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RESUMO

Modelos lineares mistos e generalizados mistos em estudos adaptacao local e
plasticidade fenotipica de Futerpe edulis

Este trabalho objetivou a avaliacao da presenca de plasticidade fenotipica
e de adaptacao local de trés procedéncias de palmiteiro: Ombrofila Densa, Estacional
Semidecidual e Restinga, em trés locais no Estado de Sao Paulo: Parque Estadual da
[lha do Cardoso, Parque Estadual de Carlos Botelho e Estacao Ecologica dos Caetetus,
em ensaios de adaptagdo no estabelecimento (ou de semeadura) e de adaptacdo em ju-
venis (ou de crescimento). Os conjuntos de dados foram analisados utilizando estruturas
de grupos de experimentos, com efeitos cruzados e aninhados. As varidveis relacionadas
com a massa de matéria seca das plantas, nos dois ensaios, foram analisadas usando a
abordagem de modelos lineares de efeitos mistos, por meio da incorporacao de fatores de
efeito aleatério, e fazendo uso do método da méxima verossimilhanga restrita (REML)
para estimacao dos componentes de variancia associados a tais fatores com um menor
viés. Por outro lado, para a propor¢ao de sementes germinadas, no ensaio de adaptacgao
no estabelecimento, a analise estatistica foi realizada a partir da abordagem dos modelos
lineares generalizados mistos, sob a pressuposicao de que a variavel segue uma distri-
buicao binomial, com funcao de ligacao logito. O método da pseudo-verossimilhanca foi
empregado para obtencao da solucao das equacoes de verossimilhanca. Os resultados
mostraram que as plantas originadas de sementes dos trés biomas avaliados apresentaram
um comportamento plastico, para todos os caracteres avaliados no ensaio de adaptacao
no estabelecimento. Com relacao ao ensaio de adaptacao em juvenis, a caracteristica
de plasticidade foi verificada somente para a massa de matéria seca da folha em plan-
tas provenientes do bioma Estacional Semidecidual. A caracteristica de adaptagao local,
apresentou-se de forma evidente no ensaio de adaptagao no estabelecimento. Estes re-
sultados evidenciaram que em cada local avaliado, as plantas originadas das sementes
de diferentes procedéncias apresentaram um comportamento diferenciado nos caracteres
relacionados a massa de matéria seca, podendo em alguns casos, tratar-se de adaptacao
local. Concluiu-se que os locais Carlos Botelho e Ilha do Cardoso sao os mais favoraveis
para a germinagao das sementes de sua mesma procedeéncia.

Palavras-chave: Adaptacao local; Plasticidade fenotipica; Analise de grupos de experimen-
tos; Modelos lineares mistos; Modelos lineares generalizados mistos
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ABSTRACT

Linear mixed models and generalized mixed models applied in studies of
local adaptation and phenotypic plasticity of Futerpe edulis

The aim of this work was to evaluate the presence of phenotypic plasticity
and local adaptation of three provenances of the palm specie Futerpe edulis: Atlantic
Rainforest, Seasonally Dry Forest and Restinga Forest, in permanent parcels inserted in
three forest types of the Sao Paulo State (Brazil): Parque Estadual da Ilha do Cardoso,
Parque Estadual de Carlos Botelho e Estacao Ecologica dos Caetetus, in experiments of
seedling establishment and juveniles plants growth. The data sets were analyzed using
structures of groups of experiments, with crossed and nested effects. The variables re-
lated to dry matter content of plants in both assays were analyzed using linear mixed
models (LMM) approach, through the incorporation of random effect factors, and using
the restricted maximum likelihood method (REML) for estimation of variance compo-
nents associated with these factors with a minor bias. On the other hand, germination
proportion of the seeds at seedling establishment assay was analyzed using the generalized
linear mixed models (GLMM) approach, under the assumption that the variable follows
a binomial distribution, with logit link function. The pseudo-likelihood (PL) method was
used to obtain the numerical solution of the likelihood equations. The results showed
that, plants from seeds of the three biomes evaluated presented a plastic behavior for all
characters assessed in the seedling establishment assay. In respect to juveniles adaptation
assay, the phenotypic plasticity characteristic was observed only to the leaf dry matter
content of plants from Seasonally Dry Forest biome. The local adaptation characteristic
was clearly observed in the seedling establishment assay. These results showed that at
each site evaluated, plants originating from seeds of different provenances exhibited dif-
ferent behavior on characters related to the dry matter content and may in some cases
be local adaptation. It was concluded that locations Carlos Botelho and IlTha do Cardoso
are the most favorable for seed germination of its same provenance.

Keywords: Local adaptation; Phenotypic plasticity; Joint analysis from agronomical
essays; Linear mixed models; Generalized linear mixed models
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1 INTRODUCAO

A palmeira FEuterpe edulis pertence a familia Arecaceae, esta distribuida

naturalmente na Mata Atlantica, tendo distribuicao preferencial ao longo do litoral bra-
sileiro, desde o sul da Bahia (latitude 15°S) até o norte do Rio Grande do Sul (latitude
30°S). Esta palmeira possui estipe simples que cresce até 20 metros de altura e forma
o palmito na base das folhas. Popularmente esta espécie é conhecida como palmiteiro
jugara, jicara ou ripa (LORENZI; MELLO FILHO, 2001).

O palmiteiro caracteriza-se por produzir palmito de excelente qualidade,
com valor economico elevado e amplamente consumido na alimentagao humana, porém
¢ uma planta que nao rebrota na base e o corte implica em sua morte (CARVALHO,
2003). Além disso, é de extrema importancia ecolégica na cadeia alimentar do ecos-
sistema florestal, pois apresenta altos niveis de interacao com os animais e desempenha
significativo papel na nutricao da fauna da Mata Atlantica, uma vez que seu fruto serve de
alimento para aves e mamiferos, como roedores, marsupiais, primatas e morcegos (REIS;
KAGEYAMA, 2000).

No entanto, as populagoes de palmiteiros foram drasticamente reduzidas
devido a agao extrativista e ao corte indiscriminado, sendo atualmente encontrado ape-
nas em areas protegidas da Mata Atlantica, principalmente em locais de dificil acesso
(FANTINI, 1997). Essas acoes extrativistas tém inviabilizado a regeneragao natural do
palmiteiro necessaria para recompor a populagao original, estando ameagado de extingao.
Perante esta situagao, estudos sobre sua restauracao ecoldgica sao indispensaveis (BRAN-
CALION;, 2009). Uma parte desses estudos consiste na avaliagdo da adaptagao local e
da plasticidade fenotipica de espécies de plantas com ampla distribuicao geografica e
ecologica, em diferentes locais.

A plasticidade fenotipica é a capacidade que mostram alguns gendtipos
de alterar de forma significativa sua expressao (variagoes morfolégicas e/ou fisioldgicas)
em resposta a determinados fatores ambientais, sem que mudancas genéticas sejam ne-
cessarias, produzindo uma série de fenétipos diferentes (BRADSHAW, 1965; SCHLICH-
TING,1986).

O maior interesse deste fendmeno é a possibilidade da plasticidade incluir
processos ativos de adaptacao ao estresse ambiental, aspecto fundamental para garantir

a estabilidade futura das massas florestais, perante as alteracoes climaticas globais.
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Por outro lado, a adaptacao local é o processo evolutivo pelo qual um or-
ganismo se torna mais capaz de viver em seu (ou seus) habitat(s). As espécies que
apresentam grande amplitude de distribuicao e longos periodos de vida estao, geralmente,
submetidas a condigoes bidticas (competicao, parasitismo, cooperacdo etc) e abidticas
(luz, pluviosidade, temperatura, umidade atmosférica, ventos, textura do solo etc) bem
variadas. Esta heterogeneidade ambiental, no espaco e no tempo, conduz a longo prazo, ao
desenvolvimento de adaptagoes locais entre as populagoes (SAVOLAINEN; PYHAJARVT,
KNURR, 2007).

Num trabalho conduzido por Brancalion (2009), o objetivo foi avaliar a
presenca de plasticidade fenotipica e adaptacao local de palmiteiros originarios de trés
procedéncias, ou formagoes florestais (Ombrdéfila Densa, Estacional Semidecidual e Res-
tiga) em trés locais (unidades de conservagao) do Estado de Sao Paulo (Parque Estadual
de Carlos Botelho, Estagao Ecoldgica de Caetetus e Parque Estadual da Ilha do Cardoso).
Para isso, conduziu ensaios de estabelecimento e de crescimento de mudas.

Neste trabalho propoe-se, para andlise dos resultados, a utilizacao de mode-
los lineares mistos, para as variaveis relacionadas com os valores de massa de matéria seca
folha, do caule, da raiz e total. Por outro lado, para a andlise da proporcao de sementes
germinadas propde-se a utilizacdo de modelos lineares generalizados mistos (MLGM).

O modelo linear misto (MLM), tal como utilizado neste trabalho, tem como
pressuposicoes a normalidade dos residuos do vetor de parametros de efeito aledtério.
Para a estimacao dos parametros e predigao dos efeitos aleatorios, o método utilizado foi
o da maxima verossimilhanga restrita (REML), que fornece estimativas com menor viés.

As pressuposigoes consideradas para os MLGM, por outro lado, foram que a
variavel segue uma distribui¢ao binomial, com estrutura do preditor linear correspondente
a um modelo de grupos de experimentos, com fatores cruzados e aninhados, com efeitos
fixos: local, procedéncia e a interacao local e procedéncia, e efeitos aleatérios: blocos
dentro de locais, plantas matrizes dentro de procedéncias e a interacao entre local e
plantas matrizes dentro de procedéncias.

As estimativas dos parametros dos efeitos fixos e a predicao dos efeitos
aleatérios foram obtidas a partir da maximizagao do logaritmo da funcao de pseudo-

verossimilhanga (PL), utilizando-se o algoritmo de otimizagao quase-Newton.
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Na secao a seguir é realizada a revisao da literatura a respeito dos assuntos
descritos nesta introducao, na Secao 3 sao descritos os conjuntos de dados utilizados no
trabalho. Nesta se¢ao ¢ também apresentada a metodologia adotada para analisar os
dados. Na Secao 4 sao apresentados os resultados e discussao para os dois experimentos

e na Secao 5 sao apresentadas as consideracoes finais sobre o trabalho.
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2 REVISAO BIBLIOGRAFICA

Nesta secao sao apresentados alguns conceitos relacionados com a plastici-
dade fenotipica e a adaptagao local (definigao e importancia em estudos de restauragao
ecoldgica, formas de expressao, causas e principais metodologias para o estudo destes pro-
cessos), notagdes e principais conceitos relacionados & andlise de grupos de experimentos,
modelos lineares mistos, modelos lineares generalizados (MLG) e MLG mistos (inferéncia

para parametros de efeito fixo e aleatério e diagndstico de residuos).

2.1 Plasticidade fenotipica

A plasticidade fenotipica, segundo Bradshaw (1965) e Schlichting (1986), é
a capacidade que mostram alguns gendétipos de alterar de forma significativa sua expressao
(variagoes morfologicas e/ou fisiolégicas) em resposta a determinados fatores ambientais,
sem que mudangas genéticas sejam necessarias, produzindo uma série de fendtipos dife-
rentes.

Em plantas, segundo Fuzeto e Lomonaco (2000) a plasticidade fenotipica
pode ser expressa no crescimento em altura, na anatomia e morfologia das estruturas
vegetativas (partes encarregadas de todas as fungoes vitais, exceto a reproducao) e repro-
dutivas, na alocacao absoluta e relativa de biomassa, e na taxa fotossintética e fenologia.

De acordo com Thompson (1991), gendtipos que expressam grande vari-
abilidade fenotipica em diferentes ambientes sao considerados como plasticos, e os que
mostram pequena variabilidade sao denominados robustos. Apesar da existéncia dessa
classificagao, Bradshaw (1965) e Scheiner (1993) ressaltam que uma determinada carac-
teristica pode ser plastica em resposta a um fator ambiental, mas nao a outro, e que
analogamente, caracteres distintos podem representar diferentes graus de plasticidade,
concluindo que a plasticidade nao é propriedade geral do genétipo, mas sim especifica de
um carater genético ou de um conjunto de caracteres genéticos.

A plasticidade fenotipica, segundo Scheiner (1993), retrata ainda, a habi-
lidade de um organismo de alterar sua fisiologia e/ou morfologia em decorréncia de sua
interagao com o meio ambiente. Espera-se, deste modo, que uma populagao, ocupando
um ambiente heterogéneo, apresente grande potencial plastico em suas caracteristicas

fisiolégicas e/ou morfolégicas (FUZETO; LOMONACO, 2000).
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No entanto, deve-se notar que uma parte da variacao fenotipica obser-
vada pode ser causada por variagoes aleatorias durante o desenvolvimento dos organis-
mos, que nao tém conexao com alguma influéncia ambiental (NOVOPLANSKY, 2002;
BRADSHAW, 1965).

Chambel et al. (2005) citam um fator importante que atua sobre a plas-
ticidade fenotipica: a temperatura que, atualmente, tem aumentado devido a mudancas
climaticas. Adicionalmente, Lépez (2009) cita os seguintes fatores que afetam a plastici-
dade fenotipica dos organismos vegetais: a competigao interespecifica (competi¢ao entre
duas espécies diferentes que disputam um mesmo nicho ecolégico no mesmo local), a altura
das ondas do mar, a quantidade de luz recebida, a resisténcia a salinidade, a quantidade
de nutrientes ou o ambiente, em geral, em que vive o individuo.

Todos esses fatores podem, em determinadas situacoes, induzir a alteragoes
genotipicas nos organismos, que podem fazer com que uma populacao seja beneficiada e
obtenha um aumento na tolerancia ambiental.

Para estudar a plasticidade fenotipica é frequente a instalacao de ensaios em
diferentes ambientes (locais), denominados ensaios de proveniéncias. Nestes, os materiais
genéticos provenientes de diferentes locais sao plantados em todos os locais, que possuem
diferentes condicoes ambientais. Alternativamente podem ser realizados ensaios em ambi-
entes com condigoes controladas (casas de vegetagao, estufas, laboratérios) com gradientes
em algum fator determinado (luminosidade, temperatura, disponibilidade hidrica, niveis
de fertilidade de solos etc).

Scheiner (1993) salienta que, para quantificar a plasticidade, é necesséria
a reproducao dos genodtipos em ambientes contrastados mediante propagacao clonal ou
partindo de familias de meios irmaos ou irmaos completos.

Por sua vez, Martins (2007) descreve os principais métodos de avaliacao da
plasticidade fenotipica, e cita que a andlise de variancia (ANOVA) para dois fatores é o
método frequentemente utilizado para comparar a plasticidade da resposta de diferentes
gendtipos em uma série de ambientes. Dessa forma, esta andlise permite identificar a
variacao devida aos gendtipos, aos ambientes e a interacao de ambos os fatores. Nos
delineamentos experimentais que consideram o gendtipo, um fator ambiental (local) e a
sua interacao, a variancia ambiental se deve a respostas plasticas dos gendtipos em geral,

e a existéncia de interacao se deve a uma variagao genética nessa resposta plastica.
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Em estudos sobre avaliacao fenotipica nos quais a varidvel resposta medida é
do tipo proporcao ou contagem, tém sido utilizados para sua andlise estatistica, os MLGs
ou os MLGMs.

Como exemplo, Lépez (2009) avaliou a diferenciagao adaptativa entre 21
populagoes de Pinus canariensis Chr. Sm. ex DC., em dois locais (Ilhas Candrias,
Espanha e na regiao setentrional de Israel), entre 1999 e 2006, utilizando o delineamento
de blocos incompletos. Uma das varidveis analisadas neste estudo, foi a proporcao de
arvores sobreviventes aos 5 e 8 anos depois da plantacao. Analises individuais e conjuntas
(séries de experimentos) foram realizadas, utilizando modelos logisticos, pressupondo uma
distribuicao binomial para a variavel resposta, funcao de ligagao logito e considerando o
efeito de blocos como aleatério.

Ramirez (2010), por sua vez, avaliou a plasticidade fenotipica e diferen-
ciacao genética inter e intra-populacional de 13 populagoes de Quercus suber L., por meio
de caracteres fisioldgicos e marcadores moleculares, em dois locais da Espanha (Parque
Nacional de Monfragiie e Parque Nacional de la Sierra de Andajir), utilizando o deline-
amento casualizado em blocos. Anadlises individuais para a variavel propor¢ao de plantas
sobreviventes aos 4 anos apds iniciado os ensaios, foram realizadas, utilizando modelos
logisticos, pressupondo uma distribuicao binomial para a variavel resposta, funcao de
ligacao logito e considerando o efeito de blocos como fixo.

Por outro lado, para analisar variaveis de natureza continua e quando sao
considerados alguns fatores de efeitos aleatdrios (por exemplo, blocos) ou aninhados (por
exemplo, plantas dentro de procedéncias ou blocos dentro de locais), nos ensaios sobre
plasticidade fenotipica tém sido utilizados os modelos lineares mistos, como descrito nos
trabalhos de Eckhart, Geber e McGuire (2004), Angert e Schmeske (2005) e Cavallero et
al. (2011), dentre outros.

2.2 Adaptacgao local

Combes (1946) define a adaptagao como o conjunto de modifica¢oes provo-
cadas na constituicao de um organismo pela acao continua de um meio diferente daquele
onde, inicialmente, este se desenvolveu ou seus ascendentes. Savolainen, Pyhajarvi e
Knurr (2007), por sua vez, definem a adaptagdo como o processo evolutivo pelo qual um

organismo se torna mais capaz de viver em seu (ou seus) habitat(s). As espécies que
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apresentam grande amplitude de distribuicao e longos periodos de vida estao, geralmente,
submetidas a condicoes bidticas e abidticas bem variadas.

Segundo os autores, os fatores bidticos sao aqueles relacionados as relacoes
ecolégicas interespecificas (aquelas que ocorrem entre seres de espécies diferentes, por
exemplo, predagao, competigao, parasitismo, cooperagao, mutualismo e comensalismo) e
as intraespecificas, que sao as relagoes que se estabelecem entre seres vivos da mesma
espécie (cooperagao, competigao e canibalismo). Entanto, os fatores abidticos sao os fato-
res climdaticos (luz, pluviosidade, temperatura, umidade atmosférica, ventos etc.), fatores
edaficos (ligados ao solo, como a textura, estrutura, composi¢ao quimica, pH, umidade,
permeabilidade etc.) e fatores fisico-quimicos da dgua (temperatura, pH, salinidade, tur-
bidez etc.).

Esta heterogeneidade ambiental, no espaco e no tempo, origina pressoes
seletivas diferentes que conduzem, a longo prazo, ao desenvolvimento de adaptacoes locais
e a divergéncia ecotipica entre as populagoes.

A pressao seletiva é o termo designado para relacionar o papel do meio
ambiente na selecao dos genes de uma populagao. Assim, dependendo do ambiente onde
os organismos estao interagindo, por meio da selecao natural, alguns genes terao maior
chances de sobreviver e serem passados a geracao seguinte, do que outros. A pressao
seletiva representa, portanto, um conjunto particular de caracteristicas do ambiente que
filtra determinados genes “direcionando”a evolucao de determinadas caracteristicas para
a adaptacao a este ambiente.

A instalacao de ensaios de procedéncias é muito utilizada, especialmente
nas espécies florestais, para estudar processos de adaptacao entre populacoes. Esses en-
saios consistem na instalacao de populacoes de uma espécie, caracterizadas por diferentes
condigoes ecoldgicas no seu lugar de origem, sob um ambiente comum. As possiveis
diferengas populacionais observadas nos caracteres analisados podem ser atribuidas as
diferengas genéticas (COLAUTTI; ECKERT; BARRETT, 2010).

A seguir serd apresentada uma descricao da andlise de grupos de experi-
mentos, que sao de uso frequente em estudos sobre plasticidade fenotipica e adaptacao

local de espécies vegetais.
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2.3 Analise de grupos de experimentos

Anélise de grupos de experimentos é uma técnica de uso frequente na ex-
perimentacao agronomica. Em inimeras situagoes, ocorre a instalacao de um grupo de
experimentos por toda a regiao para a qual se deseja fazer inferéncia. Segundo Barbin
(2013), todos os experimentos devem, preferivelmente, ter o mesmo niimero de tratamen-
tos e repeticoes, mesmo delineamento experimental e tratos culturais, e repetidos por
vérios anos, porém instalados em locais (ambientes) distintos, com o objetivo de obter
uma abrangeéncia nas conclusoes. No caso de se dispor de ensaios com ntumero diferente
de blocos ou repetigoes, Vencovsky e Barriga (1992), recomendam, para contornar tal
problema, utilizar os procedimentos sugeridos por Cochran e Cox (1957).

