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RESUMO

Modelos lineares mistos e generalizados mistos em estudos adaptação local e
plasticidade fenot́ıpica de Euterpe edulis

Este trabalho objetivou a avaliação da presença de plasticidade fenot́ıpica
e de adaptação local de três procedências de palmiteiro: Ombrófila Densa, Estacional
Semidecidual e Restinga, em três locais no Estado de São Paulo: Parque Estadual da
Ilha do Cardoso, Parque Estadual de Carlos Botelho e Estação Ecológica dos Caetetus,
em ensaios de adaptação no estabelecimento (ou de semeadura) e de adaptação em ju-
venis (ou de crescimento). Os conjuntos de dados foram analisados utilizando estruturas
de grupos de experimentos, com efeitos cruzados e aninhados. As variáveis relacionadas
com a massa de matéria seca das plantas, nos dois ensaios, foram analisadas usando a
abordagem de modelos lineares de efeitos mistos, por meio da incorporação de fatores de
efeito aleatório, e fazendo uso do método da máxima verossimilhança restrita (REML)
para estimação dos componentes de variância associados a tais fatores com um menor
viés. Por outro lado, para a proporção de sementes germinadas, no ensaio de adaptação
no estabelecimento, a análise estat́ıstica foi realizada a partir da abordagem dos modelos
lineares generalizados mistos, sob a pressuposição de que a variável segue uma distri-
buição binomial, com função de ligação logito. O método da pseudo-verossimilhança foi
empregado para obtenção da solução das equações de verossimilhança. Os resultados
mostraram que as plantas originadas de sementes dos três biomas avaliados apresentaram
um comportamento plástico, para todos os caracteres avaliados no ensaio de adaptação
no estabelecimento. Com relação ao ensaio de adaptação em juvenis, a caracteŕıstica
de plasticidade foi verificada somente para a massa de matéria seca da folha em plan-
tas provenientes do bioma Estacional Semidecidual. A caracteŕıstica de adaptação local,
apresentou-se de forma evidente no ensaio de adaptação no estabelecimento. Estes re-
sultados evidenciaram que em cada local avaliado, as plantas originadas das sementes
de diferentes procedências apresentaram um comportamento diferenciado nos caracteres
relacionados à massa de matéria seca, podendo em alguns casos, tratar-se de adaptação
local. Concluiu-se que os locais Carlos Botelho e Ilha do Cardoso são os mais favoráveis
para a germinação das sementes de sua mesma procedência.

Palavras-chave: Adaptação local; Plasticidade fenot́ıpica; Análise de grupos de experimen-
tos; Modelos lineares mistos; Modelos lineares generalizados mistos
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ABSTRACT

Linear mixed models and generalized mixed models applied in studies of
local adaptation and phenotypic plasticity of Euterpe edulis

The aim of this work was to evaluate the presence of phenotypic plasticity
and local adaptation of three provenances of the palm specie Euterpe edulis : Atlantic
Rainforest, Seasonally Dry Forest and Restinga Forest, in permanent parcels inserted in
three forest types of the São Paulo State (Brazil): Parque Estadual da Ilha do Cardoso,
Parque Estadual de Carlos Botelho e Estação Ecológica dos Caetetus, in experiments of
seedling establishment and juveniles plants growth. The data sets were analyzed using
structures of groups of experiments, with crossed and nested effects. The variables re-
lated to dry matter content of plants in both assays were analyzed using linear mixed
models (LMM) approach, through the incorporation of random effect factors, and using
the restricted maximum likelihood method (REML) for estimation of variance compo-
nents associated with these factors with a minor bias. On the other hand, germination
proportion of the seeds at seedling establishment assay was analyzed using the generalized
linear mixed models (GLMM) approach, under the assumption that the variable follows
a binomial distribution, with logit link function. The pseudo-likelihood (PL) method was
used to obtain the numerical solution of the likelihood equations. The results showed
that, plants from seeds of the three biomes evaluated presented a plastic behavior for all
characters assessed in the seedling establishment assay. In respect to juveniles adaptation
assay, the phenotypic plasticity characteristic was observed only to the leaf dry matter
content of plants from Seasonally Dry Forest biome. The local adaptation characteristic
was clearly observed in the seedling establishment assay. These results showed that at
each site evaluated, plants originating from seeds of different provenances exhibited dif-
ferent behavior on characters related to the dry matter content and may in some cases
be local adaptation. It was concluded that locations Carlos Botelho and Ilha do Cardoso
are the most favorable for seed germination of its same provenance.

Keywords: Local adaptation; Phenotypic plasticity; Joint analysis from agronomical
essays; Linear mixed models; Generalized linear mixed models
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Semidecidual (Sem.) e Restinga (Res.), nos locais Carlos Botelho (CB),

Caetetus (CT) e Ilha do Cardoso (IC), no ensaio de adaptação no esta-

belecimento . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Tabela 3 - Médias e desvios padrões (d.p.) da massa de matéria seca (mg) da folha,
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Tabela 4 - Estat́ıstica F e significância para as fontes de variação fixas consideradas

nos ensaios de adaptação no estabelecimento e em juvenis . . . . . . . . 89

Tabela 5 - Estimativas dos componentes de variância e valores da estat́ıstica Wald-
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massa de matéria seca, analisando procedências dentro de cada ńıvel de
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1 INTRODUÇÃO

A palmeira Euterpe edulis pertence à famı́lia Arecaceae, está distribúıda

naturalmente na Mata Atlântica, tendo distribuição preferencial ao longo do litoral bra-

sileiro, desde o sul da Bahia (latitude 15oS) até o norte do Rio Grande do Sul (latitude

30oS). Esta palmeira possui estipe simples que cresce até 20 metros de altura e forma

o palmito na base das folhas. Popularmente esta espécie é conhecida como palmiteiro

juçara, jiçara ou ripa (LORENZI; MELLO FILHO, 2001).

O palmiteiro caracteriza-se por produzir palmito de excelente qualidade,

com valor econômico elevado e amplamente consumido na alimentação humana, porém

é uma planta que não rebrota na base e o corte implica em sua morte (CARVALHO,

2003). Além disso, é de extrema importância ecológica na cadeia alimentar do ecos-

sistema florestal, pois apresenta altos ńıveis de interação com os animais e desempenha

significativo papel na nutrição da fauna da Mata Atlântica, uma vez que seu fruto serve de

alimento para aves e mamı́feros, como roedores, marsupiais, primatas e morcegos (REIS;

KAGEYAMA, 2000).

No entanto, as populações de palmiteiros foram drasticamente reduzidas

devido à ação extrativista e ao corte indiscriminado, sendo atualmente encontrado ape-

nas em áreas protegidas da Mata Atlântica, principalmente em locais de dif́ıcil acesso

(FANTINI, 1997). Essas ações extrativistas têm inviabilizado a regeneração natural do

palmiteiro necessária para recompor a população original, estando ameaçado de extinção.

Perante esta situação, estudos sobre sua restauração ecológica são indispensáveis (BRAN-

CALION, 2009). Uma parte desses estudos consiste na avaliação da adaptação local e

da plasticidade fenot́ıpica de espécies de plantas com ampla distribuição geográfica e

ecológica, em diferentes locais.

A plasticidade fenot́ıpica é a capacidade que mostram alguns genótipos

de alterar de forma significativa sua expressão (variações morfológicas e/ou fisiológicas)

em resposta a determinados fatores ambientais, sem que mudanças genéticas sejam ne-

cessárias, produzindo uma série de fenótipos diferentes (BRADSHAW, 1965; SCHLICH-

TING,1986).

O maior interesse deste fenômeno é a possibilidade da plasticidade incluir

processos ativos de adaptação ao estresse ambiental, aspecto fundamental para garantir

a estabilidade futura das massas florestais, perante as alterações climáticas globais.
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Por outro lado, a adaptação local é o processo evolutivo pelo qual um or-

ganismo se torna mais capaz de viver em seu (ou seus) habitat(s). As espécies que

apresentam grande amplitude de distribuição e longos peŕıodos de vida estão, geralmente,

submetidas a condições bióticas (competição, parasitismo, cooperação etc) e abióticas

(luz, pluviosidade, temperatura, umidade atmosférica, ventos, textura do solo etc) bem

variadas. Esta heterogeneidade ambiental, no espaço e no tempo, conduz a longo prazo, ao

desenvolvimento de adaptações locais entre as populações (SAVOLAINEN; PYHAJARVI;

KNURR, 2007).

Num trabalho conduzido por Brancalion (2009), o objetivo foi avaliar a

presença de plasticidade fenot́ıpica e adaptação local de palmiteiros originários de três

procedências, ou formações florestais (Ombrófila Densa, Estacional Semidecidual e Res-

tiga) em três locais (unidades de conservação) do Estado de São Paulo (Parque Estadual

de Carlos Botelho, Estação Ecológica de Caetetus e Parque Estadual da Ilha do Cardoso).

Para isso, conduziu ensaios de estabelecimento e de crescimento de mudas.

Neste trabalho propõe-se, para análise dos resultados, a utilização de mode-

los lineares mistos, para as variáveis relacionadas com os valores de massa de matéria seca

folha, do caule, da raiz e total. Por outro lado, para a análise da proporção de sementes

germinadas propõe-se a utilização de modelos lineares generalizados mistos (MLGM).

O modelo linear misto (MLM), tal como utilizado neste trabalho, tem como

pressuposições a normalidade dos reśıduos do vetor de parâmetros de efeito aleátório.

Para a estimação dos parâmetros e predição dos efeitos aleatórios, o método utilizado foi

o da máxima verossimilhança restrita (REML), que fornece estimativas com menor viés.

As pressuposições consideradas para os MLGM, por outro lado, foram que a

variável segue uma distribuição binomial, com estrutura do preditor linear correspondente

a um modelo de grupos de experimentos, com fatores cruzados e aninhados, com efeitos

fixos: local, procedência e a interação local e procedência, e efeitos aleatórios: blocos

dentro de locais, plantas matrizes dentro de procedências e a interação entre local e

plantas matrizes dentro de procedências.

As estimativas dos parâmetros dos efeitos fixos e a predição dos efeitos

aleatórios foram obtidas a partir da maximização do logaritmo da função de pseudo-

verossimilhança (PL), utilizando-se o algoritmo de otimização quase-Newton.
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Na seção a seguir é realizada a revisão da literatura a respeito dos assuntos

descritos nesta introdução, na Seção 3 são descritos os conjuntos de dados utilizados no

trabalho. Nesta seção é também apresentada a metodologia adotada para analisar os

dados. Na Seção 4 são apresentados os resultados e discussão para os dois experimentos

e na Seção 5 são apresentadas as considerações finais sobre o trabalho.
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2 REVISÃO BIBLIOGRÁFICA

Nesta seção são apresentados alguns conceitos relacionados com a plastici-

dade fenot́ıpica e a adaptação local (definição e importância em estudos de restauração

ecológica, formas de expressão, causas e principais metodologias para o estudo destes pro-

cessos), notações e principais conceitos relacionados à análise de grupos de experimentos,

modelos lineares mistos, modelos lineares generalizados (MLG) e MLG mistos (inferência

para parâmetros de efeito fixo e aleatório e diagnóstico de reśıduos).

2.1 Plasticidade fenot́ıpica

A plasticidade fenot́ıpica, segundo Bradshaw (1965) e Schlichting (1986), é

a capacidade que mostram alguns genótipos de alterar de forma significativa sua expressão

(variações morfológicas e/ou fisiológicas) em resposta a determinados fatores ambientais,

sem que mudanças genéticas sejam necessárias, produzindo uma série de fenótipos dife-

rentes.

Em plantas, segundo Fuzeto e Lomônaco (2000) a plasticidade fenot́ıpica

pode ser expressa no crescimento em altura, na anatomia e morfologia das estruturas

vegetativas (partes encarregadas de todas as funções vitais, exceto a reprodução) e repro-

dutivas, na alocação absoluta e relativa de biomassa, e na taxa fotossintética e fenologia.

De acordo com Thompson (1991), genótipos que expressam grande vari-

abilidade fenot́ıpica em diferentes ambientes são considerados como plásticos, e os que

mostram pequena variabilidade são denominados robustos. Apesar da existência dessa

classificação, Bradshaw (1965) e Scheiner (1993) ressaltam que uma determinada carac-

teŕıstica pode ser plástica em resposta a um fator ambiental, mas não a outro, e que

analogamente, caracteres distintos podem representar diferentes graus de plasticidade,

concluindo que a plasticidade não é propriedade geral do genótipo, mas sim espećıfica de

um caráter genético ou de um conjunto de caracteres genéticos.

A plasticidade fenot́ıpica, segundo Scheiner (1993), retrata ainda, a habi-

lidade de um organismo de alterar sua fisiologia e/ou morfologia em decorrência de sua

interação com o meio ambiente. Espera-se, deste modo, que uma população, ocupando

um ambiente heterogêneo, apresente grande potencial plástico em suas caracteŕısticas

fisiológicas e/ou morfológicas (FUZETO; LOMÔNACO, 2000).
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No entanto, deve-se notar que uma parte da variação fenot́ıpica obser-

vada pode ser causada por variações aleatórias durante o desenvolvimento dos organis-

mos, que não têm conexão com alguma influência ambiental (NOVOPLANSKY, 2002;

BRADSHAW, 1965).

Chambel et al. (2005) citam um fator importante que atua sobre a plas-

ticidade fenot́ıpica: a temperatura que, atualmente, tem aumentado devido a mudanças

climáticas. Adicionalmente, López (2009) cita os seguintes fatores que afetam a plastici-

dade fenot́ıpica dos organismos vegetais: a competição interespećıfica (competição entre

duas espécies diferentes que disputam um mesmo nicho ecológico no mesmo local), a altura

das ondas do mar, a quantidade de luz recebida, a resistência à salinidade, a quantidade

de nutrientes ou o ambiente, em geral, em que vive o indiv́ıduo.

Todos esses fatores podem, em determinadas situações, induzir a alterações

genot́ıpicas nos organismos, que podem fazer com que uma população seja beneficiada e

obtenha um aumento na tolerância ambiental.

Para estudar a plasticidade fenot́ıpica é frequente a instalação de ensaios em

diferentes ambientes (locais), denominados ensaios de proveniências. Nestes, os materiais

genéticos provenientes de diferentes locais são plantados em todos os locais, que possuem

diferentes condições ambientais. Alternativamente podem ser realizados ensaios em ambi-

entes com condições controladas (casas de vegetação, estufas, laboratórios) com gradientes

em algum fator determinado (luminosidade, temperatura, disponibilidade h́ıdrica, ńıveis

de fertilidade de solos etc).

Scheiner (1993) salienta que, para quantificar a plasticidade, é necessária

a reprodução dos genótipos em ambientes contrastados mediante propagação clonal ou

partindo de famı́lias de meios irmãos ou irmãos completos.

Por sua vez, Mart́ıns (2007) descreve os principais métodos de avaliação da

plasticidade fenot́ıpica, e cita que a análise de variância (ANOVA) para dois fatores é o

método frequentemente utilizado para comparar a plasticidade da resposta de diferentes

genótipos em uma série de ambientes. Dessa forma, esta análise permite identificar a

variação devida aos genótipos, aos ambientes e à interação de ambos os fatores. Nos

delineamentos experimentais que consideram o genótipo, um fator ambiental (local) e a

sua interação, a variância ambiental se deve a respostas plásticas dos genótipos em geral,

e a existência de interação se deve a uma variação genética nessa resposta plástica.
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Em estudos sobre avaliação fenot́ıpica nos quais a variável resposta medida é

do tipo proporção ou contagem, têm sido utilizados para sua análise estat́ıstica, os MLGs

ou os MLGMs.

Como exemplo, López (2009) avaliou a diferenciação adaptativa entre 21

populações de Pinus canariensis Chr. Sm. ex DC., em dois locais (Ilhas Canárias,

Espanha e na região setentrional de Israel), entre 1999 e 2006, utilizando o delineamento

de blocos incompletos. Uma das variáveis analisadas neste estudo, foi a proporção de

árvores sobreviventes aos 5 e 8 anos depois da plantação. Análises individuais e conjuntas

(séries de experimentos) foram realizadas, utilizando modelos loǵısticos, pressupondo uma

distribuição binomial para a variável resposta, função de ligação logito e considerando o

efeito de blocos como aleatório.

Ramı́rez (2010), por sua vez, avaliou a plasticidade fenot́ıpica e diferen-

ciação genética inter e intra-populacional de 13 populações de Quercus suber L., por meio

de caracteres fisiológicos e marcadores moleculares, em dois locais da Espanha (Parque

Nacional de Monfragüe e Parque Nacional de la Sierra de Andajúr), utilizando o deline-

amento casualizado em blocos. Análises individuais para a variável proporção de plantas

sobreviventes aos 4 anos após iniciado os ensaios, foram realizadas, utilizando modelos

loǵısticos, pressupondo uma distribuição binomial para a variável resposta, função de

ligação logito e considerando o efeito de blocos como fixo.

Por outro lado, para analisar variáveis de natureza cont́ınua e quando são

considerados alguns fatores de efeitos aleatórios (por exemplo, blocos) ou aninhados (por

exemplo, plantas dentro de procedências ou blocos dentro de locais), nos ensaios sobre

plasticidade fenot́ıpica têm sido utilizados os modelos lineares mistos, como descrito nos

trabalhos de Eckhart, Geber e McGuire (2004), Angert e Schmeske (2005) e Cavallero et

al. (2011), dentre outros.

2.2 Adaptação local

Combes (1946) define a adaptação como o conjunto de modificações provo-

cadas na constituição de um organismo pela ação cont́ınua de um meio diferente daquele

onde, inicialmente, este se desenvolveu ou seus ascendentes. Savolainen, Pyhajarvi e

Knurr (2007), por sua vez, definem a adaptação como o processo evolutivo pelo qual um

organismo se torna mais capaz de viver em seu (ou seus) habitat(s). As espécies que
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apresentam grande amplitude de distribuição e longos peŕıodos de vida estão, geralmente,

submetidas a condições bióticas e abióticas bem variadas.

Segundo os autores, os fatores bióticos são aqueles relacionados às relações

ecológicas interespećıficas (aquelas que ocorrem entre seres de espécies diferentes, por

exemplo, predação, competição, parasitismo, cooperação, mutualismo e comensalismo) e

as intraespećıficas, que são as relações que se estabelecem entre seres vivos da mesma

espécie (cooperação, competição e canibalismo). Entanto, os fatores abióticos são os fato-

res climáticos (luz, pluviosidade, temperatura, umidade atmosférica, ventos etc.), fatores

edáficos (ligados ao solo, como a textura, estrutura, composição qúımica, pH, umidade,

permeabilidade etc.) e fatores f́ısico-qúımicos da água (temperatura, pH, salinidade, tur-

bidez etc.).

Esta heterogeneidade ambiental, no espaço e no tempo, origina pressões

seletivas diferentes que conduzem, a longo prazo, ao desenvolvimento de adaptações locais

e à divergência ecot́ıpica entre as populações.

A pressão seletiva é o termo designado para relacionar o papel do meio

ambiente na seleção dos genes de uma população. Assim, dependendo do ambiente onde

os organismos estão interagindo, por meio da seleção natural, alguns genes terão maior

chances de sobreviver e serem passados a geração seguinte, do que outros. A pressão

seletiva representa, portanto, um conjunto particular de caracteŕısticas do ambiente que

filtra determinados genes “direcionando”a evolução de determinadas caracteŕısticas para

a adaptação a este ambiente.

A instalação de ensaios de procedências é muito utilizada, especialmente

nas espécies florestais, para estudar processos de adaptação entre populações. Esses en-

saios consistem na instalação de populações de uma espécie, caracterizadas por diferentes

condições ecológicas no seu lugar de origem, sob um ambiente comum. As posśıveis

diferenças populacionais observadas nos caracteres analisados podem ser atribúıdas às

diferenças genéticas (COLAUTTI; ECKERT; BARRETT, 2010).

A seguir será apresentada uma descrição da análise de grupos de experi-

mentos, que são de uso frequente em estudos sobre plasticidade fenot́ıpica e adaptação

local de espécies vegetais.
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2.3 Análise de grupos de experimentos

Análise de grupos de experimentos é uma técnica de uso frequente na ex-

perimentação agronômica. Em inúmeras situações, ocorre a instalação de um grupo de

experimentos por toda a região para a qual se deseja fazer inferência. Segundo Barbin

(2013), todos os experimentos devem, preferivelmente, ter o mesmo número de tratamen-

tos e repetições, mesmo delineamento experimental e tratos culturais, e repetidos por

vários anos, porém instalados em locais (ambientes) distintos, com o objetivo de obter

uma abrangência nas conclusões. No caso de se dispor de ensaios com número diferente

de blocos ou repetições, Vencovsky e Barriga (1992), recomendam, para contornar tal

problema, utilizar os procedimentos sugeridos por Cochran e Cox (1957).

De acordo com Mart́ınez (1988), o primeiro estudo teórico do problema que

surge ao combinar os resultados de uma série de experimentos similares, é atribúıdo a

Cochran (1937). Posteriormente, Yates e Cochran (1938) sugerem um exame cuidadoso

dos resultados experimentais antes de iniciar qualquer análise combinada, e atestam que

o procedimento de análise de variância usual, apropriado para analisar os resultados dos

experimentos, pode requerer modificação, devido à heterocedasticidade presente entre os

diferentes experimentos. Assim, sugerem a partição das somas de quadrados associa-

das aos tratamentos e à interação de tratamentos × locais em componentes ortogonais

apropriados.

Uma análise de variância para grupos de experimentos em estudos de me-

lhoramento de plantas foi desenvolvido por Rojas (1951), focalizando sua atenção na

estimação dos componentes de variância. Kempthorne (1952), por sua vez, considera que

na análise conjunta, existem duas posśıveis dificuldades para a interpretação dos resulta-

dos na análise de variância. A primeira dificuldade é que a variância residual (σ2) não

é constante nos experimentos, e a segunda, é que o componente de variância referente à

interação de tratamentos × locais depende da combinação de tratamentos e locais. Poste-

riormente Rojas (1958) estudou a situação geral da análise de um grupo de experimentos

distribúıdos no tempo e no espaço, e desenvolveu uma teoria para solucionar o problema

da heterogeneidade de variâncias.

