo	5	7
Litopenaeusstylirostis	Penaeidae	Camarón blanco	1	16.7

11.4.Determinación de parámetros físico-químicos relacionados con la zona de posible declaración de pesca responsable.

Cuadro 8.Concentración de amonio, nitritos, fosfatos y silicatos obtenida de las muestras de agua de la zona de posible declaración de pesca responsable.

Nombre de la Muestra	NH4 ⁺ en mg/L	NO ₂ en mg/L	PO ₄ en mg/L	SiO ₂ en mg/L
Níspero 1	0.0602748	0.1776888	0.6801276	48.823.476
Níspero 2	0.0677052	0.2230724	0.8284972	54.550.908
Níspero 3	0.0838062	0.2238452	0.8370794	53.885.232
Níspero 4	0.1015596	0.244099	0.878242	45.450.546
Níspero 5	0.0664668	0.2097416	0.864518	51.225.942
Níspero 6	0.0553194	0.2123038	0.7890454	49.180.188
Níspero 7	0.0689436	0.2192268	0.8525142	44.617.908
Níspero 8	0.0586224	0.2282014	0.888535	52.177.968
Níspero 9	0.0652284	0.332304	2.332.845	47.954.496
Isla Toro C10	0.057798	0.0292284	0.3430624	3.342.609
Isla Toro C17	0.1403658	0.0369196	0.5077316	29.276.556
Isla Toro C18	0.0619254	0.0407652	0.3765076	31.849.266
Isla Toro C19	0.0454122	0.0292284	0.2778828	380.991

Cuadro 9. Valores obtenidos de parámetros físicos del agua de la zona posible declaración de pesca responsable.

Muestra	T °C	Conductividad	Salinidad (ppm)	OD%
Níspero 1	26.75	9.25	5.13	41.6
Níspero 2	25.85	0.507	0.23	48.2
Níspero 3	26.35	0.52	0.24	46
Níspero 4	26.20	3.60	1.50	44.7
Níspero 5	27.05	1.98	0.95	44.4
Níspero 6	27.10	6.40	3.51	44.5
Níspero 7	27.15	7.72	4.15	43.4
Níspero 8	27.10	1.30	0.62	45.2
Níspero 9	27.20	5.20	2.40	44.4

Cuadro 10. Valores de parámetros medioambientales sobre la zona de posible declaración de pesca responsable.

		Velocidad del Viento
Muestra	T °C	(m/s)
Níspero 1	26.8	2.8
Níspero 2	26.2	3.2
Níspero 3	26.6	2.3
Níspero 4	26.6	3.6
Níspero 5	27.6	1.4
Níspero 6	28.2	1.9
Níspero 7	27.4	1.3
Níspero 8	28	1.1
Níspero 9	30.6	0.6

Cuadro 11. Valores de lectura de penetración de luz, por medio del disco de sechii.

	Lectura
	del Disco
	de Sechii
Muestra	(cm)
Níspero 1	20
Níspero 2	15
Níspero 3	17
Níspero 4	20
Níspero 5	20
Níspero 6	25
Níspero 7	30
Níspero 8	20
Níspero 9	12

11.5. Evaluación de la situación socio-económica de la comunidad de pescadores de Puerto Níspero.

Cuadro 12. Número y nombre de pescadores encuestados.

Datos Generales				
Nº encuesta	Fecha	Lugar	Nombre	
1	23/11/2011	Pto Níspero	Rafa Umaña Hernández	
2	23/11/2011	Pto Níspero	María Elena Aguila	
3	23/11/2011	Pto Níspero	Wilber Espinoza Gutierrez	
4	23/11/2011	Pto Níspero	Luis Fernando	
5	23/11/2011	Pto Níspero	Luis Antonio Obando	
6	23/11/2011	Pto Níspero	Carlos Pineda Guzmán	
7	23/11/2011	Pto Níspero	Cristian	
8	23/11/2011	Pto Níspero	Jose Alberto	

Cuadro 13. Cuadro de resultados de respuesta a sitos de pesca.

2. Caladeros de Pesca							
Α	В	С	D	Verano	Invierno	Día	Noche
Cerro Gordo	Colorado	Yuca	Montero	1	1	1	0
Cerro Gordo	Chira			1	1	1	1
Nispero	Colorado			1	1	1	1
Río Bebedero				1	1	1	0
Cerro Gordo	La Sierra	Punta Piedra		1	1	1	0
Níspero	Chira			1	1	1	1
Punta Piedra	El Flor	Palos Altos		1	1	1	1
Níspero	Chira	Yuca	Punta Piedra	1	1	1	1
,				8	8	8	5

Cuadro 14. Respuestas sobre sitos idóneos para establecimiento de zona de pesca responsable.