De acordo com Martinez (1988), o primeiro estudo teérico do problema que
surge ao combinar os resultados de uma série de experimentos similares, ¢ atribuido a
Cochran (1937). Posteriormente, Yates e Cochran (1938) sugerem um exame cuidadoso
dos resultados experimentais antes de iniciar qualquer analise combinada, e atestam que
o procedimento de analise de variancia usual, apropriado para analisar os resultados dos
experimentos, pode requerer modificacao, devido a heterocedasticidade presente entre os
diferentes experimentos. Assim, sugerem a particao das somas de quadrados associa-
das aos tratamentos e a interagao de tratamentos X locais em componentes ortogonais
apropriados.

Uma analise de variancia para grupos de experimentos em estudos de me-
lhoramento de plantas foi desenvolvido por Rojas (1951), focalizando sua atenc¢do na
estimagao dos componentes de variancia. Kempthorne (1952), por sua vez, considera que
na analise conjunta, existem duas possiveis dificuldades para a interpretacao dos resulta-
dos na anélise de variancia. A primeira dificuldade é que a variancia residual (%) nao
é constante nos experimentos, e a segunda, é que o componente de variancia referente a
interagao de tratamentos x locais depende da combinacao de tratamentos e locais. Poste-
riormente Rojas (1958) estudou a situacao geral da andlise de um grupo de experimentos
distribuidos no tempo e no espaco, e desenvolveu uma teoria para solucionar o problema
da heterogeneidade de variancias.

Outras contribui¢oes importantes para o estudo da andlise conjunta de ex-
perimentos sao apresentadas por Cochran (1954), Cochran e Cox (1957), Pimentel-Gomes

e Guimaraes (1958), Pavate (1961) e Pimentel-Gomes (1970), dentre outros.
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Com relacao a metodologia para a andlise estatistica dos grupos de expe-
rimentos, Barbin (2013) recomenda que inicialmente se devem fazer todas as andlises
individuais, isto é, uma andlise para cada local e em seguida, examinar as grandezas dos
quadrados médios residuais. Para que as analises individuais possam ser reunidas em uma
analise conjunta, é preciso que haja homogeneidade de variancias entre os experimentos,
isto é, que os quadrados médios residuais (QMRes) nao difiram muito entre si. Nesse
aspecto, Pimentel-Gomes (2009) considera que se o quociente entre o maior e o menor
QMRes for menor que 7, geralmente a anélise conjunta podera ser realizada sem grandes
problemas.

Para testar a homogeneidade, por outro lado, pode-se aplicar qualquer um
dos testes para verificacao da homogeneidade de variancias, por exemplo, o teste de Bart-
tlet, descrito em Anderson e Bancroft (1952) ou em Steel e Torrie (1960), ou o teste F'
maximo de Hartley (1950). Nos casos em que a homogeneidade de variancias nao for

detectada deve-se proceder da seguinte maneira, de acordo com Cochran (1954):

(i) Considerar separadamente subgrupos de experimentos com quadrados médios resi-

duais homogéneos. Andlises conjuntas serao feitas para cada subgrupo.

(ii) Alternativamente, podem-se reunir todos esses locais numa sé andlise conjunta, e no
momento de tomar a decisao de rejeitar ou nao a hipétese Hy, por meio do teste F)
aplicar o método proposto por Cochran (1954), que consiste em ajustar o nimero
de graus de liberdade do residuo médio, representado por v, e o nimero de graus
de liberdade da interacao Locais x Tratamentos, representado por v, obtidos da

seguinte maneira:

K 2
[Z QM Residuo (Local k)
k=1
" [QM Residuo (Local k)]? 7
Z gl Residuo (Local k)

v =

k=1

que corresponde a aplicar a equagao de Satterthwaite (1946), com gl Residuo ( Local k) <

K
v < Zgl Residuo ( Local k), e
k=1

, (= 1)K~ 1)V
(K~ 2V, + V2
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em que I é o numero de tratamentos e K é o nimero de locais (ou experimentos), e

K K
Z QM Residuo (Local k) Z[ QM Residuo (Local k)]?

K Y

sendo que QM Residuo (Local k) é o quadrado médio residual referente ao k-ésimo local
ou experimento.

Mais recentemente, Littell et al. (2006) citam que, variancias heterogéneas
podem ser incorporadas na anélise estatistica dos dados, no contexto dos modelos lineares
de efeito misto, especificando diferentes estruturas de variancias e covariancias residuais
para os niveis de um fator (ou uma combinagao dos niveis dos fatores avaliados), por
exemplo, especificando variancias diferentes entre locais com grande variabilidade, dando

menor peso as observagoes com variancia grande.

2.4 Modelos lineares

Considere-se, para fins de ilustracao, um estudo sobre avaliacao da plastici-
dade fenotipica e da adaptagao local de I tratamentos (procedéncias) de efeito t; (i=1,...,1)
de uma determinada espécie vegetal, realizado em K locais (1, ls,..., lx), utilizando o deli-
neamento casualizado em blocos em cada local, com J blocos (completos ou incompletos)
de efeitos b; (j=1,...,J), em que foi medida uma varidavel Y, e considerando ainda, os
fatores procedéncias, locais e blocos como fixos, um modelo linear classico utilizado para

a andlise desse conjunto de dados, é definido na forma matricial por Searle (1971), como:

y=Xp3+e, (1)

em que: y representa o vetor de dimensao n, de dados observados; X ¢é a matriz do
delineamento, de dimensoes n X p; B3 é o vetor de parametros desconhecidos de efeitos
fixos, de dimensao p; e € é o vetor de erros aleatérios, de dimensao n.

O objetivo do modelo linear cldssico é modelar a média de y, usando-se o
vetor de parametros de efeitos fixos 8. Os componentes do vetor € sao variaveis aleatorias
independentes e identicamente distribuidas com média 0 e variancia 0. Pressupondo que

€ ~ N(0,0°I), tem-se que y ~ N(X3,0°I), com funciao de verossimilhanga dada por:
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exp | - 1y - XB) (5w - XB)

L= L(B, 02’3/) = (27”72)3

(2)

Considerando-se entao, um vetor de observacoes y, os estimadores de
maxima verossimilhanca dos parametros sao obtidos maximizando-se a funcao L, dada
em (2), ou o seu logaritmo, em relacdo a (3. Isto leva ao sistema de equagdes normais:
X'X[3 = X'y, cuja solucdo ¢ B = (X'X) ' X'y, desde que X'X seja nao singular.
Tem-se, ainda, que E(3)=3 e Var(3) = (X'X) o2

Caso (X'X)™! nao exista, utiliza-se uma inversa generalizada (X'X)~
e o estimador de @ ¢é dado por: ﬁo = (X'X) X'y, com E(BO): B e
Cov(8")=(X'X)~(X'X)(X'X) o>

2.5 Modelos lineares mistos

De acordo com Balzarini (2002), o modelo linear cldssico, utiliza como pro-
cedimento de estimagao o método dos minimos quadrados ordindrios (ou Ordinary Least
Squares -OLS), que é muito restrito devido as pressuposi¢oes, como independéncia dos
residuos e homogeneidade de variancias, frequentemente nao atendidas.

Considere o exemplo citado na secao 2.4, relacionado com a avaliacao da
plasticidade fenotipica e da adaptacgao local de I procedéncias em K locais, no caso em
que os blocos sejam definidos de efeito aleatério e aninhados em cada local (bj()). Além
disso, seja incluido o efeito aninhado de M plantas matrizes, selecionadas aleatoriamente
dentro de cada procedéncia i (7)), € a ocorréncia de desbalanceamento nao planejado,
decorrente da perda de parcelas. Nesta situacgao o uso do modelo linear classico nao é
adequado, sendo necessario analisar os dados por meio de um modelo linear misto (MLM).
Este é definido por West, Welch e Galecki (2007), como um modelo linear paramétrico
para dados agrupados, longitudinais ou dados provenientes de experimentos com medidas
repetidas, que inclui parametros de efeito fixo, além da média geral, e efeitos aleatorios
associados com um ou mais fatores aleatorios, além do erro experimental.

Assim, esses modelos envolvem duas partes: uma parte descrevendo os efei-
tos aleatorios e a outra descrevendo os efeitos fixos. Os efeitos de um fator sao considerados
como fixos (constantes), quando os niveis em estudo, geralmente poucos, forem escolhidos

pelo pesquisador, de modo que a inferéncia é restrita a esses niveis.
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Por outro lado, Pinheiro e Bates (2000) citam que, os efeitos de um fator séo
considerados como aleatorios, quando os niveis em estudo correspondem a uma amostra
aleatdria de uma populagao de referéncia. Neste caso os niveis provém de uma distribuigao
de probabilidade e a inferéncia é extrapolada para a populacao de referéncia.

Nos modelos mistos, a andlise da parte aleatéria consiste na predicao dos
efeitos aleatorios, na presenca de efeitos fixos, e na estimacao dos componentes de variancia
(variancias associadas aos efeitos aleatérios de um modelo matemadtico).

A analise da parte fixa, por sua vez, consiste na estimacao e testes de
hipdteses sobre funcoes estimaveis dos efeitos fixos. Em geral, tanto a predicao dos efeitos
aleatérios quanto a estimagao dos efeitos fixos dependem da estimagao dos componentes
de variancia. Em termos matriciais o MLM pode ser expresso da seguinte forma, como

descrito por Searle, Casella e McCulloch (1992):

y=XB+ Zu +e¢, (3)

em que: y ¢é o vetor de observacoes, de dimensao n; X ¢é a matriz de delineamento dos
efeitos fixos, conhecida, de dimensoes n x (p+1); B é o vetor de parametros de efeitos fixos
desconhecidos, de dimensao p+1; Z = [Z;, ..., Z,|, sendo Z; de dimensdes n X ¢; a matriz
de delineamento para o i-ésimo efeito aleatério; u = [u?, ..., ul]", o vetor de parametros

de efeitos aleatdrios, desconhecido, de dimensao ¢, em que u; possui dimensao ¢;, sendo
b

q = 5 q;; € € é o vetor de erros aleatorios desconhecidos, de dimensao n. Admite-se,
i=1

ainda, que u ~ N(0,G), € ~ N(0, R) e que, além disso, sao varidveis nao correlacionadas.

Em termos de modelos condicionais (ou hierarquicos), o modelo linear misto

geral pode ser reescrito de tal modo que:

E(Y|u) = X3+ Zu,
Y|u~N(XB+ Zu,R),

Cov(Y|u) = R,
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Cov(u) = G.

Assim, marginalmente, tem-se que Y ~ N(X3,V), com E(Y) = X[ e,

Var(Y)=V = ZGZ' + R, (4)

sendo G de dimensoes g x ¢, a matriz de variancias e covariancias dos efeitos aleatérios
u, e R de dimensoes n X n, a matriz de variancias e covariancias residual, que representa
a variagao intra-grupos. Assim, pode-se modelar a variancia dos dados, da eq. (4),
especificando a estrutura (ou forma) de G ¢ R. Quando R = 0?1,y ¢ Z = 0, 0 modelo

misto se reduz ao modelo linear padrao: y = X3 + €.

2.5.1 Estruturas de covariancia

A modelagem da parte aleatéria se realiza por meio da inclusao de uma
matriz de variancias e covariancias (LITTELL et al., 2006), sendo que a necessidade de
se incluirem parametros de variancias e covariancias pode surgir por varias razoes, dentre

elas:

(i) as unidades experimentais sobre as quais sdo medidos, podem ser colocadas em
grupos e os dados de um grupo comum sao correlacionados. Isso pode ocorrer com

dados de familias, ninhadas, colonias e pessoas que habitam a mesma casa e

(ii) medidas repetidas sao tomadas sobre a mesma unidade experimental e sao correla-
cionadas. A natureza dessas medidas pode ser multivariada. Exemplos comuns sao

os dados observados ao longo do tempo, chamados dados longitudinais.

Varias estruturas podem ser adotadas para as matrizes de variancias e co-
variancias G e R, dependendo do conhecimento que se tenha do fenomeno que se gera os
dados. Algumas estruturas de covariancia possiveis sao apresentadas a seguir, admitindo-

se uma situagao simples com quatro ocasioes:

(i) Nao estruturada: todas as varidncias e covariancias podem ser desiguais. Espe-
cifica uma matriz completamente geral, parametrizada em termos de variancias e
covariancias. As variancias sao restritas a valores nao negativos e as covariancias

nao tém restricoes.



(i)

(iii)
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2
07 012 013 014

021 05 023 02

2
031 032 03 034

2
041 O42 043 Oy

Componentes de variancia: matriz, generalmente utilizada como estrutura para G e
R nos modelos ANOVA (todos os fatores sdo tratados como qualitativos), contendo
apenas um parametro, o2. Essa matriz supoe independéncia e homogeneidade de

variancias entre os componentes.

-02 0 0 0 ]
0 o2 0 0
0 0 o> 0

I 0 0 0 02_

Simetria composta: esta matriz contém dois parametros e admite homogeneidade
de variancias e covariancias constantes. Exemplos de utilizacao desta matriz podem
ser vistos em experimentos casualizados em blocos, para os quais o efeito de blocos é
aleatorio. Na matriz V' observam-se tantas matrizes de simetria composta quantos

forem os blocos. Sendo assim, a matriz V' resultante sera dita bloco diagonal.

o*+oil  oF ol o2

2 2 2 2 2

o] 0° + 07 o1 o]

2 2 2 2 2

o] o] o’ + o7 o
0% 0% 0% o + cr%

Autorregressiva de 1* ordem - AR(1): esta matriz contém dois parametros, admite
homogeneidad de variancias e covariancias decrescentes em funcao das distancias
entre as observacoes, ou seja, a correlacao decresce a medida que se aumenta a
distancia entre as observacoes repetidas, pois p o parametro autoregressivo, para
um processo estacionério, assume-se entre -1< |p| < 1. Essa estrutura pode ser

utilizada desde que as observagoes sejam igualmente espacadas (no tempo ou no

espago).
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L p p p
N A
g 2
p°p 1 p
Pt 1

(v) espacial (ou poténcia): nesta matriz todas as variancias sao iguais e a correlagdo entre
observacoes separadas por uma distancia de d unidades é p?, sendo p a correlacio
entre observacoes. Seu uso é aconselhado para os casos em que as observagoes

repetidas nao sao equidistantes,

d12 d13 d14

L p™ p
) pd2 1 1 pd23 pd24
pd3 1 pdsz 1 Pd34

pd41 pd42 pd43 1

Para a escolha adequada da estrutura é necessario utilizar algum critério
de selecao. Gbur et al. (2012) citam que o Critério de Informagao de Akaike (AIC), o
AIC corrigido (AICC) e o Critério de Informacao Bayesiano (BIC), podem ser utilizados
para comparar as estruturas de covariancia. Estes critérios sao baseados no logaritmo da
funcao de verossimilhanga (ML ou REML) e dependem do nimero de observagoes e de

parametros do modelo. Suas expressoes sao dadas por:

~

AIC = —20(B, &) + 2d,

2d(d + 1)

AICC = AIC+-——"12)
CC = AIC+ =05 =

= —20(B, k)+2d ( dt 1 ) = —20(B, k)+2d

n
n—d-—1 n—d—1

BIC = —20(3, k) + dlog(n),

sendo ¢ o logaritmo da funcao de verossimilhanca, d o nimero de parametros de efei-
tos fixos e aleatdrios estimados no modelo, £ o vetor de estimativas dos componentes
de variancia e n o numero de observagoes utilizadas na estimacao desses parametros.
A estrutura de covariancias com menor valor do critério escolhido é considerada mais

adequada.
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2.5.2 Estimacao dos componentes de variancia

Barbin (1993) define os componentes de variancia como as variancias as-
sociadas aos efeitos aleatérios de um modelo estatistico-matematico, sendo que o seu
conhecimento é de grande importancia em genética e melhoramento genético animal e
vegetal, pois a populagao e o método de melhoramento a serem utilizados dependem de
algumas informacoes que podem ser obtidas a partir desses componentes.

No caso de modelos mistos, a solucao das Equacgoes de Modelos Mistos
(EMM) de Henderson (1953), depende do conhecimento da matriz de variancias e co-
variancias V, cuja estrutura é conhecida, porém, seus componentes nao o sao. Desse
modo, torna-se necessario substitui-los por suas estimativas.

Diversos métodos tém sido propostos para estimar os componentes de
variancia, destacando-se os seguintes: método dos momentos ou método da andlise de
variancia (ANOVA); método da maxima verossimilhanga - ML(HARTLEY; RAO, 1967);
método da estimacao quadritica nao-viesada de variancia minima - MIVQUE (RAO,
1971) e o método da maxima verossimilhanca restrita - REML (PATTERSON; THOMP-
SON;, 1971; HARVILLE, 1977). Existem ainda os métodos I, II e III de Henderson (1953)
e aqueles derivados da estimacao de fungoes quadraticas (MARCELINO; IEMMA, 2000).

Segundo Resende (2007), para obter estimativas tanto de ML quanto de
REML, varios algoritmos tém sido desenvolvidos, dentre eles, o algoritmo esperanca-

maximizagao (EM), Escore de Fisher, Newton-Raphson e de Informagao média (AI).

2.5.2.1 Método ANOVA

Este método consiste em igualar as esperangas dos quadrados médios de
cada fonte de variacao presente na analise da variancia, aos seus respectivos quadrados
médios e resolver as equacoes resultantes para cada componente de variancia. Este método
em geral é adequado para modelos simples, que envolvem dados balanceados. Os esti-
madores ANOVA apresentam muitas propriedades, por exemplo, sdo nao-viesados e tém
variancia minima, sao fungoes de estatisticas suficientes, para as quais podem ser obtidas
estimativas dos erros padroes associados, e uma aproximagao dos nimeros de graus de li-
berdade, por métodos como os propostos por Satterthwaite (1946), Fai e Cornelius (1996)
e Kenward e Roger (1997). Além disso, nenhuma suposicao da distribuigdo dos dados,

além das suposicoes bésicas sobre as variancias e covariancias ja mencionadas é exigida.
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Entretanto, quando os dados sao nao balanceados, nao existe um tnico
modo de se obter a tabela da anélise da variancia, levando a diferentes estimativas para
um mesmo componente. Como uma desvantagem pode-se citar o fato de que esse método
nao exclui a ocorréncia de estimativas negativas para os componentes de variancia, fato
que torna a propriedade de estimador nao viesado pouco interessante.

Uma sugestao para contornar tal problema é utilizar a restricao do espaco
paramétrico, ou seja, igualar as estimativas negativas a zero. Porém essa solugao sacrifica
a propriedade do estimador ser nao viesado pelo método ANOVA (SEARLE; CASSELLA,;
McCULLOCH, 1992).

2.5.2.2 Método da Maxima Verossimilhanga (ML)

O método da méxima verossimilhanga (ML) foi desenvolvido por Fisher
(1922), mas Hartley e Rao (1967) apresentaram a especificacdo matricial de um modelo
misto e a derivacao de equagoes ML para varias classes de modelos. Por outra parte, os
trabalhos de Henderson (1953) tiveram grande impacto no desenvolvimento dos métodos
de estimacao de componentes de variancia a partir de dados desbalanceados.

Em situagoes de dados desbalanceados, Shaw (1987) cita que os estimado-
res ML apresentam as seguintes propriedades desejdveis: suficiéncia (tal que o preditor
condense o maximo possivel a informagao contida na amostra e nao seja funcao depen-
dente do parametro), consisténcia (refere-se ao aumento da precisao da estimativa com o
aumento do tamanho da amostra), eficiéncia (o preditor apresenta variancia minima) e
translagao invariante (nao afetados por mudancas nos efeitos fixos). Outra vantagem do
ML é a geracao de estimativas nao negativas dos componentes de variancia.

Para a estimacao ML de componentes de variancia os efeitos fixos devem
ser conhecidos, caso contrario, sao substituidos por suas estimativas obtidas por ML.
Porém, na estimacao dos componentes de variancia, o método ML nao considera a perda
de nimero de graus de liberdade devido a estimacao desses efeitos fixos, causando entao
o vicio, que conduz a subestimativas dos parametros de variancia e, portanto podem

conduzir a inferéncias incorretas (RESENDE, 2007).
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2.5.2.3 Método da Maxima Verossimilhanga Restrita (REML)

Segundo Resende (2007), um método alternativo, baseado na verossimi-
lhanca, para inferir sobre os componentes de variancia nos modelos mistos é o método
da méaxima verossimilhanga restrita (REML), desenvolvido por Patterson e Thompson
(1971).

Os estimadores dos componentes de variancia, pelo método REML, tém
sido amplamente adotados, porque eliminam o primeiro dos problemas encontrados no
método ML, ou seja, leva em consideragao os graus de liberdade envolvidos na estimagcao
dos parametros fixos do modelo. Sendo assim, estimativas REML dos componentes de
variancia tendem a ser menos viesadas que as estimativas de ML, e o método permite
também a imposicao de restrigoes de nao negatividade. Dessa forma, o método REML ¢é o
procedimento ideal de estimacao de componentes de variancia com dados desbalanceados.
Além disso, para todos os casos de dados balanceados, as solugoes fornecidas pelo método
REML a partir dos modelos mistos coincidem com as solucoes fornecidas pelo método
ANOVA (McCULLOCH; SEARLE; NEUHAUS, 2001).