Outras contribuições importantes para o estudo da análise conjunta de ex-

perimentos são apresentadas por Cochran (1954), Cochran e Cox (1957), Pimentel-Gomes

e Guimarães (1958), Pavate (1961) e Pimentel-Gomes (1970), dentre outros.
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Com relação à metodologia para a análise estat́ıstica dos grupos de expe-

rimentos, Barbin (2013) recomenda que inicialmente se devem fazer todas as análises

individuais, isto é, uma análise para cada local e em seguida, examinar as grandezas dos

quadrados médios residuais. Para que as análises individuais possam ser reunidas em uma

análise conjunta, é preciso que haja homogeneidade de variâncias entre os experimentos,

isto é, que os quadrados médios residuais (QMRes) não difiram muito entre si. Nesse

aspecto, Pimentel-Gomes (2009) considera que se o quociente entre o maior e o menor

QMRes for menor que 7, geralmente a análise conjunta poderá ser realizada sem grandes

problemas.

Para testar a homogeneidade, por outro lado, pode-se aplicar qualquer um

dos testes para verificação da homogeneidade de variâncias, por exemplo, o teste de Bart-

tlet, descrito em Anderson e Bancroft (1952) ou em Steel e Torrie (1960), ou o teste F

máximo de Hartley (1950). Nos casos em que a homogeneidade de variâncias não for

detectada deve-se proceder da seguinte maneira, de acordo com Cochran (1954):

(i) Considerar separadamente subgrupos de experimentos com quadrados médios resi-

duais homogêneos. Análises conjuntas serão feitas para cada subgrupo.

(ii) Alternativamente, podem-se reunir todos esses locais numa só análise conjunta, e no

momento de tomar a decisão de rejeitar ou não a hipótese H0, por meio do teste F,

aplicar o método proposto por Cochran (1954), que consiste em ajustar o número

de graus de liberdade do reśıduo médio, representado por v, e o número de graus

de liberdade da interação Locais × Tratamentos, representado por v′, obtidos da

seguinte maneira:

v =

[ K∑
k=1

QM Reśıduo (Local k)
]2

K∑
k=1

[QM Reśıduo (Local k)]2

gl Reśıduo (Local k)

,

que corresponde a aplicar a equação de Satterthwaite (1946), com gl Reśıduo ( Local k) <

v <
K∑
k=1

gl Reśıduo ( Local k), e

v′ =
(I − 1)(K − 1)2V 2

1

(K − 2)V2 + V 2
1

,
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em que I é o número de tratamentos e K é o número de locais (ou experimentos), e

V1 =

K∑
k=1

QM Reśıduo (Local k)

K
, V2 =

K∑
k=1

[ QM Reśıduo (Local k)]2

K
,

sendo que QM Reśıduo (Local k) é o quadrado médio residual referente ao k-ésimo local

ou experimento.

Mais recentemente, Littell et al. (2006) citam que, variâncias heterogêneas

podem ser incorporadas na análise estat́ıstica dos dados, no contexto dos modelos lineares

de efeito misto, especificando diferentes estruturas de variâncias e covariâncias residuais

para os ńıveis de um fator (ou uma combinação dos ńıveis dos fatores avaliados), por

exemplo, especificando variâncias diferentes entre locais com grande variabilidade, dando

menor peso às observações com variância grande.

2.4 Modelos lineares

Considere-se, para fins de ilustração, um estudo sobre avaliação da plastici-

dade fenot́ıpica e da adaptação local de I tratamentos (procedências) de efeito ti (i=1,...,I )

de uma determinada espécie vegetal, realizado em K locais (l1, l2,..., lK), utilizando o deli-

neamento casualizado em blocos em cada local, com J blocos (completos ou incompletos)

de efeitos bj (j=1,...,J ), em que foi medida uma variável Y, e considerando ainda, os

fatores procedências, locais e blocos como fixos, um modelo linear clássico utilizado para

a análise desse conjunto de dados, é definido na forma matricial por Searle (1971), como:

y = Xβ + ε, (1)

em que: y representa o vetor de dimensão n, de dados observados; X é a matriz do

delineamento, de dimensões n × p; β é o vetor de parâmetros desconhecidos de efeitos

fixos, de dimensão p; e ε é o vetor de erros aleatórios, de dimensão n.

O objetivo do modelo linear clássico é modelar a média de y, usando-se o

vetor de parâmetros de efeitos fixos β. Os componentes do vetor ε são variáveis aleatórias

independentes e identicamente distribúıdas com média 0 e variância σ2. Pressupondo que

ε ∼ N(0, σ2I), tem-se que y ∼ N(Xβ, σ2I), com função de verossimilhança dada por:
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L = L(β, σ2|y) =
exp

[
− 1

2
(y −Xβ)′( I

σ2 )(y −Xβ)
]

(2πσ2)
n
2

. (2)

Considerando-se então, um vetor de observações y, os estimadores de

máxima verossimilhança dos parâmetros são obtidos maximizando-se a função L, dada

em (2), ou o seu logaritmo, em relação a β. Isto leva ao sistema de equações normais:

X ′Xβ̂ = X ′y, cuja solução é β̂ = (X ′X)−1X ′y, desde que X ′X seja não singular.

Tem-se, ainda, que E(β̂)=β e Var(β̂) = (X ′X)−1σ2.

Caso (X ′X)−1 não exista, utiliza-se uma inversa generalizada (X ′X)−

e o estimador de β é dado por: β̂
0

= (X ′X)−X ′y, com E(β̂
0
)= β e

Cov(β̂
0
)=(X ′X)−(X ′X)(X ′X)−σ2.

2.5 Modelos lineares mistos

De acordo com Balzarini (2002), o modelo linear clássico, utiliza como pro-

cedimento de estimação o método dos mı́nimos quadrados ordinários (ou Ordinary Least

Squares -OLS), que é muito restrito devido às pressuposições, como independência dos

reśıduos e homogeneidade de variâncias, frequentemente não atendidas.

Considere o exemplo citado na seção 2.4, relacionado com a avaliação da

plasticidade fenot́ıpica e da adaptação local de I procedências em K locais, no caso em

que os blocos sejam definidos de efeito aleatório e aninhados em cada local (bj(k)). Além

disso, seja inclúıdo o efeito aninhado de M plantas matrizes, selecionadas aleatoriamente

dentro de cada procedência i (γm(i)), e a ocorrência de desbalanceamento não planejado,

decorrente da perda de parcelas. Nesta situação o uso do modelo linear clássico não é

adequado, sendo necessário analisar os dados por meio de um modelo linear misto (MLM).

Este é definido por West, Welch e Ga lecki (2007), como um modelo linear paramétrico

para dados agrupados, longitudinais ou dados provenientes de experimentos com medidas

repetidas, que inclui parâmetros de efeito fixo, além da média geral, e efeitos aleatórios

associados com um ou mais fatores aleatórios, além do erro experimental.

Assim, esses modelos envolvem duas partes: uma parte descrevendo os efei-

tos aleatórios e a outra descrevendo os efeitos fixos. Os efeitos de um fator são considerados

como fixos (constantes), quando os ńıveis em estudo, geralmente poucos, forem escolhidos

pelo pesquisador, de modo que a inferência é restrita a esses ńıveis.
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Por outro lado, Pinheiro e Bates (2000) citam que, os efeitos de um fator são

considerados como aleatórios, quando os ńıveis em estudo correspondem a uma amostra

aleatória de uma população de referência. Neste caso os ńıveis provêm de uma distribuição

de probabilidade e a inferência é extrapolada para a população de referência.

Nos modelos mistos, a análise da parte aleatória consiste na predição dos

efeitos aleatórios, na presença de efeitos fixos, e na estimação dos componentes de variância

(variâncias associadas aos efeitos aleatórios de um modelo matemático).

A análise da parte fixa, por sua vez, consiste na estimação e testes de

hipóteses sobre funções estimáveis dos efeitos fixos. Em geral, tanto a predição dos efeitos

aleatórios quanto a estimação dos efeitos fixos dependem da estimação dos componentes

de variância. Em termos matriciais o MLM pode ser expresso da seguinte forma, como

descrito por Searle, Casella e McCulloch (1992):

y = Xβ +Zu+ ε, (3)

em que: y é o vetor de observações, de dimensão n; X é a matriz de delineamento dos

efeitos fixos, conhecida, de dimensões n × (p+1); β é o vetor de parâmetros de efeitos fixos

desconhecidos, de dimensão p+1; Z = [Z1, ...,Zb], sendo Zi de dimensões n × qi a matriz

de delineamento para o i -ésimo efeito aleatório; u = [uT1 , ...,u
T
b ]T , o vetor de parâmetros

de efeitos aleatórios, desconhecido, de dimensão q, em que ui possui dimensão qi, sendo

q =
b∑
i=1

qi; e ε é o vetor de erros aleatórios desconhecidos, de dimensão n. Admite-se,

ainda, que u ∼ N(0,G), ε ∼ N(0,R) e que, além disso, são variáveis não correlacionadas.

Em termos de modelos condicionais (ou hierárquicos), o modelo linear misto

geral pode ser reescrito de tal modo que:

E(Y |u) = Xβ +Zu,

Y |u ∼ N(Xβ +Zu,R),

Cov(Y |u) = R,
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e

Cov(u) = G.

Assim, marginalmente, tem-se que Y ∼ N(Xβ,V ), com E(Y ) = Xβ e,

V ar(Y ) = V = ZGZ ′ +R, (4)

sendo G de dimensões q × q, a matriz de variâncias e covariâncias dos efeitos aleatórios

u, e R de dimensões n× n, a matriz de variâncias e covariâncias residual, que representa

a variação intra-grupos. Assim, pode-se modelar a variância dos dados, da eq. (4),

especificando a estrutura (ou forma) de G e R. Quando R = σ2I(n) e Z = 0, o modelo

misto se reduz ao modelo linear padrão: y = Xβ + ε.

2.5.1 Estruturas de covariância

A modelagem da parte aleatória se realiza por meio da inclusão de uma

matriz de variâncias e covariâncias (LITTELL et al., 2006), sendo que a necessidade de

se inclúırem parâmetros de variâncias e covariâncias pode surgir por várias razões, dentre

elas:

(i) as unidades experimentais sobre as quais são medidos, podem ser colocadas em

grupos e os dados de um grupo comum são correlacionados. Isso pode ocorrer com

dados de famı́lias, ninhadas, colônias e pessoas que habitam a mesma casa e

(ii) medidas repetidas são tomadas sobre a mesma unidade experimental e são correla-

cionadas. A natureza dessas medidas pode ser multivariada. Exemplos comuns são

os dados observados ao longo do tempo, chamados dados longitudinais.

Várias estruturas podem ser adotadas para as matrizes de variâncias e co-

variâncias G e R, dependendo do conhecimento que se tenha do fenômeno que se gera os

dados. Algumas estruturas de covariância posśıveis são apresentadas a seguir, admitindo-

se uma situação simples com quatro ocasiões:

(i) Não estruturada: todas as variâncias e covariâncias podem ser desiguais. Espe-

cifica uma matriz completamente geral, parametrizada em termos de variâncias e

covariâncias. As variâncias são restritas a valores não negativos e as covariâncias

não têm restrições.
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σ2

1 σ12 σ13 σ14

σ21 σ2
2 σ23 σ24

σ31 σ32 σ2
3 σ34

σ41 σ42 σ43 σ2
4


(ii) Componentes de variância: matriz, generalmente utilizada como estrutura para G e

R nos modelos ANOVA (todos os fatores são tratados como qualitativos), contendo

apenas um parâmetro, σ2. Essa matriz supõe independência e homogeneidade de

variâncias entre os componentes.


σ2 0 0 0

0 σ2 0 0

0 0 σ2 0

0 0 0 σ2


(iii) Simetria composta: esta matriz contém dois parâmetros e admite homogeneidade

de variâncias e covariâncias constantes. Exemplos de utilização desta matriz podem

ser vistos em experimentos casualizados em blocos, para os quais o efeito de blocos é

aleatório. Na matriz V observam-se tantas matrizes de simetria composta quantos

forem os blocos. Sendo assim, a matriz V resultante será dita bloco diagonal.


σ2 + σ2

1 σ2
1 σ2

1 σ2
1

σ2
1 σ2 + σ2

1 σ2
1 σ2

1

σ2
1 σ2

1 σ2 + σ2
1 σ2

1

σ2
1 σ2

1 σ2
1 σ2 + σ2

1


(iv) Autorregressiva de 1a ordem - AR(1): esta matriz contém dois parâmetros, admite

homogeneidad de variâncias e covariâncias decrescentes em função das distâncias

entre as observações, ou seja, a correlação decresce à medida que se aumenta a

distância entre as observações repetidas, pois ρ o parâmetro autoregressivo, para

um processo estacionário, assume-se entre -1< |ρ| < 1. Essa estrutura pode ser

utilizada desde que as observações sejam igualmente espaçadas (no tempo ou no

espaço).
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σ2


1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ

ρ3 ρ2 ρ 1


(v) espacial (ou potência): nesta matriz todas as variâncias são iguais e a correlação entre

observações separadas por uma distância de d unidades é ρd, sendo ρ a correlação

entre observações. Seu uso é aconselhado para os casos em que as observações

repetidas não são equidistantes,

σ2


1 ρd12 ρd13 ρd14

ρd21 1 ρd23 ρd24

ρd31 ρd32 1 ρd34

ρd41 ρd42 ρd43 1



Para a escolha adequada da estrutura é necessário utilizar algum critério

de seleção. Gbur et al. (2012) citam que o Critério de Informação de Akaike (AIC), o

AIC corrigido (AICC) e o Critério de Informação Bayesiano (BIC), podem ser utilizados

para comparar as estruturas de covariância. Estes critérios são baseados no logaritmo da

função de verossimilhança (ML ou REML) e dependem do número de observações e de

parâmetros do modelo. Suas expressões são dadas por:

AIC = −2`(β̂, κ̂) + 2d,

AICC = AIC+
2d(d+ 1)

(n− d− 1)
= −2`(β̂, κ̂)+2d

(
1 +

d+ 1

n− d− 1

)
= −2`(β̂, κ̂)+2d

n

n− d− 1
,

e

BIC = −2`(β̂, κ̂) + d log(n),

sendo ` o logaritmo da função de verossimilhança, d o número de parâmetros de efei-

tos fixos e aleatórios estimados no modelo, κ̂ o vetor de estimativas dos componentes

de variância e n o número de observações utilizadas na estimação desses parâmetros.

A estrutura de covariâncias com menor valor do critério escolhido é considerada mais

adequada.
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2.5.2 Estimação dos componentes de variância

Barbin (1993) define os componentes de variância como as variâncias as-

sociadas aos efeitos aleatórios de um modelo estat́ıstico-matemático, sendo que o seu

conhecimento é de grande importância em genética e melhoramento genético animal e

vegetal, pois a população e o método de melhoramento a serem utilizados dependem de

algumas informações que podem ser obtidas a partir desses componentes.

No caso de modelos mistos, a solução das Equações de Modelos Mistos

(EMM) de Henderson (1953), depende do conhecimento da matriz de variâncias e co-

variâncias V, cuja estrutura é conhecida, porém, seus componentes não o são. Desse

modo, torna-se necessário substitúı-los por suas estimativas.

Diversos métodos têm sido propostos para estimar os componentes de

variância, destacando-se os seguintes: método dos momentos ou método da análise de

variância (ANOVA); método da máxima verossimilhança - ML(HARTLEY; RAO, 1967);

método da estimação quadrática não-viesada de variância mı́nima - MIVQUE (RAO,

1971) e o método da máxima verossimilhança restrita - REML (PATTERSON; THOMP-

SON, 1971; HARVILLE, 1977). Existem ainda os métodos I, II e III de Henderson (1953)

e aqueles derivados da estimação de funções quadráticas (MARCELINO; IEMMA, 2000).

Segundo Resende (2007), para obter estimativas tanto de ML quanto de

REML, vários algoritmos têm sido desenvolvidos, dentre eles, o algoritmo esperança-

maximização (EM), Escore de Fisher, Newton-Raphson e de Informação média (AI).

2.5.2.1 Método ANOVA

Este método consiste em igualar as esperanças dos quadrados médios de

cada fonte de variação presente na análise da variância, aos seus respectivos quadrados

médios e resolver as equações resultantes para cada componente de variância. Este método

em geral é adequado para modelos simples, que envolvem dados balanceados. Os esti-

madores ANOVA apresentam muitas propriedades, por exemplo, são não-viesados e têm

variância mı́nima, são funções de estat́ısticas suficientes, para as quais podem ser obtidas

estimativas dos erros padrões associados, e uma aproximação dos números de graus de li-

berdade, por métodos como os propostos por Satterthwaite (1946), Fai e Cornelius (1996)

e Kenward e Roger (1997). Além disso, nenhuma suposição da distribuição dos dados,

além das suposições básicas sobre as variâncias e covariâncias já mencionadas é exigida.
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Entretanto, quando os dados são não balanceados, não existe um único

modo de se obter a tabela da análise da variância, levando a diferentes estimativas para

um mesmo componente. Como uma desvantagem pode-se citar o fato de que esse método

não exclui a ocorrência de estimativas negativas para os componentes de variância, fato

que torna a propriedade de estimador não viesado pouco interessante.

Uma sugestão para contornar tal problema é utilizar a restrição do espaço

paramétrico, ou seja, igualar as estimativas negativas a zero. Porém essa solução sacrifica

a propriedade do estimador ser não viesado pelo método ANOVA (SEARLE; CASSELLA;

McCULLOCH, 1992).

2.5.2.2 Método da Máxima Verossimilhança (ML)

O método da máxima verossimilhança (ML) foi desenvolvido por Fisher

(1922), mas Hartley e Rao (1967) apresentaram a especificação matricial de um modelo

misto e a derivação de equações ML para várias classes de modelos. Por outra parte, os

trabalhos de Henderson (1953) tiveram grande impacto no desenvolvimento dos métodos

de estimação de componentes de variância a partir de dados desbalanceados.

Em situações de dados desbalanceados, Shaw (1987) cita que os estimado-

res ML apresentam as seguintes propriedades desejáveis: suficiência (tal que o preditor

condense o máximo posśıvel a informação contida na amostra e não seja função depen-

dente do parâmetro), consistência (refere-se ao aumento da precisão da estimativa com o

aumento do tamanho da amostra), eficiência (o preditor apresenta variância mı́nima) e

translação invariante (não afetados por mudanças nos efeitos fixos). Outra vantagem do

ML é a geração de estimativas não negativas dos componentes de variância.

Para a estimação ML de componentes de variância os efeitos fixos devem

ser conhecidos, caso contrário, são substitúıdos por suas estimativas obtidas por ML.

Porém, na estimação dos componentes de variância, o método ML não considera a perda

de número de graus de liberdade devido à estimação desses efeitos fixos, causando então

o v́ıcio, que conduz a subestimativas dos parâmetros de variância e, portanto podem

conduzir a inferências incorretas (RESENDE, 2007).
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2.5.2.3 Método da Máxima Verossimilhança Restrita (REML)

Segundo Resende (2007), um método alternativo, baseado na verossimi-

lhança, para inferir sobre os componentes de variância nos modelos mistos é o método

da máxima verossimilhança restrita (REML), desenvolvido por Patterson e Thompson

(1971).

Os estimadores dos componentes de variância, pelo método REML, têm

sido amplamente adotados, porque eliminam o primeiro dos problemas encontrados no

método ML, ou seja, leva em consideração os graus de liberdade envolvidos na estimação

dos parâmetros fixos do modelo. Sendo assim, estimativas REML dos componentes de

variância tendem a ser menos viesadas que as estimativas de ML, e o método permite

também a imposição de restrições de não negatividade. Dessa forma, o método REML é o

procedimento ideal de estimação de componentes de variância com dados desbalanceados.

Além disso, para todos os casos de dados balanceados, as soluções fornecidas pelo método

REML a partir dos modelos mistos coincidem com as soluções fornecidas pelo método

ANOVA (McCULLOCH; SEARLE; NEUHAUS, 2001).

De acordo com Resende (2007), o método REML é uma ferramenta flex́ıvel

para a estimação de componentes de variância e efeitos fixos, e predição de efeitos

aleatórios. Além disso, apresenta as seguintes vantagens:

(i) Pode ser aplicado a dados desbalanceados.

(ii) Permite lidar com estruturas complexas de dados (ensaios com observações realizadas

em diferentes anos e locais, por exemplo).

(iii) Permite ajustar modelos que não podem ser acomodados pela ANOVA.

(iv) Permite o ajuste de vários modelos alternativos, podendo-se escolher o que se ajusta

melhor aos dados e que ao mesmo tempo, seja parcimonioso (apresenta menor

número de parâmetros).

(v) Permite a correção simultânea para os efeitos ambientais, estimação de componentes

de variância e predição de valores genéticos.

(vi) Permite maior flexibilidade na modelagem, contemplando plenamente a análise de

dados correlacionados devido ao parentesco, distribuição temporal e espacial.
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O procedimento REML requer que o vetor de dados Y tenha distribuição

normal multivariada. Entretanto, vários autores relatam que os estimadores REML são

também apropriados quando não se verifica normalidade dos dados (HARVILLE, 1977;

MEYER, 1989).

Ao contrário do método ML, que maximiza a função de verossimilhança

de todos os contrastes, o método REML maximiza a função de verossimilhança conjunta

de todos os contrastes de erros ou reśıduos, Y ∗ = LTY , em que L é uma matriz com

[n− posto(X)] colunas, de posto completo, com colunas ortogonais às colunas da matriz

X, isto é, LTX = 0. Em outras palavras, o método REML maximiza a parte da função

de verossimilhança que é invariante aos efeitos fixos.