8. ¿Cuál consideraría usted un área idónea para establecer el área de pesca responsable?				
Α	В	С	D	
Níspero	Montero	Bajos Yuca	Punta Piedra	
Punta Perros	Tigres	0	0	
0	0	0	0	
Parte del Río Bebedero				
Níspero	Punta Piedra			
Punta Perros	Isla Toro	El Flor	Palos Altos	
Punta Perros	Níspero			

Cuadro 15. Respuestas sobre alternativas de manejo al Golfo de Nicoya.

9. ¿Qué alternativas considera viables para el manejo sostenible de la pesca en el Golfo de Nicoya?			
Α	В	С	
	Regulación en artes de		
Pesca responsable	pesca		
Turismo	Pesca deportiva		
Regular Artes de	No arrastre	No pesca con	
pesca	No arrastre	bombas	
Regular el trasmallo			
Regular Artes de			
pesca			
Regular el trasmallo	No pesca con bombas		
Regular el trasmallo			
		No pesca con	
Regular el trasmallo	No arrastre	bombas	

Cuadro 16. Respuestas sobre aprovechamiento actual al golfo de Nicoya.

	10. En términos del aprovechamiento actual, cuál cree usted que es la tendencia de la pesca en el Golfo de Nicoya?			
Hacia Sostenibilidad	Se continua con Sobreexplotación	Colapso Irreversible		
0	0	1		
0	0	1		
0	0	1		
0	1	0		
0	1	0		

12 CONCLUSIONES.

- La Estación de Biología Marina es la institución que provee el conocimiento consolidado científicamente para realizar un manejo sustentable por la institución encargada del manejo y regulación (INCOPESCA).
- El Golfo de Nicoya representa el recurso pesquero de mayor importancia en Costa Rica.
- La biología pesquera pretende estudiar y comprender el punto de equilibrio entre la parte biológica de una especie como de la parte social y económica que representa la pesquería de la misma.
- Los estudios de biología pesquera permiten conocer cuales son las mejores medidas de manejo sustentable para una pesquería.
- Las técnicas utilizadas para estudios de biología pesquera son: determinación de edad en los organismos, determinación de parámetros reproductivos en las especies, determinación de la biología reproductiva de las especies y conocimiento de las artes de pesca empleadas por las pesquerías.

13 RECOMENDACIONES.

- Hacer énfasis sobre la importancia de los recursos pesqueros nacionales en la Carrear Técnico en acuicultura y Licenciado en Acuicultura.
- Reforzar áreas básicas de conocimientos sobre zoología, botánica acuática y ecología marina, para estar en capacidad de realizar estudios biológicos sobre el medio marino.
- Permitir y apoyar a estudiantes interesados en profundizar en el área de la biología marina y el estudio de los recursos marinos.

14 BIBLIOGRAFIA.

- Bolaños, R; Watson, V. 1993. Mapa ecológico de Costa Rica: Sistema de Clasificación de Zonas de Vida de Holdridge. San José, CR, Centro Tropical. Escala 1:200.000.
- EBM (Estación de Biología Marina Puntarenas, CR). 2007. Misión y visión de la EBM (en línea). Costa Rica, Universidad Nacional. Consultado 16 dic. 2011. Disponible en http://www.una.ac.cr/biol/una/ebm/ebmsp.htm
- IMN (Instituto Meteorológico Nacional, CR).2008. Datos climáticos de Puntarenas (en línea). Costa Rica, Instituto Meteorológico Nacional. Consultado 16 dic. 2011. Disponible
 en http://www.imn.ac.cr/IMN/MainAdmin.aspx? EVENTTARGET=ClimaCiudad&CIUDAD=6
- Pinto, J; Sousa, A. 2002. Técnicas de muestreo de diversidad para meiofauna de fangos en ambientes salobres. Brasil, Universidad de Porto Alegre. p. 198.
- Suarez, J; Cortez, F. 2005. Zooplancton presente en comunidades de coral del parque Nacional Ballena. Universidad de Costa Rica. p. 78.
- Universidad de Chile. 1989. Datos y técnicas para histo-zoologia (en línea). Chile,
 Universidad de Chile. Consultado 10 dic. 2011. Disponible en https://www.uchile.edu.ch/ciencias_biologicas/depto.zoología
- UNA (Universidad de Costa Rica). 2005. Mapa de Puntareanas (en línea). Costa Rica, Facultad de Tierra y Mar, Universidad Nacional de Costa Rica. Consultado 20 dic. 2011. Disponible en: http://www.mapoteca.geo.una.ac.cr