De acordo com Resende (2007), o método REML é uma ferramenta flexivel
para a estimacao de componentes de variancia e efeitos fixos, e predicao de efeitos

aleatérios. Além disso, apresenta as seguintes vantagens:

(i) Pode ser aplicado a dados desbalanceados.

(ii) Permite lidar com estruturas complexas de dados (ensaios com observagoes realizadas

em diferentes anos e locais, por exemplo).
(iii) Permite ajustar modelos que nao podem ser acomodados pela ANOVA.

(iv) Permite o ajuste de véarios modelos alternativos, podendo-se escolher o que se ajusta
melhor aos dados e que ao mesmo tempo, seja parcimonioso (apresenta menor

nimero de parametros).

(v) Permite a correcao simultanea para os efeitos ambientais, estimagao de componentes

de variancia e predicao de valores genéticos.

(vi) Permite maior flexibilidade na modelagem, contemplando plenamente a andlise de

dados correlacionados devido ao parentesco, distribuicao temporal e espacial.
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O procedimento REML requer que o vetor de dados Y tenha distribuicao
normal multivariada. Entretanto, varios autores relatam que os estimadores REML sao
também apropriados quando nao se verifica normalidade dos dados (HARVILLE, 1977;
MEYER, 1989).

Ao contrario do método ML, que maximiza a fungao de verossimilhanga
de todos os contrastes, o método REML maximiza a fungao de verossimilhanga conjunta
de todos os contrastes de erros ou residuos, Y* = LY, em que L é uma matriz com
[n — posto(X)] colunas, de posto completo, com colunas ortogonais as colunas da matriz
X, isto é, LT X = 0. Em outras palavras, o método REML maximiza a parte da funcio
de verossimilhanga que ¢é invariante aos efeitos fixos.

Dessa forma, considere a matriz L = [LyLs], ndo singular, com Ly e Ly de

dimensdes (n x (p+ 1))e (n x (n — p — 1), respectivamente e satisfazem:

LIX=1I,,eL}X=0.

Alcarde (2012) cita que, os dados podem ser entao transformados de y para L7y, ou seja,

T T Liy Y1 I,1B+L{Zu+ Lie
L,y Y5 L,Zu+ L;e
O vetor aleatério y? = [y} y3]* tem distribuigao com esperanca e variancia,

respectivamente, dadas por:

Y*
E(Y")=E R
Y 0
(§
Y LVvL, LIVL,
Var(Y*) = Var =
Y LiVL, LyVL,
Logo,
Yl N B L'vy, LIV,
Y o/ \ L'vL, L"VL,

A distribuicdo completa de L’y pode ser subdividida em uma distribuicao

condicional, Y7|Y; para a estimagdo de 3, e uma distribuigdo marginal, baseada em
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Y, para a estimagao dos componentes de variancia (Alcarde, 2012). Esta distribuicao
marginal é a base da maxima verossimilhanga restrita.

Por outro lado, seja k7 = (47, a”) o vetor de componentes de variancia, tal
que ~ contém os componentes de variancia associados a u e a os componentes de variancia

associados a €, sua estimacao é baseada no logaritmo da funcao de verossimilhanca restrita:

-1

1
lp = —3 log det (L3 V~'Ly) +y"™(LyVLy) 'y,

que pode ser expressa como:

1
g = ~3 log det (XTVle) + log det V + yT Py, (5)

em que,

P=v'-vIXX'vIix)'xT'v!
e ainda,
T _ NTyr—1 2
y Py=(y—XB)'V (y - Xp).

Segundo Alcarde (2012), as estimativas REML de k;, tal que K =

(K1, ..., K1), sdo obtidas calculando a fungao escore, dada por:

ot 1 v\ 4

e igualando a zero.

Note que os elementos da matriz informacao observada sao:

0%l 1 o’V 1 oV _ oV
— = —tr (P———)—=-tr (P—P——
Ok 5 ! ( aklak) 2 ( Ik 8kk>+
oV _ oV 1 O’V
TP—P_—Py—-y'P P
+y 8kl 8kk v 2y a]flakk Y

e, os elementos da matriz informacao esperada sao:

*lp 1 ov _ oV
E (‘ama/{k) =5l (Pa—mPa—Q :
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No entanto, a solugdo para U(k;) = 0 exige um algoritmo iterativo que
utiliza uma estimativa inicial () para x e uma atualizacdo £(!). Um desses algoritmos

¢ o “Escore de Fisher”, em que:

kO = kO 4 I(k© K(o>)*1U (k)

em que U (k) é o vetor escore e I(k(?),k®)) representa a matriz de informacio esperada
de K, avaliada em k® (ALCARDE, 2012).

Na medida em que as dimensoes da matriz invertida aumentam, a utilizacao
do algoritmo Escore de Fisher pode levar a dificuldades computacionais, as quais sao
discutidas em Gilmour, Thompson e Cullis (1995). Uma alternativa ¢ a utilizagdo do
algoritmo Al que apresenta propriedades de convergéncia semelhantes ao algoritmo Escore
de Fisher, evitando a sobrecarga computacional (GILMOUR; THOMPSON; CULLIS,
1995).

2.5.3 Estimacao dos termos fixos e predicao dos termos aleatdérios simulta-

neamente

As estimativas de 3 e u sao obtidas por meio do uso de func¢oes baseadas na
fungao de verossimilhanga dos dados. Assim, se a funcao de densidade de probabilidade

de y é dada por:

1 1 T T -1
10 = szt o 5l — XA (262" + By - X))},

a funcao densidade de probabilidade conjunta de y e w, por sua vez, pode ser escrita
como o produto entre a funcao densidade de probabilidade condicional de y, dado u, e a

funcao densidade de probabilidade de u, ou seja,

fly,u) = f(ylu)f(u),

ou ainda,

1 1 T p—1
f(y,u):WXGXp{g[(y—Xﬂ—ZU) R (y—Xﬁ—ZU)]}X
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1 1 Te—1(,,
xmexp{§[(u—0) G \(u o)]},

cujo logaritmo denotado por ¢ é dado por:
1 1
¢ = —nlog(2m) — §(log |R| + log |G|) + §(yTR_1y —2'R'XB - 2y" R Zu+
128" X"R ' Zu+B ' X" R ' Zut+ B X" R XB+u' Z' R X B+u" ZT R Zu+u" G u).

Derivando-se ¢ em relacao a B e u e igualando-se as expressoes resultantes

a 0, obtém-se as Equagdes de Modelos Mistos (EMM) propostas por Henderson (1984):
X"R'X X"R'Z 8 X"R 'y
Z'R'X Z'R'Z+G! w Z'R'y

Se G ¢ R sao conhecidas, entao, o estimador de minimos quadrados ge-
neralizados (generalized least squares-GLS) ou melhor estimador linear nao viesado (best

linear unbiased estimator-BLUE) de 3, é dado por:

B=(XTVIX) X"V,

em que V é dada pela eq. (4).
De forma anéloga, o melhor preditor linear nao viesado (best linear unbiased

predictor -BLUP) de u é dado por:
w=GZ'"Vi(y—-Xp3).

Esses estimadores sao denominados “melhores” por minimizarem a variancia
amostral, “lineares”, pois sao funcgoes lineares de y e “nao viesados”, porque
E((BLUE(B)) = B e E(BLUP(u)) = u. Além disso, a matriz de variancias e co-

variancias de (B — B,u — u) é dada por:

X"TR'X X"R 'z
ZTR'X Z'TR'Z+G!

em que o simbolo ~ no expoente da matric C denota a inversa generalizada.
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Entretanto, na maioria das vezes, Var(y) = V é desconhecida, e conse-
quentemente, as matrizes G e R sao desconhecidas. Neste caso, assumindo-se uma certa
perda de eficiéncia, os parametros em G e R podem ser substituidos pelas estimativas
correspondentes, constituindo, respectivamente, as matrizes denotadas por G eR. Logo,

substituindo-se G por GeR por R em (6), tem-se a matriz C dada por:

. X"R'x X"R 'z
C A —1 A —1 ~—1
ZTR X Z'R Z+G

’

como uma aproximacao da matriz de variancias e covariancias de (B — B,u — u). Neste
caso, os termos BLUE e BLUP nao se aplicam, sendo apropriado substitui-los por EBLUE
(melhor estimador linear nao viesado empirico ou empirical best linear unbiased estimator)
e EBLUP (melhor preditor linear nao viesado empirico ou empirical best linear unbiased
predictor), respectivamente, de acordo com Littell et al. (2006). O termo empirico é
adicionado, portanto, para indicar esse tipo de aproximacao.

Segundo McLean e Sander (1988), a matriz C pode ser reescrita como:

é 011 021

~ Y

C21 6’22
em que,
Cu=(XTV X)),
Co = -GZTV ' X,
(§]

“ " ~ 1\ —1 N n “
Coy = (ZTR 'z1 6 1) _ e XTV ' z6G

Nota-se que C'1; é a equagao para obter estimativas de minimos quadrados
generalizados dos elementos da matriz de variancias e covariancias de (3.
Logo, utilizando a matriz C, as estimativas dos parametros de 3 e as

predicoes dos parametros de uw sao obtidas como segue:

B=(X"V X)XV 'y
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a=GZ'V (y—XB),

em que V_l é obtida substituindo-se os parametros em V', pelas estimativas correspon-
dentes.

Por outro lado, objetivando a construgao de intervalos de (1 — «) x 100%
de confianca (IC) para as estimativas dos parametros de f3;, calculam-se os erros padroes

\/Var(s;), a fim de que os ICs nos fornegam o campo de variacdo de cada uma das

estimativas destes parametros, como segue:

IC (Bi) = B = 2apo Var(B;),

sendoi = 1, ...,p, a o nivel de significancia, z,/2 0 valor tal que P(|Z| < z4/2) = 1—a, sendo
Z uma variavel com distribuicao normal padronizada, @"(@), a variancia associada ao
parametro de efeito fixo 3,.

E ainda, os intervalos de (1 — a) x 100% de confianga (IC) relacionados aos
componentes de variancia (67), podem ser estimados usando o método delta (GBUR et
al.,2012) em que estas estimativas sao linearizadas por meio da fungao logaritmica (log)

e possuem distribuicao normal assintotica, e o IC na escala original da varidvel resposta

IC (JAE) = exp (log(&f) =+ Z1-a/2(3i_2 \/ @"(@2»

¢ dado por:

2.5.4 Inferéncia para parametros de efeitos fixos

Molenberghs e Verbeke (2005) e West, Welch e Gatecki (2007), dentre ou-
tros, apresentam os testes de Wald, ¢ e Wald-F, que podem ser utilizados para testar
a significancia dos termos fixos, ou de uma combinacao linear dos mesmos, em modelos
mistos.

O teste de Wald aproximado pode ser realizado para cada [3; em 3, com
i=1,...,p, assim como a obtencao do respectivo intervalo de confianca. Seja L uma ma-
triz de constantes conhecidas e de posto completo ¢ (¢ < p), de dimensdes ¢ X p, e

considerando-se as hipoteses:

Hy: LB =0 contra H; : LB #0 (7)
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Tem-se que a estatistica de Wald (W) é dada por:

-1

N —1
W= (B-8)TL"|L (Z XZ-TV@-(I%)Xz-) L"| L(B-pP),
=1

em que K € o vetor das estimativas dos parametros das matrizes de variancia e covariancia
G e R, denominados componentes de variancia. Sob Hy a estatistica W tem distribuicao
assintética y? com r graus de liberdade.

Por outro lado, devido ao fato de que no teste de Wald nao se considerar a
variabilidade introduzida pela estimacao dos componentes de variancia e poder subestimar
a variagao dos efeitos fixos, Molenberghs e Verbeke (2005) sugerem a utilizagao dos testes
t e Wald-F' para testar hipéteses sobre os parametros de efeito fixo.

O teste t é frequentemente utilizado para testar hipéteses do tipo:
Hy: B; =0 contra Hy : 3; # 0,

em que a estatistica t é calculada da seguinte maneira:

~

Bi
\/ Var (B)

que, sob a hipdtese nula, segue uma distribuigcao ¢ de Student com v graus de liberdade,

t =

que dependem exclusivamente dos dados e sao calculados utilizando métodos como o de
Satterhwaite (1946), Fai e Cornelius (1996) e Kenward e Roger (1997).

Por sua vez, a estatistica F' do teste Wald-F' é definida por:

-1

L(B - B)

posto (L) ’

(B-B)TL"|L (f; XiTVZ-(r%)XZ) _ILT

=1

F =

que segue uma distribuicao F' aproximada, com numero de graus de liberdade do nu-
merador dado pelo posto da matriz L e niimero de graus de liberdade do denominador
utilizando métodos como o de Satterhwaite (1946), Fai e Cornelius (1996) e Kenward e

Roger (1997).
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Uma alternativa ¢ a aplicacao do teste de x? associado ao teste da razao de

verossimilhangas (LRT) cuja estatistica,

2log (%) — 2[log(Ly) — log(L1)],

1
em que L representa a fungao de verossimilhan¢a do modelo aninhado ou restrito (o
modelo mais simples, referente a hipétese nula) e Ly, a funcdo de verossimilhanca do
modelo de referéncia (o modelo mais geral ou completo). Neste caso, os modelos aninhado
e de referéncia devem conter os mesmos componentes de variancia e mesmas estruturas
para as matrizes G e R, porém diferentes conjuntos de parametros fixos. Essa pratica
permite verificar a importancia dos termos fixos do modelo, uma vez que a diferenca entre
tais modelos encontra-se apenas com relacao a esses termos.

Para este caso, a estatistica para o teste da razao de verossimilhanca segue,
assintoticamente, a distribuicao x? com ntimero de graus de liberdade igual & diferenca
entre os numeros de parametros de efeito fixo dos modelos em questao. Entretanto,
para os casos em que os parametros encontram-se na fronteira do espaco paramétrico, a

estatistica do teste da razao de verossimilhanca segue uma mistura de distribuicoes 2

(SELF; LIANG, 1987).

2.5.5 Inferéncia para parametros de efeitos aleatdrios

De acordo com Resende (2007), o uso da andlise de variancia para a cons-
trucao de testes F' para os efeitos aleatérios em modelos desbalanceados é muito dificil.
Isto porque é necessaria a obtencao dos quadrados médios a partir dos componentes de
variancia e seus multiplicadores, que sao muito dificeis de ser computados sob desbalan-
ceamento. H4, no entanto, uma maneira mais formal para testar os efeitos aleatérios, ou
seja, para verificar se determinado efeito aleatorio necessita permanecer no modelo. Essa
abordagem formal baseia-se em estatisticas fundamentadas na verossimilhanga.

Segundo Pinheiro e Bates (2000), os modelos de referéncia e aninhado, de-
vem ser estimados utilizando o mesmo procedimento. West, Welch e Galecki (2007), por
sua vez, sugerem o uso do método REML para a estimacao dos componentes de variancia,
ja que proporciona estimativas menos viesadas, comparadas com o método ML. Além
disso, quando o teste é realizado para componentes aleatorios, a especificagao da parte

fixa deve ser a mesma para os dois modelos.
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Uma das estatisticas utilizadas para testar as hipéteses Hy : 0? = 0 e

Hy : 02 > 0 (existe variabilidade entre os niveis do fator aleatdrio i) é a Z de Wald,
que é calculada dividindo-se a estimativa do parametro aleatorio por seu erro padrao
assintético. Os erros padroes assintéticos sao obtidos a partir da inversa da matriz de
derivada segunda da verossimilhanca, em relacao a cada um dos parametros de efeito
aleatorio.

A estatistica Z de Wald é valida para grandes amostras, mas ela pode ser
incerta para pequenos conjuntos de dados e para parametros tais como componentes de
variancia, que apresentam uma distribuicao assimétrica ou distribuicao amostral limite.

Segundo Resende (2007), uma melhor alternativa ¢é utilizar o teste da razao

de verossimilhanga (Likelihood Ratio Test -LRT), e recomenda calcular previamente a
52

2

relacao , em que ¢° é a estimativa de um componente de variancia de um determi-

s(6?)
nado efeito aleatério e s(62) seu respectivo desvio padrao; e aplicar o LRT apenas quando
~2

5(62)

1< < 2.

Quanto a distribuicao da estatistica do teste da razao de verossimilhanca
restrita sob a hipdtese de nulidade, West, Welch e Gatecki (2007) discriminam dois casos
que dependem se os valores dos componentes de variancia envolvidos na hipdtese estao,

ou nao, na fronteira do espago paramétrico. Os dois casos sao:

(i) Os parametros de covariancia referentes a hip6tese de nulidade nao estao na fronteira
do espaco paramétrico, sendo que, o interesse esta na verificagao da homogeneidade
de variancias, ou ainda, se a covariancia entre dois efeitos aleatérios € igual a zero.
Nesses casos, a estatistica segue assintoticamente a distribuicao y? com niimero de
graus de liberdade igual a diferenca entre o niimero de parametros nos modelos de

referéncia e aninhado.

(ii) Os parametros de covariancia estao na fronteira do espago paramétrico: sao os casos
em que se deseja verificar se um efeito aleatério deve, ou nao, permanecer no modelo.
Neste caso, Stram e Lee (1994) demonstraram que a estatistica para o teste da
razao de verossimilhancas para um unico parametro de variancia, que se encontra
na fronteira do espago paramétrico, segue uma mistura de distribuigoes x?, 0, 5x2 +
0,5x2. Para os casos em que k parametros se encontram na fronteira do espaco
paramétrico, a estatistica segue também uma mistura de distribuicoes x?, porém,

nesse caso a mistura ¢ dada por 0,5x3 + 0, 5x3.
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Self e Liang (1987) apresentaram, adicionalmente, as distribui¢oes para ou-
tros casos, como teste simultaneo para parametros de variancia para os quais um se

encontra na fronteira do espaco paramétrico e outro nao.

2.5.6 Analise de residuos e diagnostico em modelos lineares mistos

Os diagnoésticos devem ser parte do processo de construgao de modelos e
analise de conjunto de dados. Os residuos sao utilizados para examinar as suposicoes do
modelo estatistico-matematico e detectar a presenca de outliers e possiveis observagoes
influentes.

Lembrando que as médias marginal e condicional nos modelos mistos sao
dadas por E(Y) = XB e E(Y |u) = XB + Zu, respectivamente, dois tipos de residuos

sao apresentados a seguir:

(i) Residuos marginais, que consistem da diferenca entre o valor observado e a média

marginal estimada. Neste caso, o vetor r,, de residuos marginais é definido como:

rm=Y — X[3.

(ii) Residuos condicionais, que consistem da diferenga entre o valor observado e o valor
predito da observacao. Neste caso, o vetor 7. de residuos condicionais é definido

COImMo.

re=Y - XB-Zu=r, — Zu.

Por outro lado, segundo Gregoire, Schabenberger e Barrett (1995), dadas
as matrizes Q = X(XTV_lX)_XT e K=1- ZGZTV_l, tem-se que

A

Var(rm) =V - Q

Var(r)) = K(V - QK.

Alcarde (2012), entretanto considera que, os residuos r,, e r. ndo sao ade-
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quados para diagnosticos, pois podem apresentar correlacoes, mesmo para dados nao
correlacionados, e possuem dificil interpretacao quando sao incorporadas variancias dis-
tintas ao modelo. Um modo de minimizar tais problemas consiste em trabalhar com os

residuos padronizados ou os residuos de Pearson, descritos a seguir:

(i) Residuo marginal estudentizado

estudentizado __ T'mi .
mi - — )
\/ Var(rm)

(ii) Residuo condicional estudentizado

r

estudentizado __

Tei .
ci =
\/ Var(re)

r

(iii) Residuo marginal de Pearson

Pearson __
mi -

T'mi
r —
\/ Var(y;)
(iv) Residuo condicional de Pearson

Pearson __ Tci

ci -

T — .
Var(y;|u)

A autora recomenda, ainda, considerar o melhor preditor linear nao viesado
(BLUP) de u, para diagnosticar os efeitos aleatérios. West, Welch e Galecki (2007) suge-
rem adicionalmente, a utilizacao de gréaficos de diagndsticos padroes, ou seja, histogramas,
graficos de quantil-quantil e graficos de dispersao para a verificacao da normalidade dos

residuos, e nesse caso, dos residuos condicionais estudentizados.

2.6 Modelos lineares generalizados

Metodologias para modelagem de dados na forma de proporgoes e de conta-
gens foram propostas antes da década de 1970 (FINNEY, 1947; GRIZZLE; STARMER,;
KOCH, 1969). No entanto, a unificacao do procedimento de modelagem foi proposta por
Nelder e Wedderburn (1972), que desenvolveram a teoria dos modelos lineares generali-

zados (MLG), que s@o uma extensao dos modelos lineares cldssicos.
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Neste caso, nao sao necessarias as pressuposicoes de normalidade e homo-

cedasticidade para a variavel resposta, cuja distribuicao deve pertencer a familia expo-

nencial de distribuicoes, e trabalha-se com os dados em sua forma original, ou seja, sem

a necessidade de fazer transformacgoes (McCULLAGH; NELDER, 1989).