Dessa forma, considere a matriz L = [L1L2], não singular, com L1 e L2 de

dimensões (n× (p+ 1))e (n× (n− p− 1), respectivamente e satisfazem:

LT1X = Ip+1 e LT2X = 0.

Alcarde (2012) cita que, os dados podem ser então transformados de y para LTy, ou seja,

LTy = [L1L2]Ty =

 LT1 y
LT2 y

 =

 y∗1
y∗2

 =

 Ip+1β +LT1Zu+LT1 ε

LT2Zu+LT2 ε

 .
O vetor aleatório yT = [y∗1 y

∗
2]T tem distribuição com esperança e variância,

respectivamente, dadas por:

E(Y ∗) = E

 Y ∗1

Y ∗2

 =

 β

0


e

V ar(Y ∗) = V ar

 Y ∗1

Y ∗2

 =

 LT1V L1 LT1V L2

LT2V L1 LT2V L2

 .

Logo,

 y∗1

y∗2

 ∼ N

 β

0

 ,

 LT1V L1 LT1V L2

LT2V L1 LT2V L2

 .
A distribuição completa de LTy pode ser subdividida em uma distribuição

condicional, Y ∗1|Y ∗2 para a estimação de β, e uma distribuição marginal, baseada em
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Y ∗2, para a estimação dos componentes de variância (Alcarde, 2012). Esta distribuição

marginal é a base da máxima verossimilhança restrita.

Por outro lado, seja κT = (γT ,αT ) o vetor de componentes de variância, tal

que γ contém os componentes de variância associados a u e α os componentes de variância

associados a ε, sua estimação é baseada no logaritmo da função de verossimilhança restrita:

`R = −1

2

[
log det (LT2V

−1L2) + yT∗(LT2V L2)
−1
y
]
,

que pode ser expressa como:

`R = −1

2
log det (XTV −1X) + log det V + yTPy, (5)

em que,

P = V −1 − V −1X(XTV −1X)−1XTV −1

e ainda,

yTPy = (y −Xβ̂)TV −1(y −Xβ̂).

Segundo Alcarde (2012), as estimativas REML de κl, tal que κ =

(κ1, ..., κL), são obtidas calculando a função escore, dada por:

U(κl) =
∂`R
∂κl

=
1

2

[
tr

(
P
∂V

∂κl

)
− yTP ∂V

∂κl
Py

]
,

e igualando a zero.

Note que os elementos da matriz informação observada são:

− ∂2`R
∂kl∂kk

= −1

2
tr

(
P

∂2V

∂kl∂kk

)
− 1

2
tr

(
P
∂V

∂kl
P
∂V

∂kk

)
+

+yTP
∂V

∂kl
P
∂V

∂kk
Py − 1

2
yTP

∂2V

∂kl∂kk
Py,

e, os elementos da matriz informação esperada são:

E

(
− ∂2`R
∂κl∂κk

)
=

1

2
tr

(
P
∂V

∂κl
P
∂V

∂κk

)
.
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No entanto, a solução para U(κl) = 0 exige um algoritmo iterativo que

utiliza uma estimativa inicial (κ(0)) para κ e uma atualização κ(1). Um desses algoritmos

é o “Escore de Fisher”, em que:

κ(1) = κ(0) + I
(
κ(0),κ(0)

)−1
U
(
κ(0)

)
,

em que U (κ(0)) é o vetor escore e I(κ(0)),κ(0)) representa a matriz de informação esperada

de κ, avaliada em κ(0) (ALCARDE, 2012).

Na medida em que as dimensões da matriz invertida aumentam, a utilização

do algoritmo Escore de Fisher pode levar a dificuldades computacionais, as quais são

discutidas em Gilmour, Thompson e Cullis (1995). Uma alternativa é a utilização do

algoritmo AI que apresenta propriedades de convergência semelhantes ao algoritmo Escore

de Fisher, evitando a sobrecarga computacional (GILMOUR; THOMPSON; CULLIS,

1995).

2.5.3 Estimação dos termos fixos e predição dos termos aleatórios simulta-

neamente

As estimativas de β e u são obtidas por meio do uso de funções baseadas na

função de verossimilhança dos dados. Assim, se a função de densidade de probabilidade

de y é dada por:

f(y) =
1

2π
n
2 |ZGZT +R| 12

exp
{1

2
[(y −Xβ)T (ZGZT +R)−1(y −Xβ)]

}
,

a função densidade de probabilidade conjunta de y e u, por sua vez, pode ser escrita

como o produto entre a função densidade de probabilidade condicional de y, dado u, e a

função densidade de probabilidade de u, ou seja,

f(y,u) = f(y|u)f(u),

ou ainda,

f(y,u) =
1

(2π)
n
2 |R| 12

× exp
{1

2
[(y −Xβ −Zu)TR−1(y −Xβ −Zu)]

}
×



41

× 1

(2π)
n
2 |G| 12

exp
{1

2
[(u− 0)TG−1(u− 0)]

}
,

cujo logaritmo denotado por ` é dado por:

` = −n log(2π)− 1

2
(log |R|+ log |G|) +

1

2
(yTR−1y − 2yTR−1Xβ − 2yTR−1Zu+

+2βTXTR−1Zu+βTXTR−1Zu+βTXTR−1Xβ+uTZTR−1Xβ+uTZTR−1Zu+uTG−1u).

Derivando-se ` em relação a β e u e igualando-se as expressões resultantes

a 0, obtêm-se as Equações de Modelos Mistos (EMM) propostas por Henderson (1984):

 XTR−1X XTR−1Z

ZTR−1X ZTR−1Z +G−1

 β̂
û

 =

 XTR−1y

ZTR−1y


Se G e R são conhecidas, então, o estimador de mı́nimos quadrados ge-

neralizados (generalized least squares-GLS) ou melhor estimador linear não viesado (best

linear unbiased estimator -BLUE) de β, é dado por:

β̂ = (XTV −1X)−XTV −1y,

em que V é dada pela eq. (4).

De forma análoga, o melhor preditor linear não viesado (best linear unbiased

predictor -BLUP) de u é dado por:

û = GZTV −1(y −Xβ̂).

Esses estimadores são denominados “melhores”por minimizarem a variância

amostral, “lineares”, pois são funções lineares de y e “não viesados”, porque

E((BLUE(β)) = β e E(BLUP (u)) = u. Além disso, a matriz de variâncias e co-

variâncias de (β̂ − β, û− u) é dada por:

C =

 XTR−1X XTR−1Z

ZTR−1X ZTR−1Z +G−1

− , (6)

em que o śımbolo − no expoente da matric C denota a inversa generalizada.
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Entretanto, na maioria das vezes, Var(y) = V é desconhecida, e conse-

quentemente, as matrizes G e R são desconhecidas. Neste caso, assumindo-se uma certa

perda de eficiência, os parâmetros em G e R podem ser substitúıdos pelas estimativas

correspondentes, constituindo, respectivamente, as matrizes denotadas por Ĝ e R̂. Logo,

substitúındo-se G por Ĝ e R por R̂ em (6), tem-se a matriz Ĉ dada por:

Ĉ =

 XT R̂
−1
X XT R̂

−1
Z

ZT R̂
−1
X ZT R̂

−1
Z + Ĝ

−1

− ,
como uma aproximação da matriz de variâncias e covariâncias de (β̂ − β, û− u). Neste

caso, os termos BLUE e BLUP não se aplicam, sendo apropriado substitúı-los por EBLUE

(melhor estimador linear não viesado emṕırico ou empirical best linear unbiased estimator)

e EBLUP (melhor preditor linear não viesado emṕırico ou empirical best linear unbiased

predictor), respectivamente, de acordo com Littell et al. (2006). O termo emṕırico é

adicionado, portanto, para indicar esse tipo de aproximação.

Segundo McLean e Sander (1988), a matriz Ĉ pode ser reescrita como:

Ĉ =

 Ĉ11 Ĉ21

Ĉ21 Ĉ22

 ,
em que,

Ĉ11 = (XT V̂
−1
X)−,

Ĉ21 = −ĜZT V̂
−1
XĈ11,

e

Ĉ22 =
(
ZT R̂

−1
Z + Ĝ

−1
)−1

− Ĉ21X
T V̂

−1
ZĜ.

Nota-se que Ĉ11 é a equação para obter estimativas de mı́nimos quadrados

generalizados dos elementos da matriz de variâncias e covariâncias de β̂.

Logo, utilizando a matriz Ĉ, as estimativas dos parâmetros de β e as

predições dos parâmetros de u são obtidas como segue:

β̂ = (XT V̂
−1
X)−XT V̂

−1
y

e
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û = ĜZT V̂
−1

(y −Xβ̂),

em que V̂
−1

é obtida substituindo-se os parâmetros em V , pelas estimativas correspon-

dentes.

Por outro lado, objetivando a construção de intervalos de (1 − α) × 100%

de confiança (IC) para as estimativas dos parâmetros de βi, calculam-se os erros padrões√
V̂ ar(β̂i), a fim de que os ICs nos forneçam o campo de variação de cada uma das

estimativas destes parâmetros, como segue:

IC (β̂i) = β̂i ± zα/2
√
V̂ ar(β̂i),

sendo i = 1, ..., p, α o ńıvel de significância, zα/2 o valor tal que P(|Z| < zα/2) = 1−α, sendo

Z uma variável com distribuição normal padronizada, V̂ ar(β̂i), a variância associada ao

parâmetro de efeito fixo βi.

E ainda, os intervalos de (1−α)× 100% de confiança (IC) relacionados aos

componentes de variância (σ̂2
i ), podem ser estimados usando o método delta (GBUR et

al.,2012) em que estas estimativas são linearizadas por meio da função logaritmica (log)

e possuem distribuição normal assintótica, e o IC na escala original da variável resposta

é dado por:

IC (σ̂2
i ) = exp

(
log(σ̂2

i )± z1−α/2σ̂
−2
i

√
V̂ ar(σ̂2

i )
)

2.5.4 Inferência para parâmetros de efeitos fixos

Molenberghs e Verbeke (2005) e West, Welch e Ga lecki (2007), dentre ou-

tros, apresentam os testes de Wald, t e Wald-F, que podem ser utilizados para testar

a significância dos termos fixos, ou de uma combinação linear dos mesmos, em modelos

mistos.

O teste de Wald aproximado pode ser realizado para cada βi em β, com

i=1,...,p, assim como a obtenção do respectivo intervalo de confiança. Seja L uma ma-

triz de constantes conhecidas e de posto completo c (c ≤ p), de dimensões c × p, e

considerando-se as hipóteses:

H0 : Lβ = 0 contra H1 : Lβ 6= 0 (7)
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Tem-se que a estat́ıstica de Wald (W ) é dada por:

W = (β̂ − β)TLT

L( N∑
i=1

X i
TV i(κ̂)X i

)−1

LT

−1

L(β̂ − β),

em que κ̂ é o vetor das estimativas dos parâmetros das matrizes de variância e covariância

G e R, denominados componentes de variância. Sob H0 a estat́ıstica W tem distribuição

assintótica χ2 com r graus de liberdade.

Por outro lado, devido ao fato de que no teste de Wald não se considerar a

variabilidade introduzida pela estimação dos componentes de variância e poder subestimar

a variação dos efeitos fixos, Molenberghs e Verbeke (2005) sugerem a utilização dos testes

t e Wald-F para testar hipóteses sobre os parâmetros de efeito fixo.

O teste t é frequentemente utilizado para testar hipóteses do tipo:

H0 : βi = 0 contra H1 : βi 6= 0,

em que a estat́ıstica t é calculada da seguinte maneira:

t =
β̂i√

Var (β̂)
,

que, sob a hipótese nula, segue uma distribuição t de Student com ν graus de liberdade,

que dependem exclusivamente dos dados e são calculados utilizando métodos como o de

Satterhwaite (1946), Fai e Cornelius (1996) e Kenward e Roger (1997).

Por sua vez, a estat́ıstica F do teste Wald-F é definida por:

F =

(β̂ − β)TLT

[
L

(
N∑
i=1

X i
TV i(κ̂)X i

)−1

LT

]−1

L(β̂ − β)

posto (L)
,

que segue uma distribuição F aproximada, com número de graus de liberdade do nu-

merador dado pelo posto da matriz L e número de graus de liberdade do denominador

utilizando métodos como o de Satterhwaite (1946), Fai e Cornelius (1996) e Kenward e

Roger (1997).
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Uma alternativa é a aplicação do teste de χ2 associado ao teste da razão de

verossimilhanças (LRT) cuja estat́ıstica,

2 log
(L2

L1

)
= 2[log(L2)− log(L1)],

em que L1 representa a função de verossimilhança do modelo aninhado ou restrito (o

modelo mais simples, referente à hipótese nula) e L2, a função de verossimilhança do

modelo de referência (o modelo mais geral ou completo). Neste caso, os modelos aninhado

e de referência devem conter os mesmos componentes de variância e mesmas estruturas

para as matrizes G e R, porém diferentes conjuntos de parâmetros fixos. Essa prática

permite verificar a importância dos termos fixos do modelo, uma vez que a diferença entre

tais modelos encontra-se apenas com relação a esses termos.

Para este caso, a estat́ıstica para o teste da razão de verossimilhança segue,

assintoticamente, a distribuição χ2 com número de graus de liberdade igual à diferença

entre os números de parâmetros de efeito fixo dos modelos em questão. Entretanto,

para os casos em que os parâmetros encontram-se na fronteira do espaço paramétrico, a

estat́ıstica do teste da razão de verossimilhança segue uma mistura de distribuições χ2

(SELF; LIANG, 1987).

2.5.5 Inferência para parâmetros de efeitos aleatórios

De acordo com Resende (2007), o uso da análise de variância para a cons-

trução de testes F para os efeitos aleatórios em modelos desbalanceados é muito dif́ıcil.

Isto porque é necessária a obtenção dos quadrados médios a partir dos componentes de

variância e seus multiplicadores, que são muito dif́ıceis de ser computados sob desbalan-

ceamento. Há, no entanto, uma maneira mais formal para testar os efeitos aleatórios, ou

seja, para verificar se determinado efeito aleatório necessita permanecer no modelo. Essa

abordagem formal baseia-se em estat́ısticas fundamentadas na verossimilhança.

Segundo Pinheiro e Bates (2000), os modelos de referência e aninhado, de-

vem ser estimados utilizando o mesmo procedimento. West, Welch e Ga lecki (2007), por

sua vez, sugerem o uso do método REML para a estimação dos componentes de variância,

já que proporciona estimativas menos viesadas, comparadas com o método ML. Além

disso, quando o teste é realizado para componentes aleatórios, a especificação da parte

fixa deve ser a mesma para os dois modelos.
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Uma das estat́ısticas utilizadas para testar as hipóteses H0 : σ2
i = 0 e

H1 : σ2
i > 0 (existe variabilidade entre os ńıveis do fator aleatório i) é a Z de Wald,

que é calculada dividindo-se a estimativa do parâmetro aleatório por seu erro padrão

assintótico. Os erros padrões assintóticos são obtidos a partir da inversa da matriz de

derivada segunda da verossimilhança, em relação a cada um dos parâmetros de efeito

aleatório.

A estat́ıstica Z de Wald é válida para grandes amostras, mas ela pode ser

incerta para pequenos conjuntos de dados e para parâmetros tais como componentes de

variância, que apresentam uma distribuição assimétrica ou distribuição amostral limite.

Segundo Resende (2007), uma melhor alternativa é utilizar o teste da razão

de verossimilhança (Likelihood Ratio Test -LRT), e recomenda calcular previamente a

relação
σ̂2

s(σ̂2)
, em que σ̂2 é a estimativa de um componente de variância de um determi-

nado efeito aleatório e s(σ̂2) seu respectivo desvio padrão; e aplicar o LRT apenas quando

1 <
σ̂2

s(σ̂2)
< 2.

Quanto à distribuição da estat́ıstica do teste da razão de verossimilhança

restrita sob a hipótese de nulidade, West, Welch e Ga lecki (2007) discriminam dois casos

que dependem se os valores dos componentes de variância envolvidos na hipótese estão,

ou não, na fronteira do espaço paramétrico. Os dois casos são:

(i) Os parâmetros de covariância referentes à hipótese de nulidade não estão na fronteira

do espaço paramétrico, sendo que, o interesse está na verificação da homogeneidade

de variâncias, ou ainda, se a covariância entre dois efeitos aleatórios é igual a zero.

Nesses casos, a estat́ıstica segue assintoticamente a distribuição χ2 com número de

graus de liberdade igual à diferença entre o número de parâmetros nos modelos de

referência e aninhado.

(ii) Os parâmetros de covariância estão na fronteira do espaço paramétrico: são os casos

em que se deseja verificar se um efeito aleatório deve, ou não, permanecer no modelo.

Neste caso, Stram e Lee (1994) demonstraram que a estat́ıstica para o teste da

razão de verossimilhanças para um único parâmetro de variância, que se encontra

na fronteira do espaço paramétrico, segue uma mistura de distribuições χ2, 0, 5χ2
0 +

0, 5χ2
1. Para os casos em que k parâmetros se encontram na fronteira do espaço

paramétrico, a estat́ıstica segue também uma mistura de distribuições χ2, porém,

nesse caso a mistura é dada por 0, 5χ2
0 + 0, 5χ2

k.
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Self e Liang (1987) apresentaram, adicionalmente, as distribuições para ou-

tros casos, como teste simultâneo para parâmetros de variância para os quais um se

encontra na fronteira do espaço paramétrico e outro não.

2.5.6 Análise de reśıduos e diagnóstico em modelos lineares mistos

Os diagnósticos devem ser parte do processo de construção de modelos e

análise de conjunto de dados. Os reśıduos são utilizados para examinar as suposições do

modelo estat́ıstico-matemático e detectar a presença de outliers e posśıveis observações

influentes.

Lembrando que as médias marginal e condicional nos modelos mistos são

dadas por E(Y ) = Xβ e E(Y |u) = Xβ + Zu, respectivamente, dois tipos de reśıduos

são apresentados a seguir:

(i) Reśıduos marginais, que consistem da diferença entre o valor observado e a média

marginal estimada. Neste caso, o vetor rm de reśıduos marginais é definido como:

rm = Y −Xβ̂.

(ii) Reśıduos condicionais, que consistem da diferença entre o valor observado e o valor

predito da observação. Neste caso, o vetor rc de reśıduos condicionais é definido

como:

rc = Y −Xβ̂ −Zû = rm −Zû.

Por outro lado, segundo Gregoire, Schabenberger e Barrett (1995), dadas

as matrizes Q = X(XT V̂
−1
X)−XT e K = I −ZĜZT V̂

−1
, tem-se que

V̂ ar(rm) = V̂ −Q

e

V̂ ar(rc) = K(V̂ −Q)KT .

Alcarde (2012), entretanto considera que, os reśıduos rm e rc não são ade-
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quados para diagnósticos, pois podem apresentar correlações, mesmo para dados não

correlacionados, e possuem dif́ıcil interpretação quando são incorporadas variâncias dis-

tintas ao modelo. Um modo de minimizar tais problemas consiste em trabalhar com os

reśıduos padronizados ou os reśıduos de Pearson, descritos a seguir:

(i) Reśıduo marginal estudentizado

restudentizadomi =
rmi√

V̂ ar(rmi)

;

(ii) Reśıduo condicional estudentizado

restudentizadoci =
rci√

V̂ ar(rci)

;

(iii) Reśıduo marginal de Pearson

rPearsonmi =
rmi√
V̂ ar(yi)

;

(iv) Reśıduo condicional de Pearson

rPearsonci =
rci√

V̂ ar(yi|u)

.

A autora recomenda, ainda, considerar o melhor preditor linear não viesado

(BLUP) de u, para diagnosticar os efeitos aleatórios. West, Welch e Ga lecki (2007) suge-

rem adicionalmente, a utilização de gráficos de diagnósticos padrões, ou seja, histogramas,

gráficos de quantil-quantil e gráficos de dispersão para a verificação da normalidade dos

reśıduos, e nesse caso, dos reśıduos condicionais estudentizados.

2.6 Modelos lineares generalizados

Metodologias para modelagem de dados na forma de proporções e de conta-

gens foram propostas antes da década de 1970 (FINNEY, 1947; GRIZZLE; STARMER;

KOCH, 1969). No entanto, a unificação do procedimento de modelagem foi proposta por

Nelder e Wedderburn (1972), que desenvolveram a teoria dos modelos lineares generali-

zados (MLG), que são uma extensão dos modelos lineares clássicos.
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Neste caso, não são necessárias as pressuposições de normalidade e homo-

cedasticidade para a variável resposta, cuja distribuição deve pertencer à famı́lia expo-

nencial de distribuições, e trabalha-se com os dados em sua forma original, ou seja, sem

a necessidade de fazer transformações (McCULLAGH; NELDER, 1989).

De acordo com Cordeiro e Demétrio (2007), os modelos lineares generaliza-

dos consistem de três componentes:

(i) Componente aleatório do modelo: a variável resposta é representada por um con-

junto de variáveis aleatórias independentes Y1, ..., Yn com distribuição que per-

tence à famı́lia exponencial na forma canônica com médias µ1, ..., µn, ou seja,

E(Yi) = µi, i = 1, 2, ..., n; e parâmetro de dispersão constante φ > 0. A famı́lia

exponencial engloba as distribuições, normal, gama e normal inversa para dados

cont́ınuos; binomial para proporções; Poisson e binomial negativa para contagens;

(ii) Componente sistemático: é constitúıdo pelas variáveis explicativas que entram na

forma de uma soma linear de seus efeitos, ou seja,

ηi =

p∑
j=1

xijβj = xTi β, ou η = Xβ

em que X = (x1, ...,xn)T é a matriz do modelo com elementos xi = (x11, ..., xip)
T ,

β = (β1, ..., βn)T é o vetor de parâmetros e η = (η1, ..., ηn)T é o preditor linear;

(iii) Função de ligação: relaciona o componente aleatório ao componente sistemático,

isto é,

ηi = g(µi) = xTi β,

sendo g(.) uma função monótona e diferenciável, que determina a escala em que

a linearidade é suposta. Os parâmetros β1, ..., βp não são sujeitos a restrições, e,

portanto, g(µi) pode assumir qualquer valor em (−∞,∞), e assim, a forma da função

de ligação apropriada é determinada em alguma escala pelo domı́nio de variação de

E(Yi) = µi. Para observações estritamente positivas, como no caso de contagens,

Hinkley, Reide e Snell (1991) citam que, a média deve ficar restrita a (0,∞). Utiliza-

se:

g(µi) = ηi =

p∑
j=1

xijβj,
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para descrever a relação entre os componentes do modelo linear generalizado, sendo

g(.) a função de ligação e ηi o preditor linear associado a Yi. A escolha da função de

ligação depende da distribuição definida em (i). Por exemplo, a função de ligação

canônica loǵıstica pode ser utilizada para a distribuição binomial.