De acordo com Cordeiro e Demétrio (2007), os modelos lineares generaliza-

dos consistem de trés componentes:

(1)

(i)

(iii)

Componente aleatério do modelo: a varidvel resposta é representada por um con-
junto de varidveis aleatorias independentes Y7, ...,Y, com distribuicao que per-
tence a familia exponencial na forma canonica com médias pq, ..., it,, ou seja,
E(Y;) = pi,t = 1,2,...,n; e parametro de dispersdo constante ¢ > 0. A familia
exponencial engloba as distribui¢oes, normal, gama e normal inversa para dados

continuos; binomial para proporgoes; Poisson e binomial negativa para contagens;

Componente sisteméatico: é constituido pelas variaveis explicativas que entram na

forma de uma soma linear de seus efeitos, ou seja,

p
T
i = E riP; =x; B, oun=Xp
j=1
em que X = (x1,...,x,)" é a matriz do modelo com elementos x; = (211, ..., Tip) 7T,

B = (Bi,..., 3.)T é o vetor de parametros e n = (11, ...,n,)" é o preditor linear;

Funcao de ligacao: relaciona o componente aleatério ao componente sistemaético,
isto é,
_ _ T
i = g(ui) = x; B,

sendo g(.) uma fungdo monétona e diferencidvel, que determina a escala em que
a linearidade é suposta. Os parametros f, ..., 3, nao sao sujeitos a restrigoes, e,
portanto, g(u;) pode assumir qualquer valor em (—o0, 00), e assim, a forma da fungao
de ligacao apropriada é determinada em alguma escala pelo dominio de variacao de
E(Y;) = u;. Para observagoes estritamente positivas, como no caso de contagens,
Hinkley, Reide e Snell (1991) citam que, a média deve ficar restrita a (0, c0). Utiliza-

Se:

p
g(m) =mi = Y w3,
j=1
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para descrever a relagao entre os componentes do modelo linear generalizado, sendo
g(.) a fungao de ligacao e n; o preditor linear associado a Y;. A escolha da funcao de
ligacao depende da distribuicao definida em (i). Por exemplo, a funcao de ligacao

canonica logistica pode ser utilizada para a distribuicao binomial.

Seja a varidvel aleatoria Y;, cuja funcao densidade de probabilidade para o
caso continuo, ou funcao de probabilidade para o caso discreto, que pode ser escrita na

forma:

Fo4:0:0) = exp { i = b0) + elwi) . ®

em que a(.), b(.) e c(.) s@o fungdes conhecidas, #; é um parametro canénico ou natural.
Em geral, usa-se a;(¢) = % sendo ¢ denominado parametro de escala ou dispersao (e seu
inverso ¢!, uma medida de precisao), e w; os pesos a priori. De modo mais geral, tem-se
a classe de modelos de dispersao exponencial (JORGENSEN, 1997) que inclui situagdes
em que ¢ é desconhecido.

O parametro canonico, #;, é uma funcao da média e, portanto, pode ser

relacionado ao preditor linear. Uma escolha natural da funcao de ligagao é

0; = n; = g(pu:),

sendo conhecida como func¢ao de ligacao canodnica.
O valor esperado e a variancia de Y; com distribuicao pertencente a familia

(8) sao dados por:

E(Y) = V(6 =

Var(Y;) = a(o)b”(0;) = a(¢)V (1),

sendo b/ (60;) e b"(6;) as derivadas de 1* e 2* ordens de b(6;) em relagao a 6;, respectivamente.
A fungao 0”(6;) pode ser expressa por V(u;), pois depende apenas de p;, sendo chamada
de fungao de variancia.

Como exemplo de distribuicao pertencente a familia exponencial tem-se a

distribuicao binomal. Considere-se a variavel aleatéria Y; que representa o nimero de
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sucessos em amostras de tamanhos m; com distribui¢cdo binomial B(m;, m;), com proba-

bilidade de sucesso m; (0< m; < 1), entdo, sua fun¢do de probabilidade é expressa por:

m;

P(Y; = y7,> = Wiyi(l - Wi)mi_yi7yi = Oa 17 27 ey My (9)
Yi

Desenvolvendo-se a eq. (9), obtém-se:

fly;m) =exp {log ( 77;1 ) + y; log m; + (m; — y;) log(1 — 7T,):| ,

= exp [yl log <1 TW) + m;log(1l — ;) + log ( ﬂy% )] :

e comparando-se com (8), tem-se: ¢p=1, 0; = log (1 i ) = log < Hi ) =

i my;
Hi = %> b(0;) = —m;log(1 — ;) = m; log (1 + €0i) , e c(y; ¢) = log "

Portanto, a distribuicao binomial pertence a familia exponencial de distri-

e me” m;e? Fi
buigoes, com E(Y) =b'(0) = T3 ot = M Var(Y;) =b"(6;) = m = E(l — ;) =
V(i)

2.6.1 Estimacgao do vetor de parametros 8 por maxima verossimilhanga

Para a estimacao dos parametros lineares f3, ..., 3, do modelo linear genera-
lizado, o método comumente utilizado é o da maxima verossimilhanca. Considerando uma
varidvel aleatéria Y; com observacoes y? = (y1, 42, ..., ¥n) de uma distribuicao pertencente

a familia exponencial, a funcao de verossimilhanca é dada por

n n

1(6,0,9) = [ [ 0is61.0) = exp [ 3 { s luth = 060)] + cluiso) |

i=1 i=1 i(9)

cujo logaritmo é definido por (CORDEIRO; DEMETRIO, 2007):

n

(=100,0,y) = Zﬂ(f); by y) = Z {@[@/ﬂi — b(0;)] + c(ys; ¢)}, (10)

sendo que E(Y;) = (p1:), mi = g(i) = a:f,@ e 0; = q(;).
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De acordo com Demétrio (2002), uma propriedade da familia exponencial
de distribuicoes é que seus elementos satisfazem as condicoes de regularidade suficientes
para asegurar que o maximo global do logaritmo da fungao de verossimilhanca (10) é dado

: . . _ ol
unicamente pela solugao do sistema de equagoes Ug = 2
ol

U B = % = 0. Tem-se entao, que o vetor escore é formado pelas derivadas parciais de

= 0, ou equivalentemente,

primeira ordem do logaritmo da funcao de verossimilhanca, em que:

Z ol; 00; Op; On;

00; Opi On; 9B
/ 1 a,ui
_;al —b Q)]%a—ml’w,
00;
pois E(Y) = i, = V(8 e 4 = V()
Logo,
ol "1 1 Ou
Uj=— = i — ) 11
=95 = 2w T g, (1)

Em geral, as equacoes U; = 0,7 = 1,2, ..., p nao sao lineares, de forma que
para a sua solucao sao necessarios procedimentos iterativos, sendo Newton-Raphson e
escore de Fisher os mais utilizados.

Considerando-se que se deseja obter a solucao do sistema de equacoes U 8=

ol

— = 0 e usando-se a versao multivariada do método de Newton-Raphson, tem-se:

B
BWMZBWH¢¢ﬂIUM’

sendo B(m) e B og vetores de pardmetros estimados nos passos m e (m+1), U (m)

| o - e
o vetor escore, com elementos —— avaliado no passo m e I,”¥ a matriz de informacao

86]

observada com elementos — '=1,...,p, avaliados em 3 = ﬁ(m). Trocando-se

a/@]aﬁj/? ]7 .]

a matriz de informagao observada I, pela matriz de informacao esperada de Fisher &,

tem-se a solucao pelo método escore de Fisher, isto é,

I@(m+1) - I@(m) + [g(m)} _1U(m)7 (12)

0%l ol ol
sendo que & tem elementos dados por &,y = F (——) =F (— ) , que é a
77 00,08, 0P, 0B
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matriz de covariancias dos U;’s. Multiplicando-se ambos os lados da eq.(12) por & tem-se:
g(m)lg(mﬂ) — g(m)lg(m) +Uum, (13)

Assim, usando-se a eq.(11), obtém-se:

Sy = EWUUy) =

S R R
Sia@r? M |

2
e fazendo-se a;(¢) = ﬂ, como ¢ > 0, constante, w; peso a priori e W; = —( o ) )

w; V(i) \ O
tem-se:
1
I=-X"WX,
¢
n 1
com elementos %jj, =Y —xz;jWz;, X, a matriz do modelo e W=diag(W;, W5, ..., W,,).

i=1

(9@ . E%h =1
O B Op; =V (M).

Além disso, rearranjando-se os termos de U; tem-se:

No caso das fungoes de ligacao candnicas W; = w;V (1;), pois

" w; (Y — 1) Opi “ 1 on;
U; = — 5~ 7 Lij = —TiiWim—(yi — 1),

e portanto, o vetor escore U fica:

1
U= X"WAly - p),

a?’]l 8772 67}” T ’ ’ !
R i diag {g'(11), 9'(12), -, g (ptn) }-

Logo, substituindo & e U na eq. (13) tem-se:

com A = diag {

Lxrywm x g Z L xrpyon x gom Lty gy _ e
¢ ¢ ¢ ’

ou, ainda,

XTW(m)X,B(m+1) — XTwm [Xg(m) + A(m)(y _ M)(m) :
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e fazendo-se z(™ = X B + A (y — )™ = ™ 4 AT (y — )™ denominada como

variavel dependente ajustada, tem-se:

XTW(m)Xﬁ(m—H) _ XTw(m)z(m)’ (14)

ou ainda,

B+ — (XTW m X)L X T (m) 5 (m) (15)

que tem a forma da solucao das equagbes normais, para o modelo linear obtida pelo
método dos quadrados minimos ponderados, exceto que nesse caso a solucao @ = gm+Y
é obtida por processo numérico iterativo. Observando-se que a expressao (15) independe

de ¢.

2.6.2 Funcao Deviance e estatistica de Pearson X? generalizada

O ajuste de um modelo, com valores estimados fi, a um conjunto de dados
observados, y, pode ser verificado por meio da estatistica scaled deviance (traduzida como
desvio por CORDEIRO, 1986) proposta por Nelder e Wedderburn (1972), com expressao
dada por:

Sp(ﬂ:, Qb, y) = _2{€(ﬂ'7 ¢7 y) - é(yu ¢7 y)},

sendo p o nimero de parametros do modelo, £(f1, ¢, y) o logaritmo da fungao de verossimi-
lhanga para o modelo sob pesquisa e (y, ¢,y) o logaritmo da fungao de verossimilhanga
para o modelo saturado. Para o caso particular em que ¢ = 1, esta estatistica reduz-se a

deviance, isto é,

D(f;y) = —2{l(i;y) — L(y;9) }-

Outra medida da discrepancia de ajuste de um modelo a um conjunto de
dados é a estatistica de Pearson X? generalizada, que em muitos casos, é preferida em

relacao a deviance, por facilidade de interpretacao. A estatistica de Pearson é dada por:

n ~\2
x2o S W)
2 V(i)

=1
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sendo V(fi;) a fungdo de variancia estimada sob o modelo que estd sendo ajustado aos
dados. A estatistica de Pearson generalizada tem uma forma equivalente expressa em

termos da varidvel independente ajustada do algoritmo (15):

X?=(z=0)"W(z—7).

Para respostas com distribuicao normal, X2 é igual & soma de quadrados

do residuo e
2
£ ~ x2_ exata
3 ™ Xn—p :
o
Para dados provenientes das distribui¢oes binomial e de Poisson, em que
¢ = 1, X? ¢ a estatistica original de Pearson, comumente usada na andlise dos modelos

logistico e log-linear para tabelas multidimensionais e que pode ser escrita na forma

Y2 Zn: (O ;@)2’

i=1
sendo O; a frequéncia observada e E; a frequéncia esperada.

Pode-se mostrar que S,(ft, ¢, y) e X?Q téem distribuicao Xi—p exata, quando
a distribuicao é normal e distribuicao X?pr assintotica, para as distribuicoes binomial e
de Poisson, sob determinadas condicoes de regularidade.

Como objetivo geral da andlise, deseja-se selecionar um modelo que seja
parcimonioso e explique bem os dados. Portanto, para um modelo bem ajustado, espera-
se que a deviance residual esteja proxima do nimero de graus de liberdade do residuo do
modelo. Uma maneira de obter uma deviance préoxima do niimero de graus de liberdade
¢ aumentar o nimero de parametros no modelo, mas com isso, aumenta-se também a
complexidade na interpretacao. O ideal é encontrar modelos mais simples com deviance
moderada.

Outros critérios comumente utilizados para a selecao de modelos sao os
critérios de informagao de Akaike (AIC) proposto por Akaike (1974), o critério de in-
formagao de Bayes (BIC) proposto por Schwarz (1978) e o critério AIC corrigido para
pequenas amostras (AICC) proposto por Hurvich e Tsai (1989), e dados por:

AIC = —20(ju, 6, y) + 2p,
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BIC = —2((j1, 6, y) + plog(n),

2p(p + 1)
(n—p—1)

em que p ¢ o nimero de parametros estimados no modelo quando as observacoes sao

AICC = AIC +

independentes. O melhor modelo é aquele que apresenta menor valor para o critério
escolhido. Convém ressaltar, ainda, que os modelos a serem comparados devem usar as

mesmas observacgoes, as mesmas variaveis explicativas e a mesma variavel de resposta.
2.6.3 Estimacao do parametro ¢

Para as distribui¢oes binomial e Poisson tem-se que ¢ = 1. Quando desco-

! admite-se que

nhecido (distribui¢oes normal e normal inversa ¢ = o2 e gama ¢ = v~
seja 0 mesmo para todas as observagoes, isto é, constante. Segundo Demétrio (2002),
a estimacao de ¢ é necessaria para a obtencgao dos erros padroes dos B’ s, intervalos de
confianca e testes de hipdteses para os [('s etc. Nestes casos, os métodos mais utilizados
para a estimacgao de ¢ sao: método da maxima verossimilhanga, método dos momentos e
perfil de verossimilhanca.

O uso do método da maxima verossimilhancga é sempre possivel em teoria,
mas pode se tornar intratavel computacionalmente quando nao existe solucao explicita.
Se ¢ é o mesmo para todas as observagoes, a estimativa de maxima verossimilhanca de
B3 independe de ¢, mas ja a matriz de variancias e covariancias dos (3's envolve esse
parametro (DEMETRIO, 2002). Interpretando o logaritmo da fungao de verossimilhanga
0(B, ¢;y) como funcao de B e de ¢, dado y, a estimativa de maxima verossimilhanga para
¢ ¢ obtida pela solucao da equagao:

0B _,

¢

e . -1
sendo que para as distribui¢oes normal e normal inversa ¢ = —D,,.
n
Por outro lado, o método dos momentos fornece uma outra estimativa,
também nao consistente, para ¢. Esse método baseia-se no fato, nem sempre verdadeiro,

de que S, ~ x?,_,. Neste caso,



57

e, portanto,
~ Dp
(b - n — p7

sendo D, a deviance sob o modelo corrente (sob pesquisa).

Uma estimativa considerada melhor que a anterior é dada por:

Dy,

n—m

-
I

)

sendo D,, a deviance sob o modelo maximal. Espera-se que para um modelo maximal

bem ajustado aos dados S,, tenha um valor mais préximo da esperanca da qui-quadrado

1
de referéncia, isto é, E(S,,) = =E(D,,) = n —m. Para o modelo normal tem-se que:

D,,  SQRes

)

-

n—-m n-—m
é a estimativa usual de o2 e é nao viessada, mas para os outros modelos isso nao acontece,
em geral.
Uma outra maneira de se estimar ¢ é baseada na estatistica de Pearson X?
de Pearson e ¢ dada por:
o=
S n—m’

que nem sempre ¢ imparcial, porém, é consistente (DEMET RIO, 2002).

2.6.4 Testes de hipdteses relativas aos parametros [3's

Os métodos de inferéncia nos modelos lineares generalizados, baseiam-se,
fundamentalmente, na teoria da maxima verossimilhanca. De acordo com esta teoria,
Demétrio (2002) apresenta trés estatisticas para testar hipdteses relativas aos parametros
B's, que sao deduzidas de distribuigdes assintéticas de funcoes adequadas das estimativas
dos f3's, sendo elas: i) razao de verossimilhancas, ii) Wald e iii) escore; assintéticamente
equivalentes que sob Hy e para ¢ conhecido, convergem para uma variavel com distribuicao
X2p' Ressalta, entretanto que a razao de verosimilhancas leva a um teste uniformemente
mais poderoso.

No caso em que ha interesse no teste de hipétese do vetor 3 com um todo,

isto é, no teste das hipdteses:
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Hy: B =3, contra Hy : B # 3,

tem-se as estatisticas:

(i) razao de verossimilhancas: A = —2 [E(B) —U(By) |,
(i) estatistica de Wald: W = (8 — B,)'S(8 — 3,), ¢

(iii) estatistica escore: Sg = U(,BO)Tgo_lU(,@O),

em que £(3) e £(B,) sdo os valores do logaritmo da funcao de verossimilhanca (10) em 3
e By, respectivamente, U (8,) e o sao o vetor escore e a matriz de informagao avaliadas
em 3, e & a matriz de informagao de Fisher avaliada na estimativa de maxima verossimi-
lhanca (EMV) de 3. De acordo com Demétrio (2002), na estatistica de Wald, & pode ser
substituida por &y para definir una estatistica de Wald modificada que é assintoticamente

equivalente.

2.6.5 Analise de residuos e diagnosticos para modelos lineares generalizados

As técnicas para andlise de residuos e diagnosticos sao utilizadas para ve-
rificar se um determinado modelo é apropriado para os dados. Essas técnicas podem ser
utilizadas para detectar uma falha sistematica do modelo ou falhas particulares como,
por exemplo, presenca de outliers. Uma andlise facil para verificar a qualidade do ajuste
é observar se o valor da deviance residual esta préximo do niimero de graus de liberdade
do residuo e quando isso ocorre, significa que o modelo esta bem ajustado aos dados.

De acordo com Demétrio (2002), as técnicas usadas para anélise de residuos
e diagnoésticos para modelos lineares generalizados sao semelhantes as usadas para modelos
lineares classicos, com algumas adaptacoes. Assim, por exemplo, na verificacao da pressu-
posicao de linearidade para o modelo linear classico usam-se os vetores y e ft enquanto que
para o modelo linear generalizado devem ser utilizados z, a variavel dependente ajustada,
e B, o preditor linear.

Os tipos de residuos mais utilizados para os modelos lineales generalizados

Sa0:

(i) Residuos ordindrios: r; = y; — fi; = y; — 9_1(771‘);
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.t , . Yi — ; . .
(ii) Residuos de Pearson generalizados: ' = —————, sendo ¢ uma estimativa con-

— V(1)
1
sistente do parametro ¢ e w; um peso a priori (na maior parte dos casos igual a

1);
(iii) Residuos de Pearson generalizados estudentizados internamente

p Yi — M
T ’

~

Py i1 — hy)

w;

Sendo h; um elemento da diagonal da matriz de projecao H =

Wi:X(X"WX) ' XTWe.

(iv) Componentes de deviance

. N 21,1}Z ~ A ~ A
ri’ = sinal (y; — fi;) ?[yi(ﬁi —0;) +b(6;) — b(0;)];
sendo 01 e éz as estimativas do parametro canonico sob os modelos saturado e cor-

rente, respectivamente.

(v) Componentes de deviance estudentizado internamente

2.6.6 Superdispersao

A utilizagao de MLG na andlise de dados tem se tornado de uso frequente,
principalmente com o avanco dos recursos computacionais disponiveis. De acordo com
Gbur et al. (2012), um dos cuidados que se deve tomar na anélise de dados, principalmente
no caso de varidveis discretas, é com a superdispersao que pode ocorrer.

Um conjunto de dados, as vezes, apresenta variabilidade maior do que a
esperada pelos modelos probabilisticos padroes, ou seja, uma deviance residual maior do
que a esperada. FEsse fenomeno é conhecido como superdispersao e Hinde e Demétrio

(1998) apresentam algumas das possiveis causas deste fenomeno dadas a seguir:
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(i) Variabilidade do material experimental, que pode ser devida a variabilidade indivi-
dual, gerando um componente aleatorio adicional que nao é levado em consideragao

na analise do modelo basico;

(ii) Correlagao entre respostas individuais, que pode ocorrer entre individuos do mesmo
grupo, por exemplo, no estudo de doengas de plantas, pode haver uma correlacao

entre plantas da mesma unidade experimental;
(iii) Amostragem por conglomerados (cluster) ;
(iv) Omissao de varidveis nao observadas;

(v) Contagem com excessos de zeros.

O fato de nao considerar a superdispersao na analise dos dados pode le-
var a estimacao incorreta dos erros padroes, sendo os mesmos super ou subestimados,
consequentemente uma avaliagao incorreta da significancia dos parametros do modelo.
Portanto, é essencial verificar a presenca de superdispersao no modelo linear generali-
zado ou no modelo linear generalizado misto para garantir que as inferéncias derivadas
do modelo ajustado sejam precisas.

A distribuicao padrao para andlise de dados de proporcao é a distribuicao
binomial, enquanto que para contagens é a Poisson. Essas distribuigoes tém como pres-

suposicoes:
(i) Independéncia entre as observagoes e

(ii)) A mesma probabilidade de sucesso no caso de proporgoes, ou a mesma média no

caso de contagens, para todos os individuos.

Se uma destas suposicoes nao é satisfeita, a variacao residual pode ser maior

do que aquela predita pelo modelo, ou seja,

(i) Dados de proporcao com Var(Y;) > m;m(1 —m;) e

(ii) Dados de contagem com Var(Y;) > p;,

sendo Y; uma variavel resposta independente.
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Nestes casos tem-se que ¢ > 1, fato conhecido por superdispersao. Pode
ocorrer, também, a subdispersao, situagao em que ¢ < 1.

Diferentes modelos e métodos de estimacao tém sido propostos na literatura
para resolver o problema da superdispersao, como os descritos por: Collett (1991), Willi-
amns (1982), McCullagh e Nelder (1989) e Lindsey (1997), entre outros. Hinde e Demétrio
(1998) apresentam modelos que incorporam a superdispersao e discutem os métodos de
estimacao dos parametros e técnicas para a verificacao do ajuste. Essas técnicas podem
ser estudadas, inicialmente, por procedimentos que se enquadrem, de uma forma geral,

em dois grupos:

(i) Assumir uma forma mais geral para a func¢ao de variancia, possivelmente incluindo
parametros adicionais que podem ser estimados por quase-verossimilhanga (modelos

de média-variancia), pseudo-verosimilhanga e método dos momentos.

(ii) Assumir um modelo de dois estdgios para a resposta, isto é, assumir que o parametro
do modelo para a resposta tem alguma distribuicao, levando a modelos de pro-
babilidade compostos, como o binomial negativo, beta-binomial, Poisson-normal,
logistico-normal e probit-normal podendo-se utilizar para estimacao dos parametros

o método da maxima verossimilhanga ou métodos aproximados como em (i).

2.7 Modelos lineares generalizados mistos

A teoria de modelos lineares generalizados considera apenas o estudo de
fatores de efeitos fixos. Uma extensao natural sao modelos que se ajustam a dados ob-
tidos a partir de experimentos em que os niveis de um fator foram selecionados de uma
populacao de niveis, isto é, sao aleatorios.

Desta forma, como uma extensao dos modelos lineares generalizados (MLG),
McCulloch (2003) cita os modelos lineares generalizados mistos (MLGM), que incorporam
efeitos aleatérios no preditor linear de um modelo pertencente a familia exponencial. De
forma analoga aos modelos mistos, os MLGM contém pelo menos um efeito fixo e pelo
menos um efeito aleatorio.

Considere a distribuicao condicional de Y dado u, sendo Y o vetor de
valores da variavel resposta consistente de elementos condicionalmente independentes (nao

necessariamente) com densidade pertencente a familia exponencial e u o vetor de efeitos
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aleatérios, formalmente tem-se, de acordo com Molenberghs e Verbeke (2005) o modelo a
seguir:

Yilu;, ~ fyiu, (il w:)

com

Sy u(yilu;) = exp {% it — b(0;)] + c(ys: ¢)} . (16)

visto que p; = b'(0;) decorre:

que é a média condicional da variavel aleatoria Y; dado u;, que é funcionalmente ligada a

parte sistematica por uma funcao de ligacao:

9(w) = =" B+ 2", (17)

Var(Yilui) = oV (1),

em que ¢(.) é a fungao de ligacao; x; é a i-ésima linha da matriz de delineamento associada
aos efeitos fixos; B é o vetor de parametros dos efeitos fixos; z; é a i-ésima linha da
matriz do modelo associada aos efeitos aleatérios e u é o vetor dos parametros dos efeitos
aleatdrios.

A parte sistemdtica do modelo (17) inclui tanto os efeitos fixos como os

aleatdrios. Assume-se que:
u; ~ fu(u). (18)

De acordo com Molenberghs e Verbeke (2005), um fato comum é pressupor
que u segue uma distribuicao conhecida, sendo usual atribuir distribuicao normal multi-
variada aos efeitos aleatdrios, ou seja, u ~ N(0,G). Uma discussdo mais aprofundada
sobre os efeitos aleatérios nao-normais é dada por Lee e Nelder (1996). Considerando o

modelo condicional (16), tem-se que:

E(Y)) = B[E(Yilw)] = Elu] = Elg~ (] B+ z{ wi)],
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que, em geral, nao pode ser simplificado devido a presenca de funcoes nao-lineares em

g '(.). A variancia marginal de Y;, por sua vez, é dada por:

Var(y;) = Var[E(Yilw;)] + E[Var(Yi|u;)]
= V] + Ela(¢)V (1))

=Var [¢7 (x"B + z,"w;)| + E{a;(¢)Var [¢7 ("B + 2" u;)] }

w; . , . . - .o~ ,
em que ai(¢) = E7 nao sendo possivel simplificagoes sem fazer suposicoes especificas

sobre a forma de ¢g(.) e/ou a distribuigdo condicional de Y.

O uso de efeitos aleatérios também introduz uma correlagao entre ob-
servacgoes que tenham algum efeito em comum. Assumindo-se independéncia condicional

dos elementos Y;, tem-se:

Cou(Y;,Y;) = CovlE (Yi|w;), E (Yj|uy)] + E [Cov(Y;, Yj|u,)]
= Cov(pi, j1;) + E(0)

= Cov [gil(wiT,B + ziTui), gil(iﬁjT,B + ZjT’U,i)] .

Segundo Costa (2003), os estimadores resultantes dependem da fungao ge-

radora de momentos da variavel aleatéria.

2.7.1 Inferéncia em modelos lineares generalizados mistos

De acordo com Gbur et al.(2012) a inferéncia em modelos lineares generali-
zados mistos (MLGM) envolve a estimagao dos coeficientes dos efeitos fixos, 3, predigao
dos parametros de fy e, possivelmente estimar o parametro de escala, ¢. Além disso, o
teste de hipdteses a respeito dos parametros desconhecidos em R e G. Da mesma forma
como nos modelos lineares generalizados, o processo de inferéncia é realizado na escala da
funcao de ligagao e nao na escala original da variavel resposta.

A estimacao em MLGM esta baseada no método da maxima verossimilhanga
e Costa (2003) apresenta varias abordagens para estimar os parametros do modelo (16).
Dentre elas, Schall (1991) sugeriu estimagao de maxima verossimilhanga similar ao que é
utilizado para modelos mistos; Breslow e Clayton (1993) estudaram um tipo de estimador
de méxima verossimilhanca marginal; McGilchrist (1994) recomendou o melhor preditor
linear nao-viesado, enquanto que Lee e Nelder (1996) introduziram um método geral

chamado estimagao de maxima verossimilhanga hierarquica.
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Gbur et al. (2012) reportam duas abordagens computacionais bésicas pre-

sentes na literatura, para obter as solugoes das equacoes de verossimilhanca:

(1)

(i)

Integracao numérica para o calculo e a maximizacao numérica da verossimilhanca
(para aproximar a fungao objetivo). Varias técnicas sao utilizadas para calcular a
aproximacao: métodos de Laplace, métodos de quadratura de Gauss-Hermite, al-
goritmo de Monte Carlo, cadeias de Markov etc. como principal vantagem destes
métodos, Pinheiro e Bates (2000) destacam a eficiéncia computacional para aproxi-
mar a funcao de verossimilhanca e a maior eficiéncia dos testes de razao de verossi-
milhanca. No entanto, o seu uso torna-se mais complicado a medida que se aumenta

o numero de efeitos aleatodrios.

Métodos de linearizacao usando expansoes de séries de Taylor para aproximar o
modelo. Neles se empregam expansoes para aproximar o modelo utilizando como
base pseudodados com poucos componentes nao lineares, sendo os procedimentos

mais comuns, os de Quasi-verossimilhanga (QL) propostos por Breslow e Clayton

(1993) e os de Pseudo-verossimilhanca (PL) de Wolfinger e O’Connell (1993).

Berdugo (2010) cita como vantagens, que os modelos linearizados possuem uma
forma relativamente simples, que tipicamente pode ser ajustada baseada unicamente
na média e na variancia da forma linearizada, por outra parte, os modelos com dis-
tribuicao conjunta complicada sao facilmente tratados e, ainda, é possivel abordar
modelos com um grande nimero de efeitos fixos e aleatérios, assim como com es-
truturas aninhadas e cruzadas. Porém, sao criticados principalmente por fornecer

estimadores viesados e inconsistentes.

2.7.2 Estimacgao por maxima verossimilhanca

De (16), (17) e (18) pode-se escrever a fungao de verossimilhanga .

1=11 / F(yslu) fr () = fy (y), (19)

sendo que a integracao ¢é sobre a distribuicao de u, de dimensoes ¢q. Nos casos mais simples,

a integracao numérica para o calculo da verossimilhanca é direta e, consequentemente, a

maximizacao numérica da funcao de verossimilhanca, nao é dificil, ja que o logaritmo da
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funcao de verossimilhanca é a soma das contribuicoes independentes de cada agrupamento,
que envolve apenas uma integral de dimensao tunica, que pode ser calculada usando-se
técnicas de quadratura (Costa, 2003).

A seguir, serao apresentadas as equacoes de verossimilhanca para

parametros fixos e aleatérios, conforme descrito por Costa (2003)
Equacoes de verossimilhanca para parametros fixos

Embora uma solugao para as equacoes de verossimilhanca seja numerica-

mente dificil, pode-se obté-las de uma forma mais simples. De (19), tem-se:

(= log fy(y). (20)
Assim,
g_g = % {log/fY|u(y|u)fU(u)du}
1 5,
- [ friu(ylw) fu(u)du [_5/fY|u(y\U)fU(u)du
- fyty)/{%fy'“@‘“)} fv(u)du, 21)

pois fy(w) nao envolve 3. Mas,

1

— W [%fyu(ylw] fyiv(ylu)

0
%fym(ym)

- |5 108 Bl fro el

Entao,
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ol 1 d
B :W/ {%l% Friu(ylw) friv (ylw)| fo(uw)du
[ s ] Dt
g 0 YT fr(y)
B ‘azl ] J
—/ 98 og fY\u(y|U)_ foy (uly)du.

J4
Além disso, g_ﬁ = X"WA(y —p),

sendo

W = diag {W;} = diag {aw)vmu»%r

O
A = diag {SZI } .

Portanto,

¢
g_ﬁ N /XTW*(-’/ — ) fuy (uly)du,

on;
O

-1
em que W* = diag [a(qﬁ)\/(ui) } . Logo,

ot . )
8- XTyEW*y] — X"E[W*ply],

e consequentemente,

XTyEW*|y] = XTE[W*ply].

Equacoes de verossimilhanca para parametros aleatdérios

(22)

Um resultado similar ao obtido na equagao (22) pode ser encontrado para

equagoes de maxima verossimilhanga para os parametros na distribuigdo fy(u).

tando -y os parametros dos efeitos aleatérios, de (20) tem-se:

Deno-
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ot 1 9f(y)
v fly) ov

| [ sttt
= [ |yt Fj [ 52,
[y, u) j
ot Ty Lo

= [ oyt |55 1o o)

/—\

2 [

"y [%bgf[](uny] ,

que nao pode ser simplificada sem que se especifique uma forma para a distribuicao dos

efeitos aleatorios.

Para a obtengao dos estimadores de méxima verossimilhanga, Vieira (2008)
apresenta um resumo dos principais algoritmos atualmente implementados nos softwares
estatisticos. Destacando dentre os algoritmos para optimizacao de fungoes, os métodos de
Newton-Raphson, da secante, scoring de Fisher e Quase-Newton; e dentre os algoritmos
para integracao numérica, os métodos da Quadratura de Newton-Cotes, de Laplace e

Quadratura de Gauss-Hermite.

2.7.3 Estimacao e inferéncia baseada em métodos de linearizacao

No ajuste dos MLG como proposto por Nelder e Wedderburn (1972), as

equagoes de estimacao tem a seguinte forma matricial (eq. 15):
X"WXp=X"Wz,

em que X, de dimensoes n X p, é a matriz de delineamento do modelo, W, de dimensoes

1 Ol
p X p, ¢ uma matriz diagonal de pesos dada por dac) , € z, uma variavel
Var(Y;) \ on;

depente ajustada definida em termos da variavel original Y por:

z=n+(y—p (§Z>
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A estimacao é implementada mediante um processo iterativo no qual se atu-
aliza a matriz de pesos, o vetor de parametros e a pseudo-variavel. Esta ideia é estendida
por Wolfinger e O’Connell (1993) a um MLGM aproximando a expressio ¢~ (X B+ Zu)

por meio de uma série de Taylor de primeira ordem centrada nos valores de 3 e u, ou seja:

pag @)+ A [X(B-B)+ Z(u-a), (23)

X dg~* 8 ~ 8 = -

em que A = (ga—(n)) ~en=XpB+ Zu, sendo B e u estimativas e predicoes para
n G

os vetores de efeitos fixos e aleatdrios, respectivamente.

Reorganizando a eq.(23), obtém-se:

E(Plu)=A"'[p—g'(®)]+XB+ Zu~ XB+ Zu, (24)

em que P = A Y — g (7)) + XB + Za@ é uma pseudo-varigvel com esperanca e
variancia condicionais dadas por E(P|u) = XB+ Zu e Var(Plu) = S = AT'GA™

Com base nessas aproximagoes, Wolfinger e O’Connell (1993) consideram

que a variavel P segue o modelo linear misto:

P=XpB+Zu+ e come~ N(0,S). (25)

As equagoes (24) e (25) implicam que a pseudo-resposta P tem uma
distribuigao aproximadamente normal com média X3 e variancia Var(Plu) = S =
A_IGA_I, em que G, de dimensao ¢, contém todos os parametros das matriz de
variancias e covariancias dos efeitos aleatérios.

Estas especificagoes levam ao logaritmo da funcao de pseudo-
verossimilhanca ¢(¥;p) e ao logaritmo da fungao de verossimilhanca restrita {g(¥; p),

dadas, respectivamente, por:
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((¥;p) = —% log |V (W)| — %TTV(lII)_lr - glog{%r} e (26)
1 L r -1
((Wip) = 505 V()] — L V() ey
S log | X7V (@) x|~ L= Fiog o) (27)

emquer =p— X(X'VIX)" X"V !p, f é asoma de todas as frequéncias utilizadas

na analise e 7 o0 posto da matriz X.

Neste caso, os parametros de W sao estimados usando técnicas de otimizacao
como: Newton-Raphson, quase-Newton, Dual quasi-Newton etc. O processo de estimagao
inicia tomando valores iniciais de 8 e @ para formar 7 e substitui-lo em (26) e (27). Logo
se maximiza alguma destas expressoes com relacao a W e ao obter um estimador U se

atualizam (3 e u usando:

O processo de otimizagao-atualizacao se repete até que algum critério de
convergéncia ¢é atingido, geralmente a mudanca relativa é menor ou igual que algum valor
predefinido (McCULLOCH; SEARLE, 2001).

No caso em que a distribuicao condicional contém um parametro de dis-

persao ¢, sua estimacao € realizada somente no procedimento PQL, por meio da expressao:

~ 1 o
6= —iV (&) 5.
m

A escolha de m depende do método de estimacao, de modo que para o

método da méxima verossimilhanga (ML), m = f e no método da maxima verossimilhanga

restrita (REML), m = f — k.
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Inferéncia para parametros de efeitos fixos

De acordo com Littell at al. (2006), de maneira andloga aos MLMs, nos
MLGMs baseados na linearizagao, o procedimento de inferéncia para os parametros de
efeito fixo é realizado a partir da funcao de predicao K3 + Mu, sendo o teste de Wald

um dos mais utilizados, cuja estatistica W ¢é dada por:

W = (L") (LYCL)(L"¥),

em que:

e C= . (28)

7 ~T]T X's'x  X'S''z
, U
z's7'X z'S7'z+G!

Quando em (28) S independe de algum parametro de escala ¢, a estatistica de Wald
se distribui assintoticamente como uma varidvel x> com ntmero de graus de liberdade
v1=posto(L) (LITTELL et al., 2006). Nos casos em que S depende de um parametro de
escala desconhecido ¢, prefere-se utilizar a estatistica de Wald dividida por v, obtendo-se
a estatistica Fyy:

FW = W/l/1

. Esta estatistica estd assintoticamente distribuida como uma variavel F (v, 1), em que
v1=posto(L) e vy sdo os graus de liberdade utilizados para estimar LTCL, que devem
ser aproximados usando métodos como os propostos por Satterthwaite, Kenward Roger,

entre outros.
Inferéncia sobre os componentes de variancia

As hipdteses relativas aos componentes de variancia da matriz G podem
ser avaliadas por meio do teste da razao de verossimilhanga (LRT), cujos detalhes sdo
apresentados por Casella e Berger (2002). O método se fundamenta em comparar as
verossimilhancas de dois modelos, nos quais os parametros sao obtidos de dois espacos
(), de dimensao s, e €} de dimensao s com parametros €2, C 2 e s, < s. Se éo e 0 sio
os estimadores de maxima verossimilhanga em cada modelo, a estatistica (A) é definida

COINO:
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A ~

A = 2[6(0) — £(6,)],

em que ¢ é a fungao logaritmo de verossimilhanca, que é avaliada nas estimativas de cada
parametro dentro dos espacos previamente definidos. Quando nenhum dos parametros
especificados no modelo nulo pertence a fronteira de €2, a estatistica A possui uma dis-
tribuicao assintética x? com s — s, graus de liberdade. Em caso contrario, quando pelo
menos um dos parametros no modelo nulo pertence a fronteira de €2, Pinheiro e Bates

(2000) afirmam que a distribuigao da estatistica A é uma mistura de distribuigoes x?.
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3 MATERIAL E METODOS

3.1 Material

O palmiteiro (Euterpe edulis Martius), segundo Reis (2000), é uma planta
nativa do dominio floresta tropical Atlantica do Brasil, que tem um estipe (caule lenhoso)
unico de 5 a 15 m de altura e é incapaz de produzir perfilhos, o que acarreta na morte
da planta apds corte do palmito. Brancalion (2009) salienta que esta espécie tem sido
considerada importante para os frugivoros (animais que se alimentam de frutas) no bioma
da Mata Atlantica, uma vez que produz frutos que sao consumidos pelo menos por 30 tipos
de aves e 15 espécies de mamiferos, principalmente em periodos de escassez de alimentos.

Assim, de modo a ilustrar a metodologia apresentada, foram utilizados da-
dos relativos a dois grupos de experimentos com transplantes reciprocos, sendo o primeiro,
um ensaio de estabelecimento de plantulas ou de semeadura e o segundo, um ensaio de
crescimento de juvenis. Estes ensaios foram conduzidos por Brancalion (2009), com o
objetivo de avaliar a adaptacao local e a plasticidade fenotipica de trés procedéncias de
palmiteiro em parcelas permanentes inseridas em trés formacoes florestais do Estado de
Sao Paulo.

Nesses ensaios, o autor coletou sementes das populacoes de E. edulis pre-
sentes em trés tipos de florestas do bioma da Mata Atlantica. Nestes mesmos locais foi
instalado cada um dos experimentos, envolvendo individuos das trés procedéncias. A

seguir sao descritas algumas caracteristicas desses tipos de florestas:

(i) Restinga (Restinga Forest), no Parque Estadual da Ilha do Cardoso (IC). Este par-
que esta localizado no litoral sul do Estado de Sao Paulo, na divisa com o Es-
tado do Parand, abrangendo uma 4rea aproximada de 151 km?, situando-se en-
tre as coordenadas geograficas: 48°05'42”e 48 53’48”longitude oeste, e 25°03’05”e
25°18’18”]atitude sul. A altitude média é de 7 m, temperatura média anual de
22.4°C, precipitagao anual de 2261 mm, sem estagao seca, clima equatorial com alta

influéncia do oceano.

(ii) Ombréfila Densa (Atlantic Rainforest). Situa-se no Parque Estadual de Carlos Bo-
telho (CB) na Serra de Paranapiacaba, regiao sudeste do estado de Sao Paulo, ocu-

pando uma 4rea de 376,44 km?, entre as coordenadas geograficas 47°56’57” longitude
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oeste e 24°07’53” latitude sul, com um relevo acidentado, indo de 50 a 975 m de alti-
tude, a temperatura média anual é de 21,8°C, precipitacao anual de 1582 mm, sem

estagao seca, clima equatorial.

(iii) Estacional Semidecidual (Seasonally Dry Forest) na Estacao Ecoldgica dos Caete-
tus (CT), localizada entre as coordenadas geograficas 49°42°05”longitude oeste e
22°24’11”1atitude sul, tem drea de 21,79 km?, e altitudes variando de 500 a 690 m,
temperatura média anual: 21,4°C, precipitacao anual de 1303 mm, com estagao seca

no inverno (déficit de dgua= 10 mm), clima sub-tropical timido.