Seja a variável aleatória Yi, cuja função densidade de probabilidade para o

caso cont́ınuo, ou função de probabilidade para o caso discreto, que pode ser escrita na

forma:

f(yi; θ;φ) = exp
{ 1

ai(φ)
[yiθi − b(θi)] + c(yi;φ)

}
, (8)

em que a(.), b(.) e c(.) são funções conhecidas, θi é um parâmetro canônico ou natural.

Em geral, usa-se ai(φ) =
φ

wi
sendo φ denominado parâmetro de escala ou dispersão (e seu

inverso φ−1, uma medida de precisão), e wi os pesos a priori. De modo mais geral, tem-se

a classe de modelos de dispersão exponencial (JØRGENSEN, 1997) que inclui situações

em que φ é desconhecido.

O parâmetro canônico, θi, é uma função da média e, portanto, pode ser

relacionado ao preditor linear. Uma escolha natural da função de ligação é

θi = ηi = g(µi),

sendo conhecida como função de ligação canônica.

O valor esperado e a variância de Yi com distribuição pertencente à famı́lia

(8) são dados por:

E(Yi) = b′(θi) = µi

e

V ar(Yi) = a(φ)b′′(θi) = a(φ)V (µi),

sendo b′(θi) e b′′(θi) as derivadas de 1a e 2a ordens de b(θi) em relação a θi, respectivamente.

A função b′′(θi) pode ser expressa por V (µi), pois depende apenas de µi, sendo chamada

de função de variância.

Como exemplo de distribuição pertencente à famı́lia exponencial tem-se a

distribuição binomal. Considere-se a variável aleatória Yi que representa o número de
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sucessos em amostras de tamanhos mi com distribuição binomial B(mi, πi), com proba-

bilidade de sucesso πi (0< πi < 1), então, sua função de probabilidade é expressa por:

P (Yi = yi) =

 mi

yi

 πi
yi(1− πi)mi−yi , yi = 0, 1, 2, ...,mi. (9)

Desenvolvendo-se a eq. (9), obtém-se:

f(yi; πi) = exp

[
log

(
mi

yi

)
+ yi log πi + (mi − yi) log(1− πi)

]
,

= exp

[
yi log

(
πi

1− πi

)
+mi log(1− πi) + log

(
mi

yi

)]
,

e comparando-se com (8), tem-se: φ=1, θi = log

(
πi

1− πi

)
= log

(
µi

mi − µi

)
⇒

µi =
mie

θi

(1 + eθi)
, b(θi) = −mi log(1− πi) = mi log

(
1 + eθi

)
, e c(yi;φ) = log

 mi

yi

 .

Portanto, a distribuição binomial pertence à famı́lia exponencial de distri-

buições, com E(Y ) = b′(θ) =
mie

θi

1 + eθi
= µi, V ar(Yi) = b′′(θi) =

mie
θi

(1 + eθi)2 =
µi
mi

(1− µi) =

V (µi).

2.6.1 Estimação do vetor de parâmetros β por máxima verossimilhança

Para a estimação dos parâmetros lineares β1, ..., βp do modelo linear genera-

lizado, o método comumente utilizado é o da máxima verossimilhança. Considerando uma

variável aleatória Yi com observações yT = (y1, y2, ..., yn) de uma distribuição pertencente

à famı́lia exponencial, a função de verossimilhança é dada por

L(θ, φ,y) =
n∏
i=1

f(yi; θi, φ) = exp
[ n∑
i=1

{ 1

ai(φ)
[yiθi − b(θi)] + c(yi;φ)

}]
,

cujo logaritmo é definido por (CORDEIRO; DEMÉTRIO, 2007):

` = `(θ, φ,y) =
n∑
i=1

`(θ;φ; y) =
n∑
i=1

{ 1

a(φ)
[yiθi − b(θi)] + c(yi;φ)

}
, (10)

sendo que E(Yi) = (µi), ηi = g(µi) = xTi β e θi = q(µi).
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De acordo com Demétrio (2002), uma propriedade da famı́lia exponencial

de distribuições é que seus elementos satisfazem as condições de regularidade suficientes

para asegurar que o máximo global do logaritmo da função de verossimilhança (10) é dado

unicamente pela solução do sistema de equações Uθ =
∂`

∂θ
= 0, ou equivalentemente,

Uβ =
∂`

∂β
= 0. Tem-se então, que o vetor escore é formado pelas derivadas parciais de

primeira ordem do logaritmo da função de verossimilhança, em que:

Uj =
n∑
i=1

∂`i
∂θi

∂θi
∂µi

∂µi
∂ηi

∂ηi
∂βj

=
n∑
i−1

1

ai(φ)
[yi − b′(θi)]

1

∂µi
∂θi

∂µi
∂ηi

xij,

pois E(Yi) = µi = b′(θi) e
∂µi
∂θi

= V (µi).

Logo,

Uj =
∂`

∂βj
=

n∑
i−1

1

ai(φ)
(yi − µi)

1

V (µi)

∂µi
∂ηi

xij. (11)

Em geral, as equações Uj = 0, j = 1, 2, ..., p não são lineares, de forma que

para a sua solução são necessários procedimentos iterativos, sendo Newton-Raphson e

escore de Fisher os mais utilizados.

Considerando-se que se deseja obter a solução do sistema de equações Uβ =

∂`

∂β
= 0 e usando-se a versão multivariada do método de Newton-Raphson, tem-se:

β(m+1) = β(m) +
[
I(m)
o

]−1

U (m),

sendo β(m) e β(m+1) os vetores de parâmetros estimados nos passos m e (m+1), U (m)

o vetor escore, com elementos
∂`

∂βj
avaliado no passo m e I(m)

o a matriz de informação

observada com elementos − ∂2`

∂βj∂βj′
, j, j ’=1,...,p, avaliados em β = β(m). Trocando-se

a matriz de informação observada Io pela matriz de informação esperada de Fisher =,

tem-se a solução pelo método escore de Fisher, isto é,

β(m+1) = β(m) +
[
=(m)

]−1

U (m), (12)

sendo que = tem elementos dados por =jj′ = E

(
− ∂2`

∂βj∂βj′

)
= E

(
∂`

∂βj

∂`

∂βj′

)
, que é a
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matriz de covariâncias dos Uj
′s. Multiplicando-se ambos os lados da eq.(12) por = tem-se:

=(m)β(m+1) = =(m)β(m) +U (m). (13)

Assim, usando-se a eq.(11), obtém-se:

=jj′ = E(UjUj′) =
n∑
i−1

1

[ai(φ)]2
(yi − µi)2 1

[V (µi)]
2

[
∂µi
∂ηi

]2

xijxij′

=
n∑
i−1

1

[ai(φ)]2
ai(φ)V (µi)

1

[V (µi)]
2

[
∂µi
∂ηi

]2

xijxij′

=
n∑
i−1

1

[ai(φ)]2
1

V (µi)

[
∂µi
∂ηi

]2

xijxij′ ,

e fazendo-se ai(φ) =
φ

wi
, como φ > 0, constante, wi peso a priori e Wi =

wi
V (µi)

(
∂µi
∂ηi

)2

,

tem-se:

= =
1

φ
XTWX,

com elementos =jj′ =
n∑
i=1

1

φ
xijWixij′ , X, a matriz do modelo e W=diag(W1,W2, ...,Wn).

No caso das funções de ligação canônicas Wi = wiV (µi), pois
∂θi
∂µi

=
∂ηi
∂µi

= V −1(µi).

Além disso, rearranjando-se os termos de Uj tem-se:

Uj =
n∑
i=1

wi
φ

(yi − µi)
V (µi)

∂µi
∂ηi

xij =
n∑
i=1

1

φ
xijWi

∂ηi
∂µi

(yi − µi),

e portanto, o vetor escore U fica:

U =
1

φ
XTW∆(y − µ),

com ∆ = diag

{
∂η1

∂µ1

,
∂η2

∂µ2

, ...,
∂ηn
∂µn

}
= diag {g′(µ1), g′(µ2), ..., g′(µn)}.

Logo, substituindo = e U na eq. (13) tem-se:

1

φ
XTW (m)Xβ(m+1) =

1

φ
XTW (m)Xβ(m) +

1

φ
XTW (m)∆(m)(y − µ)(m),

ou, ainda,

XTW (m)Xβ(m+1) = XTW (m)
[
Xβ(m) + ∆(m)(y − µ)(m)

]
,
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e fazendo-se z(m) = Xβ(m)+∆(m)(y − µ)(m) = η(m)+∆(m)(y − µ)(m), denominada como

variável dependente ajustada, tem-se:

XTW (m)Xβ(m+1) = XTW (m)z(m), (14)

ou ainda,

β(m+1) = (XTW (m)X)−1XTW (m)z(m), (15)

que tem a forma da solução das equações normais, para o modelo linear obtida pelo

método dos quadrados mı́nimos ponderados, exceto que nesse caso a solução β̂ = β(m+1)

é obtida por processo numérico iterativo. Observando-se que a expressão (15) independe

de φ.

2.6.2 Função Deviance e estat́ıstica de Pearson X2 generalizada

O ajuste de um modelo, com valores estimados µ̂, a um conjunto de dados

observados, y, pode ser verificado por meio da estat́ıstica scaled deviance (traduzida como

desvio por CORDEIRO, 1986) proposta por Nelder e Wedderburn (1972), com expressão

dada por:

Sp(µ̂, φ,y) = −2{`(µ̂, φ,y)− `(ȳ, φ,y)},

sendo p o número de parâmetros do modelo, `(µ̂, φ,y) o logaritmo da função de verossimi-

lhança para o modelo sob pesquisa e `(ȳ, φ,y) o logaritmo da função de verossimilhança

para o modelo saturado. Para o caso particular em que φ = 1, esta estat́ıstica reduz-se à

deviance, isto é,

D(µ̂;y) = −2{`(µ̂;y)− `(ȳ;y)}.

Outra medida da discrepância de ajuste de um modelo a um conjunto de

dados é a estat́ıstica de Pearson X2 generalizada, que em muitos casos, é preferida em

relação à deviance, por facilidade de interpretação. A estat́ıstica de Pearson é dada por:

X2 =
n∑
i=1

(yi − µ̂i)2

V̂ (µ̂i)
,
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sendo V̂ (µ̂i) a função de variância estimada sob o modelo que está sendo ajustado aos

dados. A estat́ıstica de Pearson generalizada tem uma forma equivalente expressa em

termos da variável independente ajustada do algoritmo (15):

X2 = (z − η̂)TŴ (z − η̂).

Para respostas com distribuição normal, X2 é igual à soma de quadrados

do reśıduo e
X2

σ2
∼ χ2

n−p exata.

Para dados provenientes das distribuições binomial e de Poisson, em que

φ = 1, X2 é a estat́ıstica original de Pearson, comumente usada na análise dos modelos

loǵıstico e log-linear para tabelas multidimensionais e que pode ser escrita na forma

X2 =
n∑
i=1

(Oi − Ei)2

Ei
,

sendo Oi a frequência observada e Ei a frequência esperada.

Pode-se mostrar que Sp(µ̂, φ,y) e
X2

φ
têm distribuição χ2

n−p exata, quando

a distribuição é normal e distribuição χ2
n−p assintótica, para as distribuições binomial e

de Poisson, sob determinadas condições de regularidade.

Como objetivo geral da análise, deseja-se selecionar um modelo que seja

parcimonioso e explique bem os dados. Portanto, para um modelo bem ajustado, espera-

se que a deviance residual esteja próxima do número de graus de liberdade do reśıduo do

modelo. Uma maneira de obter uma deviance próxima do número de graus de liberdade

é aumentar o número de parâmetros no modelo, mas com isso, aumenta-se também a

complexidade na interpretação. O ideal é encontrar modelos mais simples com deviance

moderada.

Outros critérios comumente utilizados para a seleção de modelos são os

critérios de informação de Akaike (AIC) proposto por Akaike (1974), o critério de in-

formação de Bayes (BIC) proposto por Schwarz (1978) e o critério AIC corrigido para

pequenas amostras (AICC) proposto por Hurvich e Tsai (1989), e dados por:

AIC = −2`(µ̂, φ,y) + 2p,
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BIC = −2`(µ̂, φ,y) + p log(n),

e

AICC = AIC +
2p(p+ 1)

(n− p− 1)
,

em que p é o número de parâmetros estimados no modelo quando as observações são

independentes. O melhor modelo é aquele que apresenta menor valor para o critério

escolhido. Convém ressaltar, ainda, que os modelos a serem comparados devem usar as

mesmas observações, as mesmas variáveis explicativas e a mesma variável de resposta.

2.6.3 Estimação do parâmetro φ

Para as distribuições binomial e Poisson tem-se que φ = 1. Quando desco-

nhecido (distribuições normal e normal inversa φ = σ2 e gama φ = ν−1, admite-se que

seja o mesmo para todas as observações, isto é, constante. Segundo Demétrio (2002),

a estimação de φ é necessária para a obtenção dos erros padrões dos β̂′s, intervalos de

confiança e testes de hipóteses para os β′s etc. Nestes casos, os métodos mais utilizados

para a estimação de φ são: método da máxima verossimilhança, método dos momentos e

perfil de verossimilhança.

O uso do método da máxima verossimilhança é sempre posśıvel em teoria,

mas pode se tornar intratável computacionalmente quando não existe solução expĺıcita.

Se φ é o mesmo para todas as observações, a estimativa de máxima verossimilhança de

β independe de φ, mas já a matriz de variâncias e covariâncias dos β′s envolve esse

parâmetro (DEMÉTRIO, 2002). Interpretando o logaritmo da função de verossimilhança

`(β, φ;y) como função de β e de φ, dado y, a estimativa de máxima verossimilhança para

φ é obtida pela solução da equação:

∂`(β, φ)

∂φ
= 0,

sendo que para as distribuições normal e normal inversa φ̂ =
1

n
Dp.

Por outro lado, o método dos momentos fornece uma outra estimativa,

também não consistente, para φ. Esse método baseia-se no fato, nem sempre verdadeiro,

de que Sp ∼ χ2
n−p. Neste caso,

E(Sp) =
1

φ̃
E(Dp) ∼= n− p,
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e, portanto,

φ̃ =
Dp

n− p
,

sendo Dp a deviance sob o modelo corrente (sob pesquisa).

Uma estimativa considerada melhor que a anterior é dada por:

˜̃φ =
Dm

n−m
,

sendo Dm a deviance sob o modelo maximal. Espera-se que para um modelo maximal

bem ajustado aos dados Sm tenha um valor mais próximo da esperança da qui-quadrado

de referência, isto é, E(Sm) =
1
˜̃φ
E(Dm) ∼= n−m. Para o modelo normal tem-se que:

˜̃φ =
Dm

n−m
=
SQRes

n−m
,

é a estimativa usual de σ2 e é não viessada, mas para os outros modelos isso não acontece,

em geral.

Uma outra maneira de se estimar φ é baseada na estat́ıstica de Pearson X2

de Pearson e é dada por:

φ∗ =
X2

n−m
,

que nem sempre é imparcial, porém, é consistente (DEMÉTRIO, 2002).

2.6.4 Testes de hipóteses relativas aos parâmetros β′s

Os métodos de inferência nos modelos lineares generalizados, baseiam-se,

fundamentalmente, na teoria da máxima verossimilhança. De acordo com esta teoria,

Demétrio (2002) apresenta três estat́ısticas para testar h́ıpóteses relativas aos parâmetros

β′s, que são deduzidas de distribuições assintóticas de funções adequadas das estimativas

dos β′s, sendo elas: i) razão de verossimilhanças, ii) Wald e iii) escore; assintóticamente

equivalentes que sob H0 e para φ conhecido, convergem para uma variável com distribuição

χ2
p. Ressalta, entretanto que a razão de verosimilhanças leva a um teste uniformemente

mais poderoso.

No caso em que há interesse no teste de hipótese do vetor β com um todo,

isto é, no teste das hipóteses:
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H0 : β = β0 contra H1 : β 6= β0,

tem-se as estat́ısticas:

(i) razão de verossimilhanças: Λ = −2
[
`(β̂)− `(β0)

]
,

(ii) estat́ıstica de Wald: W = (β̂ − β0)T =̂(β̂ − β0), e

(iii) estat́ıstica escore: SR = U(β0)T =̂
−1

0 U(β0),

em que `(β̂) e `(β0) são os valores do logaritmo da função de verossimilhança (10) em β̂

e β0, respectivamente, U(β0) e =0 são o vetor escore e a matriz de informação avaliadas

em β0, e =̂ a matriz de informação de Fisher avaliada na estimativa de máxima verossimi-

lhança (EMV) de β. De acordo com Demétrio (2002), na estat́ıstica de Wald, =̂ pode ser

substitúıda por =0 para definir una estat́ıstica de Wald modificada que é assintoticamente

equivalente.

2.6.5 Análise de reśıduos e diagnósticos para modelos lineares generalizados

As técnicas para análise de reśıduos e diagnósticos são utilizadas para ve-

rificar se um determinado modelo é apropriado para os dados. Essas técnicas podem ser

utilizadas para detectar uma falha sistemática do modelo ou falhas particulares como,

por exemplo, presença de outliers. Uma análise fácil para verificar a qualidade do ajuste

é observar se o valor da deviance residual está próximo do número de graus de liberdade

do reśıduo e quando isso ocorre, significa que o modelo está bem ajustado aos dados.

De acordo com Demétrio (2002), as técnicas usadas para análise de reśıduos

e diagnósticos para modelos lineares generalizados são semelhantes às usadas para modelos

lineares clássicos, com algumas adaptações. Assim, por exemplo, na verificação da pressu-

posição de linearidade para o modelo linear clássico usam-se os vetores y e µ̂ enquanto que

para o modelo linear generalizado devem ser utilizados z, a variável dependente ajustada,

e β̂, o preditor linear.

Os tipos de reśıduos mais utilizados para os modelos lineales generalizados

são:

(i) Reśıduos ordinários: ri = yi − µ̂i = yi − g−1(ηi);
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(ii) Reśıduos de Pearson generalizados: rpi =
yi − µ̂i√
φ̂

wi
V (µ̂i)

, sendo φ̂ uma estimativa con-

sistente do parâmetro φ e wi um peso a priori (na maior parte dos casos igual a

1);

(iii) Reśıduos de Pearson generalizados estudentizados internamente

rpi =
yi − µ̂i√

φ̂

wi
V (µ̂i)(1− hi)

,

Sendo hi um elemento da diagonal da matriz de projeção H =

W
1
2X(XTWX)−1XTW

1
2 .

(iv) Componentes de deviance

rDi = sinal (yi − µ̂i)
√

2wi
φ

[yi(θ̃i − θ̂i) + b(θ̃i)− b(θ̂i)];

sendo θ̃i e θ̂i as estimativas do parâmetro canônico sob os modelos saturado e cor-

rente, respectivamente.

(v) Componentes de deviance estudentizado internamente

rD
′

i =
rDi√

φ̂(1− hi)
.

2.6.6 Superdispersão

A utilização de MLG na análise de dados tem se tornado de uso frequente,

principalmente com o avanço dos recursos computacionais dispońıveis. De acordo com

Gbur et al. (2012), um dos cuidados que se deve tomar na análise de dados, principalmente

no caso de variáveis discretas, é com a superdispersão que pode ocorrer.

Um conjunto de dados, às vezes, apresenta variabilidade maior do que a

esperada pelos modelos probabiĺısticos padrões, ou seja, uma deviance residual maior do

que a esperada. Esse fenômeno é conhecido como superdispersão e Hinde e Demétrio

(1998) apresentam algumas das posśıveis causas deste fenômeno dadas a seguir:
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(i) Variabilidade do material experimental, que pode ser devida à variabilidade indivi-

dual, gerando um componente aleatório adicional que não é levado em consideração

na análise do modelo básico;

(ii) Correlação entre respostas individuais, que pode ocorrer entre indiv́ıduos do mesmo

grupo, por exemplo, no estudo de doenças de plantas, pode haver uma correlação

entre plantas da mesma unidade experimental;

(iii) Amostragem por conglomerados (cluster) ;

(iv) Omissão de variáveis não observadas;

(v) Contagem com excessos de zeros.

O fato de não considerar a superdispersão na análise dos dados pode le-

var à estimação incorreta dos erros padrões, sendo os mesmos super ou subestimados,

consequentemente uma avaliação incorreta da significância dos parâmetros do modelo.

Portanto, é essencial verificar a presença de superdispersão no modelo linear generali-

zado ou no modelo linear generalizado misto para garantir que as inferências derivadas

do modelo ajustado sejam precisas.

A distribuição padrão para análise de dados de proporção é a distribuição

binomial, enquanto que para contagens é a Poisson. Essas distribuições têm como pres-

suposições:

(i) Independência entre as observações e

(ii) A mesma probabilidade de sucesso no caso de proporções, ou a mesma média no

caso de contagens, para todos os indiv́ıduos.