Essas populagoes foram encontradas em crescimento no entorno de 10 ha de
parcelas permanentes de cada tipo de floresta, que sao protegidas em reservas naturais do
Estado de Sao Paulo. Na Figura 1 mostram-se os locais onde foram coletadas as sementes
de E. edulis e instalados os experimentos. Os quadrados negros dentro de cada area
representam as parcelas permanentes de 10 ha cujo entorno foi utilizado para a coleta de
sementes.

A coleta das sementes foi realizada no inicio da época de frutificacao em 10
plantas matrizes (plantas maes, das quais sdo coletadas sementes ou propagulos para a
producao de mudas) em duas trilhas de cada reserva natural, em maio de 2008 e em maio
de 2009. As plantas matrizes escolhidas estavam separadas por uma distancia minima de
100 m, a fim de reduzir as chances de fluxo génico entre elas.

A polpa foi retirada dos frutos do palmiteiro colocando-os em uma tela de
arame e logo enxaguados abundantemente em dgua corrente. Os frutos foram processados
separadamente para cada grupo, evitando misturas de sementes entre plantas matrizes e
procedéncias diferentes. A massa seca e teor de umidade foram avaliados de acordo com

o método do forno (105°C £ 3°C por 24 horas), utilizando 30 sementes por planta matriz.

3.1.1 Ensaio de estabelecimento (semeadura) em transplantes reciprocos

para avaliagcao da adaptacao local e plasticidade fenotipica

Brancalion (2009) relata que o ensaio de estabelecimento foi iniciado em
maio de 2008, sete dias apds a coleta de sementes para evitar a perda da viabilidade de
sementes recalcitrantes de F. edulis. Essas sementes caracterizam-se por nao sofrerem

dessecacao natural na planta matriz ao longo do processo de maturacao, sendo dispersas
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com elevados teores de agua que, se reduzidos a um nivel considerado critico, levarao a
rapida perda da viabilidade e até a morte, e mesmo quando a umidade for mantida em

nivel adequado durante o armazenamento, sua longevidade é curta (NEVES, 1994).
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Figura 1 — Locais de estudo de Futerpe edulis Martius, A - Parque Estadual da Ilha do
Cardoso, B - Estacao Ecoldgica dos Caetetus e C - Parque Estadual de Carlos
Botelho. Reproduzido de BRANCALION, 2009

Ao longo de dois transectos tracados em forma aleatéria em cada tipo de
floresta foram alocados dez blocos experimentais, e situados a 100 m um do outro e 30 m
a direita ou a esquerda do transecto, alternadamente, como ilustra a Figura 2.

Cada bloco experimental teve trés parcelas utilizadas neste ensaio com as
trés procedéncias atribuidas aleatoriamente. Em cada parcela, foram semeadas 30 semen-
tes de cada procedéncia, ou seja, trés sementes para cada planta matriz e dez plantas
matrizes por tipo de floresta (Figura 3).

Dado que cada planta matriz forneceu sementes para todos os experimentos,
Brancalion (2009) considera que pelo menos metade do seu genoma foi exatamente repe-
tido nos trés tipos de floresta. Sementes das mesmas plantas matrizes de cada procedéncia

foram utilizadas em todos os experimentos.
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Bloco 1 —— 100m Bloco 2 100 m Bloco 3
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Bloco 3 | —— 100m Bloco 9 100 m Bloco 10

Figura 2 — Croqui do experimento de estabelecimento (semeadura), para um local deter-
minado
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Figura 3 — Croqui de: (a) um bloco qualquer mostrando a casualizagao das procedéncias
das sementes: R (Restinga), E (Estacional Semidecidual) e O (Ombréfila
Densa), as parcelas sombreadas pertencem a outro projeto; e (b) uma par-
cela com trés sementes de cada planta-matriz do mesmo ecossistema
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A localizacao exata das sementes de cada planta matriz e proveniéncia foi
marcada com etiquetas de plastico. Os blocos experimentais foram protegidos por gaiolas
de exclusao para evitar a remocao de sementes por mamiferos e a deposicao de sementes
por agentes de dispersdao. As gaiolas foram feitas com barras de ferro (110 cm de com-
primento x 70 cm largura x 15 cm de altura) e cobertas por uma malha de arame, com
aberturas circulares de 1 cm. As sementes foram enterradas no solo a uma profundidade
equivalente & metade do seu diametro, e a outra metade se deixou exposta. Assim é a
pratica comum dos viveiristas que produzem essas espécies comercialmente.

Neste experimento avaliou-se o niimero de plantulas presentes nas parcelas
aos 90, 180 e 270 dias apds a semeadura. As plantulas, por sua vez, foram marcadas
individualmente com etiqueta de pléastico, a fim de avaliar a emergéncia e a mortalidade
durante o periodo. A populagao final de plantulas foi avaliada na tltima contagem (270
dias), quando a parte aérea de todas as plantulas foi removida das parcelas e inserida
individualmente em sacos de papel. A parte aérea das plantulas foi seca em estufa a 72°C
durante 48 horas, para obter a massa de matéria seca da folha e do caule.

As variaveis respostas medidas neste ensaio foram: proporcao de sementes
germinadas por planta matriz de cada procedéncia, valores médios de massa de matéria
seca (em miligramas) da folha, do caule e da parte aérea (folha e caule), por planta matriz

de cada procedéncia.

3.1.2 Ensaio de crescimento de mudas (juvenis) em transplantes reciprocos

para avaliacao da plasticidade e adaptacao local.

Grupos de sementes de cada planta matriz das procedéncias avaliadas foram
semeadas separadamente, em caixas plasticas contendo areia. Mudas de 90 dias de idade
foram transplantadas em tubos de plasticos de 56 cm?® preenchidos com uma mistura
livre de nutrientes organicos, onde as mudas dependiam exclusivamente de suas reservas
do endosperma para o desenvolvimento, o que é desejavel porque um substrato adubado
poderia mascarar os efeitos das condi¢oes naturais do solo sobre o crescimento em cada
area de estudo.

As mudas foram mantidas em viveiro florestal e, posteriormente, utilizadas
em transplantes reciprocos realizados em novembro de 2008, no inicio da estacao chu-

vosa. Os dez blocos experimentais foram construidos 2 m longe dos blocos utilizados
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na avaliacao descrita anteriormente no ensaio de caracteres adaptativos em mudas de
estabelecimento. Cada bloco experimental teve trés parcelas com as trés procedéncias
distribuidas aleatoriamente. Cada parcela esteve constituida por dez plantas, uma de
cada planta matriz.

As plantas produzidas foram removidas das parcelas apds 12 meses, e secas
no forno. O desempenho durante o crescimento das mudas foi avaliado medindo a massa
de matéria seca (mg) da raiz, da folha, do caule e total, por planta matriz de cada

procedéncia.

3.2 Métodos

3.2.1 Modelos lineares mistos para avaliar o teor da massa de matéria seca

das plantas

Para que os conjuntos de dados pudessem ser analisados de acordo com a
proposta dos modelos lineares mistos, inicialmente foram identificados os fatores presentes
em cada experimento, discriminando-os como fator aleatorizado ou fator nao aleatorizado
(BRIEN, 2007), sendo identificadas também suas camadas (BRIEN, 1983) e as respectivas
formulas estruturais, indicando assim a relagao entre os mesmos.

Embora os ensaios contenham dados faltantes, para uma melhor compre-
ensao da sua estrutura, considerou-se uma série de experimentos, balanceados, realizados
com [ procedéncias em K locais, e utilizando um delineamento casualizado em blocos, com
J repeticoes em cada local, e ainda, M plantas matrizes associadas a cada procedéncia.
Construiu-se a tabela de decomposicao dos niimeros de graus de liberdade e esperancas
dos quadrados médios (Tabela 1), fazendo uso do diagrama de Hasse (TAYLOR; HILTON,
1981), que é apresentado na Figura 4.

Segundo Machado et al. (2005) o diagrama de Hasse é uma poderosa fer-
ramenta visual utilizada na representacao da estrutura dos fatores de um delineamento
experimental e fornece uma valiosa perspectiva complementar para a analise de variancia
e as técnicas de analise, por meio de uma conexao entre a descricao verbal do experimento

e o correspondente modelo linear estatistico.
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Figura 4 — Diagrama de Hasse para obtencao dos nimeros de graus de liberdades e espe-
rangas dos quadrados médios para os ensaios de estabelecimento (semeadura)
e crescimento de mudas (juvenis)
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Logo, com a estrutura definida, os dados foram analisados de acordo com o

modelo estatistico matematico, a seguir:

Yijkm = 1+ Ti + bjy + Lp + Tli + Oy + LOminy + Eijim, (21)

em que: i= 1,....1, j=1,....J, k=1,....K, m=1,.... M, y;jrm ¢ a resposta observada referente
a m-ésima planta matriz da i-ésima procedéncia, no j-ésimo bloco do k-ésimo local; y é
a constante associada & todas as observagoes; 7; é o efeito da i-ésima procedéncia (efeito
fixo), bjx ¢ o efeito aleatério do j-ésimo bloco no k-ésimo local, by ~ N(0,042), €
é o efeito fixo do k-ésimo local; 7¢;. representa o efeito da interacao entre a i-ésima
procedéncia e o k-ésimo local, d,,;) ¢ o efeito aleatério da m-ésima planta-matriz dentro
da i-ésima procedéncia, d,,;y ~ N (0, os?), L0 iy € o efeito aleatério da m-ésima planta-
matriz dentro da ik-ésima interagao local x procedéncia, £0,,¢x) ~ N(O, 00s2) e Eijkm € O
erro experimental aleatério associado as observagoes Yijkm, €ijem ~ N(O, 052).
Considerando-se bj(x), Om(i), {om(ix) € €ijrr como independentes, a variancia

de uma observacao é dada por: 03,2 + 052 + 0452 + 0.2

Tabela 1 — Decomposi¢ao dos niimeros de graus de liberdade e esperancas dos quadrados
médios para os ensaios de estabelecimento (semeadura) e crescimento de mudas

(juvenis)
Fontes de variacao gl E[QM]
Locais K -1 o2+ IMoig + Joipay + an(¥)
Blocos [Locais] K(J—-1) o2+ IMoig
Subparcelas [LABA P]  KJ(IM — 1)
Procedéncias I-1 02+ Joipy + KJo, + apr ()
Locais#Procedéncias (I-1)(K-1) 02 + Jotp + qupr(¥)
Matriz(Procedéncias) I(M—1) o2 + KJo%,,,
L#M(Procedéncias) (K —=1)(I(M—=1) 02+ Jo2py
Residuo K(J—-1)(IM-1) o2
Total IJKM —1

Optou-se pelo método da maxima verossimilhanga restrita -REML (PAT-
TERSON; THOMPSON, 1971), para a estimagao dos componentes de variancia, e pelo
método dos minimos quadrados generalizados, para a estimacao dos parametros do vetor
de efeitos fixos, utilizando um nivel de 5% de significancia. Além disso foi utilizada a
estrutura de componentes de variancia para modelar a matriz G de efeitos aleatorios e

para a matriz residual, R = oI
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Para avaliar a significancia dos fatores de efeito fixo e sua interacao, foi

utilizado o teste Wald-F, como descrito na secao 2.5.4, cujas estatisticas sao dadas por:

(i) Local (L):

QMLocal
(QMB[L] + QMpgarpry — @ MResiduo

com v graus de liberdade no denominador, dados pela aproximagcao de Satterthwaite

(1946), ou seja,

F=

) ~ F(K*l),l/,aa

_ (QMB[L] + QM) — QMResiduo)2
(QMB[L])2 + (QMLﬁM(Pr))2 (QMResiduo)2

ng[L] glLﬁM(Pr) 9lResiduo
(ii) Procedéncia (Pr):
Q Mp,
Fp, = QM—]\/ZP} ~ Fli—1),1(M=1),a

(iii) Interagao Local x Procedéncia (LEPT):

QMLﬁ Pr

QMo ™ Flr—nx -1, [(k—1)1(M-1)]a-

FLﬁPr =

Por outro lado, para testar as hipoteses referentes aos componentes de

2

variancia, Hy : 07 = 0 e Hy : 0? > 0 (existe variabilidade entre os niveis do fator
aleatorio 7), foi utilizado o teste Z de Wald, descrito na segao 2.5.5.

Os diagnosticos foram realizados observando-se os graficos de dispersao para
os residuos condicionais estudentizados, conforme descrito na segao 2.5.6. A verificagao da
normalidade tanto para o vetor de parametros de efeito aleatério quanto dos residuos, foi
feita utilizando os graficos de quantil-quantil, e a homocedasticidade por meio do grafico
dos residuos condicionais estudentizados contra os valores preditos.

A seguir sera descrita a metodologia utilizada para estudar a plasticidade
fenotipica e a adaptacao local do palmiteiro, com base nas varidaveis relacionadas com o

teor de massa de matéria seca das plantas.
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3.2.1.1 Estudo da plasticidade fenotipica

Dado o modelo (21), considere g, = p + 7; + € + T, sendo gy, a média
da interacao entre a i-ésima procedéncia e o k-ésimo local. Com a finalidade de testar a
hipdtese de nulidade de que nao ha plasticidade fenotipica detectavel entre as populagoes
nos K ambientes testados contra a hipotese alternativa de que hé plasticidade fenotipica,
ou seja, os caracteres medidos na mesma populacao submetida a ambientes diferentes
sao significativamente diferentes foi realizado o desdobramento do niimero de graus de
liberdade do fator local dentro dos niveis de procedéncia, sendo testadas as hipdteses

seguintes:

Hy:p = pag = ... = g
H; : pelo menos uma pu1y # pp para k # K ’

Hy : pior = pigo = ... = ok
H, : pelo menos uma jioy # pigp para k #£ k' ’

Ho:ppn = pre = ... = g
H, : pelo menos uma pupy, # p para k # k' ’

em que [, ¢ a média de uma variavel aleatéria em particular, observada em cada ¢
procedéncia nos k locais, sendo i =1,2,.... I ek =1,2,.... K.

Adicionalmente, para testar se o proprio local é o mais favoravel para o
desenvolvimento de plantas da sua mesma procedéncia, foi construido um conjunto de

contrastes, avaliando as hipéteses:

( K

Z M1k

Hoiun—k:l—zo; k#1

K-1

K

Z M1k

Hy:pn — 25— #0; k#1 ’
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Ho:pg —5=—=0, k#K

Hy:piw — " #0; k# K ,

em que [k, sao as médias de uma variavel aleatoria em particular, observadas na pro-

cedéncia ¢ no local k, com 1=k, comparadas com as médias da mesma procedéncia nos

K-1 locals restantes.

3.2.1.2 Estudo da adaptacao local

Por outro lado, com a finalidade de testar a hipdtese nula de que nenhuma

adaptacao foi necessaria para a ocupacgao de mais de um bioma por parte de cada espécie

contra a hipdtese alternativa de que as populacoes locais sao de fato ecotipos e apresentam

adaptacoes especificas, foi realizado o desdobramento do nimero de graus de liberdade

do fator procedéncias dentro de locais. Neste caso foram testadas as hipdteses:

H()Z

H,

Hi1 = M21 = ... = U1

: pelo menos uma ;7 # ;1 para i # i ’

Ho @ pio = poe = ... = pip2
H; : pelo menos uma ji;5 # puyo para ¢ # i
Hy:pig = pox = ... = ik

H, : pelo menos uma ji;;¢ # jyrx para i # i’ )
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em que iz, sao as médias de uma varidvel aleatéria em particular, das procedéncias
1 =1,2,...,I num determinado k.

Adicionalmente, para testar se cada procedéncia estd mais adaptada ao seu
préprio ambiente em comparagao com os outros ambientes onde foi plantada (adaptagao

local), foi construido um conjunto de contrastes, avaliando as hipéteses:

( I

Z i1
i=1

Hoilin—zf,l =0;i#1

le,ull_zzlfl 7&0,27&1 ’

Hoi,lmz—zz1 =0;1#2

Hi:pog — E— #0; i #2 ’

Ho:piw — 55— =0; i #1

Z ik

\Hlil,L[K—i:}_l 7&0,2#1 ’

em que [z, sao as médias de uma varidvel aleatéria em particular, observadas nas ¢
procedéncias no local k, com i=k, comparadas com as médias do mesmo local nas I-1
procedéncias restantes.

As analises foram feitas usando-se o procedimento mired implementado
no software estatistico SAS ® (SAS INSTITUTE, 2011) , sendo que os programas sao

apresentados no Anexo A. Para todos os testes empregou-se o nivel de 5% de significancia.
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3.2.2 Modelos lineares generalizados mistos para avaliar a proporcao de se-

mentes germinadas

A propor¢ao de sementes germinadas (y;jkm) fol registrada aos 270 dias
apos a semeadura e analisada usando um MLGM sob a pressuposicao de distribuicao
binomial da variavel em estudo. Usando a funcao de ligacao logito, a média condicional
da proporcao de plantas germinadas, E [yijkm|bj(k),5m(i),€5m(ik)}, pode ser expressa em
termos do preditor linear 7;;x,, com a inclusdo dos efeitos aleatdrios (para modelar a
variagao extra-binomial), como:
Tijkm

Nijkm = log ( ) = p+ T+ bjgy + by + Tli + Ogiy + LOminy

1 — Tijkm

emquet=1,...I1,5j=1,..,J,k=1,... K, m=1,.. M,

Tijkm € a probabilidade de uma semente da planta mae m e procedeéncia ¢ ter
germinado na repetigao j no local k, i é a média geral, 7; é o efeito da i-ésima procedéncia
(efeito fixo), bk € o efeito aleatdrio do j-ésimo bloco no k-ésimo local, by ~ N(0, 0,?%),
U € o efeito fixo do k-ésimo local; 7¢;, representa o efeito da interacao entre a i-ésima
procedéncia e o k-ésimo local, d,,(;) € o efeito aleatério da m-ésima planta-matriz dentro
da i-ésima procedeéncia, d,,y ~ N (0, 0s?), L0 k) € o efeito aleatério da m-ésima planta-
matriz dentro da ik-ésima interacao local x procedeéncia, £6,,(x) ~ N(O, 0¢s2). Considerou-
se bj(k), Om(i)s LOm(ik) como independentes.

As estimativas dos parametros de efeito fixo e a predicao dos parametros de
efeito aleatério foram obtidas a partir da maximizacao do logaritmo da funcao de pseudo-
verossimilhanga (baseado no método REML em um modelo linearizado), utilizando a
técnica de otimizagao Quase-Newton duplamente iterativo.

O valor ajustado da proporcao de sementes germinadas é dado por: m; =
exp (7))

1+exp ()
Como medida do ajuste do modelo foi utilizada a estatistica X? generalizada
n < \2
de Pearson, que tem a forma: X2 = Z M
=l V(i)
valores estimados pelo modelo e V(ji;) a fungao de variancia estimada para a distribuicao

, sendo y; os valores observados, fi; os

em estudo. No caso da distribuigdo binomial, B(n, ) tem-se que V(1) = p (1 - E) :
n

Para estimar o parametro de escala ou dispersao ¢, foi utilizada a expressao:
2
. X ) . . :
Q" = , em que n é o tamanho da amostra e m é o nimero de parametros estima-
n—m
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dos. Para dados provenientes das distribui¢oes binomial e Poisson, tem-se ¢=1, portanto
valores distantes de um, sao um indicativo de falta de ajuste do modelo.

Para avaliar a significancia dos fatores de efeito fixo e suas interacoes, foi
utilizado o teste Wald-F, como descrito na secao 2.7.3. Por outro lado, para testar as
hipoteses referentes aos componentes de variancia da matriz G foi utilizado o teste da
razao de verossimilhancas.

Adicionalmente, foram calculados residuos condicionais estudentizados (r.)
na escala logito, definidos pela expressao seguinte: r, = /p\_—n, em que p denota os

Var[plu]
valores dos "pseudo-dados” que surgem a partir do algoritmo de linearizacao usado para
obter o estimador de maxima verossimilhanca, @“[pm] ¢ a variancia estimada de p, con-
dicional aos efeitos aleatdrios contidos no vetor u (GBUR et al., 2012), e construidos
graficos (histograma, box plot, quantil-quantil e de r, contra o preditor linear), para veri-
ficar o ajuste do MLGM.

Posteriormente, com o objetivo de testar a hipotese de nulidade de que nao
ha plasticidade fenotipica detectavel entre as populagoes nos ambientes testados contra a
hipdtese alternativa de que ha plasticidade fenotipica, ou seja, as proporcoes de sementes
germinadas da mesma populacao submetidas a ambientes diferentes sao significativamente
diferentes foi realizado o desdobramento do nimero de graus de liberdade do fator locais
dentro de procedéncias.

Por outro lado, com a finalidade de testar a hipétese nula de que nenhuma
adaptacao foi necessaria para a ocupacao de mais de um bioma por parte de cada pro-
cedéncia contra a hipdtese alternativa de que as populagoes locais sao de fato ecétipos e
apresentam adaptacoes especificas, foi realizado o desdobramento do nimero de graus de
liberdade do fator procedéncias dentro de locais.