Se uma destas suposições não é satisfeita, a variação residual pode ser maior

do que aquela predita pelo modelo, ou seja,

(i) Dados de proporção com V ar(Yi) > miπi(1− πi) e

(ii) Dados de contagem com V ar(Yi) > µi,

sendo Yi uma variável resposta independente.
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Nestes casos tem-se que φ > 1, fato conhecido por superdispersão. Pode

ocorrer, também, a subdispersão, situação em que φ < 1.

Diferentes modelos e métodos de estimação têm sido propostos na literatura

para resolver o problema da superdispersão, como os descritos por: Collett (1991), Willi-

amns (1982), McCullagh e Nelder (1989) e Lindsey (1997), entre outros. Hinde e Demétrio

(1998) apresentam modelos que incorporam a superdispersão e discutem os métodos de

estimação dos parâmetros e técnicas para a verificação do ajuste. Essas técnicas podem

ser estudadas, inicialmente, por procedimentos que se enquadrem, de uma forma geral,

em dois grupos:

(i) Assumir uma forma mais geral para a função de variância, possivelmente incluindo

parâmetros adicionais que podem ser estimados por quase-verossimilhança (modelos

de média-variância), pseudo-verosimilhança e método dos momentos.

(ii) Assumir um modelo de dois estágios para a resposta, isto é, assumir que o parâmetro

do modelo para a resposta tem alguma distribuição, levando a modelos de pro-

babilidade compostos, como o binomial negativo, beta-binomial, Poisson-normal,

loǵıstico-normal e probit-normal podendo-se utilizar para estimação dos parâmetros

o método da máxima verossimilhança ou métodos aproximados como em (i).

2.7 Modelos lineares generalizados mistos

A teoria de modelos lineares generalizados considera apenas o estudo de

fatores de efeitos fixos. Uma extensão natural são modelos que se ajustam a dados ob-

tidos a partir de experimentos em que os ńıveis de um fator foram selecionados de uma

população de ńıveis, isto é, são aleatórios.

Desta forma, como uma extensão dos modelos lineares generalizados (MLG),

McCulloch (2003) cita os modelos lineares generalizados mistos (MLGM), que incorporam

efeitos aleatórios no preditor linear de um modelo pertencente à famı́lia exponencial. De

forma análoga aos modelos mistos, os MLGM contêm pelo menos um efeito fixo e pelo

menos um efeito aleatório.

Considere a distribuição condicional de Y dado u, sendo Y o vetor de

valores da variável resposta consistente de elementos condicionalmente independentes (não

necessariamente) com densidade pertencente à famı́lia exponencial e u o vetor de efeitos
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aleatórios, formalmente tem-se, de acordo com Molenberghs e Verbeke (2005) o modelo a

seguir:

Yi|ui ∼ fY i|ui
(yi|ui)

com

fYi|u(yi|ui) = exp

{
wi
φ

[yiθi − b(θi)] + c(yi;φ)

}
. (16)

visto que µi = b′(θi) decorre:

E(Yi|ui) = µi,

que é a média condicional da variável aleatória Yi dado ui, que é funcionalmente ligada à

parte sistemática por uma função de ligação:

g(µi) = xi
Tβ + zi

Tui, (17)

e

V ar(Yi|ui) = φV (µi),

em que g(.) é a função de ligação; xi é a i-ésima linha da matriz de delineamento associada

aos efeitos fixos; β é o vetor de parâmetros dos efeitos fixos; zi é a i-ésima linha da

matriz do modelo associada aos efeitos aleatórios e u é o vetor dos parâmetros dos efeitos

aleatórios.

A parte sistemática do modelo (17) inclui tanto os efeitos fixos como os

aleatórios. Assume-se que:

ui ∼ fU(u). (18)

De acordo com Molenberghs e Verbeke (2005), um fato comum é pressupor

que u segue uma distribuição conhecida, sendo usual atribuir distribuição normal multi-

variada aos efeitos aleatórios, ou seja, u ∼ N(0,G). Uma discussão mais aprofundada

sobre os efeitos aleatórios não-normais é dada por Lee e Nelder (1996). Considerando o

modelo condicional (16), tem-se que:

E(Yi) = E[E(Yi|ui)] = E[µi] = E[g−1(xTi β + zTi ui)],
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que, em geral, não pode ser simplificado devido à presença de funções não-lineares em

g−1(.). A variância marginal de Yi, por sua vez, é dada por:

V ar(Yi) = V ar[E(Yi|ui)] + E[V ar(Yi|ui)]

= V [µi] + E[a(φ)V (µi)]

= V ar
[
g−1(xi

Tβ + zi
Tui)

]
+ E

{
ai(φ)V ar

[
g−1(xi

Tβ + zi
Tui)

]}
em que ai(φ) =

wi
φ

, não sendo posśıvel simplificações sem fazer suposições espećıficas

sobre a forma de g(.) e/ou a distribuição condicional de Y .

O uso de efeitos aleatórios também introduz uma correlação entre ob-

servações que tenham algum efeito em comum. Assumindo-se independência condicional

dos elementos Yi, tem-se:

Cov(Yi, Yj) = Cov [E (Yi|ui) , E (Yj|ui)] + E [Cov(Yi, Yj|ui)]

= Cov(µi, µj) + E(0)

= Cov
[
g−1(xi

Tβ + zi
Tui), g

−1(xj
Tβ + zj

Tui)
]
.

Segundo Costa (2003), os estimadores resultantes dependem da função ge-

radora de momentos da variável aleatória.

2.7.1 Inferência em modelos lineares generalizados mistos

De acordo com Gbur et al.(2012) a inferência em modelos lineares generali-

zados mistos (MLGM) envolve a estimação dos coeficientes dos efeitos fixos, β, predição

dos parâmetros de fU e, possivelmente estimar o parâmetro de escala, φ. Além disso, o

teste de hipóteses a respeito dos parâmetros desconhecidos em R e G. Da mesma forma

como nos modelos lineares generalizados, o processo de inferência é realizado na escala da

função de ligação e não na escala original da variável resposta.

A estimação em MLGM está baseada no método da máxima verossimilhança

e Costa (2003) apresenta várias abordagens para estimar os parâmetros do modelo (16).

Dentre elas, Schall (1991) sugeriu estimação de máxima verossimilhança similar ao que é

utilizado para modelos mistos; Breslow e Clayton (1993) estudaram um tipo de estimador

de máxima verossimilhança marginal; McGilchrist (1994) recomendou o melhor preditor

linear não-viesado, enquanto que Lee e Nelder (1996) introduziram um método geral

chamado estimação de máxima verossimilhança hierárquica.
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Gbur et al. (2012) reportam duas abordagens computacionais básicas pre-

sentes na literatura, para obter as soluções das equações de verossimilhança:

(i) Integração numérica para o cálculo e a maximização numérica da verossimilhança

(para aproximar a função objetivo). Várias técnicas são utilizadas para calcular a

aproximação: métodos de Laplace, métodos de quadratura de Gauss-Hermite, al-

goritmo de Monte Carlo, cadeias de Markov etc. como principal vantagem destes

métodos, Pinheiro e Bates (2000) destacam a eficiência computacional para aproxi-

mar a função de verossimilhança e a maior eficiência dos testes de razão de verossi-

milhança. No entanto, o seu uso torna-se mais complicado à medida que se aumenta

o número de efeitos aleatórios.

(ii) Métodos de linearização usando expansões de séries de Taylor para aproximar o

modelo. Neles se empregam expansões para aproximar o modelo utilizando como

base pseudodados com poucos componentes não lineares, sendo os procedimentos

mais comuns, os de Quasi-verossimilhança (QL) propostos por Breslow e Clayton

(1993) e os de Pseudo-verossimilhança (PL) de Wolfinger e O’Connell (1993).

Berdugo (2010) cita como vantagens, que os modelos linearizados possuem uma

forma relativamente simples, que tipicamente pode ser ajustada baseada unicamente

na média e na variância da forma linearizada, por outra parte, os modelos com dis-

tribuição conjunta complicada são facilmente tratados e, ainda, é posśıvel abordar

modelos com um grande número de efeitos fixos e aleatórios, assim como com es-

truturas aninhadas e cruzadas. Porém, são criticados principalmente por fornecer

estimadores viesados e inconsistentes.

2.7.2 Estimação por máxima verossimilhança

De (16), (17) e (18) pode-se escrever a função de verossimilhança .

L =
n∏
i=1

∫
f(yi|u)fU(u)du = fY (y), (19)

sendo que a integração é sobre a distribuição de u, de dimensões q. Nos casos mais simples,

a integração numérica para o cálculo da verossimilhança é direta e, consequentemente, a

maximização numérica da função de verossimilhança, não é dif́ıcil, já que o logaritmo da
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função de verossimilhança é a soma das contribuições independentes de cada agrupamento,

que envolve apenas uma integral de dimensão única, que pode ser calculada usando-se

técnicas de quadratura (Costa, 2003).

A seguir, serão apresentadas as equações de verossimilhança para

parâmetros fixos e aleatórios, conforme descrito por Costa (2003)

Equações de verossimilhança para parâmetros fixos

Embora uma solução para as equações de verossimilhança seja numerica-

mente dif́ıcil, pode-se obtê-las de uma forma mais simples. De (19), tem-se:

` = log fY (y). (20)

Assim,

∂`

∂β
=

∂

∂β

[
log

∫
fY |u(y|u)fU(u)du

]

=
1∫

fY |u(y|u)fU(u)du

[
∂

∂β

∫
fY |u(y|u)fU(u)du

]

=
1

fY (y)

∫ [
∂

∂β
fY |u(y|u)

]
fU(u)du, (21)

pois fU(u) não envolve β. Mas,

∂

∂β
fY |u(y|u) =

1

fY |u(y|u)

[
∂

∂β
fY |u(y|u)

]
fY |U(y|u)

=

[
∂

∂β
log fY |u(y|u)

]
fY |U(y|u)

Então,
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∂`

∂β
=

1

fY |u(y|u)

∫ [
∂

∂β
log fY |u(y|u)fY |U(y|u)

]
fU(u)du

=

∫ [
∂l

∂β
log fY |u(y|u)

]
fY |u(y|u)fU(u)du

fY (y)

=

∫ [
∂l

∂β
log fY |u(y|u)

]
fU |Y (u|y)du. (22)

Além disso,
∂`

∂β
= XTW∆(y − µ),

sendo

W = diag {Wi} = diag

[
ai(φ)V ar(µi)

∂ηi

∂µi

]2

e

∆ = diag

{
∂ηi

∂µi

}
.

Portanto,

∂`

∂β
=

∫
XTW ∗(y − µ)fU |Y (u|y)du,

em que W ∗ = diag

[
a(φ)V(µi)

∂ηi

∂µi

]−1

. Logo,

∂`

∂β
= XTyE[W ∗|y]−XTE[W ∗µ|y],

e consequentemente,

XTyE[W ∗|y] = XTE[W ∗µ|y].

Equações de verossimilhança para parâmetros aleatórios

Um resultado similar ao obtido na equação (22) pode ser encontrado para

equações de máxima verossimilhança para os parâmetros na distribuição fU(u). Deno-

tando γ os parâmetros dos efeitos aleatórios, de (20) tem-se:
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∂`

∂γ
=

1

f(y)

∂f(y)

∂γ

=
1

f(y)

∂

∂γ

[∫
f(y|u)f(u)du

]

=

∫ [
∂

∂γ
f(y|u)

]
f(u)

f(y)
du+

∫
f(y|u)

f(y)

[
∂

∂γ
f(u)

]
du

=

∫
f(y,u)

f(y)

1

f(u)

[
∂

∂γ
f(u)

]
du

=

∫
fU |y(u,y)

[
∂

∂γ
log fU(u)

]
du

= E

[
∂

∂γ
log fU(u)|y

]
,

que não pode ser simplificada sem que se especifique uma forma para a distribuição dos

efeitos aleatórios.

Para a obtenção dos estimadores de máxima verossimilhança, Vieira (2008)

apresenta um resumo dos principais algoritmos atualmente implementados nos softwares

estat́ısticos. Destacando dentre os algoritmos para optimização de funções, os métodos de

Newton-Raphson, da secante, scoring de Fisher e Quase-Newton; e dentre os algoritmos

para integração numérica, os métodos da Quadratura de Newton-Côtes, de Laplace e

Quadratura de Gauss-Hermite.

2.7.3 Estimação e inferência baseada em métodos de linearização

No ajuste dos MLG como proposto por Nelder e Wedderburn (1972), as

equações de estimação tem a seguinte forma matricial (eq. 15):

XTWXβ = XTWz,

em que X, de dimensões n × p, é a matriz de delineamento do modelo, W , de dimensões

p × p, é uma matriz diagonal de pesos dada por
1

V ar(Yi)

(
∂µi
∂ηi

)2

, e z, uma variável

depente ajustada definida em termos da variável original Y por:

z = η + (y − µ)

(
∂η

∂µ

)
.
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A estimação é implementada mediante um processo iterativo no qual se atu-

aliza a matriz de pesos, o vetor de parâmetros e a pseudo-variável. Esta ideia é estendida

por Wolfinger e O’Connell (1993) a um MLGM aproximando a expressão g−1(Xβ+Zu)

por meio de uma série de Taylor de primeira ordem centrada nos valores de β̃ e ũ, ou seja:

µ ≈ g−1(η̃) + ∆̃
[
X(β − β̃) +Z(u− ũ)

]
, (23)

em que ∆̃ =

(
∂g−1(η)

∂η

)
˜β,ũ

e η̃ = Xβ̃ +Zũ, sendo β̃ e ũ estimativas e predições para

os vetores de efeitos fixos e aleatórios, respectivamente.

Reorganizando a eq.(23), obtém-se:

E(P |u) = ∆̃
−1

[µ− g−1(η̃)] +Xβ̃ +Zũ ≈Xβ +Zu, (24)

em que P = ∆̃
−1

[Y − g−1(η̃)] +Xβ̃ +Zũ é uma pseudo-variável com esperança e

variância condicionais dadas por E(P |u) = Xβ +Zu e V ar(P |u) = S = ∆̃
−1
G∆̃

−1
.

Com base nessas aproximações, Wolfinger e O’Connell (1993) consideram

que a variável P segue o modelo linear misto:

P = Xβ +Zu+ ε com ε ∼ N(0,S). (25)

As equações (24) e (25) implicam que a pseudo-resposta P tem uma

distribuição aproximadamente normal com média Xβ e variância V ar(P |u) = S =

∆̃
−1
G∆̃

−1
, em que G, de dimensão q, contém todos os parâmetros das matriz de

variâncias e covariâncias dos efeitos aleatórios.

Estas especificações levam ao logaritmo da função de pseudo-

verossimilhança `(Ψ;p) e ao logaritmo da função de verossimilhança restrita `R(Ψ;p),

dadas, respectivamente, por:
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`(Ψ;p) = −1

2
log |V (Ψ)| − 1

2
rTV (Ψ)−1r − f

2
log{2π} e (26)

`R(Ψ;p) = −1

2
log |V (Ψ)| − 1

2
rTV (Ψ)−1r+

−1

2
log |XTV (Ψ)−1X| − f − k

2
log{2π} (27)

em que r = p−X(XTV −1X)−XTV −1p, f é a soma de todas as frequências utilizadas

na análise e r o posto da matriz X.

Neste caso, os parâmetros de Ψ são estimados usando técnicas de otimização

como: Newton-Raphson, quase-Newton, Dual quasi-Newton etc. O processo de estimação

inicia tomando valores iniciais de β̃ e ũ para formar r e substitúı-lo em (26) e (27). Logo

se maximiza alguma destas expressões com relação a Ψ e ao obter um estimador Ψ̂ se

atualizam β̃ e ũ usando:

β̃ = [XTV (Ψ̂)−1X]−XTV (Ψ̂)−1p

ũ = D̂ZTV (Ψ̂)−1r̂

O processo de otimização-atualização se repete até que algum critério de

convergência é atingido, geralmente a mudança relativa é menor ou igual que algum valor

predefinido (McCULLOCH; SEARLE, 2001).

No caso em que a distribuição condicional contém um parâmetro de dis-

persão φ, sua estimação é realizada somente no procedimento PQL, por meio da expressão:

φ̂ =
1

m
r̂V (Ψ̂)−1r̂.

A escolha de m depende do método de estimação, de modo que para o

método da máxima verossimilhança (ML), m = f e no método da máxima verossimilhança

restrita (REML), m = f − k.
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Inferência para parâmetros de efeitos fixos

De acordo com Littell at al. (2006), de maneira análoga aos MLMs, nos

MLGMs baseados na linearização, o procedimento de inferência para os parâmetros de

efeito fixo é realizado a partir da função de predição Kβ +Mu, sendo o teste de Wald

um dos mais utilizados, cuja estat́ıstica W é dada por:

W = (LT Ψ̂)T (LTCL)(LT Ψ̂),

em que:

LT = [K M ], Ψ̂ =
[
β̃
T
, ũT

]T
e C =

 XTS−1X XTS−1Z

ZTS−1X ZTS−1Z +G−1

 . (28)

Quando em (28) S independe de algum parâmetro de escala φ, a estat́ıstica de Wald

se distribui assintoticamente como uma variável χ2 com número de graus de liberdade

ν1=posto(L) (LITTELL et al., 2006). Nos casos em que S depende de um parâmetro de

escala desconhecido φ, prefere-se utilizar a estat́ıstica de Wald dividida por ν1, obtendo-se

a estat́ıstica FW :

FW = W/ν1

. Esta estat́ıstica está assintoticamente distribúıda como uma variável F (ν1, ν2), em que

ν1=posto(L) e ν2 são os graus de liberdade utilizados para estimar LTCL, que devem

ser aproximados usando métodos como os propostos por Satterthwaite, Kenward Roger,

entre outros.

Inferência sobre os componentes de variância

As hipóteses relativas aos componentes de variância da matriz G podem

ser avaliadas por meio do teste da razão de verossimilhança (LRT), cujos detalhes são

apresentados por Casella e Berger (2002). O método se fundamenta em comparar as

verossimilhanças de dois modelos, nos quais os parâmetros são obtidos de dois espaços

Ωo de dimensão so e Ω de dimensão s com parâmetros Ωo ⊂ Ω e so < s. Se θ̂o e θ̂ são

os estimadores de máxima verossimilhança em cada modelo, a estat́ıstica (Λ) é definida

como:
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Λ = 2[`(θ̂)− `(θ̂o)],

em que ` é a função logaritmo de verossimilhança, que é avaliada nas estimativas de cada

parâmetro dentro dos espaços previamente definidos. Quando nenhum dos parâmetros

especificados no modelo nulo pertence à fronteira de Ω, a estat́ıstica Λ possui uma dis-

tribuição assintótica χ2 com s − so graus de liberdade. Em caso contrário, quando pelo

menos um dos parâmetros no modelo nulo pertence à fronteira de Ω, Pinheiro e Bates

(2000) afirmam que a distribuição da estat́ıstica Λ é uma mistura de distribuições χ2.
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3 MATERIAL E MÉTODOS

3.1 Material

O palmiteiro (Euterpe edulis Martius), segundo Reis (2000), é uma planta

nativa do domı́nio floresta tropical Atlântica do Brasil, que tem um estipe (caule lenhoso)

único de 5 a 15 m de altura e é incapaz de produzir perfilhos, o que acarreta na morte

da planta após corte do palmito. Brancalion (2009) salienta que esta espécie tem sido

considerada importante para os fruǵıvoros (animais que se alimentam de frutas) no bioma

da Mata Atlântica, uma vez que produz frutos que são consumidos pelo menos por 30 tipos

de aves e 15 espécies de mamı́feros, principalmente em peŕıodos de escassez de alimentos.

Assim, de modo a ilustrar a metodologia apresentada, foram utilizados da-

dos relativos a dois grupos de experimentos com transplantes rećıprocos, sendo o primeiro,

um ensaio de estabelecimento de plântulas ou de semeadura e o segundo, um ensaio de

crescimento de juvenis. Estes ensaios foram conduzidos por Brancalion (2009), com o

objetivo de avaliar a adaptação local e a plasticidade fenot́ıpica de três procedências de

palmiteiro em parcelas permanentes inseridas em três formações florestais do Estado de

São Paulo.

Nesses ensaios, o autor coletou sementes das populações de E. edulis pre-

sentes em três tipos de florestas do bioma da Mata Atlântica. Nestes mesmos locais foi

instalado cada um dos experimentos, envolvendo indiv́ıduos das três procedências. A

seguir são descritas algumas caracteŕısticas desses tipos de florestas:

(i) Restinga (Restinga Forest), no Parque Estadual da Ilha do Cardoso (IC). Este par-

que está localizado no litoral sul do Estado de São Paulo, na divisa com o Es-

tado do Paraná, abrangendo uma área aproximada de 151 km2, situando-se en-

tre as coordenadas geográficas: 48o05’42”e 48 53’48”longitude oeste, e 25o03’05”e

25o18’18”latitude sul. A altitude média é de 7 m, temperatura média anual de

22,4oC, precipitação anual de 2261 mm, sem estação seca, clima equatorial com alta

influência do oceano.

(ii) Ombrófila Densa (Atlantic Rainforest). Situa-se no Parque Estadual de Carlos Bo-

telho (CB) na Serra de Paranapiacaba, região sudeste do estado de São Paulo, ocu-

pando uma área de 376,44 km2, entre as coordenadas geográficas 47o56’57”longitude
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oeste e 24o07’53”latitude sul, com um relevo acidentado, indo de 50 a 975 m de alti-

tude, a temperatura média anual é de 21,8oC, precipitação anual de 1582 mm, sem

estação seca, clima equatorial.

(iii) Estacional Semidecidual (Seasonally Dry Forest) na Estação Ecológica dos Caete-

tus (CT), localizada entre as coordenadas geográficas 49o42’05”longitude oeste e

22o24’11”latitude sul, tem área de 21,79 km2, e altitudes variando de 500 a 690 m,

temperatura média anual: 21,4oC, precipitação anual de 1303 mm, com estação seca

no inverno (déficit de água= 10 mm), clima sub-tropical úmido.