As analises foram feitas usando-se o procedimento glimmiz implementado

no software estatistico SAS (SAS INSTITUTE, 2011) , sendo que os programas sao apre-

sentados no Anexo B. Para todos os testes empregou-se o nivel de 5% de significancia.
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4 RESULTADOS E DISCUSSAO

Na se¢ao 4.1 serao apresentados os resultados e discussoes das analises es-
tatisticas referentes a avaliacao da plasticidade fenotipica e da adaptacao local dos pal-
miteiros, para os dois grupos de experimentos, considerando como variaveis de resposta,
a massa de matéria seca de diferentes partes das plantas e total, ajustando e avaliando
a adequacao de um modelo linear de efeitos mistos. Posteriormente, na secao 4.2, serao
exibidos os resultados e discussoes das andlises estatisticas, considerando desta vez, as
proporcgoes de sementes germinadas apenas no experimento de adaptacao no estabeleci-
mento, ajustando e avaliando a adequacao de um modelo linear generalizado de efeitos

mistos.

4.1 Avaliagao da plasticidade fenotipica e da adaptagao local com base nos
teores de massa de matéria seca das plantas em ensaios de estabeleci-

mento e de crescimento

Os valores médios e os respectivos desvios padrdes para as varidveis consi-
deradas nos diferentes ensaios, por local e procedéncia dos palmiteiros, estao apresentados

nas Tabelas 2 e 3.

Tabela 2 — Médias e desvios padrdes (d.p.) da massa de matéria seca (mg) da folha, do
caule e parte aérea das plantas das procedéncias Ombroéfila (Omb.), Semideci-
dual (Sem.) e Restinga (Res.), nos locais Carlos Botelho (CB), Caetetus (CT)
e IlTha do Cardoso (IC), no ensaio de adaptagao no estabelecimento

Folha Caule Parte aérea

Local Proc. Média d.p. Meédia d.p. Média d.p.
Omb. 0,1027 0,0256 0,0768 0,0300 0,1794 0,0527

CB Sem. 0,0682 0,0267 0,0544 0,0224 0,1226 0,0455
Res.  0,0715 0,0295 0,0513 0,0228 0,1227 0,0495
Omb. 0,0735 0,0328 0,0571 0,0206 0,1306 0,0508

CT Sem. 0,0588 0,0294 0,0449 0,0229 0,1036 0,0502
Res. 0,0578 0,0240 0,0411 0,0170 0,0988 0,0381
Omb. 0,1307 0,0356 0,1215 0,0352 0,2521 0,0637

IC  Sem. 0,0949 0,0396 0,0877 0,0349 0,1826 0,0689
Res. 0,0943 0,0359 0,0835 0,0350 0,1777 0,0669
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A Tabela 2 permitiu verificar que no ensaio de adaptacao no estabeleci-
mento, a procedéncia Ombrdfila apresentou os maiores valores médios da massa de matéria
seca das partes das plantas, em todos os locais avaliados. Com relacao aos locais, no par-
que Ilha do Cardoso apresentaram-se os melhores resultados. Além disso, as plantas das
diferentes procedéncias apresentaram um comportamento diferenciado ao serem semeadas

nos distintos locais, o que da indicio da existéncia de plasticidade fenotipica.

Tabela 3 — Médias e desvios padrdes (d.p.) da massa de matéria seca (mg) da folha, do
caule, da raiz e total das plantas das procedéncias Ombrdéfila (Omb.), Semi-
decidual (Sem.) e Restinga (Res.), nos locais Carlos Botelho (CB), Caetetus
(CT) e Ilha do Cardoso (IC), no ensaio de adaptacdo em juvenis

Folha Caule Raiz Total

Local Proc. Média d.p. Média d.p. Média d.p. Média d.p.
Omb. 0,1870 0,1062 0,1912 0,1055 0,1455 0,0633 0,5236 0,2402
CB  Sem. 0,1595 0,1023 0,1847 0,1044 10,1679 0,0802 0,5121 0,2567
Res. 0,2288 0,1306 0,2189 10,1233 0,1654 0,0828 0,6131 0,3077
Omb. 0,2468 0,1048 0,2216 0,1016 0,1621 0,0797 0,6306 0,2519
CT Sem. 0,2329 0,1133 0,2077 0,1083 0,1787 0,0847 0,6194 0,2898
Res. 0,2861 0,1106 0,2645 0,1160 0,1934 0,0704 0,7440 0,2635
Omb. 0,1895 0,1090 0,2091 0,0883 0,1346 0,0510 0,5332 0,2176
IC Sem. 00,1711 0,1250 0,2169 0,1264 0,1608 0,0828 0,5488 0,3161
Res. 10,2801 0,1463 0,3093 0,1823 0,1870 0,1113 0,7764 0,4097

Com relagao ao ensaio de adaptacao em juvenis, a Tabela 3 permitiu veri-
ficar que nao existe um padrao claro do comportamento da massa da matéria seca das
plantas. Nenhum dos locais se mostrou evidentemente superior. Além disso nenhuma
procedéncia se destacou entre as demais.

Em seguida, foram verificadas as significancias dos parametros de efeito
fixo, e as estatisticas para o teste Wald-F' sao apresentadas na Tabela 4, salientando que
o nivel de significancia utilizado foi de 5%. A referida Tabela inclui os resultados obtidos
nos ensaios de adaptagao no estabelecimento e em juvenis, para a massa de matéria seca
de diferentes partes das plantas de palmiteiro.

Observa-se na Tabela 4 diferencas significativas para os efeitos principais
e a interacao localfiprocedéncia, no ensaio de adaptacao no estabelecimento. Os palmi-
teiros apresentaram maiores diferencas neste ensaio porque foi conduzido desde a semea-
dura, sendo afetado pelas condigoes ambientais dos locais. Por outro lado, no ensaio de
adaptacao em juvenis o unico efeito significativo foi a procedéncia, nas varidveis massa de

matéria seca da folha, do caule, da parte aérea e total.
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Tabela 4 — Estatistica F' e significancia para as fontes de variagao fixas consideradas nos
ensaios de adaptacao no estabelecimento e em juvenis

F para fontes de variacao fixas

Massa de matéria seca (MS) Local Procedéncia LocalfProcedéncia
Ensaio de adaptagao no estabelecimento

Folha 29,46 12,40* 2,24*

Caule 61, 04" 15,95 2,85"

Parte aérea 48, 37" 14, 50** 2, 88"

Ensaio de adaptagao em juvenis

Folha 3,16 8, 20" 0,36
Caule 1,80 4,36 1,04
Raiz 0,75 1,29 0,76
Total 1,87 4,14 0,97

(*) valor-p < 0,05; (**) valor-p < 0,01; (***) valor-p < 0,001

Com relacao aos componentes de variancia, na Tabela 5 sao apresentadas
as suas estimativas e os valores da estatistica Wald-Z para testar suas significancias.
O componente de variancia relacionado com o fator aleatorio produzido pela m-ésima
planta matriz dentro da ik-ésima interagao local § procedéncia,(€d,,x)), apresentou uma
contribuicao significativa apenas no caso da andlise da massa de matéria seca do caule
e do total, no ensaio de adaptagao em juvenis. Os demais componentes de variancias

proporcionaram uma contribuigao significativa em todos os casos.

Tabela 5 — Estimativas dos componentes de variancia e valores da estatistica Wald-Z para
testar sua significancia

Matéria seca o,° Z 05> A 05> A 0.2 A
Ensaio de adaptacgao no estabelecimento

Folha 0,00012 2,59* 0,00017 2,80** 0,00001 0,51 0,00074 14,63***
Caule 0,00007 2,24** 0,00009 2,48 0,00001 0,29 0,00066 14,63***

Parte aérea  0,00032 2,47** 0,00051 2,82 0,00003 0,32 0,00235 14,63

Ensaio de adaptacao em juvenis

Folha 0,00271 2,66** 0,00110 1,74* 0,00078 1,27 0,00976 12,34***
Caule 0,00338 2,78 0,00170 2,07* 0,00115 1,88* 0,00903 12,43
Raiz 0,00177 2,97 0,00140 2,93* 0,00015 0,79 0,00342 12,43
Total 0,02198 2,89 0,01250 2,39* 0,00584 1,76* 0,04768 12,39**

(*) valor de p <0,05; (**) valor de p< 0,01; (***) valor de p < 0,001.
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As porcentagens da variancia total atribuidas a cada componente de
variancia, por ensaio e por variavel analisada sao apresentadas na Tabela 6. Observa-
se que a variancia residual (0.?) representa a maior proporc¢ao da variancia total dos
dados. Por outro lado a variancia devida ao componente (o4%) corresponde & menor con-
tribuigao para a variancia total dos dados. Vale destacar que o componente de variancia
referente a plantas matrizes dentro de procedéncia (os?) representa maior porcentagem
da variabilidade total explicada em relacao ao componentes de variancia de blocos dentro
de locais (0,%) para o ensaio de estabelecimento, caso contrério foi verificado no ensaio de
adaptagao em juvenis.

Nas Figuras 5 e 6 sao apresentados os graficos dos valores preditos contra
os residuos condicionais estudentizados do modelo linear misto, para cada varidvel anali-
sada, nos ensaios de adaptacao no estabelecimento (semeadura) e de adaptacao em juvenis
(crescimento), respectivamente. Nota-se que a maioria dos residuos condicionais estuden-
tizados encontram-se no intervalo (-3,3), com distribui¢do aleatdria em torno da média
zero, sem apresentar qualquer tendéncia, satisfazendo a condicao de independéncia, con-
firmando que o modelo utilizado é adequado para descrever o comportamento dos dados.

Além disso, nota-se a presenca de alguns pontos atipicos.

Tabela 6 — Porcentagem da variancia total atribuida a cada componente de variancia, por
experimento e variavel analisada

Massa de matéria seca oy’ o5 o’ 02
Ensaio de adaptagao no estabelecimento

Folha 11,61 15,93 1,34 71,11
Caule 7,88 11,16 0,79 80,17
Parte aérea 9,96 1596 0,81 73,27

Ensaio de adaptacao em juvenis

Folha 18,86 7,66 5,44 68,04
Caule 22,14 11,12 7,55 59,19
Raiz 26,25 20,83 2,15 50,77

Total 2498 14,21 6,63 54,18
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Figura 5 — Graficos dos residuos condicionais estudentizados em funcao dos valores pre-
ditos, para o experimento de adaptagao no estabelecimento, para as variaveis:
(a) massa seca da folha, (b) massa seca do caule e (c) massa seca da parte
aérea
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Figura 6 — Graficos dos residuos condicionais estudentizados em funcao dos valores predi-
tos, para o experimento de adapta¢do em juvenis, para as variaveis: (a) massa
seca da folha, (b) massa seca do caule, (¢) massa seca da raiz e (d) massa seca
total
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Nas Figuras 7 e 8 sao apresentados os graficos quantil-quantil dos residuos
condicionais estudentizados contra os quantis tééricos da distribuicao normal, relativos aos
ensaios de adaptacao no estabelecimento e de adaptacao em juvenis, para cada uma das
variaveis. Pode-se notar que em todos os casos ¢ satisfeita a pressuposicao de normalidade,

porém, observam-se alguns pontos atipicos.
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Figura 7 — Graficos de quantil-quantil para os residuos condicionais estudentizados no
experimento de adaptacao no estabelecimento, para as varidveis: (a) massa
seca da folha, (b) massa seca do caule e (c) massa seca da parte aérea
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Figura 8 — Graficos de quantil-quantil para os residuos condicionais estudentizados para
o experimento de adaptagao em juvenis, para as variaveis: (a) massa seca da
folha, (b) massa seca do caule, (¢) massa seca da raiz e (d) massa seca total
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4.1.1 Plasticidade fenotipica

Para estudar a presenca de plasticidade fenotipica nos palmiteiros foi reali-
zado o desdobramento do niimero de graus de liberdade de locais dentro dos niveis do fator

procedéncia. Na Tabela 7, é apresentado o resumo dos resultados deste desdobramento.

Tabela 7 — Estatistica F' e significancia para o desdobramento do niimero de graus de
liberdade de local § procedéncia para as variaveis relacionadas com a massa de
matéria seca, analisando os dados de locais dentro de cada nivel de procedéncia

Procedéncias
Massa de matéria seca (MS) Ombroéfila  Semidecidual Restinga
Ensaio de adaptagao no estabelecimento
Folha 29,91 14,18 14, 06™**
Caule 57,95 29, 79> 22, 52%*
Parte area 48,22 24,21 20, 86***
Ensaio de adaptacao em juvenis
Folha 1,93 3, 32% 2,10
Caule 0,62 0,94 3,20
Raiz 0,95 0,42 0,69
Total 1,20 1,42 2,17

(*) valor de p < 0,05; (**) valor de p < 0,01; (***) valor de p < 0,001

Valores significativos da estatistica F' evidenciam a presenca de plasticidade
fenotipica, ou seja, plantas procedentes de um bioma determinado apresentam diferencas
quanto ao comportamento de uma determinada varidvel medida, dependendo do local
onde foram semeadas ou transplantadas. No ensaio de adaptagao no estabelecimento (se-
meadura) apresentou-se a caracteristica de plasticidade em todas as varidveis analisadas.
Por outro lado, no ensaio de adaptagao em juvenis, as plantas tém um comportamento
nao pléstico (ou robusto), exceto para a varidvel massa de matéria seca da folha.

O resumo da andlise de contrastes é apresentado na Tabela 8, para verificar
se um local determinado é mais favordvel para a producao de massa de matéria seca (dos
caracteres medidos) de plantas originadas de sementes da sua mesma procedéncia, em
cada experimento realizado.

Observa-se na Tabela 8, que plantas da proveniéncia Restinga tiveram me-
lhores produgoes médias de massa de matéria seca da folha, do caule e da parte aérea (no
ensaio de adaptagao no estabelecimento), e do caule (no ensaio de adaptacao em juve-
nis), quando foram semeadas ou transplantadas no seu prépio lugar de origem (Ilha do

Cardoso).
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Tabela 8 — Estimativas (Est.) dos contrastes entre locais (CB=Carlos Botelho,
CT=Caetetus e IC=Ilha do Cardoso) da mesma procedéncia contra outros
locais, estatistica t e significancia

Ombréfila Semidecidual Restinga
Massa de matéria seca (MS) CB vs outros CT vs outros IC vs outros
Est. t Est. t Est. t
Ensaio de adaptagao no estabelecimento
Folha -0,0016 -0,25  -0,0241 -3,87*  0,0329 4,68
Caule -0,0117 -2,12* -0,0263 -5,07"* 0,0379 6,31**
Parte aérea -0,0101 -0,90  -0,0503 -4,79*  0,0707 5,90**

Ensaio de adaptagao em juvenis

Folha 10,0418 -1,30  0,0796 2,50*  0,0228 0,74
Caule 00,0345 -1,06 0,0210 0,61 0,0669 2,03*
Raiz 10,0128 -0,61  0,0218 0,98 0,0145 0,68
Total 10,0928 -1,17  0,1261 1,51 0,1041 1,29

(*) valor de p < 0,05; (**) valor de p < 0,01; (***) valor de p < 0,001

Com relacao as plantas da proveniéncia Semidecidual, tiveram melhores
producoes médias de massa de matéria seca da folha quando transplantadas no seu prépio
local (Caetetus), no ensaio de adaptagdo em juvenis. Situagao contraria aconteceu, para
as producoes médias de massa de matéria seca obtidas no ensaio de adaptacao no estabe-
lecimento, onde as plantas da proveniéncia Semidecidual tiveram o pior desempenho no
seu proéprio local de origem.

Por outro lado, as plantas da proveniéncia Ombrofila tiveram as piores
produgoes médias de massa de matéria de seca (principalmente no caso da MS do caule)
quando foram semeadas ou transplantadas no seu préprio local (Carlos Botelho).

Nas Figuras 9 e 10 é apresentado o comportamento das médias de massa
de matéria seca (mg) dos caracteres medidos, por local dentro de cada procedéncia, nos
ensaios de adaptacao no estabelecimento e adaptacao em juvenis, respectivamente. De
forma geral, nota-se que a caracteristica de plasticidade fenotipica é evidente no ensaio

de adaptacao no estabelecimento (semeadura) para todos os caracteres avaliados.

4.1.2 Adaptacao local

O resumo do teste F' para o desdobramento do niimero de graus de liberdade
de procedéncias dentro de locais, para estudar a presenca de adaptacao local é apresentado

na Tabela 9.
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Figura 9 — Comportamento do teor médio de massa de matéria seca: (a) da folha, (b) do
caule e (c¢) da parte aérea, por local dentro de cada procedéncia, no ensaio de
adaptacao no estabelecimento. As barras representam as médias originais e as
linhas verticais o erro padrao da média.
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Figura 10 — Comportamento do teor médio de massa de matéria seca: (a) da folha, (b)

do caule, (c) da raiz e (d) total, por local dentro de cada procedéncia, no
ensaio de adaptacao em juvenis. As barras representam as médias originais
e as linhas verticais o erro padrao da média.
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Tabela 9 — Estatistica F' e significancia para o desdobramento do nimero de graus de
liberdade de local § procedéncia para as varidveis relacionadas com a massa
de matéria seca, analisando procedéncias dentro de cada nivel de local

Locais
Massa de matéria seca (MS) Carlos Botelho Caetetus Ilha do Cardoso
Ensaio de adaptacgao no estabelecimento
Folha 10, 80*** 2,97 14, 90"
Caule 8, 60" 3,68 22,37
Parte aérea 10, 76*** 3,66 19, 55%**
Ensaio de adaptacao em juvenis
Folha 3,81 1,89 7,93
Caule 1,16 1,67 5, 80*
Raiz 0,50 0,28 2,16
Total 1,61 1,37 5,70*

(*) valor de p < 0,05; (**) valor de p < 0,01; (***) valor de p < 0,001

Pode-se observar que no ensaio de adaptacao no estabelecimento se apre-
senta de forma evidente a caracteristica de adaptacao, ou seja, que em cada local avaliado,
as plantas das diferentes procedéncias apresentam um comportamento diferenciado em to-
dos os caracteres avaliados, podendo em alguns casos tratar-se de adaptacgao local.

Por outro lado, no ensaio de adaptagao em juvenis, apenas as plantas trans-
plantadas no bioma Restinga (Parque Estadual ITha do Cardoso) apresentam evidéncia
de adaptacao para as variaveis massa de matéria seca da folha, do caule e total. Branca-
lion (2009), salienta que o lento crescimento das plantas de E. edulis, principalmente em
condicoes naturais de interior de floresta, somado ao periodo restritivo de duracao do ex-
perimento (10 meses), podem ter limitado a possibilidade de identificagdo de adaptagoes
locais para essa espécie nos outros biomas.

O resumo da analise de contrastes para verificar se plantas originadas de
sementes de uma determinada procedéncia estao mais adaptadas ao seu proprio local, em
comparacao com plantas procedentes de sementes de outros locais, com relacao a producao
de massa de matéria seca em cada experimento realizado é apresentado na Tabela 10.

Neste caso conclui-se que, plantas originadas de sementes da formacao flo-
restal Restinga estdo significativamente mais adaptadas ao seu préprio local (Ilha do
Cardoso), em comparagao com plantas procedentes de sementes de outros locais, ou seja,
apresentam maiores valores médios de massa de matéria seca da folha, do caule e total, no
ensaio de adaptacao em juvenis, sugerindo, de acordo com Brancalion (2009) a existéncia

de um ecétipo para essa formagao florestal.
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Tabela 10 — Estimativas (Est.) dos contrastes entre procedéncias do mesmo local
(CB=Carlos Botelho, CT=Caectetus e IC=Ilha do Cardoso) contra outras
procedéncias, estatistica ¢ e significancia

Local CB Local CT Local IC
Massa de matéria seca (MS) ~ Omb. vs outras ~ Sem. vs outras Res. vs outras
Est. t Est. t Est. t
Ensaio de adaptacao no estabelecimento
Folha 0,0325 4,64 -0,0057 -0,84 -0,0163  -2,29*
Caule 0,0243 4,14 -0,0040 -0,71 -0,0204  -3,40*
Parte aérea 0,0569 4,64 -0,0098 -0,82 -0,0367  -2,94*

Ensaio de adaptacao em juvenis

Folha 10,0011 -0,05  -0,0362 -1,46  0,0957 3,84
Caule 10,0022 -0,08  -0,0371 -1,37  0,0928 3,41
Raiz 20,0152 -0,83  -0,0017 -0,09  0,0371 1,98

Total 20,0161 -0,25  -0,0720 -1,09  0,2255  3,39"*

(*) valor de p < 0,05; (**) valor de p < 0,01; (***) valor de p < 0,001

Caso contrario acontece no ensaio de adaptagao no estabelecimento, onde
parecem estar menos adaptadas ao seu préprio local. Sobre esta situacao, Brancalion
(2009) comenta que a auséncia de adaptacoes locais pode estar relacionada ao fato das
condicoes para o estabelecimento de plantas nessa formacao florestal terem sido as mais
favoraveis dentre as dreas de estudo, com valores altos de germinacao e de massa de
matéria seca de plantas. Tal fato permitiu que essa formagao florestal tivesse elevada
densidade de plantas, de forma que a menor pressao de selecao para o estabelecimento
pode nao ter estimulado o surgimento de adaptacgoes locais especificas para essa fase do
ciclo de vida vegetal.