Essas populações foram encontradas em crescimento no entorno de 10 ha de

parcelas permanentes de cada tipo de floresta, que são protegidas em reservas naturais do

Estado de São Paulo. Na Figura 1 mostram-se os locais onde foram coletadas as sementes

de E. edulis e instalados os experimentos. Os quadrados negros dentro de cada área

representam as parcelas permanentes de 10 ha cujo entorno foi utilizado para a coleta de

sementes.

A coleta das sementes foi realizada no ińıcio da época de frutificação em 10

plantas matrizes (plantas mães, das quais são coletadas sementes ou propágulos para a

produção de mudas) em duas trilhas de cada reserva natural, em maio de 2008 e em maio

de 2009. As plantas matrizes escolhidas estavam separadas por uma distância mı́nima de

100 m, a fim de reduzir as chances de fluxo gênico entre elas.

A polpa foi retirada dos frutos do palmiteiro colocando-os em uma tela de

arame e logo enxaguados abundantemente em água corrente. Os frutos foram processados

separadamente para cada grupo, evitando misturas de sementes entre plantas matrizes e

procedências diferentes. A massa seca e teor de umidade foram avaliados de acordo com

o método do forno (105oC ± 3oC por 24 horas), utilizando 30 sementes por planta matriz.

3.1.1 Ensaio de estabelecimento (semeadura) em transplantes rećıprocos

para avaliação da adaptação local e plasticidade fenot́ıpica

Brancalion (2009) relata que o ensaio de estabelecimento foi iniciado em

maio de 2008, sete dias após a coleta de sementes para evitar a perda da viabilidade de

sementes recalcitrantes de E. edulis. Essas sementes caracterizam-se por não sofrerem

dessecação natural na planta matriz ao longo do processo de maturação, sendo dispersas
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com elevados teores de água que, se reduzidos a um ńıvel considerado cŕıtico, levarão à

rápida perda da viabilidade e até à morte, e mesmo quando a umidade for mantida em

ńıvel adequado durante o armazenamento, sua longevidade é curta (NEVES, 1994).

Figura 1 – Locais de estudo de Euterpe edulis Martius, A - Parque Estadual da Ilha do
Cardoso, B - Estação Ecológica dos Caetetus e C - Parque Estadual de Carlos
Botelho. Reproduzido de BRANCALION, 2009

Ao longo de dois transectos traçados em forma aleatória em cada tipo de

floresta foram alocados dez blocos experimentais, e situados a 100 m um do outro e 30 m

à direita ou à esquerda do transecto, alternadamente, como ilustra a Figura 2.

Cada bloco experimental teve três parcelas utilizadas neste ensaio com as

três procedências atribúıdas aleatoriamente. Em cada parcela, foram semeadas 30 semen-

tes de cada procedência, ou seja, três sementes para cada planta matriz e dez plantas

matrizes por tipo de floresta (Figura 3).

Dado que cada planta matriz forneceu sementes para todos os experimentos,

Brancalion (2009) considera que pelo menos metade do seu genoma foi exatamente repe-

tido nos três tipos de floresta. Sementes das mesmas plantas matrizes de cada procedência

foram utilizadas em todos os experimentos.
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Figura 2 – Croqui do experimento de estabelecimento (semeadura), para um local deter-
minado

Figura 3 – Croqui de: (a) um bloco qualquer mostrando a casualização das procedências
das sementes: R (Restinga), E (Estacional Semidecidual) e O (Ombrófila
Densa), as parcelas sombreadas pertencem a outro projeto; e (b) uma par-
cela com três sementes de cada planta-matriz do mesmo ecossistema
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A localização exata das sementes de cada planta matriz e proveniência foi

marcada com etiquetas de plástico. Os blocos experimentais foram protegidos por gaiolas

de exclusão para evitar a remoção de sementes por mamı́feros e a deposição de sementes

por agentes de dispersão. As gaiolas foram feitas com barras de ferro (110 cm de com-

primento × 70 cm largura × 15 cm de altura) e cobertas por uma malha de arame, com

aberturas circulares de 1 cm. As sementes foram enterradas no solo a uma profundidade

equivalente à metade do seu diâmetro, e a outra metade se deixou exposta. Assim é a

prática comum dos viveiristas que produzem essas espécies comercialmente.

Neste experimento avaliou-se o número de plântulas presentes nas parcelas

aos 90, 180 e 270 dias após a semeadura. As plântulas, por sua vez, foram marcadas

individualmente com etiqueta de plástico, a fim de avaliar a emergência e a mortalidade

durante o peŕıodo. A população final de plântulas foi avaliada na última contagem (270

dias), quando a parte aérea de todas as plântulas foi removida das parcelas e inserida

individualmente em sacos de papel. A parte aérea das plântulas foi seca em estufa a 72oC

durante 48 horas, para obter a massa de matéria seca da folha e do caule.

As variáveis respostas medidas neste ensaio foram: proporção de sementes

germinadas por planta matriz de cada procedência, valores médios de massa de matéria

seca (em miligramas) da folha, do caule e da parte aérea (folha e caule), por planta matriz

de cada procedência.

3.1.2 Ensaio de crescimento de mudas (juvenis) em transplantes rećıprocos

para avaliação da plasticidade e adaptação local.

Grupos de sementes de cada planta matriz das procedências avaliadas foram

semeadas separadamente, em caixas plásticas contendo areia. Mudas de 90 dias de idade

foram transplantadas em tubos de plásticos de 56 cm3 preenchidos com uma mistura

livre de nutrientes orgânicos, onde as mudas dependiam exclusivamente de suas reservas

do endosperma para o desenvolvimento, o que é desejável porque um substrato adubado

poderia mascarar os efeitos das condições naturais do solo sobre o crescimento em cada

área de estudo.

As mudas foram mantidas em viveiro florestal e, posteriormente, utilizadas

em transplantes rećıprocos realizados em novembro de 2008, no ińıcio da estação chu-

vosa. Os dez blocos experimentais foram constrúıdos 2 m longe dos blocos utilizados
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na avaliação descrita anteriormente no ensaio de caracteres adaptativos em mudas de

estabelecimento. Cada bloco experimental teve três parcelas com as três procedências

distribúıdas aleatoriamente. Cada parcela esteve constitúıda por dez plantas, uma de

cada planta matriz.

As plantas produzidas foram removidas das parcelas após 12 meses, e secas

no forno. O desempenho durante o crescimento das mudas foi avaliado medindo a massa

de matéria seca (mg) da raiz, da folha, do caule e total, por planta matriz de cada

procedência.

3.2 Métodos

3.2.1 Modelos lineares mistos para avaliar o teor da massa de matéria seca

das plantas

Para que os conjuntos de dados pudessem ser analisados de acordo com a

proposta dos modelos lineares mistos, inicialmente foram identificados os fatores presentes

em cada experimento, discriminando-os como fator aleatorizado ou fator não aleatorizado

(BRIEN, 2007), sendo identificadas também suas camadas (BRIEN, 1983) e as respectivas

fórmulas estruturais, indicando assim a relação entre os mesmos.

Embora os ensaios contenham dados faltantes, para uma melhor compre-

ensão da sua estrutura, considerou-se uma série de experimentos, balanceados, realizados

com I procedências em K locais, e utilizando um delineamento casualizado em blocos, com

J repetições em cada local, e ainda, M plantas matrizes associadas a cada procedência.

Construiu-se a tabela de decomposição dos números de graus de liberdade e esperanças

dos quadrados médios (Tabela 1), fazendo uso do diagrama de Hasse (TAYLOR; HILTON,

1981), que é apresentado na Figura 4.

Segundo Machado et al. (2005) o diagrama de Hasse é uma poderosa fer-

ramenta visual utilizada na representação da estrutura dos fatores de um delineamento

experimental e fornece uma valiosa perspectiva complementar para a análise de variância

e as técnicas de análise, por meio de uma conexão entre a descrição verbal do experimento

e o correspondente modelo linear estat́ıstico.
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Figura 4 – Diagrama de Hasse para obtenção dos números de graus de liberdades e espe-
ranças dos quadrados médios para os ensaios de estabelecimento (semeadura)
e crescimento de mudas (juvenis)
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Logo, com a estrutura definida, os dados foram analisados de acordo com o

modelo estat́ıstico matemático, a seguir:

yijkm = µ+ τi + bj(k) + `k + τ`ik + δm(i) + `δm(ik) + εijkm, (21)

em que: i= 1,...,I, j= 1,...,J , k=1,...,K, m=1,...,M, yijkm é a resposta observada referente

à m-ésima planta matriz da i -ésima procedência, no j -ésimo bloco do k -ésimo local; µ é

a constante associada à todas as observações; τi é o efeito da i -ésima procedência (efeito

fixo), bj(k) é o efeito aleatório do j -ésimo bloco no k -ésimo local, bj(k) ∼ N(0, σb
2), `k

é o efeito fixo do k -ésimo local; τ`ik representa o efeito da interação entre a i -ésima

procedência e o k -ésimo local, δm(i) é o efeito aleatório da m-ésima planta-matriz dentro

da i -ésima procedência, δm(i) ∼ N(0, σδ
2), `δm(ik) é o efeito aleatório da m-ésima planta-

matriz dentro da ik -ésima interação local × procedência, `δm(ik) ∼ N(0, σ`δ
2) e εijkm é o

erro experimental aleatório associado às observações yijkm, εijkm ∼ N(0, σε
2).

Considerando-se bj(k), δm(i), `δm(ik) e εijkl como independentes, a variância

de uma observação é dada por: σb
2 + σδ

2 + σ`δ
2 + σε

2.

Tabela 1 – Decomposição dos números de graus de liberdade e esperanças dos quadrados
médios para os ensaios de estabelecimento (semeadura) e crescimento de mudas
(juvenis)

Fontes de variação gl E[QM]
Locais K − 1 σ2

e + IMσ2
LB + Jσ2

LPrM + qL(ψ)
Blocos [Locais] K(J − 1) σ2

e + IMσ2
LB

Subparcelas [L∧B∧ P] KJ(IM − 1)
Procedências I − 1 σ2

e + Jσ2
LPrM + KJσ2

PrM + qPr(ψ)
Locais#Procedências (I − 1)(K − 1) σ2

e + Jσ2
LPrM + qLPr(ψ)

Matriz(Procedências) I(M − 1) σ2
e + KJσ2

PrM

L#M(Procedências) (K − 1)(I(M − 1) σ2
e + Jσ2

LPrM

Reśıduo K(J − 1)(IM − 1) σ2
e

Total IJKM − 1

Optou-se pelo método da máxima verossimilhança restrita -REML (PAT-

TERSON; THOMPSON, 1971), para a estimação dos componentes de variância, e pelo

método dos mı́nimos quadrados generalizados, para a estimação dos parâmetros do vetor

de efeitos fixos, utilizando um ńıvel de 5% de significância. Além disso foi utilizada a

estrutura de componentes de variância para modelar a matriz G de efeitos aleatórios e

para a matriz residual, R = σ2I.
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Para avaliar a significância dos fatores de efeito fixo e sua interação, foi

utilizado o teste Wald-F, como descrito na seção 2.5.4, cujas estat́ısticas são dadas por:

(i) Local (L):

FL =
QMLocal(

QMB[L] +QML]M(Pr) −QMResiduo

) ∼ F(K−1),ν,α,

com ν graus de liberdade no denominador, dados pela aproximação de Satterthwaite

(1946), ou seja,

ν =

(
QMB[L] +QML]M(Pr) −QMResiduo

)2(
QMB[L]

)2

glB[L]

+

(
QML]M(Pr)

)2

glL]M(Pr)

− (QMResiduo)
2

glResiduo

.

(ii) Procedência (Pr):

FPr =
QMPr

QMM [P ]

∼ F(I−1),I(M−1),α,

(iii) Interação Local × Procedência (L]Pr):

FL]Pr =
QML]Pr

QML]M [P ]

∼ F[(I−1)(K−1)],[(K−1)I(M−1)],α.

Por outro lado, para testar as hipóteses referentes aos componentes de

variância, H0 : σ2
i = 0 e H1 : σ2

i > 0 (existe variabilidade entre os ńıveis do fator

aleatório i), foi utilizado o teste Z de Wald, descrito na seção 2.5.5.

Os diagnósticos foram realizados observando-se os gráficos de dispersão para

os reśıduos condicionais estudentizados, conforme descrito na seção 2.5.6. A verificação da

normalidade tanto para o vetor de parâmetros de efeito aleatório quanto dos reśıduos, foi

feita utilizando os gráficos de quantil-quantil, e a homocedasticidade por meio do gráfico

dos reśıduos condicionais estudentizados contra os valores preditos.

A seguir será descrita a metodologia utilizada para estudar a plasticidade

fenot́ıpica e a adaptação local do palmiteiro, com base nas variáveis relacionadas com o

teor de massa de matéria seca das plantas.
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3.2.1.1 Estudo da plasticidade fenot́ıpica

Dado o modelo (21), considere µik = µ + τi + `k + τ`ik, sendo µik a média

da interação entre a i -ésima procedência e o k -ésimo local. Com a finalidade de testar a

hipótese de nulidade de que não há plasticidade fenot́ıpica detectável entre as populações

nos K ambientes testados contra a hipótese alternativa de que há plasticidade fenot́ıpica,

ou seja, os caracteres medidos na mesma população submetida a ambientes diferentes

são significativamente diferentes foi realizado o desdobramento do número de graus de

liberdade do fator local dentro dos ńıveis de procedência, sendo testadas as hipóteses

seguintes:  H0 : µ11 = µ12 = ... = µ1K

H1 : pelo menos uma µ1k 6= µ1k′ para k 6= k′ ,

 H0 : µ21 = µ22 = ... = µ2K

H1 : pelo menos uma µ2k 6= µ2k′ para k 6= k′ ,

... H0 : µI1 = µI2 = ... = µIK

H1 : pelo menos uma µIk 6= µIk′ para k 6= k′ ,

em que µik, é a média de uma variável aleatória em particular, observada em cada i

procedência nos k locais, sendo i = 1, 2, ..., I e k = 1, 2, ..., K.

Adicionalmente, para testar se o próprio local é o mais favorável para o

desenvolvimento de plantas da sua mesma procedência, foi constrúıdo um conjunto de

contrastes, avaliando as hipóteses:

H0 : µ11 −

K∑
k=1

µ1k

K−1
= 0; k 6= 1

H1 : µ11 −

K∑
k=1

µ1k

K−1
6= 0; k 6= 1 ,
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

H0 : µ22 −

K∑
k=1

µ2k

K−1
= 0; k 6= 2

H1 : µ22 −

K∑
k=1

µ2k

K−1
6= 0; k 6= 2 ,

...

H0 : µIK −

K∑
k=1

µIk

K−1
= 0; k 6= K

H1 : µIK −

K∑
k=1

µIk

K−1
6= 0; k 6= K ,

em que µik, são as médias de uma variável aleatória em particular, observadas na pro-

cedência i no local k, com i=k, comparadas com as médias da mesma procedência nos

K-1 locais restantes.

3.2.1.2 Estudo da adaptação local

Por outro lado, com a finalidade de testar a hipótese nula de que nenhuma

adaptação foi necessária para a ocupação de mais de um bioma por parte de cada espécie

contra a hipótese alternativa de que as populações locais são de fato ecótipos e apresentam

adaptações espećıficas, foi realizado o desdobramento do número de graus de liberdade

do fator procedências dentro de locais. Neste caso foram testadas as hipóteses: H0 : µ11 = µ21 = ... = µI1

H1 : pelo menos uma µi1 6= µi1 para i 6= i′ ,

 H0 : µ12 = µ22 = ... = µI2

H1 : pelo menos uma µi2 6= µi′2 para i 6= i′ ,

... H0 : µ1K = µ2K = ... = µIK

H1 : pelo menos uma µiK 6= µi′K para i 6= i′ ,
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em que µik, são as médias de uma variável aleatória em particular, das procedências

i = 1, 2, ..., I num determinado k.

Adicionalmente, para testar se cada procedência está mais adaptada ao seu

próprio ambiente em comparação com os outros ambientes onde foi plantada (adaptação

local), foi constrúıdo um conjunto de contrastes, avaliando as hipóteses:

H0 : µ11 −

I∑
i=1

µi1

I−1
= 0; i 6= 1

H1 : µ11 −

I∑
i=1

µi1

I−1
6= 0; i 6= 1 ,



H0 : µ22 −

I∑
i=1

µi2

I−1
= 0; i 6= 2

H1 : µ22 −

I∑
i=1

µi2

I−1
6= 0; i 6= 2 ,

...



H0 : µIK −

I∑
i=1

µiK

I−1
= 0; i 6= I

H1 : µIK −

I∑
i=1

µiK

I−1
6= 0; i 6= I ,

em que µik, são as médias de uma variável aleatória em particular, observadas nas i

procedências no local k, com i=k, comparadas com as médias do mesmo local nas I-1

procedências restantes.

As análises foram feitas usando-se o procedimento mixed implementado

no software estat́ıstico SAS r (SAS INSTITUTE, 2011) , sendo que os programas são

apresentados no Anexo A. Para todos os testes empregou-se o ńıvel de 5% de significância.
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3.2.2 Modelos lineares generalizados mistos para avaliar a proporção de se-

mentes germinadas

A proporção de sementes germinadas (yijkm) foi registrada aos 270 dias

após a semeadura e analisada usando um MLGM sob a pressuposição de distribuição

binomial da variável em estudo. Usando a função de ligação logito, a média condicional

da proporção de plantas germinadas, E
[
yijkm|bj(k), δm(i), `δm(ik)

]
, pode ser expressa em

termos do preditor linear ηijkm, com a inclusão dos efeitos aleatórios (para modelar a

variação extra-binomial), como:

ηijkm = log

(
πijkm

1− πijkm

)
= µ+ τi + bj(k) + `k + τ`ik + δm(i) + `δm(ik),

em que i = 1, ..., I, j = 1, ..., J , k = 1, ..., K, m = 1, ...,M ,

πijkm é a probabilidade de uma semente da planta mãe m e procedência i ter

germinado na repetição j no local k, µ é a média geral, τi é o efeito da i -ésima procedência

(efeito fixo), bj(k) é o efeito aleatório do j -ésimo bloco no k -ésimo local, bj(k) ∼ N(0, σb
2),

`k é o efeito fixo do k -ésimo local; τ`ik representa o efeito da interação entre a i -ésima

procedência e o k -ésimo local, δm(i) é o efeito aleatório da m-ésima planta-matriz dentro

da i -ésima procedência, δm(i) ∼ N(0, σδ
2), `δm(ik) é o efeito aleatório da m-ésima planta-

matriz dentro da ik -ésima interação local × procedência, `δm(ik) ∼ N(0, σ`δ
2). Considerou-

se bj(k), δm(i), `δm(ik) como independentes.

As estimativas dos parâmetros de efeito fixo e a predição dos parâmetros de

efeito aleatório foram obtidas a partir da maximização do logaritmo da função de pseudo-

verossimilhança (baseado no método REML em um modelo linearizado), utilizando a

técnica de otimização Quase-Newton duplamente iterativo.

O valor ajustado da proporção de sementes germinadas é dado por: π̂i =
exp (η̂)

1 + exp (η̂)
.

Como medida do ajuste do modelo foi utilizada a estat́ıstica X2 generalizada

de Pearson, que tem a forma: X2 =
n∑
i=1

(yi − µ̂i)2

V̂ (µ̂i)
, sendo yi os valores observados, µ̂i os

valores estimados pelo modelo e V̂ (µ̂i) a função de variância estimada para a distribuição

em estudo. No caso da distribuição binomial, B(n, π) tem-se que V (µ) = µ
(

1− µ

n

)
.

Para estimar o parâmetro de escala ou dispersão φ, foi utilizada a expressão:

φ∗ =
X2

n−m
, em que n é o tamanho da amostra e m é o número de parâmetros estima-
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dos. Para dados provenientes das distribuições binomial e Poisson, tem-se φ=1, portanto

valores distantes de um, são um indicativo de falta de ajuste do modelo.

Para avaliar a significância dos fatores de efeito fixo e suas interações, foi

utilizado o teste Wald-F, como descrito na seção 2.7.3. Por outro lado, para testar as

hipóteses referentes aos componentes de variância da matriz G foi utilizado o teste da

razão de verossimilhanças.

Adicionalmente, foram calculados reśıduos condicionais estudentizados (re)

na escala logito, definidos pela expressão seguinte: re =
p− η̂

V̂ ar[p|u]
, em que p denota os

valores dos ”pseudo-dados”que surgem a partir do algoritmo de linearização usado para

obter o estimador de máxima verossimilhança, V̂ ar[p|u] é a variância estimada de p, con-

dicional aos efeitos aleatórios contidos no vetor u (GBUR et al., 2012), e constrúıdos

gráficos (histograma, box plot, quantil-quantil e de re contra o preditor linear), para veri-

ficar o ajuste do MLGM.

Posteriormente, com o objetivo de testar a hipótese de nulidade de que não

há plasticidade fenot́ıpica detectável entre as populações nos ambientes testados contra a

hipótese alternativa de que há plasticidade fenot́ıpica, ou seja, as proporções de sementes

germinadas da mesma população submetidas a ambientes diferentes são significativamente

diferentes foi realizado o desdobramento do número de graus de liberdade do fator locais

dentro de procedências.

Por outro lado, com a finalidade de testar a hipótese nula de que nenhuma

adaptação foi necessária para a ocupação de mais de um bioma por parte de cada pro-

cedência contra a hipótese alternativa de que as populações locais são de fato ecótipos e

apresentam adaptações espećıficas, foi realizado o desdobramento do número de graus de

liberdade do fator procedências dentro de locais.

As análises foram feitas usando-se o procedimento glimmix implementado

no software estat́ıstico SAS (SAS INSTITUTE, 2011) , sendo que os programas são apre-

sentados no Anexo B. Para todos os testes empregou-se o ńıvel de 5% de significância.
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4 RESULTADOS E DISCUSSÃO

Na seção 4.1 serão apresentados os resultados e discussões das análises es-

tat́ısticas referentes à avaliação da plasticidade fenot́ıpica e da adaptação local dos pal-

miteiros, para os dois grupos de experimentos, considerando como variáveis de resposta,

a massa de matéria seca de diferentes partes das plantas e total, ajustando e avaliando

a adequação de um modelo linear de efeitos mistos. Posteriormente, na seção 4.2, serão

exibidos os resultados e discussões das análises estat́ısticas, considerando desta vez, as

proporções de sementes germinadas apenas no experimento de adaptação no estabeleci-

mento, ajustando e avaliando a adequação de um modelo linear generalizado de efeitos

mistos.

4.1 Avaliação da plasticidade fenot́ıpica e da adaptação local com base nos

teores de massa de matéria seca das plantas em ensaios de estabeleci-

mento e de crescimento

Os valores médios e os respectivos desvios padrões para as variáveis consi-

deradas nos diferentes ensaios, por local e procedência dos palmiteiros, estão apresentados

nas Tabelas 2 e 3.

Tabela 2 – Médias e desvios padrões (d.p.) da massa de matéria seca (mg) da folha, do
caule e parte aérea das plantas das procedências Ombrófila (Omb.), Semideci-
dual (Sem.) e Restinga (Res.), nos locais Carlos Botelho (CB), Caetetus (CT)
e Ilha do Cardoso (IC), no ensaio de adaptação no estabelecimento

Folha Caule Parte aérea
Local Proc. Média d.p. Média d.p. Média d.p.

Omb. 0,1027 0,0256 0,0768 0,0300 0,1794 0,0527
CB Sem. 0,0682 0,0267 0,0544 0,0224 0,1226 0,0455

Res. 0,0715 0,0295 0,0513 0,0228 0,1227 0,0495
Omb. 0,0735 0,0328 0,0571 0,0206 0,1306 0,0508

CT Sem. 0,0588 0,0294 0,0449 0,0229 0,1036 0,0502
Res. 0,0578 0,0240 0,0411 0,0170 0,0988 0,0381
Omb. 0,1307 0,0356 0,1215 0,0352 0,2521 0,0637

IC Sem. 0,0949 0,0396 0,0877 0,0349 0,1826 0,0689
Res. 0,0943 0,0359 0,0835 0,0350 0,1777 0,0669
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A Tabela 2 permitiu verificar que no ensaio de adaptação no estabeleci-

mento, a procedência Ombrófila apresentou os maiores valores médios da massa de matéria

seca das partes das plantas, em todos os locais avaliados. Com relação aos locais, no par-

que Ilha do Cardoso apresentaram-se os melhores resultados. Além disso, as plantas das

diferentes procedências apresentaram um comportamento diferenciado ao serem semeadas

nos distintos locais, o que dá indicio da existência de plasticidade fenot́ıpica.

Tabela 3 – Médias e desvios padrões (d.p.) da massa de matéria seca (mg) da folha, do
caule, da raiz e total das plantas das procedências Ombrófila (Omb.), Semi-
decidual (Sem.) e Restinga (Res.), nos locais Carlos Botelho (CB), Caetetus
(CT) e Ilha do Cardoso (IC), no ensaio de adaptação em juvenis

Folha Caule Raiz Total
Local Proc. Média d.p. Média d.p. Média d.p. Média d.p.

Omb. 0,1870 0,1062 0,1912 0,1055 0,1455 0,0633 0,5236 0,2402
CB Sem. 0,1595 0,1023 0,1847 0,1044 0,1679 0,0802 0,5121 0,2567

Res. 0,2288 0,1306 0,2189 0,1233 0,1654 0,0828 0,6131 0,3077
Omb. 0,2468 0,1048 0,2216 0,1016 0,1621 0,0797 0,6306 0,2519

CT Sem. 0,2329 0,1133 0,2077 0,1083 0,1787 0,0847 0,6194 0,2898
Res. 0,2861 0,1106 0,2645 0,1160 0,1934 0,0704 0,7440 0,2635

Omb. 0,1895 0,1090 0,2091 0,0883 0,1346 0,0510 0,5332 0,2176
IC Sem. 0,1711 0,1250 0,2169 0,1264 0,1608 0,0828 0,5488 0,3161

Res. 0,2801 0,1463 0,3093 0,1823 0,1870 0,1113 0,7764 0,4097

Com relação ao ensaio de adaptação em juvenis, a Tabela 3 permitiu veri-

ficar que não existe um padrão claro do comportamento da massa da matéria seca das

plantas. Nenhum dos locais se mostrou evidentemente superior. Além disso nenhuma

procedência se destacou entre as demais.

Em seguida, foram verificadas as significâncias dos parâmetros de efeito

fixo, e as estat́ısticas para o teste Wald-F são apresentadas na Tabela 4, salientando que

o ńıvel de significância utilizado foi de 5%. A referida Tabela inclui os resultados obtidos

nos ensaios de adaptação no estabelecimento e em juvenis, para a massa de matéria seca

de diferentes partes das plantas de palmiteiro.

Observa-se na Tabela 4 diferenças significativas para os efeitos principais

e a interação local]procedência, no ensaio de adaptação no estabelecimento. Os palmi-

teiros apresentaram maiores diferenças neste ensaio porque foi conduzido desde a semea-

dura, sendo afetado pelas condições ambientais dos locais. Por outro lado, no ensaio de

adaptação em juvenis o único efeito significativo foi a procedência, nas variáveis massa de

matéria seca da folha, do caule, da parte aérea e total.
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Tabela 4 – Estat́ıstica F e significância para as fontes de variação fixas consideradas nos
ensaios de adaptação no estabelecimento e em juvenis

F para fontes de variação fixas
Massa de matéria seca (MS) Local Procedência Local]Procedência
Ensaio de adaptação no estabelecimento
Folha 29, 46∗∗∗ 12, 40∗∗ 2, 24∗

Caule 61, 04∗∗∗ 15, 95∗∗∗ 2, 85∗

Parte aérea 48, 37∗∗ 14, 50∗∗ 2, 88∗

Ensaio de adaptação em juvenis
Folha 3,16 8, 20∗∗ 0,86
Caule 1,80 4, 36∗ 1,04
Raiz 0,75 1,29 0,76
Total 1,87 4, 14∗ 0,97
(∗) valor-p < 0,05; (∗∗) valor-p < 0,01; (∗∗∗) valor-p < 0,001

Com relação aos componentes de variância, na Tabela 5 são apresentadas

as suas estimativas e os valores da estat́ıstica Wald-Z para testar suas significâncias.

O componente de variância relacionado com o fator aleatório produzido pela m-ésima

planta matriz dentro da ik -ésima interação local ] procedência,(`δm(ik)), apresentou uma

contribuição significativa apenas no caso da análise da massa de matéria seca do caule

e do total, no ensaio de adaptação em juvenis. Os demais componentes de variâncias

proporcionaram uma contribuição significativa em todos os casos.

Tabela 5 – Estimativas dos componentes de variância e valores da estat́ıstica Wald-Z para
testar sua significância

Matéria seca σb
2 Z σδ

2 Z σ`δ
2 Z σε

2 Z
Ensaio de adaptação no estabelecimento
Folha 0,00012 2, 59∗∗ 0,00017 2, 80∗∗ 0,00001 0, 51 0,00074 14, 63∗∗∗

Caule 0,00007 2, 24∗∗ 0,00009 2, 48∗∗ 0,00001 0, 29 0,00066 14, 63∗∗∗

Parte aérea 0,00032 2, 47∗∗ 0,00051 2, 82∗∗ 0,00003 0, 32 0,00235 14, 63∗∗∗

Ensaio de adaptação em juvenis
Folha 0,00271 2, 66∗∗ 0,00110 1, 74∗ 0,00078 1, 27 0,00976 12, 34∗∗∗

Caule 0,00338 2, 78∗∗ 0,00170 2, 07∗ 0,00115 1, 88∗ 0,00903 12, 43∗∗∗

Raiz 0,00177 2, 97∗∗ 0,00140 2, 93∗∗ 0,00015 0, 79 0,00342 12, 43∗∗∗

Total 0,02198 2, 89∗∗ 0,01250 2, 39∗∗ 0,00584 1, 76∗ 0,04768 12, 39∗∗∗

(∗) valor de p <0,05; (∗∗) valor de p< 0,01; (∗∗∗) valor de p < 0,001.
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As porcentagens da variância total atribúıdas a cada componente de

variância, por ensaio e por variável analisada são apresentadas na Tabela 6. Observa-

se que a variância residual (σε
2) representa a maior proporção da variância total dos

dados. Por outro lado a variância devida ao componente (σ`δ
2) corresponde à menor con-

tribuição para a variância total dos dados. Vale destacar que o componente de variância

referente a plantas matrizes dentro de procedência (σδ
2) representa maior porcentagem

da variabilidade total explicada em relação ao componentes de variância de blocos dentro

de locais (σb
2) para o ensaio de estabelecimento, caso contrário foi verificado no ensaio de

adaptação em juvenis.

Nas Figuras 5 e 6 são apresentados os gráficos dos valores preditos contra

os reśıduos condicionais estudentizados do modelo linear misto, para cada variável anali-

sada, nos ensaios de adaptação no estabelecimento (semeadura) e de adaptação em juvenis

(crescimento), respectivamente. Nota-se que a maioria dos reśıduos condicionais estuden-

tizados encontram-se no intervalo (-3,3), com distribuição aleatória em torno da média

zero, sem apresentar qualquer tendência, satisfazendo a condição de independência, con-

firmando que o modelo utilizado é adequado para descrever o comportamento dos dados.

Além disso, nota-se a presença de alguns pontos at́ıpicos.

Tabela 6 – Porcentagem da variância total atribúıda a cada componente de variância, por
experimento e variável analisada

Massa de matéria seca σb
2 σδ

2 σ`δ
2 σε

2

Ensaio de adaptação no estabelecimento
Folha 11,61 15,93 1,34 71,11
Caule 7,88 11,16 0,79 80,17
Parte aérea 9,96 15,96 0,81 73,27

Ensaio de adaptação em juvenis
Folha 18,86 7,66 5,44 68,04
Caule 22,14 11,12 7,55 59,19
Raiz 26,25 20,83 2,15 50,77
Total 24,98 14,21 6,63 54,18
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Figura 5 – Gráficos dos reśıduos condicionais estudentizados em função dos valores pre-
ditos, para o experimento de adaptação no estabelecimento, para as variáveis:
(a) massa seca da folha, (b) massa seca do caule e (c) massa seca da parte
aérea

Figura 6 – Gráficos dos reśıduos condicionais estudentizados em função dos valores predi-
tos, para o experimento de adaptação em juvenis, para as variáveis: (a) massa
seca da folha, (b) massa seca do caule, (c) massa seca da raiz e (d) massa seca
total
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Nas Figuras 7 e 8 são apresentados os gráficos quantil-quantil dos reśıduos

condicionais estudentizados contra os quantis téóricos da distribuição normal, relativos aos

ensaios de adaptação no estabelecimento e de adaptação em juvenis, para cada uma das

variáveis. Pode-se notar que em todos os casos é satisfeita a pressuposição de normalidade,

porém, observam-se alguns pontos at́ıpicos.

Figura 7 – Gráficos de quantil-quantil para os reśıduos condicionais estudentizados no
experimento de adaptação no estabelecimento, para as variáveis: (a) massa
seca da folha, (b) massa seca do caule e (c) massa seca da parte aérea

Figura 8 – Gráficos de quantil-quantil para os reśıduos condicionais estudentizados para
o experimento de adaptação em juvenis, para as variáveis: (a) massa seca da
folha, (b) massa seca do caule, (c) massa seca da raiz e (d) massa seca total
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4.1.1 Plasticidade fenot́ıpica

Para estudar a presença de plasticidade fenot́ıpica nos palmiteiros foi reali-

zado o desdobramento do número de graus de liberdade de locais dentro dos ńıveis do fator

procedência. Na Tabela 7, é apresentado o resumo dos resultados deste desdobramento.

Tabela 7 – Estat́ıstica F e significância para o desdobramento do número de graus de
liberdade de local ] procedência para as variáveis relacionadas com a massa de
matéria seca, analisando os dados de locais dentro de cada ńıvel de procedência

Procedências
Massa de matéria seca (MS) Ombrófila Semidecidual Restinga
Ensaio de adaptação no estabelecimento
Folha 29, 91∗∗∗ 14, 18∗∗ 14, 06∗∗∗

Caule 57, 95∗∗∗ 29, 79∗∗∗ 22, 52∗∗∗

Parte área 48, 22∗∗∗ 24, 21∗∗∗ 20, 86∗∗∗

Ensaio de adaptação em juvenis
Folha 1,93 3, 32∗ 2,10
Caule 0,62 0,94 3,20
Raiz 0,95 0,42 0,69
Total 1,20 1,42 2,17
(∗) valor de p < 0,05; (∗∗) valor de p < 0,01; (∗∗∗) valor de p < 0,001

Valores significativos da estat́ıstica F evidenciam a presença de plasticidade

fenot́ıpica, ou seja, plantas procedentes de um bioma determinado apresentam diferenças

quanto ao comportamento de uma determinada variável medida, dependendo do local

onde foram semeadas ou transplantadas. No ensaio de adaptação no estabelecimento (se-

meadura) apresentou-se a caracteŕıstica de plasticidade em todas as variáveis analisadas.

Por outro lado, no ensaio de adaptação em juvenis, as plantas têm um comportamento

não plástico (ou robusto), exceto para a variável massa de matéria seca da folha.

O resumo da análise de contrastes é apresentado na Tabela 8, para verificar

se um local determinado é mais favorável para a produção de massa de matéria seca (dos

caracteres medidos) de plantas originadas de sementes da sua mesma procedência, em

cada experimento realizado.

Observa-se na Tabela 8, que plantas da proveniência Restinga tiveram me-

lhores produções médias de massa de matéria seca da folha, do caule e da parte aérea (no

ensaio de adaptação no estabelecimento), e do caule (no ensaio de adaptação em juve-

nis), quando foram semeadas ou transplantadas no seu própio lugar de origem (Ilha do

Cardoso).
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Tabela 8 – Estimativas (Est.) dos contrastes entre locais (CB=Carlos Botelho,
CT=Caetetus e IC=Ilha do Cardoso) da mesma procedência contra outros
locais, estat́ıstica t e significância

Ombrófila Semidecidual Restinga
Massa de matéria seca (MS) CB vs outros CT vs outros IC vs outros

Est. t Est. t Est. t
Ensaio de adaptação no estabelecimento
Folha -0,0016 -0,25 -0,0241 -3, 87∗ 0,0329 4, 68∗∗∗

Caule -0,0117 -2, 12∗ -0,0263 -5, 07∗∗∗ 0,0379 6, 31∗∗

Parte aérea -0,0101 -0,90 -0,0503 -4, 79∗ 0,0707 5, 90∗∗

Ensaio de adaptação em juvenis
Folha -0,0418 -1,39 0,0796 2, 50∗ 0,0228 0,74
Caule -0,0345 -1,06 0,0210 0,61 0,0669 2, 03∗

Raiz -0,0128 -0,61 0,0218 0,98 0,0145 0,68
Total -0,0928 -1,17 0,1261 1,51 0,1041 1,29
(∗) valor de p < 0,05; (∗∗) valor de p < 0,01; (∗∗∗) valor de p < 0,001

Com relação as plantas da proveniência Semidecidual, tiveram melhores

produções médias de massa de matéria seca da folha quando transplantadas no seu própio

local (Caetetus), no ensaio de adaptação em juvenis. Situação contrária aconteceu, para

as produções médias de massa de matéria seca obtidas no ensaio de adaptação no estabe-

lecimento, onde as plantas da proveniência Semidecidual tiveram o pior desempenho no

seu próprio local de origem.

Por outro lado, as plantas da proveniência Ombrófila tiveram as piores

produções médias de massa de matéria de seca (principalmente no caso da MS do caule)

quando foram semeadas ou transplantadas no seu próprio local (Carlos Botelho).

Nas Figuras 9 e 10 é apresentado o comportamento das médias de massa

de matéria seca (mg) dos caracteres medidos, por local dentro de cada procedência, nos

ensaios de adaptação no estabelecimento e adaptação em juvenis, respectivamente. De

forma geral, nota-se que a caracteŕıstica de plasticidade fenot́ıpica é evidente no ensaio

de adaptação no estabelecimento (semeadura) para todos os caracteres avaliados.

4.1.2 Adaptação local

O resumo do teste F para o desdobramento do número de graus de liberdade

de procedências dentro de locais, para estudar a presença de adaptação local é apresentado

na Tabela 9.
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Figura 9 – Comportamento do teor médio de massa de matéria seca: (a) da folha, (b) do
caule e (c) da parte aérea, por local dentro de cada procedência, no ensaio de
adaptação no estabelecimento. As barras representam as médias originais e as
linhas verticais o erro padrão da média.
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Figura 10 – Comportamento do teor médio de massa de matéria seca: (a) da folha, (b)
do caule, (c) da raiz e (d) total, por local dentro de cada procedência, no
ensaio de adaptação em juvenis. As barras representam as médias originais
e as linhas verticais o erro padrão da média.
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Tabela 9 – Estat́ıstica F e significância para o desdobramento do número de graus de
liberdade de local ] procedência para as variáveis relacionadas com a massa
de matéria seca, analisando procedências dentro de cada ńıvel de local

Locais
Massa de matéria seca (MS) Carlos Botelho Caetetus Ilha do Cardoso
Ensaio de adaptação no estabelecimento
Folha 10, 80∗∗∗ 2, 97∗ 14, 90∗∗∗

Caule 8, 60∗∗∗ 3, 68∗ 22, 37∗∗∗

Parte aérea 10, 76∗∗∗ 3, 66∗ 19, 55∗∗∗

Ensaio de adaptação em juvenis
Folha 3,81 1,89 7, 93∗

Caule 1,16 1,67 5, 80∗

Raiz 0,50 0,28 2,16
Total 1,61 1,37 5, 70∗∗

(∗) valor de p < 0,05; (∗∗) valor de p < 0,01; (∗∗∗) valor de p < 0,001

Pode-se observar que no ensaio de adaptação no estabelecimento se apre-

senta de forma evidente a caracteŕıstica de adaptação, ou seja, que em cada local avaliado,

as plantas das diferentes procedências apresentam um comportamento diferenciado em to-

dos os caracteres avaliados, podendo em alguns casos tratar-se de adaptação local.

Por outro lado, no ensaio de adaptação em juvenis, apenas as plantas trans-

plantadas no bioma Restinga (Parque Estadual Ilha do Cardoso) apresentam evidência

de adaptação para as variáveis massa de matéria seca da folha, do caule e total. Branca-

lion (2009), salienta que o lento crescimento das plantas de E. edulis, principalmente em

condições naturais de interior de floresta, somado ao peŕıodo restritivo de duração do ex-

perimento (10 meses), podem ter limitado a possibilidade de identificação de adaptações

locais para essa espécie nos outros biomas.

O resumo da análise de contrastes para verificar se plantas originadas de

sementes de uma determinada procedência estão mais adaptadas ao seu próprio local, em

comparação com plantas procedentes de sementes de outros locais, com relação à produção

de massa de matéria seca em cada experimento realizado é apresentado na Tabela 10.

Neste caso conclui-se que, plantas originadas de sementes da formação flo-

restal Restinga estão significativamente mais adaptadas ao seu próprio local (Ilha do

Cardoso), em comparação com plantas procedentes de sementes de outros locais, ou seja,

apresentam maiores valores médios de massa de matéria seca da folha, do caule e total, no

ensaio de adaptação em juvenis, sugerindo, de acordo com Brancalion (2009) a existência

de um ecótipo para essa formação florestal.
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Tabela 10 – Estimativas (Est.) dos contrastes entre procedências do mesmo local
(CB=Carlos Botelho, CT=Caetetus e IC=Ilha do Cardoso) contra outras
procedências, estat́ıstica t e significância

Local CB Local CT Local IC
Massa de matéria seca (MS) Omb. vs outras Sem. vs outras Res. vs outras

Est. t Est. t Est. t
Ensaio de adaptação no estabelecimento
Folha 0,0325 4, 64∗∗∗ -0,0057 -0,84 -0,0163 -2, 29∗

Caule 0,0243 4, 14∗∗∗ -0,0040 -0,71 -0,0204 -3, 40∗∗

Parte aérea 0,0569 4, 64∗∗∗ -0,0098 -0,82 -0,0367 -2, 94∗∗

Ensaio de adaptação em juvenis
Folha -0,0011 -0,05 -0,0362 -1,46 0,0957 3, 84∗∗∗

Caule -0,0022 -0,08 -0,0371 -1,37 0,0928 3, 41∗∗

Raiz -0,0152 -0,83 -0,0017 -0,09 0,0371 1,98
Total -0,0161 -0,25 -0,0720 -1,09 0,2255 3, 39∗∗∗

(∗) valor de p < 0,05; (∗∗) valor de p < 0,01; (∗∗∗) valor de p < 0,001

Caso contrário acontece no ensaio de adaptação no estabelecimento, onde

parecem estar menos adaptadas ao seu próprio local. Sobre esta situação, Brancalion

(2009) comenta que a ausência de adaptações locais pode estar relacionada ao fato das

condições para o estabelecimento de plantas nessa formação florestal terem sido as mais

favoráveis dentre as áreas de estudo, com valores altos de germinação e de massa de

matéria seca de plantas. Tal fato permitiu que essa formação florestal tivesse elevada

densidade de plantas, de forma que a menor pressão de seleção para o estabelecimento

pode não ter estimulado o surgimento de adaptações locais espećıficas para essa fase do

ciclo de vida vegetal.

As plantas originadas de sementes da formação florestal Ombrófila Densa

estão mais adaptadas ao seu próprio local (Carlos Botelho), apresentando maiores valores

médios de massa de matéria seca da folha, do caule e da parte aérea, no caso do ensaio

de adaptação no estabelecimento (semeadura).