As plantas originadas de sementes da formacao florestal Ombréfila Densa
estao mais adaptadas ao seu proprio local (Carlos Botelho), apresentando maiores valores
médios de massa de matéria seca da folha, do caule e da parte aérea, no caso do ensaio
de adaptacao no estabelecimento (semeadura).

Nas Figuras 11 e 12 é apresentado o comportamento da massa de matéria
seca (mg) dos caracteres medidos, por procedéncia dentro de cada local, nos ensaios
de adaptacao no estabelecimento e adaptagdo em juvenis, respectivamente. De forma
geral, nota-se que a caracteristica de adaptacao é evidente no ensaio de adaptacao no

estabelecimento (semeadura) para todos os caracteres avaliados.
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Figura 11 — Comportamento do teor médio de massa de matéria seca: (a) da folha, (b)
do caule e (c¢) da parte aérea, por procedéncia dentro de cada local, no ensaio
de adaptacao no estabelecimento. As barras representam as médias originais
e as linhas verticais o erro padrao da média.
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ensaio de adaptacao em juvenis. As barras representam as médias originais
e as linhas verticais o erro padrao da média.
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4.2 Avaliagao da plasticidade fenotipica e adaptagao local com base na pro-

porcao de sementes germinadas em ensaios de estabelecimento

A instalacdo e manutencao de plantacoes sustentaveis de E. edulis, em
condicoes naturais, exigem estudos relacionados aos aspectos silviculturais do palmiteiro,
como os relacionados a germinacao de sementes, porque o vigor germinativo é qualita-
tivamente essencial na producao de mudas. Frequentemente, determinadas procedéncias
podem apresentar maiores taxas de germinacao de sementes ao serem semeadas em dife-
rentes locais. Provavelmente, isso propiciaria maior possibilidade de ocupacao e aprovei-
tamento mais rapido do substrato em condigoes naturais, favorecendo o estabelecimento
dessas procedéncias, permitindo sua conservacao e manejo sustentavel.

Desse modo, um dos objetivos deste estudo foi avaliar o desempenho ger-
minativo de sementes de trés procedencias de palmiteiro em trés locais. As proporgoes

médias observadas de sementes germinadas por local e procedéncia estao apresentadas na

Tabela 11.

Tabela 11 — Proporcoes médias observadas de sementes germinadas de E. edulis segundo
a procedéncia e local de instalagao do experimento.

Procedéncias
Local Ombréfila  Semidecidual Restinga Média
Carlos Botelho 0,7833 0,7875 0,7083  0,7597
Caetetus 0,2148 0,5037 0,3333  0,3506
ITha do Cardoso 0,8567 0,7433 0,7267  0,7756
Média 0,6210 0,6765 0,5901  0,6292

Observa-se na Tabela 11, que o comportamento de FE. edulis quanto a ca-
pacidade germinativa variou principalmente de acordo com o local onde foi realizado o
experimento, sendo os locais Carlos Botelho e Ilha do Cardoso, onde se registraram os
maiores valores de propor¢gao média de sementes germinadas.

Na Tabela 12 sao apresentadas as estimativas dos componentes de variancia
e seus respectivos erros padroes, os valores obtidos da estatistica x? e respectivos niveis
descritivos (valores de p) para testar a hipétese nula de que cada componente de variancia

¢ igual a zero.
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Tabela 12 — Estimativas e erros padroes dos componentes de variancia, estatistica y? e
niveis descritivos para o teste da razao de verossimilhancas

Componente de variancia Estimativa Erro padrao X Valor de p
()

Bloco (Local) 0,3610 0,1249 82,11 < 0,0001

Matriz (Procedéncia) 0,0998 0,0487 82,11 < 0,0001

Local  Matriz (Procedéncia) 0,0129 0,0424 7,23 0,0036

(*) Valor de p baseado em uma mistura de distribuigdes x?2

Nota-se ainda na Tabela 12 que os trés componentes de variancia sao sig-
nificativos. Estes resultados mostram que estes componentes de variancia no modelo sao
necessarios para descrever adequadamente a variacao dos dados. Por outro lado, apro-
ximadamente 76% da variancia total (em escala logito) pode ser atribuida ao efeito de
bloco dentro de local, 21% ao efeito de planta matriz dentro de procedéncia e somente
3% ao efeito da interacao local # planta matriz dentro de procedéncia.

Os valores da estatistica F' e respectivos valores descritivos (valores de p)
para o teste dos efeitos fixos na andlise da proporcao de sementes germinadas, sao apre-

sentados na Tabela 13.

Tabela 13 — Estatistica F' e respectivos niveis descritivos (valores de p) para as fontes de
variacao fixas

Efeito F Valor de p
Local 28,36 < 0,0001
Procedéncia 2,85 0,0754

Local  Procedéncia 13,67 < 0,0001

Os resultados do teste para os efeitos fixos apresentados na Tabela 13, mos-
tram que a probabilidade de germinacao das sementes difere entre locais e entre a interagao
local # procedéncia (em escala logito), considerando-se o nivel de 5% de significancia.

O conjunto de gréaficos dos residuos condicionais estudentizados é apresen-
tado na Figura 13 . Estes graficos evidenciam que o modelo se ajusta bem aos dados. Por
outro lado, o valor estimado do parametro de dispersao (¢) foi igual a 1,05, mostrando a

auséncia de super ou de subdispersao.
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Figura 13 — Graficos dos residuos condicionais estudentizados, (a) em fun¢ao dos valores
preditos, (b) histograma, (c) quantil-quantil e (d) boz plot, para o experimento
de adaptacao no estabelecimento

4.2.1 Plasticidade fenotipica

Para estudar a presenca de plasticidade fenotipica, por sua vez, foi realizado
o desdobramento do ntimero de graus de liberdade de locais dentro de procedéncias, cujos

resultados sao apresentados na Tabela 14.

Tabela 14 — Estatistica F' e niveis descritivos (valores de p) para o desdobramento do
numero de graus de liberdade de local { procedéncia para a varidvel proporgao
de sementes germinadas, analisando os dados de locais dentro de cada nivel
de procedencia

Procedéncia F  Valor de p
Ombrofila 46,94 < 0,0001
Semiresidual 8,43 0,0006
Restinga 17,24 < 0,0001

Considerando-se o nivel de 5% de significancia, os valores significativos da
estatistica F' evidenciam a presenca de plasticidade fenotipica, ou seja, sementes proce-
dentes de uma formacao florestal determinada apresentam variagao na capacidade germi-

nativa, dependendo das condigoes edafo-climaticas do local onde foram semeadas.
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O resumo da anélise do efeito do fator local dentro do fator procedéncias,
por meio de contrastes, realizado com o objetivo de verificar se um local determinado
¢ o mais favoravel para a germinacao de plantas originadas de sementes da sua mesma

procedéncia, é apresentado na Tabela 15.

Tabela 15 — Estimativas, em escala logito e entre parénteses na escala original (proporgao
de sementes germinadas), dos contrastes entre locais (CB=Carlos Botelho,
CT=Caetetus e IC=Ilha do Cardoso) da mesma procedéncia contra outros
locais, estatistica ¢ e niveis descritivos (valor de p)

Procedéncia  Contraste Estimativa t Valor de p
Ombrofila Local CB vs outros  1,1536  (0,2675) 3,55 0,0008
Semidecidual Local CT vs outros - 1,2265 (-0,2707) -4,08 <0,0001
Restinga Local IC vs outros 0,9356  (0,2173) 3,17 0,0025

A partir dos resultados apresentados nesta Tabela, considerando-se o nivel
de 5% de significancia, observa-se que os locais Carlos Botelho e Ilha do Cardoso sao
os mais favoraveis para a germinacao de sementes da sua mesma procedéncia, ao serem
significativos os contrastes e apresentarem valores de propor¢ao de germinacao média
superiores comparados com as médias das outras procedéncias avaliadas. No caso do
local Caetetus (CT), apresentou as piores condigbes para a germinagao das sementes,
tanto da sua mesma procedéncia, quanto das outras avaliadas.

O comportamento da proporcao estimada de sementes germinadas (em es-
cala logito) segundo o local em que foi semeada cada procedéncia é apresentado na Figura
14. Observa-se que no local Caetetus apresentaram-se os menores valores médios da refe-

rida proporgao (em escala logito).

4.2.2 Adaptacao local

O resumo do teste F' para o desdobramento do nimero de graus de liber-
dade de procedéncias dentro de locais, para estudar a adaptacao local das procedéncias é
apresentado na Tabela 16.

Na Tabela 16, considerando-se o nivel de 5% de significancia, observa-se
que ha diferencas significativas entre as proporc¢oes de sementes germinadas das diferentes
formagoes florestais, quando sao semeadas nos locais Caetetus e Ilha do Cardoso. Este

fato revela a existéncia de adaptacao local.
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Figura 14 — Comportamento da propor¢ao média estimada de sementes germinadas (em
escala logito) segundo o local para cada procedéncia

Tabela 16 — Estatistica F' e valores de probabilidade (valores-p) para o desdobramento do
numero de graus de liberdade de local f procedéncia para a variavel proporcao
de sementes germinadas, analisando os dados de procedéncias dentro de cada
nivel de local

Local F Valor de p
Carlos Botelho 1,72 0,1885
Caetetus 16,79 < 0,0001
ITha do Cardoso 5,69 0,0057

Finalmente, o resumo da anélise do efeito do fator procedéncias dentro do

fator local, por meio de contrastes, é apresentado na Tabela 17. Os testes apresentados

foram realizados com o objetivo de verificar se plantas originadas de sementes de uma

determinada procedéncia estao mais adaptadas ao seu proprio local, em comparacao com

plantas procedentes de sementes dos outros locais.

Tabela 17 — Estimativas, em escala logito e entre parénteses na escala original (proporgao
de sementes germinadas), dos contrastes entre procedéncias do mesmo local
(CB=Carlos Botelho, CT=Cactetus ¢ IC=Ilha do Cardoso) contra outras
procedéncias, estatistica ¢ e niveis descritivos (valor de p)

Local Contraste Estimativa t Valor de p
Carlos Botelho ~ Proc. Ombréfila vs outras 0,1867 (0,0343) 0,80 0,4263
Caetetus Proc. Semidecidual vs outras  1,1271  (0,2516) 5,33 <0,0001
ITha do Cardoso  Proc. Restinga vs outras -0,4512  (-0,0718) -2,11 0,0399
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Neste caso conclui-se que, considerando o nivel de 5% de significancia, plan-
tas originadas de sementes da formacao florestal Estacional Semidecidual estao mais adap-
tadas ao seu préprio local (Caetetus), em comparagao com plantas procedentes de semen-
tes dos outros locais, ou seja, apresentam maior germinacao. No caso da formagao florestal
Restinga, as sementes procedentes deste bioma parecem estar menos adaptadas ao seu
préprio local (ITha do Cardoso), no caso da varidvel proporgao de sementes germinadas.

Observa-se na Figura 15 que as menores proporcoes esperadas de sementes
germinadas (em escala logito) foram obtidas no local Caetetus. A esse respeito, Brancalion
(2009) cita que, a germinagao das plantas foi prejudicada neste local provavelmente pela
baixa disponibilidade hidrica nos primeiros meses apds a semeadura, ja que nesse local se
apresenta uma estacao seca bem definida que comeca junto com o periodo de frutificacao

de palmiteiro.

da de sementes germir

Procedéncias

=== Ombrofila
—&— Restinga
= & = Semidecidual

Logito (Proporgiio esti
.
-
L

Caetetus Carlos Botelho Itha do Cardoso

Local do experimento

Figura 15 — Comportamento da propor¢ao esperada de sementes germinadas (em escala
logito) segundo a procedéncia em cada local de estudo

De acordo com Martins, Nakagawa e Bovi (1999), a intolerancia a dessecacao
das sementes dessa espécie pode contribuir para aumentar a sensibilidade das mesmas ao
estresse hidrico durante a germinacao em condigoes de baixa disponibilidade hidrica, redu-
zindo o potencial fisiolégico das sementes e consequentemente a emergéncia de plantulas
em campo. Por outra parte, segundo Reis e Kageyama (2000), por se tratar de sementes
recalcitrantes, uma redugao no teor de umidade nas sementes (abaixo de 28%) ocasiona

perda de viabilidade e, consequentemente, diminuicao nas taxas de germinacao.
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Contudo, Brancalion (2009) cita que, mesmo nessa condigao desfavoravel
para a sobrevivéncia e germinacao de sementes recalcitrantes, sementes provenientes do
mesmo local (Caetetus) apresentaram maiores proporgoes de germinac¢ao quando compa-
radas com as outras fontes de sementes. O mesmo autor também salienta, que a tolerancia
diferenciada das sementes a dessecacao pode ser um indicio de adaptacao local para a

ocorréncia de F. edulis em florestas tropicais sujeitas ao déficit hidrico.
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5 CONSIDERACOES FINAIS

O emprego de técnicas de formulagao de modelos lineares de efeitos mistos
foi fundamental para o estudo da adaptacao local e da plasticidade fenotipica de Fu-
terpe edulis, quando avaliadas as variaveis relacionadas com a massa de matéria seca das
plantas. As plantas originadas das sementes dos trés biomas avaliados apresentaram um
comportamento plastico em todos os caracteres avaliados, no ensaio de adaptagao no es-
tabelecimento (ou de semeadura). Por outro lado, no ensaio de adapta¢do em juvenis (ou
de crescimento), a caracteristica de plasticidade foi verificada unicamente na massa de
matéria seca da folha, para as plantas provenientes do bioma Estacional Semidecidual.

A caracteristica de adaptacao local foi observada de forma evidente no en-
saio de adaptacao no estabelecimento (ou de semeadura), verificando que em cada local
avaliado, as plantas originadas das sementes das diferentes procedéncias, apresentaram
um comportamento diferenciado para todos os caracteres avaliados, podendo em alguns
casos, tratar-se de adaptacao local. Por outro lado, no ensaio de adaptagao em juvenis,
apenas as plantas transplantadas no bioma Restinga (Parque Estadual ITha do Cardoso)
apresentaram evidéncia de adaptagao para a massa de matéria seca da folha, do caule e
do total. As plantas originadas das sementes das formagoes florestais Ombrofila Densa e
Restiga foram as unicas que apresentaram adaptacao ao seu préprio local.

A respeito da varidvel proporcao de sementes germinadas, a aplicagao do
modelo linear generalizado misto permitiu identificar diferencas significativas nos efeitos
de local e da interacao local § procedéncia, levando em consideragao os efeitos aleatérios
relacionados aos blocos e as plantas matrizes, determinando a presenca de plasticidade fe-
notipica nas plantas originadas das sementes das trés procedéncias avaliadas. Além disso,
determinou-se que os locais Carlos Botelho e Ilha do Cardoso sao os mais favoraveis para
a germinacao das sementes da sua mesma procedéncia. Adicionalmente, a caracteristica
de adaptacao mostrou-se presente nas plantas semeadas nos locais Caetetus e Ilha do Car-
doso. Concluiu-se que as plantas originadas das sementes da formacao florestal Estacional

Semidecidual apresentaram melhor adaptacao ao seu préprio local (Caetetus).
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ANEXO A - Cédigos no SAS para o ajuste do modelo linear misto para dados de
massa de matéria seca de E. edulis, nos ensaio de estabelecimento (semeadura) e
de crescimento de mudas (juvenis).

ods graphics on;
PROC mixed data=sem covtest cl;
CLASS Local Bloco Proc Mat;
MODEL mfol= Local Proc Local*Proc/ddfm=satterthwaite residual;
Random Bloco(Local) Mat(Proc) Mat(Local*Proc);
lsmeans ProcxLocal/slice=Local; /* Testes de adaptagdo */
contrast ’Local CB: Proc CB vs outras’

Proc 2 -1 -1

Proc*Local 2 -1 -1 0 0 0 O 0 O;
contrast ’Local CT: Proc CT vs outras’

Proc -1 2 -1

ProcxLocal 0 0 0 -1 2 -1 0 0 0 ;
contrast ’Local IC: Proc IC vs outras’

Proc -1 -1 2

Proc*xLocal 0 0 0 0 0 0 -1 -1 2 ;
estimate ’Local CB: Proc CB vs outras’

Proc 2 -1 -1

Proc*Local 2 -1 -1 0 0 0 0 0 O /divisor=2;
estimate ’Local CT: Proc CT vs outras’

Proc -1 2 -1

Proc*Local 0 0 0 -1 2 -1 0 0 O /divisor=2;
estimate ’Local IC: Proc IC vs outras’

Proc -1 -1 2

Proc*Local 0 0 0 0 0 0 -1 -1 2 /divisor=2;

lsmeans Proc*Local/slice=Proc; /* Testes de plasticidade */

contrast ’Proc CB: Local CB vs outros’

Local 2 -1 -1

Proc*xLocal 2 0 0 -1 0 0 -1 0 0 ;
contrast ’Proc CT: Local CT vs outros’

Local -1 2 -1

Proc*Local 0 -1 0 0 2 0 0 -1 0 ;
contrast ’Proc IC: Local IC vs outros’

Local -1 -1 2

Proc*xLocal 0 0 -1 0 0 -1 0 0 2 ;
estimate ’Proc CB: Local CB vs outros’

Local 2 -1 -1

Proc*Local 2 0 0 -1 0 0 -1 0 O /divisor=2;
estimate ’Proc CT: Local CT vs outros’

Local -1 2 -1

ProcxLocal 0 -1 0 0 2 0 0 -1 O /divisor=2;
estimate ’Proc IC: Local IC vs outros’

Local -1 -1 2

Proc*Local 0 0 -1 0 0 -1 0 0 2 /divisor=2;
RUN;
ods graphics off;
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ANEXO B - Cédigos no SAS para o ajuste do modelo linear generalizado misto
para dados de proporcao de sementes germinadas de E. edulis, no ensaio de esta-
belecimento (semeadura).

PROC glimmix DATA=germ plots=(residualpanel pearsonpanel studentpanel);
CLASS local proc rep mat;

MODEL y/n = local proc local*proc;

random rep(local);

random mat (proc);

random mat(local*proc);

covtest "mat(proc)" O..;
covtest "rep(local)" .0.;
covtest "mat(local*proc)" ..0;

output out=new pred(ilink)= predi stderr(ilink)= sepredi pred= pred
stderr=sepred resid=resid student=student;

lsmeans localx*proc/ilink plot=meanplot(sliceby=proc join);

lsmeans local*proc/ilink plot=meanplot(sliceby=proc join ilink);
lsmeans local*proc/ilink slice=Local; /* Teste de plasticidade */
lsmeans local*proc/ilink slice=Proc; /* Teste de adaptag3o local */

lsmeans proc/ilink;
lsmeans local/ilink;
lsmeans proc/ilink;
lsmeans local/ilink;

contrast ’Local CB: Proc CB vs outras’
Proc 2 -1 -1
ProcxLocal 2 -1 -1 0 0 0 O O O;
contrast ’Local CT: Proc CT vs outras’
Proc -1 2 -1
Proc*Local 0 0 0 -1 2 -1 0 O 0 ;
contrast ’Local IC: Proc IC vs outras’
Proc -1 -1 2
ProcxLocal 0 0 0 00 0 -1 -1 2 ;

estimate ’Local CB: Proc CB vs outras’

Proc 2 -1 -1

Procx*Local 2 -1 -1 0 0 0 0 0 O /divisor=2;
estimate ’Local CT: Proc CT vs outras’

Proc -1 2 -1

Proc*Local 0 0 0 -1 2 -1 0 0 O /divisor=2;
estimate ’Local IC: Proc IC vs outras’

Proc -1 -1 2

Proc*xLocal 0 0 0 0 0 O -1 -1 2 /divisor=2;



contrast

contrast

contrast

estimate

estimate

estimate

RUN;

’Proc CB: Local CB vs outros’
Local 2 -1 -1

ProcxLocal 2 0 0 -1 0 0 -1 0
’Proc CT: Local CT vs outros’
Local -1 2 -1

Proc*Local 0 -1 0 02 0 0 -1
’Proc IC: Local IC vs outros’
Local -1 -1 2

ProcxLocal 0 0 -1 0 0 -1 0 O

’Proc CB: Local CB vs outros’
Local 2 -1 -1

Proc*Local 2 0 0 -1 0 0 -1 0
’Proc CT: Local CT vs outros’
Local -1 2 -1

ProcxLocal 0 -1 0 0 2 0 0 -1
’Proc IC: Local IC vs outros’
Local -1 -1 2

Proc*Local 0 0 -1 0 0 -1 0 O

2

/divisor=2;

/divisor=2;

/divisor=2;
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