Nas Figuras 11 e 12 é apresentado o comportamento da massa de matéria

seca (mg) dos caracteres medidos, por procedência dentro de cada local, nos ensaios

de adaptação no estabelecimento e adaptação em juvenis, respectivamente. De forma

geral, nota-se que a caracteŕıstica de adaptação é evidente no ensaio de adaptação no

estabelecimento (semeadura) para todos os caracteres avaliados.
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Figura 11 – Comportamento do teor médio de massa de matéria seca: (a) da folha, (b)
do caule e (c) da parte aérea, por procedência dentro de cada local, no ensaio
de adaptação no estabelecimento. As barras representam as médias originais
e as linhas verticais o erro padrão da média.
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Figura 12 – Comportamento do teor médio de massa de matéria seca: (a) da folha, (b)
do caule, (c) da raiz e (d) total, por procedência dentro de cada local, no
ensaio de adaptação em juvenis. As barras representam as médias originais
e as linhas verticais o erro padrão da média.
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4.2 Avaliação da plasticidade fenot́ıpica e adaptação local com base na pro-

porção de sementes germinadas em ensaios de estabelecimento

A instalação e manutenção de plantações sustentáveis de E. edulis, em

condições naturais, exigem estudos relacionados aos aspectos silviculturais do palmiteiro,

como os relacionados à germinação de sementes, porque o vigor germinativo é qualita-

tivamente essencial na produção de mudas. Frequentemente, determinadas procedências

podem apresentar maiores taxas de germinação de sementes ao serem semeadas em dife-

rentes locais. Provavelmente, isso propiciaria maior possibilidade de ocupação e aprovei-

tamento mais rápido do substrato em condições naturais, favorecendo o estabelecimento

dessas procedências, permitindo sua conservação e manejo sustentável.

Desse modo, um dos objetivos deste estudo foi avaliar o desempenho ger-

minativo de sementes de três procedências de palmiteiro em três locais. As proporções

médias observadas de sementes germinadas por local e procedência estão apresentadas na

Tabela 11.

Tabela 11 – Proporções médias observadas de sementes germinadas de E. edulis segundo
a procedência e local de instalação do experimento.

Procedências
Local Ombrófila Semidecidual Restinga Média
Carlos Botelho 0,7833 0,7875 0,7083 0,7597
Caetetus 0,2148 0,5037 0,3333 0,3506
Ilha do Cardoso 0,8567 0,7433 0,7267 0,7756
Média 0,6210 0,6765 0,5901 0,6292

Observa-se na Tabela 11, que o comportamento de E. edulis quanto à ca-

pacidade germinativa variou principalmente de acordo com o local onde foi realizado o

experimento, sendo os locais Carlos Botelho e Ilha do Cardoso, onde se registraram os

maiores valores de proporção média de sementes germinadas.

Na Tabela 12 são apresentadas as estimativas dos componentes de variância

e seus respectivos erros padrões, os valores obtidos da estat́ıstica χ2 e respectivos ńıveis

descritivos (valores de p) para testar a hipótese nula de que cada componente de variância

é igual a zero.
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Tabela 12 – Estimativas e erros padrões dos componentes de variância, estat́ıstica χ2 e
ńıveis descritivos para o teste da razão de verossimilhanças

Componente de variância Estimativa Erro padrão χ2 Valor de p
(∗)

Bloco (Local) 0,3610 0,1249 82,11 < 0,0001
Matriz (Procedência) 0,0998 0,0487 82,11 < 0,0001
Local ] Matriz (Procedência) 0,0129 0,0424 7,23 0,0036
(∗) Valor de p baseado em uma mistura de distribuições χ2

Nota-se ainda na Tabela 12 que os três componentes de variância são sig-

nificativos. Estes resultados mostram que estes componentes de variância no modelo são

necessários para descrever adequadamente a variação dos dados. Por outro lado, apro-

ximadamente 76% da variância total (em escala logito) pode ser atribúıda ao efeito de

bloco dentro de local, 21% ao efeito de planta matriz dentro de procedência e somente

3% ao efeito da interação local ] planta matriz dentro de procedência.

Os valores da estat́ıstica F e respectivos valores descritivos (valores de p)

para o teste dos efeitos fixos na análise da proporção de sementes germinadas, são apre-

sentados na Tabela 13.

Tabela 13 – Estat́ıstica F e respectivos ńıveis descritivos (valores de p) para as fontes de
variação fixas

Efeito F Valor de p
Local 28,36 < 0,0001
Procedência 2,85 0,0754
Local ] Procedência 13,67 < 0,0001

Os resultados do teste para os efeitos fixos apresentados na Tabela 13, mos-

tram que a probabilidade de germinação das sementes difere entre locais e entre a interação

local ] procedência (em escala logito), considerando-se o ńıvel de 5% de significância.

O conjunto de gráficos dos reśıduos condicionais estudentizados é apresen-

tado na Figura 13 . Estes gráficos evidenciam que o modelo se ajusta bem aos dados. Por

outro lado, o valor estimado do parâmetro de dispersão (φ) foi igual a 1,05, mostrando a

ausência de super ou de subdispersão.
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Figura 13 – Gráficos dos reśıduos condicionais estudentizados, (a) em função dos valores
preditos, (b) histograma, (c) quantil-quantil e (d) box plot, para o experimento
de adaptação no estabelecimento

4.2.1 Plasticidade fenot́ıpica

Para estudar a presença de plasticidade fenot́ıpica, por sua vez, foi realizado

o desdobramento do número de graus de liberdade de locais dentro de procedências, cujos

resultados são apresentados na Tabela 14.

Tabela 14 – Estat́ıstica F e ńıveis descritivos (valores de p) para o desdobramento do
número de graus de liberdade de local ] procedência para a variável proporção
de sementes germinadas, analisando os dados de locais dentro de cada ńıvel
de procedência

Procedência F Valor de p
Ombrófila 46,94 < 0,0001
Semiresidual 8,43 0,0006
Restinga 17,24 < 0,0001

Considerando-se o ńıvel de 5% de significância, os valores significativos da

estat́ıstica F evidenciam a presença de plasticidade fenot́ıpica, ou seja, sementes proce-

dentes de uma formação florestal determinada apresentam variação na capacidade germi-

nativa, dependendo das condições edafo-climáticas do local onde foram semeadas.
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O resumo da análise do efeito do fator local dentro do fator procedências,

por meio de contrastes, realizado com o objetivo de verificar se um local determinado

é o mais favorável para a germinação de plantas originadas de sementes da sua mesma

procedência, é apresentado na Tabela 15.

Tabela 15 – Estimativas, em escala logito e entre parênteses na escala original (proporção
de sementes germinadas), dos contrastes entre locais (CB=Carlos Botelho,
CT=Caetetus e IC=Ilha do Cardoso) da mesma procedência contra outros
locais, estat́ıstica t e ńıveis descritivos (valor de p)

Procedência Contraste Estimativa t Valor de p
Ombrófila Local CB vs outros 1,1536 (0,2675) 3,55 0,0008
Semidecidual Local CT vs outros - 1,2265 (-0,2707) -4,08 <0,0001
Restinga Local IC vs outros 0,9356 (0,2173) 3,17 0,0025

A partir dos resultados apresentados nesta Tabela, considerando-se o ńıvel

de 5% de significância, observa-se que os locais Carlos Botelho e Ilha do Cardoso são

os mais favoráveis para a germinação de sementes da sua mesma procedência, ao serem

significativos os contrastes e apresentarem valores de proporção de germinação média

superiores comparados com as médias das outras procedências avaliadas. No caso do

local Caetetus (CT), apresentou as piores condições para a germinação das sementes,

tanto da sua mesma procedência, quanto das outras avaliadas.

O comportamento da proporção estimada de sementes germinadas (em es-

cala logito) segundo o local em que foi semeada cada procedência é apresentado na Figura

14. Observa-se que no local Caetetus apresentaram-se os menores valores médios da refe-

rida proporção (em escala logito).

4.2.2 Adaptação local

O resumo do teste F para o desdobramento do número de graus de liber-

dade de procedências dentro de locais, para estudar a adaptação local das procedências é

apresentado na Tabela 16.

Na Tabela 16, considerando-se o ńıvel de 5% de significância, observa-se

que há diferenças significativas entre as proporções de sementes germinadas das diferentes

formações florestais, quando são semeadas nos locais Caetetus e Ilha do Cardoso. Este

fato revela a existência de adaptação local.
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Figura 14 – Comportamento da proporção média estimada de sementes germinadas (em
escala logito) segundo o local para cada procedência

Tabela 16 – Estat́ıstica F e valores de probabilidade (valores-p) para o desdobramento do
número de graus de liberdade de local ] procedência para a variável proporção
de sementes germinadas, analisando os dados de procedências dentro de cada
ńıvel de local

Local F Valor de p
Carlos Botelho 1,72 0,1885
Caetetus 16,79 < 0,0001
Ilha do Cardoso 5,69 0,0057

Finalmente, o resumo da análise do efeito do fator procedências dentro do

fator local, por meio de contrastes, é apresentado na Tabela 17. Os testes apresentados

foram realizados com o objetivo de verificar se plantas originadas de sementes de uma

determinada procedência estão mais adaptadas ao seu próprio local, em comparação com

plantas procedentes de sementes dos outros locais.

Tabela 17 – Estimativas, em escala logito e entre parênteses na escala original (proporção
de sementes germinadas), dos contrastes entre procedências do mesmo local
(CB=Carlos Botelho, CT=Caetetus e IC=Ilha do Cardoso) contra outras
procedências, estat́ıstica t e ńıveis descritivos (valor de p)

Local Contraste Estimativa t Valor de p
Carlos Botelho Proc. Ombrófila vs outras 0,1867 (0,0343) 0,80 0,4263
Caetetus Proc. Semidecidual vs outras 1,1271 (0,2516) 5,33 <0,0001
Ilha do Cardoso Proc. Restinga vs outras -0,4512 (-0,0718) -2,11 0,0399
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Neste caso conclui-se que, considerando o ńıvel de 5% de significância, plan-

tas originadas de sementes da formação florestal Estacional Semidecidual estão mais adap-

tadas ao seu próprio local (Caetetus), em comparação com plantas procedentes de semen-

tes dos outros locais, ou seja, apresentam maior germinação. No caso da formação florestal

Restinga, as sementes procedentes deste bioma parecem estar menos adaptadas ao seu

próprio local (Ilha do Cardoso), no caso da variável proporção de sementes germinadas.

Observa-se na Figura 15 que as menores proporções esperadas de sementes

germinadas (em escala logito) foram obtidas no local Caetetus. A esse respeito, Brancalion

(2009) cita que, a germinação das plantas foi prejudicada neste local provavelmente pela

baixa disponibilidade h́ıdrica nos primeiros meses após a semeadura, já que nesse local se

apresenta uma estação seca bem definida que começa junto com o peŕıodo de frutificação

de palmiteiro.

Figura 15 – Comportamento da proporção esperada de sementes germinadas (em escala
logito) segundo a procedência em cada local de estudo

De acordo com Martins, Nakagawa e Bovi (1999), a intolerância à dessecação

das sementes dessa espécie pode contribuir para aumentar a sensibilidade das mesmas ao

estresse h́ıdrico durante a germinação em condições de baixa disponibilidade h́ıdrica, redu-

zindo o potencial fisiológico das sementes e consequentemente a emergência de plântulas

em campo. Por outra parte, segundo Reis e Kageyama (2000), por se tratar de sementes

recalcitrantes, uma redução no teor de umidade nas sementes (abaixo de 28%) ocasiona

perda de viabilidade e, consequentemente, diminuição nas taxas de germinação.
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Contudo, Brancalion (2009) cita que, mesmo nessa condição desfavorável

para a sobrevivência e germinação de sementes recalcitrantes, sementes provenientes do

mesmo local (Caetetus) apresentaram maiores proporções de germinação quando compa-

radas com as outras fontes de sementes. O mesmo autor também salienta, que a tolerância

diferenciada das sementes à dessecação pode ser um ind́ıcio de adaptação local para a

ocorrência de E. edulis em florestas tropicais sujeitas ao déficit h́ıdrico.
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5 CONSIDERAÇÕES FINAIS

O emprego de técnicas de formulação de modelos lineares de efeitos mistos

foi fundamental para o estudo da adaptação local e da plasticidade fenot́ıpica de Eu-

terpe edulis, quando avaliadas as variáveis relacionadas com a massa de matéria seca das

plantas. As plantas originadas das sementes dos três biomas avaliados apresentaram um

comportamento plástico em todos os caracteres avaliados, no ensaio de adaptação no es-

tabelecimento (ou de semeadura). Por outro lado, no ensaio de adaptação em juvenis (ou

de crescimento), a caracteŕıstica de plasticidade foi verificada unicamente na massa de

matéria seca da folha, para as plantas provenientes do bioma Estacional Semidecidual.

A caracteŕıstica de adaptação local foi observada de forma evidente no en-

saio de adaptação no estabelecimento (ou de semeadura), verificando que em cada local

avaliado, as plantas originadas das sementes das diferentes procedências, apresentaram

um comportamento diferenciado para todos os caracteres avaliados, podendo em alguns

casos, tratar-se de adaptação local. Por outro lado, no ensaio de adaptação em juvenis,

apenas as plantas transplantadas no bioma Restinga (Parque Estadual Ilha do Cardoso)

apresentaram evidência de adaptação para a massa de matéria seca da folha, do caule e

do total. As plantas originadas das sementes das formações florestais Ombrófila Densa e

Restiga foram as únicas que apresentaram adaptação ao seu próprio local.

A respeito da variável proporção de sementes germinadas, a aplicação do

modelo linear generalizado misto permitiu identificar diferenças significativas nos efeitos

de local e da interação local ] procedência, levando em consideração os efeitos aleatórios

relacionados aos blocos e às plantas matrizes, determinando a presença de plasticidade fe-

not́ıpica nas plantas originadas das sementes das três procedências avaliadas. Além disso,

determinou-se que os locais Carlos Botelho e Ilha do Cardoso são os mais favoráveis para

a germinação das sementes da sua mesma procedência. Adicionalmente, a caracteŕıstica

de adaptação mostrou-se presente nas plantas semeadas nos locais Caetetus e Ilha do Car-

doso. Concluiu-se que as plantas originadas das sementes da formação florestal Estacional

Semidecidual apresentaram melhor adaptação ao seu próprio local (Caetetus).
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Uberlândia, MG. Revista brasileira de Botânica, São Paulo, v. 23, p. 169-176, 2000.

GBUR, E.E.; STROUP, W.W.; McCARTER, K.S.; DURHAM, S.; YOUNG, L.J.;
CHRISTMAN, M.W.; KRAMER, M. Analysis of Generalized Linear Mixed Models in
the Agricultural and Natural Resources Sciences. 1. ed. Madison: American Society of
Agronomy, Soil Science Society of America, Crop Science Society of America, 2012. 283 p.

GILMOUR, A. R.; THOMPSON, R.; CULLIS, B.R. Average information reml: an efficient
algorithm for variance parameter estimation in linear mixed models. Biometrics, Arlington,
v. 51, n. 4, p. 1140-1450, Dec. 1995.

GREGOIRE, T.G.; SCHABENBERGER, O.; BARRETT, J.P. Linear Modelling of Irregularly
Spaced, Unbalanced, Longitudinal Data from Permanent Plot Measurements. Canadian
Journal of Forest Research, Ottawa, v. 25, n. 1, p. 137-156, Jan. 1995.

GRIZZLE, J.E.; STARMER, C.F.; KOCH, G.G. Analysis of categorical data by linear models.
Biometrics, Arlington, v. 25, n. 3, Sept. p. 489-504, 1969.

HARTLEY, H.O. The Maximum F-Ratio as Short-Cut Test for Heterogeneity of Variances.
Biometrika, Oxford, v. 37, p. 308-312, 1950.

HARTLEY, H.O.; RAO, J.N.K. Maximum likelihood estimation for the mixed analysis of
variance model. Biometrika, Oxford, v. 54, p. 93-108, June 1967.

HARVILLE, D.A. Maximum Likelihood Approaches to Variance Component Estimation and
to Related Problems. Journal of the American Statistical Association, Alexandria, v.
72, n. 2, p. 320-338, June 1977.



114

HENDERSON, C.R. Estimation of Variance and Covariance Components. Biometrics,
Arlington, v. 9, n. 2, p. 226-252, June 1953.

HENDERSON, C.R. Applications of Linear Models in Animal Breeding. Guelph:
University of Guelph, 1984. 462 p.
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ANEXO A - Códigos no SAS para o ajuste do modelo linear misto para dados de
massa de matéria seca de E. edulis, nos ensaio de estabelecimento (semeadura) e
de crescimento de mudas (juvenis).

ods graphics on;

PROC mixed data=sem covtest cl;

CLASS Local Bloco Proc Mat;

MODEL mfol= Local Proc Local*Proc/ddfm=satterthwaite residual;

Random Bloco(Local) Mat(Proc) Mat(Local*Proc);

lsmeans Proc*Local/slice=Local; /* Testes de adaptaç~ao */

contrast ’Local CB: Proc CB vs outras’

Proc 2 -1 -1

Proc*Local 2 -1 -1 0 0 0 0 0 0;

contrast ’Local CT: Proc CT vs outras’

Proc -1 2 -1

Proc*Local 0 0 0 -1 2 -1 0 0 0 ;

contrast ’Local IC: Proc IC vs outras’

Proc -1 -1 2

Proc*Local 0 0 0 0 0 0 -1 -1 2 ;

estimate ’Local CB: Proc CB vs outras’

Proc 2 -1 -1

Proc*Local 2 -1 -1 0 0 0 0 0 0 /divisor=2;

estimate ’Local CT: Proc CT vs outras’

Proc -1 2 -1

Proc*Local 0 0 0 -1 2 -1 0 0 0 /divisor=2;

estimate ’Local IC: Proc IC vs outras’

Proc -1 -1 2

Proc*Local 0 0 0 0 0 0 -1 -1 2 /divisor=2;

lsmeans Proc*Local/slice=Proc; /* Testes de plasticidade */

contrast ’Proc CB: Local CB vs outros’

Local 2 -1 -1

Proc*Local 2 0 0 -1 0 0 -1 0 0 ;

contrast ’Proc CT: Local CT vs outros’

Local -1 2 -1

Proc*Local 0 -1 0 0 2 0 0 -1 0 ;

contrast ’Proc IC: Local IC vs outros’

Local -1 -1 2

Proc*Local 0 0 -1 0 0 -1 0 0 2 ;

estimate ’Proc CB: Local CB vs outros’

Local 2 -1 -1

Proc*Local 2 0 0 -1 0 0 -1 0 0 /divisor=2;

estimate ’Proc CT: Local CT vs outros’

Local -1 2 -1

Proc*Local 0 -1 0 0 2 0 0 -1 0 /divisor=2;

estimate ’Proc IC: Local IC vs outros’

Local -1 -1 2

Proc*Local 0 0 -1 0 0 -1 0 0 2 /divisor=2;

RUN;

ods graphics off;
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ANEXO B - Códigos no SAS para o ajuste do modelo linear generalizado misto
para dados de proporção de sementes germinadas de E. edulis, no ensaio de esta-
belecimento (semeadura).

PROC glimmix DATA=germ plots=(residualpanel pearsonpanel studentpanel);

CLASS local proc rep mat;

MODEL y/n = local proc local*proc;

random rep(local);

random mat(proc);

random mat(local*proc);

covtest "mat(proc)" 0..;

covtest "rep(local)" .0.;

covtest "mat(local*proc)" ..0;

output out=new pred(ilink)= predi stderr(ilink)= sepredi pred= pred

stderr=sepred resid=resid student=student;

lsmeans local*proc/ilink plot=meanplot(sliceby=proc join);

lsmeans local*proc/ilink plot=meanplot(sliceby=proc join ilink);

lsmeans local*proc/ilink slice=Local; /* Teste de plasticidade */

lsmeans local*proc/ilink slice=Proc; /* Teste de adaptaç~ao local */

lsmeans proc/ilink;

lsmeans local/ilink;

lsmeans proc/ilink;

lsmeans local/ilink;

contrast ’Local CB: Proc CB vs outras’

Proc 2 -1 -1

Proc*Local 2 -1 -1 0 0 0 0 0 0;

contrast ’Local CT: Proc CT vs outras’

Proc -1 2 -1

Proc*Local 0 0 0 -1 2 -1 0 0 0 ;

contrast ’Local IC: Proc IC vs outras’

Proc -1 -1 2

Proc*Local 0 0 0 0 0 0 -1 -1 2 ;

estimate ’Local CB: Proc CB vs outras’

Proc 2 -1 -1

Proc*Local 2 -1 -1 0 0 0 0 0 0 /divisor=2;

estimate ’Local CT: Proc CT vs outras’

Proc -1 2 -1

Proc*Local 0 0 0 -1 2 -1 0 0 0 /divisor=2;

estimate ’Local IC: Proc IC vs outras’

Proc -1 -1 2

Proc*Local 0 0 0 0 0 0 -1 -1 2 /divisor=2;
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contrast ’Proc CB: Local CB vs outros’

Local 2 -1 -1

Proc*Local 2 0 0 -1 0 0 -1 0 0 ;

contrast ’Proc CT: Local CT vs outros’

Local -1 2 -1

Proc*Local 0 -1 0 0 2 0 0 -1 0 ;

contrast ’Proc IC: Local IC vs outros’

Local -1 -1 2

Proc*Local 0 0 -1 0 0 -1 0 0 2 ;

estimate ’Proc CB: Local CB vs outros’

Local 2 -1 -1

Proc*Local 2 0 0 -1 0 0 -1 0 0 /divisor=2;

estimate ’Proc CT: Local CT vs outros’

Local -1 2 -1

Proc*Local 0 -1 0 0 2 0 0 -1 0 /divisor=2;

estimate ’Proc IC: Local IC vs outros’

Local -1 -1 2

Proc*Local 0 0 -1 0 0 -1 0 0 2 /divisor=2;

RUN;




